当前位置:文档之家› 板式换热器热力计算及分析(整合)

板式换热器热力计算及分析(整合)

板式换热器热力计算及分析(整合)
板式换热器热力计算及分析(整合)

板式换热器选型计算书

目录 1、目录 1 2、选型公式 2 3、选型实例一(水-水) 3 4、选型实例二(汽-水) 4 5、选型实例三(油-水) 5 6、选型实例四(麦芽汁-水) 6 7、附表一(空调采暖,水-水)7 8、附表二(空调采暖,汽-水)8 9、附表三(卫生热水,水-水)9 10、附表四(卫生热水,汽-水)10 11、附表五(散热片采暖,水-水)11 12、附表六(散热片采暖,汽-水)12

板式换热器选型计算 1、选型公式 a 、热负荷计算公式:Q=cm Δt 其中:Q=热负荷(kcal/h )、c —介质比热(Kcal/ Kg.℃)、m —介质质量流量(Kg/h )、Δt —介质进出口温差(℃)(注:m 、Δt 、c 为同侧参数) ※水的比热为1.0 Kcal/ Kg.℃ b 、换热面积计算公式:A=Q/K.Δt m 其中:A —换热面积(m 2)、K —传热系数(Kcal/ m 2.℃) Δt m —对数平均温差 注:K值按经验取值(流速越大,K值越大。水侧板间流速一般在0.2~0.8m/s 时可按上表取值,汽侧 板间流速一般在15m/s 以时可按上表取值) Δt max - Δt min T1 Δt max Δt min Δt max 为(T1-T2’)和(T1’-T2)之较大值 Δt min 为(T1-T2’)和(T1’-T2)之较小值 T T1’ c 、板间流速计算公式: T2 其中V —板间流速(m/s )、q----体积流量(注意单位转换,m 3/h – m 3/s )、 A S —单通道截面积(具体见下表)、n —流道数 2、板式换热器整机技术参数表: 计压力1.0Mpa 、垫片材质EPDM 、总换热面积为9 m 2 板式换热器。 注:以上选型计算方法适用于本公司生产的板式换热器。 选型实例一(卫生热水用:水-水) Ln Δt m =

第七章、统计热力学基础习题和答案

统计热力学基础 题 择 一、选 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科B 2.在研究N、V、U 有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 3.这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 4.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 5. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律 6.时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 7.对于玻尔兹曼分布定律n i =(N/q) ·g i·exp( -εi/kT)的说法:(1) n i 是第i 能级上的 粒子分布数; (2) 随着能级升高,εi 增大,n i 总是减少的; (3) 它只适用于可区分的独 8.立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 9.对于分布在某一能级εi 上的粒子数n i ,下列说法中正确是:( ) 10.A. n i 与能级的简并度无关 B. εi 值越小,n i 值就越大 C. n i 称为一种分布 D.任何分布的n i 都可以用波尔兹曼分布公式求出 B 11. 15.在已知温度T 时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj 和εi 上分布的粒子数之比为:( ) A. 0.5exp( j/2εk T) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2 j/kεT) C 12. I2 的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2 的温度 13.是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 14.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 15. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是: ( ) A.Θv 越高,表示温度越高 B.Θv 越高,表示分子振动能越小 C. Θv 越高,表示分子处于激发态的百分数越小 D. Θv 越高,表示分子处于基态的百分数越小 C 16.下列几种运动中哪些运动对热力学函数G 与A 贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 17.三维平动子的平动能为εt = 7h 2 /(4mV2/ 3 ),能级的简并度为:( )

