当前位置:文档之家› 基因工程复习材料

基因工程复习材料

基因工程复习材料
基因工程复习材料

名词解释

α-互补:是指β-半乳糖苷酶基因(LacZ)上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的LacZ基因的突变体之间实现互补,从而产生具有β-半乳糖苷酶学活性蛋白的现象。

基因芯片技术:就是将大量探针分子固定于支持物上,根据碱基互补配对原理,与标记的样品分子进行杂交,通过检测杂交信号的强度及分布进而获取样品中靶分子的数量和序列信息。

限制性核酸内切酶:是一类能够识别双链DNA分子中的某种特定核苷酸序列,并由此切割DNA双链结构的核酸水解酶。

电穿孔法:是指在一个较大的电脉冲短暂破坏细胞膜的脂质双层,允许DNA等分子通过细胞膜进入细胞,而后细胞膜快速复原,保持细胞的完整。这种方法称为电穿孔法。穿梭载体:能够在两类不同宿主细胞中复制、增殖和选择的质载体,装有针对两种不同受体的复制子和遗传标记基因,便于基因克隆。

反向PCR:是用反向的互补引物来扩增两引物以外的DNA片段,即对某个已知DNA片段两侧的未知序列进行扩增。

人工染色体载体:利用染色体的复制元件来驱动外源DNA片段复制的载体。

芯片实验室:是将纳米技术引入生物芯片,在微小的硅材料表面,制造出能够对微量样品进行变性、分离、纯化、电泳、PCR扩增、加样及检测等微小结构,使过去一个实验的各个实验步骤微缩于一个芯片上,这种技术称为芯片实验室。

核酸分子杂交:核酸分子杂交是指核酸分子(DNA或RNA)在变性以后,在复性的过程中两个不同来源的且同源的核酸分子形成杂合双链的过程。

同尾酶:有一些来源不同的限制性核酸内切酶识别的靶序列也各不相同,但都产生相同的粘性末端,这类酶称为同尾酶。

融合蛋白:是指通过将两个或多个基因的开放阅读框按一定顺序连接在一起并通过表达而形成的杂合蛋白。

基因芯片:就是将大量探针分子固定于支持物上,根据碱基互补配对原理,与标记的样品分子进行杂交,通过检测杂交信号的强度及分布进而获取样品中靶分子的数量和序列信息。

同裂酶:不同来源的限制性核酸内切酶识别与切割相同的核苷酸靶序列,这类酶称为同裂酶。

基因表达: 从DNA分子有序地将其所承载的遗传信息,通过密码子和反密码子系统,转变由特定氨基酸顺序构成的多肽或蛋白质分子过程,从而决定生物有机体遗传表型。

实时荧光定量PCR:实时定量PCR在检测过程中通过检测标记的荧光信号的累积来实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析,故称为实时荧光定量PCR。

开放阅读框架(ORF):起始于AUG、止于UAA、UGA、UAG的连续的密码子区域,是潜在的编码区。

质粒的不亲和性:在没有压力下,两种亲缘关系密切的不同质粒,不能够在同一个寄主细胞系中稳定地共存的现象。

转化:指将质粒DNA或以它为载体构建的重组质粒导入细菌中的过程。

融合基因:是指应用DNA体外重组技术构建的一类具有来自两个或两个以上的不同基因核苷酸序列的新型基因。

目的基因:指那些已被或者准备要被分离、改造、扩增或表达的特定基因或DNA片段。限制性核酸内切酶的星活性:限制性核酸内切酶在非标准反应条件下,能切割一些与其特异识别顺序类似的序列,降低酶切反应特异性的现象。

基因组是指某种特定生物全部染色体的遗传物质的总和,其大小通常以其全部的DNA 碱基对总数来表示。

基因载体:是指运载目的基因进入宿主细胞,使之能得到复制和进行表达的工具, 化学本质是DNA分子。

人工接头:是人工合成的具有一个或数个特定限制性内切酶识别和切割序列的双股平端DNA短序列。

受体细胞:是指能摄取外源DNA并使其稳定维持的细胞。

共转化:基因工程中将两个以上的基因同时导入感受态真核细胞的方法,又称共转染。复合PCR:在一个反应体系加入多对不同的PCR引物同时扩增,获得多个PCR产物,这种PCR称为复合PCR。

c DNA文库:是指将某种生物体某一发育时期所转录的全部mRNA经反转录形成的cDNA 片段与某种载体连接而形成的克隆的集合。

基因打靶技术:基因工程中利用活细胞染色体DNA可与外源DNA的同源性DNA序列发生重组的性质,来进行定点修饰改造染色体上某一目的基因的技术。

基因枪法:用高压气体加速把粘有DNA的细微金粉(或钨粉颗粒)打向细胞,穿过细胞壁、细胞膜、细胞质等层层构造到达细胞核,完成基因转移的方法。

DNA的物理图谱:是指某些限制酶的特异识别序列在DNA链上的出现频率和它们之间的相对位置,表现出一些部位的线性序列,它是DNA分子结构特性的反映。

基因亚克隆:是指将较大的克隆片段经酶切后,再将所有的小DNA片段与另一个载体连接转化的过程。

报告基因:基因载体上引入的一些可证明载体已经进入宿主细胞并可将含有目的基因的宿主细胞从其他细胞中识别区分甚至挑选出来的具有特殊标志意义的基因。

RT-PCR:是指以mRNA在反转录酶作用下合成cDNA第一链为模板进行的PCR。

表达载体:在克隆载体基础上,为使插入的外源DNA片段有效转录翻译成多肽,装有强化外源基因表达的强启动子以及利于表达产物分泌、分离和纯化的元件,这种载体称

为表达载体。

基因是DNA分子中含有特定遗传信息的一段核苷酸序列,是遗传物质的最小功能单位。反义技术:是指根据碱基互补原理,用人工合成(或生物体合成)的特定互补RNA或DNA片段(或其化学修饰产物)抑制或封闭基因表达的技术。