统计热力学深刻复知识题及答案解析

第三章 统计热力学 复习题及答案 1.混合晶体是由晶格点阵中随机放置N C 个C 分子和D 分子组成的。 (1) 证明分子能够占据格点的花样为 !!)!(D C D C N N N N W += ,若N N N D C 2 1 ==,利用斯特林公式证明 N W 2= (2) 若==D C N N 2,利用上式计算得42=W =16,但实际上只能排出6种花样,究竟何者正确? 为什么? 解:(1)证明:取)(D C N N +的全排列,则总共排列的花样数为)!(D C N N +种,现C N 个相同的C 和D N 个相同的D 。故花样数为!!)!(D C D C N N N N W += 当N N N D C 2 1 ==时 2])!21 [(!)!21()!21()! 21 21(N N N N N N W = += 取自然对数: N N N N N N N N N N N N N N N N N N N N N N N N N N W 2ln 2ln 2 1 ln ln 21ln ln )21ln(ln )2 1 ln(ln ]21)21ln(21[2ln )!21ln(2!ln ln ==-=--=-=+--=---=-= N W 2=∴ (2)实际排出6种花样是正确的,因为Stirling 是一个近似公式适用于N 很大时才误差较小。而在N 为4时,用 42=W 来计算就会产生较大误差。 2.(1)设有三个穿绿色、两个穿灰色和一个穿蓝色制服得军人一起列队,试问有多少种对型?现设穿绿色制服得可有三种肩章并任取其中一种佩带,穿灰色制服的可有两种肩章,而穿蓝色的可有两种肩章,试 列出求算队型数目的公式。

板式换热器的换热计算方法Word版

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: ?总传热量(单位:kW). ?一次侧、二次侧的进出口温度 ?一次侧、二次侧的允许压力降 ?最高工作温度 ?最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。

(1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。

板式换热器换热量的计算

板式换热器例题 1、换热器换热量的计算 w t Gc Q 1046750)2065(41873600 20000=-??=?= 2、外网进入热水供应用户的水流量 s kg t c Q G /10) 7095(418710467500=-=?= 3、加热水的流通断面积 换热器内水的流速取0.1~0.5m/s 。加热水的平均温度为(95+70)/2=82.5℃,该温度下水的密度为970.2kg/m 3。 200206.02 .9705.010m w G f r r r =?==ρ 4、被加热水的流通断面积 换热器内水的流速取0.1~0.5m/s 。被加热水的平均温度为(65+20)/2=42.5℃,该温度下水的密度为991.2kg/m 3。 201868.02 .9913.0360020000m w G f l l l =??==ρ 5、选型 初选BR12型板式换热器,单片换热面积为0.12m 2/片,单通道流通断面积为0.72×10-3。 6、实际流速 加热水流道数为 2810 72.00206.03=?==-d r r f f n 被加热水流道数为 261072.001868.03=?== -d l l f f n 取流道数为28。 加热水实际流速 s m f n G w r d r r /5.02 .9701072.0281030=???==-ρ 被加热水实际流速 s m f n G w l d l l /28.02 .9911072.02856.53=???==-ρ 7、传热系数 查图知传热系数为3600w/m 2.K 。 8、传热温差

()()()()℃396595207065952070) ()() ()(112 21122=-----=-----=?In t t In t t t p ττττ 9、传热面积 246.739 36001046750m t K Q F p =?=?= 10、需要的片数 6212 .046.7===d F F N 11、实际片数 考虑一个富裕量。 62×1.25=78

热力学与统计物理试题及答案

热力学与统计物理试题及 答案 Revised by BLUE on the afternoon of December 12,2020.

一.选择(25分 ) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统

二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为()。 2.热力学基本微分方程du=()。 3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态平衡态具有哪些特点 2. 3.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统

板式换热器热力计算及分析(整合)

第一章概论 综述 板式换热器发展简史 目前板式换热器已成为高效、紧凑的热交换设备,大量地应用于工业中。它的发展已有一百多年的历史。 德国在1878年发明了板式换热器,并获得专利,到1886年,由法国首次设计出沟道板板式换热器,并在葡萄酒生产中用于灭菌。APV公司的在1923年成功地设计了可以成批生产的板式换热器,开始时是运用很多铸造青铜板片组合在一起,很像板框式压滤机。1930年以后,才有不锈钢或铜薄板压制的波纹板片板式换热器,板片四周用垫片密封,从此板式换热器的板片,由沟道板的形式跨入了现代用薄板压制的波纹板形式,为板式换热器的发展奠定了基础。 与此同时,流体力学与传热学的发展对板式换热器的发展做出了重要的贡献,也是板式换热器设计开发最重要的技术理论依据。如:19世纪末到20世纪初,雷诺(Reynolds)用实验证实了层流和紊流的客观存在,提出了雷诺数——为流动阻力和损失奠定了基础。此外,在流体、传热方面有杰出贡献的学者还有瑞利(Reyleigh)、普朗特(Prandtl)、库塔(Kutta)、儒可夫斯基(жуковскиǔ)、钱学森、周培源、吴仲华等。 通过广泛的应用与实践,人们加深了对板式换热器优越性的认识,随着应用领域的扩大和制造技术的进步,使板式换热器的发展加快,目前已成为很重要的换热设备。 近几十年来,板式换热器的技术发展,可以归纳为以下几个方面。 1:研究高效的波纹板片。初期的板片是铣制的沟道板,至三四十年代,才用薄金属板压制成波纹板,相继出现水平平直波纹、阶梯形波纹、人字形波纹等形式繁多的波纹片。同一种形式的波纹,又对其波纹的断面尺寸——波纹的高度、节距、圆角等进行大量的研究,同时也发展了一些特殊用途的板片。 2:研究适用于腐蚀介质的板片、垫片材料及涂(镀)层。 3:研究提高使用压力和使用温度。 4:发展大型板式换热器。 5:研究板式换热器的传热和流体阻力。