转基因动物:是指在其基因组内稳定地整合有外源基因,并能遗传给后代的动物。

简答题

1、简述PCR引物的设计一般原则。

答:①引物长度一般以18~30bp为宜,过短则降低特异性,过长则会引起引物间的退火而影响有效扩增,同时也增加引物合成的成本。

②避免引物内部出现二级结构,避免序列内有较长的回文结构,使引物自身不能形成发夹结构。

③G/C和A/T碱基均匀分布,G+C含量在40~60%之间,引物碱基序列尽可能选择碱基随机分布,避免出现嘌呤或嘧啶连续排列。

④要避免两个引物间特别是3`末端碱基序列互补以及同一引物自身3`末端碱基序列互补的,使它们不能形成引物二聚体或发卡结构。

⑤引物3`末端碱基一般应与模板DNA严格配对,并且3`末端为G、C或T时引发效率较高。

⑥引物5`末端碱基可不与模板DNA匹配,可添加与模板无关的序列(如限制性核酸内切酶的识别序列、ATG起始密码子或启动子序列等),便于克隆和表达,但其保护碱基有一定的要求。

⑦引物的碱基顺序不能与非扩增区有同源性。

2、试述原核生物细胞表达的特点以及外源基因在原核细胞中表达具备条件。

答:原核生物细胞表达的特点:

(1)只有一种RNA聚合酶识别原核细胞的启动子,催化所有RNA的合成。

(2)原核生物的表达是以操纵子为单位的。操纵子是数个相关的结构基因及其调控区的结合,是一个基因表达的协同单位。

(3)原核生物的转录与翻译是偶联和连续进行的。

(4)原核细胞中缺乏真核细胞的转录后加工系统。

(5)其基因的控制主要在转录水平,这种控制要比对基因产物直接控制要慢。

(6)在大肠杆菌mRNA的核糖体结合位点上,含有一个翻译起始密码子及同16S RNA 3’末端碱基互补的序列,即SD序列。

条件:(1)通过表达载体将外源基因导入宿主菌,并指导宿主菌的酶系统合成外源蛋白。

(2)外源基因不能带有间隔顺序(内含子),因而必须用cDNA或全化学合成基因,而不能用基因组DNA。

(3)必须利用原核细胞的强启动子和SD序列等调控元件控制外源基因表达。

(4)外源基因与表达载体连接后,必须形成正确的开放阅读框架(ORF)。

(5)利用宿主菌的调控系统,调节外源基因的表达,防止外源基因的表达产物对宿主菌的毒害。

3、简述琼脂糖凝胶电泳的基本原理。

答:DNA分子在琼脂糖凝胶中泳动时有电荷效应和分子筛效应。DNA分子在高于等电点的pH溶液中带负电荷,在电场中向正极移动。由于糖-磷酸骨架在结构上的重复性质,相同数量的双链DNA几乎具有等量的净电荷,因此它们能以同样的速度向正极方向移动。在一定的电场强度下,DNA分子的迁移速度取决于分子筛效应,即DNA分子本身的大小和构型。

在琼脂糖凝胶电泳中,DNA分子的迁移速度与相对分子质量的对数值成反比关系。质粒DNA样品用单一切点的酶切后与已知相对分子质量大小的标准DNA片段进行电泳对照,观察其迁移距离,就可获知该样品的相对分子质量大小。凝胶电泳不仅可以分离不同相对分子质量的DNA,也可以鉴别相对分子质量相同但构型不同的DNA分子。

另外在制备琼脂糖凝胶时加入溴化乙锭指示剂,溴化乙锭在紫外光照射下能发射荧光。当DNA样品在琼脂糖凝胶中电泳时,琼脂糖凝胶中的EB就插入DNA分子中形成荧光络合物,使DNA发射的荧光增强几十倍。荧光的强度正比于DNA的含量,如将已知浓度的标准样品作琼脂糖凝胶电泳对照,就可比较出待测样品的浓度。若用薄层分析扫描仪检测,只需要5~lOng DNA,就可以从照片上比较鉴别。如用肉眼观察,可检测到~μg的DNA。

4、简述基因文库的概念及构建基因文库的基本程序。

答:基因文库是指某个生物的基因组DNA或cDNA片段与适当的载体在体外重组后,转化宿主细胞,并通过一定的选择机制筛选后得到大量的阳性菌落(或噬菌体),所有菌落或噬菌体的集合即为该生物的基因文库。

基本程序:1)提取研究对象基因组DNA,制备合适大小的DNA片段,或提取组织或器官的mRNA并反转录成cDNA;2) DNA片段或cDNA片段与经特殊处理的载体连接形成重组DNA;3)重组DNA转化宿主细胞或体外包装后侵染受体菌;4)阳性重组菌落或噬菌斑的选择。

另cDNA:cDNA文库是指将某种生物体基因组转录的全部mRNA经反转录产生的cDNA 片段分别与克隆载体重组,储存于某种受体菌中,该群体就称该生物基因组的cDNA文库。操作步骤:细胞总RNA的提取和mRNA的分离;第一条cDNA合成;第二条cDNA 合成;双链cDNA克隆进质粒或噬菌体载体并导入宿主中繁殖。

另与基因组文库相比,cDNA文库(cDNA克隆)的主要优点与缺点有哪些?

答:优点: ①cDNA克隆以mRNA为材料,特别适用于某些RNA病毒等的基因组结构研究及有关基因的克隆分离。②cDNA基因文库的筛选比较简单易行。③每一个cDNA克隆都含有一种mRNA序列,这样在目的基因的选择中出现假阳性的概率就会比较低,由此选择出来的阳性克隆将会含有目的基因。④cDNA克隆可用于在细菌中能进行表达的

基因克隆,直接应用于基因工程操作。⑤cDNA克隆还可用于真核细胞mRNA的结构和功能研究。

缺点:①cDNA文库所包含的遗传信息要远远少于基因组DNA文库,并且受细胞来源或发育时期的影响。②cDNA基因文库不能直接获得基因的内含子序列和基因编码区外大量的调控序列的结构与功能方面的信息。③在cDNA基因文库中,对于低丰度mRNA 的cDNA克隆所占的比例则比较低,且分离也就比较困难。

5、简述Sanger双脱氧链终止法测定DNA序列的基本原理。

答:在模板指导下,DNA聚合酶不断将dNTP加到引物的3’-OH末端’使引物延长’合成出新的互补的DNA链。如果加入双脱氧三磷酸核苷(ddNTP),由于双脱氧核糖的3’位置上缺少一个羟基,故不能同后续的dNTP形成磷酸二酯键,即形成一种全部具有相同5’-引物端和以ddNMP残基为3’端结尾的一系列长短不一片段的混合物。由于双脱氧核苷酸在每个DNA分子中掺入的位置不同,采用聚丙烯酰胺凝胶电泳区分长度差一个核苷酸单链DNA,从而读取DNA核苷酸序列。

6、简述实时荧光定量PCR的概念及其工作原理。

答:实时荧光定量PCR:通过特定设计的PCR仪器来实时检测PCR扩增过程每一轮循环产物的累积数量,可以很好的推算模板的起始浓度,这种工作方式称为实时定量PCR。实时定量PCR在检测过程中通过检测标记的荧光信号的累积来实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析,故称为实时荧光定量PCR。

工作原理:利用Taq酶的5’→3’外切酶活性。在PCR反应系统中加入一个荧光标记探针,该探针可与引物包含序列内的DNA模板发生特异性杂交,探针的5’端标以荧光发射基因FAM(荧光发射峰值在518nm处),靠近3’端标以荧光淬灭基团TAMRA(荧光发射峰值在582nm处),探针的3’端被磷酸化以防止探针在PCR扩增过程中被延伸。当探针保持完整时,淬灭基团抑制发射基团的荧光发射。发射基团一旦与淬灭基团发生分离,抑制作用被解除,518nm处的光密度增加而被荧光探测系统检测到。复性期探针与模板DNA发生杂交,延伸期Taq酶随引物延伸沿DNA模板移动,当Taq酶移动到探针切断,淬灭作用被解除,荧光信号释放出来.模板每复制一次,就有一个探针被切断,伴随一个荧光信号的释放。由于被释放的荧光基团数目和PCR产物数量是一对一的关系,因此用该技术可对模板进行准确定量。

基本原理简述:类似于DNA的体内复制。首先待扩增DNA?模板加热变性解链,随之将反应混合物冷却至某一温度,这一温度可使引物与它的靶序列发生退火,再将温度升高使退火引物在DNA聚合酶作用下得以延伸。?这种热变性-复性-延伸的过程就是一个PCR循环,PCR就是在合适条件下的这种循环的不断重复。

7、氯化钙转化法的基本原理。

答:细菌处于0℃和低渗氯化钙溶液中,细菌细胞壁和膜通透性增加,菌体膨胀成球形,此时转化混合物中DNA形成抗DNA酶的羟基-磷酸钙复合物粘附于细胞表面,经短暂热

休克(42℃)后,细胞膜形成许多间隙,DNA进入细胞内。

8、在大肠杆菌中高效表达外源基因必须考虑哪些基本原则?

答:①优化表达载体的设计。②提高稀有密码子tRNA的表达作用。

③提高外源基因mRNA的稳定性。④提高外源基因表达产物的稳定性。

⑤优化发酵过程。

10、简述克隆载体DNA分子具备的条件。

答:①载体都能携带外源DNA片段(基因)进入受体细胞,或停留在细胞质中自我复制,或整合到染色体DNA上,随着染色体DNA的复制而同步复制。

②载体都具有合适的筛选遗传标记。

③载体都具有供外源基因插入的限制性核酸内切酶位点,即多克隆位点。

④载体都必须是安全的,不应含有对受体细胞有害的基因,并且不会任意转入除受体细胞以外的其他生物细胞,尤其是人的细胞。

⑤载体本身的分子量都比较小,可容纳较大的外源基因片段。

⑥载体在细胞内的拷贝数要高,方便外源基因在细胞内大量扩增。

⑦载体在细胞内稳定性要高,保证重组体稳定传代而不易丢失。

⑧载体的特征都是充分掌握的,包括它的全部核苷酸序列。

11、碱变性抽提法提取质粒DNA的基本原理是什么?