板式换热器选型与计算方法

板式换热器选型与计算方法 板式换热器的选型与计算方法 板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷 热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量)

在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; mh,mc-----热、冷流体的质量流量,kg/s; Cph,Cpc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为: 一侧有相变化 两侧物流均发生相变化,如一侧冷凝另一侧沸腾的传热过程 式中 r,r1,r2--------物流相变热,J/kg; D,D1,D2--------相变物流量,kg/s。 对于过冷或过热物流发生相变时的热流量衡算,则应按以上方法分段进行加和计算。 对数平均温差(LMTD) 对数平均温差是换热器传热的动力,对数平均温差的大小直接关系到换热器传热难易程度.在某些特殊情况下无法计算对数平均温差,此时用算术平均温差代替对数平均温差,介质在逆流情况和在并流情况下的对数平均温差的计算方式是不同的。在一些特殊情况下,用算术平均温差代替对数平均温差。 逆流时: 并流时:

第七章、统计热力学基础习题和答案

统计热力学基础 一、选择题 1. 下面有关统计热力学的描述,正确的是:( ) A. 统计热力学研究的是大量分子的微观平衡体系 B. 统计热力学研究的是大量分子的宏观平衡体系 C. 统计热力学是热力学的理论基础 D. 统计热力学和热力学是相互独立互不相关的两门学科 B 2.在研究N、V、U有确定值的粒子体系的统计分布时,令∑n i = N,∑n iεi = U, 这是因为所研究的体系是:( ) A. 体系是封闭的,粒子是独立的 B 体系是孤立的,粒子是相依的 C. 体系是孤立的,粒子是独立的 D. 体系是封闭的,粒子是相依的 C 3.假定某种分子的许可能级是0、ε、2ε和3ε,简并度分别为1、1、2、3 四个这样的分子构成的定域体系,其总能量为3ε时,体系的微观状态数为:( ) A. 40 B. 24 C. 20 D. 28 A 4. 使用麦克斯韦-波尔兹曼分布定律,要求粒子数N 很大,这是因为在推出该定律时:( ) . 假定粒子是可别的 B. 应用了斯特林近似公式 C. 忽略了粒子之间的相互作用 D. 应用拉氏待定乘因子法 A 5.对于玻尔兹曼分布定律n i =(N/q)·g i·exp( -εi/kT)的说法:(1) n i是第i 能级上的粒子分布数; (2) 随着能级升高,εi 增大,n i总是减少的; (3) 它只适用于可区分的独立粒子体系; (4) 它适用于任何的大量粒子体系其中正确的是:( ) A. (1)(3) B. (3)(4) C. (1)(2) D. (2)(4) C 6.对于分布在某一能级εi上的粒子数n i,下列说法中正确是:( ) A. n i与能级的简并度无关 B. εi值越小,n i 值就越大 C. n i称为一种分布 D.任何分布的n i都可以用波尔兹曼分布公式求出 B 7. 15.在已知温度T时,某种粒子的能级εj = 2εi,简并度g i = 2g j,则εj和εi上分布的粒子数之比为:( ) A. 0.5exp(ε j/2kT) B. 2exp(- εj/2kT) C. 0.5exp( -εj/kT) D. 2exp( 2ε j/kT) C 8. I2的振动特征温度Θv= 307K,相邻两振动能级上粒子数之n(v + 1)/n(v) = 1/2的温度是:( ) A. 306 K B. 443 K C. 760 K D. 556 K B 9.下面哪组热力学性质的配分函数表达式与体系中粒子的可别与否无关:( ) A. S、G、F、C v B. U、H、P、C v C. G、F、H、U D. S、U、H、G B 10. 分子运动的振动特征温度Θv 是物质的重要性质之一,下列正确的说法是:( ) A.Θv越高,表示温度越高 B.Θv越高,表示分子振动能越小 C. Θv越高,表示分子处于激发态的百分数越小 D. Θv越高,表示分子处于基态的百分数越小 C 11.下列几种运动中哪些运动对热力学函数G与A贡献是不同的:( ) A. 转动运动 B. 电子运动 C. 振动运动 D. 平动运动 D 12.三维平动子的平动能为εt = 7h2 /(4mV2/3 ),能级的简并度为:( )