答:碱变性抽提法是基于染色体DNA与质粒DNA的变性与复性的差异而达到分离目的。在pH高达的碱性条件下,染色体DNA的氢键断裂,双螺旋结构解开而变性,质粒DNA 的大部分氢键也断裂,但超螺旋共价闭合环状的两条互补链不会完全分离。当以的NaAc 高盐缓冲液调节其pH至中性时,变性的质粒DNA又恢复原来的构型,保存在溶液中,而染色体DNA不能复性而形成缠连的网状结构。通过离心,染色体DNA与不稳定的大分子RNA、蛋白质-SDS复合物等一起沉淀下来而被除去。

12、简述Ⅱ型限制性内切核酸酶的特点及影响其活性的因素。

答:特点:⑴识别位点的DNA序列具有回文结构特点。⑵切割DNA 均产生5′-磷酸和3′-羟基的末端。⑶错位切割产生具有5′-或3′-突出的粘端,而沿对称轴切割双链DNA产生平端。⑷少数不同的限制酶可识别和切割相同的位点,在一定条件下可选择用这些同尾酶。

影响因素:①DNA的纯度②DNA的甲基化程度③酶切消化反应的温度④DNA 的分子结构⑤溶液中离子浓度、种类⑥缓冲液的pH

13、T4 DNA连接酶的作用机制。

答:①ATP+DNA ligase(E)→E-AMP+Ppi

②E-AMP上的AMP转移到DNA的5′磷酸根上,使其活化,释放出酶。

③活化的5′磷酸根与相邻的3′羟基形成3′,5′-磷酸二酯键,并释放出AMP。

14、简述基因载体致死效应的概念及克服基因载体致死效应的对策。

答:基因载体致死效应:利用基因载体进行基因克隆时,有时大量的克隆基因及其基因表达产物对宿主细胞是有害的,不利于宿主细胞的生长繁殖,甚至可使宿主细胞中毒死亡的现象。

克服基因载体致死效应的对策:

①使用严密型质粒来分离、纯化多拷贝的松弛型质粒上大量表达时可呈现致死效应

的功能性基因,即用松弛型质粒与严密型质粒杂交改良。

②使用温度敏感型载体。在较低温度下,目的基因不表达,宿主菌可自由生长;当宿

主菌增殖达到一定数量后,提高培养温度,使目的基因大量表达。

15、简述定向克隆的优点。

答:①外源DNA只能以一个方向定向插入到重组质粒,以便目的基因的正确转录和表达。

②质粒载体与外源DNA结合处的限制性内切酶位点仍然保留,可随时从重组载体中通过相应的限制性内切酶切割后分离和获得目的基因。

③由于不会发生自身环化,转化率高,转化后细菌克隆大多数携带有目的基因重组质粒。

16、简术Southern杂交的操作步骤。

答:①酶切DNA, 凝胶电泳分离各酶切片段,然后使DNA原位变性。

②将DNA片段转移到固体支持物(硝酸纤维素滤膜或尼龙膜)上。

③预杂交滤膜,掩盖滤膜上非特异性位点。

④让探针与同源DNA片段杂交,然后漂洗除去非特异性结合的探针。

⑤通过显影检查目的DNA所在的位置。

17、简述pUC质粒的结构组成。

答:⑴含有pBR322质粒的复制起点(ori)。

⑵含有氨苄青霉素抗性基因(ampr)基因。

⑶含有大肠杆菌β-半乳糖酶基因(lacZ)启动子及其编码α-肽链DNA序列(即lacZ′基因)。

⑷位于lacZ′基因中靠近5’端引入了一段有多克隆位点(MCS)区段,但它不会引起编码肽链功能的改变。

18、简述DNA体外重组的特点。

答:⑴DNA体外连接减少了DNA分子进入宿主细胞后遭受降解的危险,增加了转化效率。

⑵由于限制性内切酶产生的粘性末端在体外连接,使原来酶的识别序列在整个DNA维持完整性,有利于在重组子转化扩增以后再对外源基因的分离。

⑶连接时可以控制连接反应条件,有利于形成环状分子或者几个DNA片段头尾相连接的直线多联体。

19、用λ噬菌体载体构建基因组文库的步骤。

答:⑴准备载体DNA(如置换型λ噬菌体载体),用适当的限制性内切核酸酶消化并分离得到载体的左右两臂;⑵纯化真核细胞高分子质量DNA,并用适当的限制性内切核酸酶部分消化;⑶分离适当大小的基因组DNA片段(20-24kb);⑷连接载体与外源DNA;

⑸连接产物体外包装及感染;⑹基因组文库的扩增。

综合分析题

1、如何以大肠杆菌质粒DNA为载体克隆一个编码动物激素的基因,并使之在大肠杆菌中进行表达? 简要说明实验中可能遇到的问题及可能的解决办法。

答:要使动物中编码激素的基因在大肠杆菌中表达,通常遇到的问题有:(1)细菌的RNA 聚合酶不能识别真核生物的启动子。(2)大多数真核基因有内含子,这些内含子在转录后从前体mRNA中被切除而形成熟mRNA。细菌细胞没有这样的机制来去除内含子。(3)有些真核生物的蛋白质是通过前体分子加工而来的,例如胰岛素就是通过加工去除前体分子内部的33个氨基酸残基而来,剩下的两段肽链分别形成胰岛素的α、β链。(4)产生的真核生物的蛋白质产物可以被细菌的蛋白酶所识别和降解。

措施:①应将激素的编码序列置于含有核糖体结合位点和起始密码子ATG的细菌强启动子的附近(含有这种序列的载体称表达载体)。②可以以激素的mRNA为模板用反转录酶合成激素的基因。这种DNA不含内含子可插入到载体中进行克隆。此外,如果蛋白质序列短则可通过化学合成得到该基因。合成的基因应含起始密码ATG、通过该激素蛋白的氨基酸序列推测而来的编码序列,以及1~2个终止密码:ATG———————编码序列——————TGA TAG。现在,这个合成基因可被插入载体中。③有时加工过程可以在离体条件下进行。如果加工有困难,可以用合成基因,从而免除加工过程。

④选用合适的突变型宿主从而防止蛋白酶水解。如果用酵母作为宿主上述许多问题都可以较容易地解决,尤其是现在有既能在大肠杆菌中又能在酵母中复制的穿梭质粒载体。

说明:1)ATG,TAG和TGA是对应mRNA中的转录起始信号AUG和终止信号UAG,UGA的DNA序列。2)克隆生长素释放抑制因子基因时采用化学合成基因的方法。生长素释放抑制因子是一种由下丘脑分泌的激素,长14个氨基酸残基,因此人工合成的基因,包括在宿主菌中表达所需的转录的起始和终止信号,仅51bp长。

2、试述表达载体pET-28a主要构成元件和pET表达载体的工作原理。

答:载体pET-28a主要构成元件:T7噬菌体启动子、乳糖操纵子、核糖体结合位点、His6标签序列、凝血酶切割位点、多克隆位点、T7噬菌体终止子及乳糖阻遏子序列(lacI)、pBR322复制子、f1噬菌体复制子、卡那霉素筛选标记序列等。

pET-28a主要构成元件的功能:①乳糖操纵子和乳糖阻遏子序列(lacI)的功能:当目的蛋白对大肠杆菌有毒性时,可能通过添加阻遏物,控制目的蛋白以较低水平表达。②His6标签序列和凝血酶切割位点的功能:方便利用针对His6的螯合层析分离纯化蛋白,然后利用凝血酶切割去除标签蛋白。③多克隆位点处的限制性核酸内切酶在该载体上只

有单一切点,方便目的基因的插入位点。

pET系列表达载体的工作原理:T7噬菌体启动子只能由T7噬菌体的RNA聚合酶识别并启动转录,因此宿主细胞必须能表达T7噬菌体的RNA聚合酶的。大肠杆菌BL21(DE3)菌株染色体BL21区整合一个λ噬菌体DNA,在λ噬菌体的DE3有一个T7 RNA聚合酶基因(T7基因1),该基因受lacUV5启动子控制。当pET载体进入BL21(DE3)细胞后,由于宿主细胞的lacI基因表达产生阻制物,从而抑制T7 RNA聚合酶基因的表达,在载体上的目的基因也无法启动。当存在IPTG诱导物后,使阻制物失去阻制作用,T7 RNA聚合酶基因得以表达,产生T7 RNA聚合酶,从而启动T7启动子控制的外源基因的表达。在没有诱导物存在的情况下,lac启动子控制的外源基因仍会有渗漏表达。如果外源基因对宿主细胞有害作用,就可能导致表达系统崩溃。

现有2套系统可控制外源基因的严紧表达:一套是通过宿主控制T7 RNA聚合酶的量来实现,即在宿主细胞中引入一个带有T7噬菌体的溶菌酶编码基因的质粒,如plysS或plysE,它们分别低量和高量表达T7噬菌体的溶菌酶。该溶菌酶可抑制T7 RNA聚合酶的活性,从而减少在未诱导情况下外源基因的表达。(5分)另一套是使启动子的控制效应更严紧。在pET载体上装载lacI基因,提高阻制物的浓度,同时也可利用T7-lac启动子(在T7启动子序列下游装入一个由25bp组成的lacO操纵子序列),当阻制物结合在lacO位点时,即使存在T7 RNA聚合酶,外源基因也无法表达。只有当诱导物IPTG存在时,才能解开T7 RNA聚合酶基因和外源基因表达的双重阻遇。

3、在基因工程操作过程中,使用的克隆载体需要具备哪些条件?选择受体细胞时需要具备哪些基本原则?

答:克隆载体需要具备条件:

①载体都能携带外源DNA片段(基因)进入受体细胞,或停留在细胞质中自我复制,或整合到染色体DNA上,随着染色体DNA的复制而同步复制。

②载体都具有合适的筛选遗传标记。

③载体都具有供外源基因插入的限制性核酸内切酶位点,即多克隆位点。

④载体都必须是安全的,不应含有对受体细胞有害的基因,并且不会任意转入除受体细胞以外的其他生物细胞,尤其是人的细胞。

⑤载体本身的分子量都比较小,可容纳较大的外源基因片段。

⑥载体在细胞内的拷贝数要高,方便外源基因在细胞内大量扩增。

⑦载体在细胞内稳定性要高,保证重组体稳定传代而不易丢失。

⑧载体的特征都是充分掌握的,包括它的全部核苷酸序列。

受体细胞的选择应具备的基本原则:

①便于重组DNA分子的导入。

②便于重组体的筛选。根据所用的表达载体所含的选择性标记与受体细胞基因是否相匹配,从而易于对重组体进行筛选。

③遗传稳定性高,易于进行扩大培养或易于进行高密度发酵而不影响外源基因的表达效率。对动物细胞而言,所选用的受体细胞具有对培养的适应性强,可以进行贴壁或悬浮培养,可以在无血清培养基中进行培养。