(完整word版)第9章统计热力学练习题练习题及答案

第九章统计热力学练习题 一、是非题 1、由理想气体组成的系统是独立子系统。( ) 2、由非理想气体组成的系统是非独立子系统。( ) 3、由气体组成的统计系统是离域子系统。( ) 4、由晶体组成的统计系统是定域子系统。( ) 5、假设晶体上被吸附的气体分子间无相互作用,则可把该气体系统视为定域的独立子系统。( ) 6、独立子系统必须遵守∑∑==i i i i i N N N εε的关系,式中ε为系统的总能量, εi 为粒子在i 能级上的能量,N 系统总粒子数,Ni 为分布在能级i 上的粒子数。( ) 7、平动配分函数与体积无关。( ) 8、振动配分函数与体积无关。( ) 9、设分子的平动、振动、转动、电子等配分函数分别以等表示,则分子配分函数q 的因子分解性质可表示为:e r v t q q q q q ln ln ln ln ln +++=。( ) 10、对离域子系统,热力学函数熵S 与分子配分函数q 的关系为ln N U q S Nk Nk T N =++。( ) 二、选择题 1、按照统计热力学系统分类原则,下述系统中属于非定域独立子系统的是:( ) (1)由压力趋于零的氧气组成的系统。 (2)由高压下的氧气组成的系统。 (3)由氯化钠晶体组成的系统。 2. 对定域子系统,某种分布所拥有的微观状态数W D 为:( )。 (1)D !i N i i i g W N =∏ (2) D !! i g i i i N W N N =∏ (3)D !i g i i i N W N =∏ (4) D !! i n i i i g W N n =∏ 3、玻耳兹曼分布:( ) (1)就是最概然分布,也是平衡分布; (2)不是最概然分布,也不是平衡分布;

热力学与统计物理试题及答案

一.选择(25分) 1.下列不是热学状态参量的是( ) A.力学参量 B 。几何参量 C.电流参量 D.化学参量 2.下列关于状态函数的定义正确的是( ) A.系统的吉布斯函数是:G=U-TS+PV B.系统的自由能是:F=U+TS C.系统的焓是:H=U-PV D.系统的熵函数是:S=U/T 3.彼此处于热平衡的两个物体必存在一个共同的物理量,这个物理量就是( ) A.态函数 B.内能 C.温度 D.熵 4.热力学第一定律的数学表达式可写为( ) A.W Q U U A B +=- B.W Q U U B A +=- C.W Q U U A B -=- D.W Q U U B A -=- 5.熵增加原理只适用于( ) A.闭合系统 B.孤立系统 C.均匀系统 D.开放系统 二.填空(25分) 1.孤立系统的熵增加原理可用公式表示为( )。 2.热力学基本微分方程du=( )。

3.热力学第二定律告诉我们,自然界中与热现象有关的实际过程都是()。 4.在S.V不变的情况下,平衡态的()最小。 5.在T.VB不变的情形下,可以利用()作为平衡判据。 三.简答(20分) 1.什么是平衡态?平衡态具有哪些特点? 2.什么是开系,闭系,孤立系? 四.证明(10分) 证明范氏气体的定容热容量只是温度的函数,与比容无关 五.计算(20分) 试求理想气体的体胀系数α,压强系数β,等温压缩系数 T K