④受体细胞内内源蛋白水解酶基因缺失或蛋白酶含量低,利于外源蛋白表达产物在细胞内积累,可促进外源基因高效分泌表达。

⑤安全性高,无致病性,不会对外界环境造成生物污染。一般选用致病缺陷型的细胞或营养缺陷型细胞作为受体细胞。

⑥能使重组DNA分子稳定存在于细胞中。从受体细胞的角度出发,通常的做法是是对其作适当的修饰改造,如选用某些限制性核酸内切酶缺陷型的受体细胞就可以避免其对重组DNA分子的降解破坏作用。

⑦受体细胞在遗传密码子的应用上无明显偏倚性。

⑧具有较好的转译后加工机制等,便于真核目的基因的高效表达。

⑨在理论研究和生产实践上有较高的应用价值。

鉴定一个携带目的基因的克隆方法:

带有某一细菌基因的克隆通常可以直接看出来,因为基因表达引起了宿主胞表型的可见变化。然而,真核生物的基因不都表达,则需用相应的方法来找出带有所需基因特定克隆。一个常用方法是杂交(southern杂交或菌落原位杂交):

一、核酸杂交法

利用标记的核酸做探针与转化细胞的dna进行分子杂交,可以直接筛选和鉴定目的序列克隆。常用的方法是将转化后生长的菌落复印到硝酸纤维膜上,用碱裂菌,菌落释放的dna就吸附在膜上,再与标记的核酸探针温育杂交,核酸探针就结合在含有目的序列的菌落dna上而不被洗脱。核酸探针可以用放射性核素标记,结合了放射性核酸探针的菌落集团可用放射性自显影(auroradiography)法指示出来,核酸探针也可以用非放射性物质标记,通常是经颜色呈现指示位置,这样就可以将含有目的序列的菌落挑选出来。

或pcr法:pcr技术的出现给克隆的筛选增加了一个新手段。如果已知目的序列的长度和两端的序列,则可以设计合成一对引物,以转化细胞所得的dna为模板进行扩增,若能得到预期长度的pcr产物,则该转化细胞就可能含有目的的序列。

或dna限制性内切酶图谱分析:这是在上述筛选后的进一步分析。目的序列插入载体会使载体dna限制性酶图谱(restriction map)发生变化,提取转化细菌的质粒dna作酶切后做电泳观察其酶切图谱,就能分析得结果;如插入的目的序列中有其它限制性内切酶位点,也能在酶切电泳图谱上观察到。这就可以进一步鉴定重组体是不是所要的目的克隆。

二、核苷酸序列测定

所得到的目的序列或基因的克隆,都要用其核酸序列测定来最后鉴定。已知序列

的核酸克隆要经序列测定确证所获得的克隆准确无误;未知序列的核酸克隆要测定序列才能确知其结构、推测其功能,用进一步的研究。因此核酸序列测定是分子克隆中必不可少的鉴定步骤。核酸序列测定的原理和方法在实验教材中有详细的叙述。

4、试述提高克隆基因在大肠杆菌中表达效率途径有哪些?

答:1、优化表达载体的设计:(1)提高启动子的转录效率,选择强的可调控启动子及相关的调控序列。(2)保证核糖体结合位点的有效性,一般SD序列至少含AGGAGG序列中4个碱基。(3)提供有效的转录终止区,可防止外源基因干扰载体系统的稳定性。

2、增加表达质粒的拷贝数和稳定性:高拷贝数和稳定性高的质粒组建的表达载体,可获得较高水平的表达。

3、提高翻译水平的效率:(1)SD序列与起始密码子之间距离以9±3碱基为适宜。(2)尽量避免使用罕用密码子,使用高频率的密码子。(3)增加mRNA的稳定性。在外源基因的下游插入具有反转重复顺序的DNA片段可起到稳定mRNA,提高表达水平作用。

4、减轻细胞的代谢负荷:(1)诱导表达,使细菌的生长与外源基因的表达分开成2个阶段。(2)表达载体的诱导复制,将宿主菌的生长和表达质粒的复制分开。

5、提高表达蛋白的稳定性,防止其降解:(1)构建融合表达系统,产生融合蛋白避免目标基因产物被快速降解,稳定表达产物的产率。(2)选用蛋白水解酶基因缺陷型受体系统,可以保证基因表达产物在受体细胞内的相对稳定。(3)构建分泌表达系统,产生分泌蛋白,避免细胞内的水解酶对表达蛋白的降解。(4)构建包涵体表达系统,外源蛋白可以在宿主细胞中以包涵体形式表达,可以抵抗宿主细胞中蛋白水解酶的降解,也便于纯化。(5)采用位点特异性突变的方法,改变真核蛋白二硫键的位置,从而增加蛋白质的稳定性。

6、优化发酵过程:(1)工艺方面的因素:如选择合适的发酵系统或生物反应器,如罐式搅拌反应器、鼓泡反应器和气升式反应器等。(2)生物学方面的因素:一是与细菌生长密切相关条件或因素,如发酵中的溶氧、pH值、温度和培养基成分等。二是对外源基因表达条件的优化。在发酵罐内工程菌生长到一定的阶段后,开始诱导外源基因的表达,诱导的方式包括添加特异性诱导物和改变培养温度等。三是提高外源基因表达产物的总量。外源基因表达产物的总量取决于外源基因表达水平和菌体浓度。