参考答案 一.选择 1~5AACAB 二.填空 1. ds≧0 2. Tds-pdv 3. 不可逆的 4. 内能 5. 自由能判据 三.简答 1.一个孤立系统,不论其初态如何复杂,经过足够长的时间后,将会达到这样状态,系统的各种宏观性质在长时间内不发生变化,这样的状态称为热力学平衡态。 特点:不限于孤立系统 弛豫时间 涨落 热动平衡 2.开系:与外界既有物质交换,又有能量交换的系统 闭系:与外界没有物质交换,但有能量交换的系统, 孤立系:与其他物体既没有物质交换也没有能量交换的系统四.证明

换热器及其基本计算

姓名:杜鑫鑫学号:0903032038 合肥学院 材 料 工 程 基 础 姓名: 班级:09无机非二班 学号:\ 课题名称:换热器及其基本计算 指导教师:胡坤宏

换热器及其基本计算 一、换热器基础知识 (1)换热器的定义: 换热器是指在两种温度不同的流体中进行换热的设备。 (2)换热器的分类: 由于应用场合不同,工程上应用的换热器种类很多,这些换热器照工作原理、结构和流体流程分类。 二、几个不同的换热器 (1)管壳式换热器 管壳式换热器又称列管式换热器,是一种通用的标准换热设备。它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。 管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。管内的通道及与其相贯通的管箱称为管程;管外的通道及与其相贯通的部分称为壳程。一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。 而壳管式换热器又可根据不同分为U形管式换热器、固定管板换热器、浮头式换热器、填料函式换热器几类。 (2) 套管式换热器 套管式换热器是用两种尺寸不同的标准管连接而成同心圆套管,外面的叫壳程,内部的叫管程。两种不同介质可在壳程和管程内逆向流动(或同向)以达到换热的效果。 套管式换热器以同心套管中的内管作为传热元件的换热器。两种不同直径的管子套在一起组成同心套管,每一段套管称为“一程”,程的内管(传热管)借U形肘管,而外管用短管依次连接成排,固定于支架上。热量通过内管管壁由一种流体传递给另一种流体。通常,热流体由上部引入,而冷流体则由下部引入。套管中外管的两端与内管用焊接或法兰连接。内管与U形肘管多用法兰连接,便于传热管的清洗和增减。每程传热管的有效长度取4~7米。这种换热器传热面积最高达18平方米,故适用于小容量换热。当内外管壁温差较大时,可在外管设置U形膨胀节或内外管间采用填料函滑动密封,以减小温差应力。管子可用钢、铸铁、陶瓷和玻璃等制成,若选材得当,它可用于腐蚀性介质的换热。这种换热器具有若干突出的优点,所以至今仍被广泛用于石油化工等工业部门。

简单计算板式换热器板片面积

选用板式换热器就是要选择板片的面积的简单方法: Q=K×F×Δt, Q——热负荷 K——传热系数 F——换热面积 Δt——传热温差(一般用对数温差) 传热系数取决于换热器自身的结构,每个不同流道的板片,都有自身的经验公式,如果不严格的话,可以取2000~3000。最后算出的板换的面积要乘以一定的系数如1.2。 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHEGASKET)、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE)的专业换热器厂家。

ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD都能为您提供板式换热器领域的系统解决方案。

热力学与统计物理课后习题答案第一章

试求理想气体的体胀系数,压强系数和等温压缩系数。 解:已知理想气体的物态方程为 (1)由此易得 (2) (3) (4) 证明任何一种具有两个独立参量的物质,其物态方程可由实验测得的体胀系数及等温压缩系数,根据下述积分求得: 如果,试求物态方程。 解:以为自变量,物质的物态方程为 其全微分为 (1)全式除以,有 根据体胀系数和等温压缩系数的定义,可将上式改写为 (2)上式是以为自变量的完整微分,沿一任意的积分路线积分,有 (3)

若,式(3)可表为 (4)选择图示的积分路线,从积分到,再积分到(),相应地体 积由最终变到,有 即 (常量), 或 (5)式(5)就是由所给求得的物态方程。确定常量C需要进一步的实验数据。 在和1下,测得一铜块的体胀系数和等温压缩系数分别为可近似看作常量,今使铜块加热至。问: (a)压强要增加多少才能使铜块的体积维持不变?(b)若压强增加100,铜块的体积改变多少? 解:(a)根据题式(2),有 (1)上式给出,在邻近的两个平衡态,系统的体积差,温度差和压强差之间的关系。如果系统的体积不变,与的关系为 (2)在和可以看作常量的情形下,将式(2)积分可得 (3)将式(2)积分得到式(3)首先意味着,经准静态等容过程后,系统在初态和终态的压强差和温度差满足式(3)。但是应当强调,只要

初态和终态是平衡态,两态间的压强差和温度差就满足式(3)。这是因为,平衡状态的状态参量给定后,状态函数就具有确定值,与系统到达该状态的历史无关。本题讨论的铜块加热的实际过程一般不会是准静态过程。在加热过程中,铜块各处的温度可以不等,铜块与热源可以存在温差等等,但是只要铜块的初态和终态是平衡态,两态的压强和温度差就满足式(3)。 将所给数据代入,可得 因此,将铜块由加热到,要使铜块体积保持不变,压强要增强(b)题式(4)可改写为 (4)将所给数据代入,有 因此,将铜块由加热至,压强由增加,铜块体积将增加原体积的倍。 简单固体和液体的体胀系数和等温压缩系数数值都很小,在一定温度范围内可以把和看作常量. 试证明简单固体和液体的物态方程可近似为 解: 以为状态参量,物质的物态方程为 根据习题式(2),有 (1)将上式沿习题图所示的路线求线积分,在和可以看作常量的情形下,有 (2)或 (3)

板式换热器计算公式

板式换热器计算公式 板式换热器是由一系列具有一定波纹形状的金属片叠装而成的一种新式高效换热器。对于各个厂家和运用商来说,板式换热器选型计算方法及公式都是比照首要的,由于选好换热器对于出产和车间的作业是很关键的。 板片型式或波纹式应根据换热场合的实际需要而定。对流量大答应压降小的情况,应选用阻力小的板型,反之选用阻力大的板型。根据流体压力和温度的情况,判定选择可拆卸式,仍是钎焊式。判定板型时不宜选择单板面积太小的板片,避免板片数量过多,板间流速偏小,传热系数过低,对较大的换热器更应留心这个疑问。 流程和流道的选择 流程指板式换热器内一种介质同一活动方向的一组并联流道,而流道指板式换热器内,相邻两板片构成的介质活动通道。一般情况下,将若干个流道按并联或串联的方法连接起来,以构成冷、热介质通道的不一样组合。 流程组合方式应根据换热和流体阻力计算,在满足技能条件恳求下判定。尽量使冷、热水流道内的对流换热系数相等或靠近,然后得到最佳的传热作用。由于在传热表面两边对流换热系数相等或靠近时传热系数获得较大值。虽然板式换热器各板间流速不等,但在换热和流体

阻力计算时,仍以均匀流速进行计算。由于“U”形单流程的接纳都固定在压紧板上,拆装便当。 计算方法及公式 (1) 求热负荷QQ=G.ρ.CP.Δt (2) 求冷热流体进出口温度t2=t1+ Q /G .ρ .CP (3) 冷热流体流量G= Q / ρ .CP .(t2-t1 (4) 求均匀温度差ΔtmΔtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或 Δtm=(T1-t2)+(T2-t1)/2 (5) 选择板型若一切的板型选择完,则进行效果剖析。 (6) 由K值规划,计算板片数规划Nmin,NmaxNmin = Q / Kmax .Δtm .F P .βNmax = Q / Kmin .Δtm .F P .β

关于热力学与统计物理答案第二章

第二章 均匀物质的热力学性质 2.1 已知在体积保持不变时,一气体的压强正比于其热力学温度. 试证明在温度保质不变时,该气体的熵随体积而增加. 解:根据题设,气体的压强可表为 (),p f V T = (1) 式中()f V 是体积V 的函数. 由自由能的全微分 dF SdT pdV =-- 得麦氏关系 .T V S p V T ??????= ? ??????? (2) 将式(1)代入,有 ().T V S p p f V V T T ?????? === ? ? ?????? (3) 由于0,0p T >>,故有0T S V ??? > ????. 这意味着,在温度保持不变时,该气体的熵随体积而增加. 2.2 设一物质的物态方程具有以下形式: (),p f V T = 试证明其内能与体积无关. 解:根据题设,物质的物态方程具有以下形式: (),p f V T = (1) 故有 ().V p f V T ??? = ???? (2) 但根据式(2.2.7),有 ,T V U p T p V T ?????? =- ? ??????? (3) 所以