5、试述选择受体细胞的基本原则。

答:①便于重组DNA分子的导入。

②便于重组体的筛选。根据所用的表达载体所含的选择性标记与受体细胞基因是否相匹配,从而易于对重组体进行筛选。

③遗传稳定性高,易于进行扩大培养或易于进行高密度发酵而不影响外源基因的表达效率。对动物细胞而言,所选用的受体细胞具有对培养的适应性强,可以进行贴壁或悬浮培养,可以在无血清培养基中进行培养。

④受体细胞内内源蛋白水解酶基因缺失或蛋白酶含量低,利于外源蛋白表达产物在

细胞内积累,可促进外源基因高效分泌表达。

⑤安全性高,无致病性,不会对外界环境造成生物污染。一般选用致病缺陷型的细胞或营养缺陷型细胞作为受体细胞。

⑥能使重组DNA分子稳定存在于细胞中。从受体细胞角度出发,通常做法是对其作适当的修饰改造,如选用某些限制性核酸内切酶缺陷型的受体细胞就可以避免其对重组DNA分子的降解破坏作用。

⑦受体细胞在遗传密码子的应用上无明显偏倚性。

⑧具有较好的转译后加工机制等,便于真核目的基因的高效表达。

⑨在理论研究和生产实践上有较高的应用价值。

6、试述基因载体具备的特性。

答:⑴载体能在宿主细胞内进行独立和稳定的DNA自我复制;或整合到染色体DNA上,随着染色体DNA的复制而同步复制;在载体中插入外源基因后,仍然保持稳定的复制状态和遗传特性。

⑵载体易于从宿主细胞中分离,并进行纯化。

⑶载体都具有供外源基因插入的限制性内切核酸酶位点,即多克隆位点。

⑷载体具有观察的表型特征(遗传标记基因),插入外源基因后可作为重组DNA选择标志。

⑸载体本身分子量比较小,可容纳较大外源基因片段。

⑹载体在细胞内的拷贝数高,方便外源基因在细胞内大量扩增。

⑺载体在细胞内稳定性高,保证重组体稳定传代而不易丢失。

⑻载体是安全的,不含对受体细胞有害基因,且不会转入除受体细胞以外的其他生物细胞。

人教版高中生物选修三 专题一基因工程测试题(含答案)

人教版高中生物选修三专题一基因工程测试题 一.选择题(共20小题,每题2分,共20分) 1.基因型为AaBbDd的二倍体生物,其体内某精原细胞减数分裂时同源染色体变化示意图如图.叙述正确的是() A.三对等位基因的分离均发生在次级精母细胞中 B.该细胞能产生AbD、ABD、abd、aBd四种精子 C.B(b)与D(d)间发生重组,遵循基因自由组合定律 D.非姐妹染色单体发生交换导致了染色体结构变异 2.为了增加菊花花色类型,研究者从其他植物中克隆出花色基因C(图1),拟将其与质粒(图2)重组,再借助农杆菌导入菊花中. 下列操作与实验目的不符的是() A.用限制性核酸内切酶EcoRⅠ和连接酶构建重组质粒 B.用含C基因的农杆菌侵染菊花愈伤组织,将C基因导入细胞 C.在培养基中添加卡那霉素,筛选被转化的菊花细胞 D.用分子杂交方法检测C基因是否整合到菊花染色体上 3.一对夫妇所生子女中,性状上的差异较多,这种变异主要来源于() A.基因重组B.基因突变C.染色体丢失D.环境变化 4.不属于基因操作工具的是() A.DNA连接酶B.限制酶C.目的基因D.基因运载体 5.下列哪一项不是基因工程工具() A.限制性核酸内切酶B.DNA连接酶 C.运载体D.目的基因 6.下列关于基因重组和染色体畸变的叙述,正确的是() A.不同配子的随机组合体现了基因重组 B.染色体倒位和易位不改变基因数量,对个体性状不会产生影响 C.通过诱导多倍体的方法可克服远缘杂交不育,培育出作物新类型

D.孟德尔一对相对性状杂交实验中,F1紫花植株自交后代发生性状分离的现象体现了基因重组 7.通常情况下,下列变异仅发生在减数分裂过程中的是() A.非同源染色体之间发生自由组合,导致基因重组 B.非同源染色体之间交换一部分片段,导致染色体结构变异 C.DNA复制时发生碱基对的增添、缺失或改变,导致基因突变 D.着丝粒分开后形成的两条染色体不能移向两极,导致染色体数目变异 8.下列关于基因突变和基因重组的说法中,正确的是() A.mRNA分子中碱基对的替换、增添、缺失现象都可称为基因突变 B.基因重组只发生有丝分裂过程中 C.非同源染色体上的非等位基因发生自由组合属于基因重组 D.基因型为DdEE的个体自交,子代中一定会出现基因突变的个体 9.基因工程的正确操作步骤是() ①目的基因与运载体相结合②将目的基因导入受体细胞③检测目的基因的表达④提取目的基因. A.③④②①B.②④①③C.④①②③D.③④①② 10.如图为DNA分子的某一片段,其中①②③分别表示某种酶的作用部位,则相应的酶依次是() A.DNA连接酶、限制性核酸内切酶、解旋酶 B.限制性核酸内切酶、解旋酶、DNA连接酶 C.解旋酶、限制性核酸内切酶、DNA连接酶 D.限制性核酸内切酶、DNA连接酶、解旋酶 11.科学家利用生物技术将人的生长激素基因导入小鼠受精卵的细胞核中,经培育获得一种转基因小鼠,其膀胱上皮细胞可以合成人的生长激素并分泌到尿液中,在医学研究及相关疾病治疗方面都具有重要意义.下列有关叙述错误的是() A.选择受精卵作为外源基因的受体细胞是因为这种细胞具有全能性 B.采用DNA分子杂交技术可检测外源基因在小鼠细胞内是否成功表达 C.人的生长激素基因能在小鼠细胞表达,说明遗传密码在不同种生物中可以通用 D.将转基因小鼠体细胞进行核移植(克隆),可以获得多个具有外源基因的后代 12.用限制酶EcoRⅠ、KpnⅠ和二者的混合物分别降解一个1 000bp(1bp即1个碱基对)的DNA分子,降解产物分别进行凝胶电泳,在电场的作用下,降解产物分开,凝胶电泳结果如下图所示.该DNA分子的酶切图谱(单位:bp)正确的是()