()0.T U Tf V p V ???=-= ???? (4) 这就是说,如果物质具有形式为(1)的物态方程,则物质的内能与体积无关,只是温度T 的函数. 2.3 求证: ()0;H S a p ???< ???? ()0.U S b V ??? > ???? 解:焓的全微分为 .dH TdS Vdp =+ (1) 令0dH =,得 0.H S V p T ???=-< ???? (2) 内能的全微分为 .dU TdS pdV =- (3) 令0dU =,得 0.U S p V T ??? => ? ??? (4) 2.4 已知0T U V ??? = ????,求证0.T U p ?? ?= ???? 解:对复合函数 (,)(,(,))U T P U T V T p = (1) 求偏导数,有 .T T T U U V p V p ?????????= ? ? ?????????? (2) 如果0T U V ??? = ????,即有 0.T U p ?? ?= ???? (3) 式(2)也可以用雅可比行列式证明:

板式换热器选型计算的方法及公式

板式换热器选型计算的方法及公式 (1)求热负荷Q Q=G .ρ.CP .Δt (2)求冷热流体进出口温度 t 2=t 1+Q/G .ρ.CP (3)冷热流体流量 G=Q/ρ.CP .(t2-t1 (4)求平均温度差Δtm Δtm=(T1-t2)-(T2-t1)/In(T1-t2)/(T2-t1)或Δtm=(T 1-t2)+(T2-t1)/2 (5)选择板型 若所有的板型选择完,则进行结果分析。 (6)由K值范围,计算板片数范围Nmin ,Nmax Nmin=Q/Kmax .Δtm.FP .β Nmax=Q/Kmin .Δtm.FP .β (7)取板片数N (Nmin ≤N≤Nmax ) 若N 已达Nmax ,做(5)。 (8)取N 的流程组合形式,若组合形式取完则做(7)。 (9)求Re ,Nu Re=W .de/ν Nu=a 1.Re a 2.Pr a 3 (10)求a ,K 传热面积F a=Nu .λ/de K=1/1/a h+1/a c+γc+γc+δ/λ0 F=Q/K .Δtm.β

艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD 艾瑞德专业生产可拆式板式换热器(PHE )、换热器密封垫(PHEGASKET )、换热器板片(PHEPLATE)并提供板式换热器维护服务(PHEMAINTENANCE )的专业换热器厂家。 ARD 艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD 致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD 已发展成为可拆式板式换热器领域卓越的厂家。 ARD 艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval 、斯必克/SPX 、安培威/APV 、基伊埃/GEA 、传特/TRANTER 、舒瑞普/SWEP 、桑德斯/SONDEX 、艾普尔.斯密特/API.Schmidt 、风凯/FUNKE 、萨莫威孚/Thermowave 、维卡勃Vicarb 、东和恩泰/DONGHWA 、艾克森ACCESSEN 、MULLER 、FISCHER 、REHEAT 等)的所有型号将近2000种的板式换热器板片和垫片,ARD 艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD 提供的换热器配件或接受ARD 的维护服务(包括定期清洗、维修及更换配件等维护服务)。 无论您身在何处,无论您有什么特殊要求,ARD 都能为您提供板式换热器领域的系统解决方案。 (11)由传热面积F求所需板片数NN NN=F/Fp+2 (12)若N <NN ,做(8)。 (13)求压降Δp Eu=a 4.Re a 5 Δp=Eu .ρ.W 2 .ф (14)若Δp >Δ允 ,做(8); 若Δp ≤Δ允 ,记录结果,做(8)。

第七章 统计热力学习题及解答

第七章 习题及解答 1. 设有一个体系,由三个定位的一维简谐振子所组成,体系能量为νh 2 11,这三个振子在三个固定的位置上振 动,试求体系全部的微观状态数。 解 对振动 νυενh )2 1 (+=,在总能量 νενh 2 11 =时,三个一维简谐振子可能有以下四种分布方式: (1) N 0=2, N 4=1, ν εν h 2 1 20?=, νεν h 2 94 =, 3!2!1! 31==t (2) N 0=1, N 2=2, νεν h 2 1 10 ?=, ν ενh 2 5 22?=, 3! 2!1! 32==t (3) N 0=1, N 1=1, N 3=1, ν εν h 21 0=, νενh 2 31= , νενh 2 7 3= , 6!1!1!1!33==t (4) N 1=2, N 2=1, νεν h 2 3 21 ?=, νεν h 2 5 2=, 3! 2!1! 34==t Ω= t 1+t 2+t 3+t 4=3+3+6+3=15 2. 当热力学体系的熵函数S 增加0.418J 〃K -1时,体系的微观状态数增加多少?用1/?ΩΩ表示。 解 S 1=kln Ω1, S 2=kln Ω2, S 2-S 1=kln(Ω2/Ω1) ln(Ω2/Ω1)=(S 2-S 1)/k =(0.418J·K -1)/(1.38×10-23J 〃K -1)=3.03×1022 1/Ω?Ω=(Ω2 -Ω1 )/Ω1 =(Ω2 /Ω1 )-1≈Ω2 /Ω1 = exp(3.03×1022) 3. 在海平面上大气的组成用体积百分数可表示为:N 2(g)为0.78,O 2(g)为0.21,其他气体为0.01。设大气中各种气体都符合Bolzenmann 分布,假设大气柱在整个高度内的平均温度为220K 。试求:这三类气体分别在海拔10km ,60km 和500km 处的分压。已知重力加速度为9.8m·s -2。 解 所用公式为p=p 0e -Mgh/RT ,其中M(空气) =29g·mol -1, M(N 2)=28g·mol -1, M(O 2)=32g·mol -1, M(其它)=[M(空气)-0.78M(N 2)-0.21M(O 2)]/0.01 =44 g·mol -1, 海拔10km 处 2 33N 0028109.810100.78exp 0.17408.314220p p p -?? ????=-= ???? 233O 0032109.810100.21exp 0.03788.314220p p p -?? ????=-= ????

板式换热器选型计算(DOC)

板式换热器选型计算

(四)计算换热量 Wq=Qh*γh*Cph*(Th1-Th2)=Qc*γc*Cpc*(Tc2-Tc1) W (五)设备选型 根据样本提供的型号结合流量定型号,主要依据于角孔流速。即:Wl=4*Q/(3600*π*D2) ≤3.5~4.5m/s Wl—角孔流速m/s Q —介质流量m3/h D —角孔直径m (六)定型设备参数(样本提供) 单板换热面积s m2 单通道横截面积 f m2 板片间距l m 平均当量直径de m (d≈2*l) 传热准则方程式Nu=a*Re b*Pr m 压降准则方程式Eu=x*Re y Nu—努塞尔数Eu—欧拉数 a.b.x.y—板形有关参数、指数 Re—雷诺数 Pr—普朗特数 m —指数热介质m=0.3 冷介质m=0.4 (七)拟定板间流速初值Wh 或Wc Wc=Wh*Qc/Qh (纯逆流时) W取0.1~0.4m/s (八)计算雷诺数 Re=W*de/ν W —计算流速m/s de—当量直径m ν—运动粘度m2/s (九)计算努塞尔数 Nu=a*Re b*Pr m

(十)计算放热系数 α=Nu*λ/de α—放热系数W/m2·℃ λ—导热系数W/m·℃ 分别得出αh、αc热冷介质放热系数(十一)计算传热系数 K=1/(1/αh+1/αc+r p+r h+r c) W/m2·℃ r p—板片热阻0.0000459m2·℃/W r h—热介质污垢热阻0.0000172~0.0000258m2·℃/W r c—冷介质污垢热阻0.0000258~0.0000602m2·℃/W (十二)计算理论换热面积 Fm=Wq/(K*△T) (十三)计算换热器单组程流道数 n=Q/(3600*f*W) (圆整为整数) Q—流量m3/h f—单通道横截面积m2 W—板间流速m/s (十四)计算换热器程数 N=(Fm/s+1)/(2*n)N为≥1的整数s—单板换热面积m2 (十五)计算实际换热面积 F=(2*N*n-1)*s (纯逆流) (十六)计算欧拉数 Eu=x*Re y (十七)计算压力损失 △P=Eu*γ*W2*N*10-6 MPa γ—介质重度Kg/m3 W—板间流速m/s N—换热器程数

相关主题
文本预览
相关文档 最新文档