材料基因工程

材料基因工程 ——为什么是一项“颠覆性前沿技术” 1.前言 材料基因组技术是近几年兴起来的材料研究新理念和新方法,是当今世界材料科学与工程领域的最前沿。材料基因工程借鉴人类基因组计划,探究材料结构与材料性质变化的关系。并通过调整材料的原子或配方、改变材料的堆积方式或搭配,结合不同的工艺制备,得到具有特定性能的新材料。但是材料基因组与人类基因组的又有很大的区别,材料的微观结构多样化,不但成分组成可以不同,微观形貌等结构也可能千差万别,其组成-结构-性能之间的关系更加复杂。 2.材料基因组技术 2.1材料基因组技术 材料基因组计划是通过“多学科融合”实现“高通量材料设计与试验”;其核心目标在于通过“高通量计算、实验和大数据分析”技术加速材料“发现-研发-生产-应用”全过程,缩短材料研发周期,降低材料研发成本,引发新材料领域的科技创新和商业模式变革。 材料基因组技术包括高通量材料计算方法、高通量材料实验方法和材料数据库三大组成要素。 2.1.1高通量材料计算方法 高通量计算是指利用超级计算平台与多尺度集成化、高通量并发式材料计算方法和软件结合,实现大体系材料模拟、快速计算、材料性质的精确预测和新材料的设计,提高新材料筛选效率和设计水平,为新材料的研发提供理论依据。其中并发式材料计算方法包括第一原理计算方法、计算热力学方法、动力学过程算法等,跨越原子模型、简约模型和工程模型等多个层次,并整合了从原子尺度至宏观尺度等多尺度的关联算法。 高通量材料集成计算技术利用第一性原理、分子动力学与位错动力学、合金相图计算、相场计算等方法,快速并行模拟实验室中成分与性能优化的传统试错式材料研发过程,并基于材料科学知识,迅速挑选有利于目标性能的合金成分与微观结构特征,从而加速新材料的研发进程并显著降低材料研发成本。 2.1.2高通量材料实验方法 传统材料研发模式依赖于成分与工艺的不断“试错”实验优化,结合对结构-性能关系的不断理解以获得满足性能指标的材料。但是,新型关键材料具有成分多元化、复杂化、微结构多级化等特点,传统的“试错”模式在实际材料开发中不仅耗费巨大,而且几乎难以取得成功。 高通量实验平台是发展材料基因组技术具备的条件之一。高通量实验平台可以为据库提供数据支撑;而就高通量集成计算而言,高通量实验技术为各种计算模拟工作提供计算目标。材料基因组概念中的高通量实验技术具有快速制备快速表征各类金属与非金属样品的能力,典型的高通量实验方法有扩散多元结与材料基因芯片 2.1.3材料数据库 数据可以看作是感兴趣参量的具体数值,这些参量在空间与时间上的一系列

基因工程考试试题.doc

基因工程 一名词解释 DNA,1、限制与修饰系统:限制酶的生物学功能一般被认为是用来保护宿主细胞不受外源DNA的感染,可讲解外 来 从而阻止其复制和整合到细胞中。一般来说,与限制酶相伴而生的修饰酶是甲基转移酶,或者说是甲基化酶,能保护 自身的 DNA不被讲解。限制酶和甲基转移酶组成限制与修饰系统。 2、各种限制与修饰系统的比较 Ⅱ型Ⅰ型Ⅲ型 识别位点4~6bp,大多为回文序列二分非对称5~7bp 非对称 切割位点在识别位点中或靠近识别位点无特异性,至少在识别位点外100bp 识别位点下游 24~26bp 简答 1. 何谓 Star activity?简述Star activity的影响因素及克服方法? 答:在极端非标准条件下,限制酶能切割与识别序列相似的序列,这个改变的特征称为星星活性。 pH 引起星星活性的的因素:①高甘油浓度(>5%);②酶过量( >100U/μl );③低离子强度( <25mmol/L);④高(> ;⑤有机溶剂如DMSO (二甲基亚砜)、乙醇、乙二醇、二甲基乙酰胺、二甲基甲酰胺等;⑥用其它二价阳离子 星星活性的抑制措施:①减少酶的用量,避免过量酶切,减少甘油浓度;②保证反应体系中无有机溶剂或乙醇;③提高离子强度到100 ~ 150mM(在不抑制酶活性的前提下);④降低反应pH至;⑤使用Mg2+作为二价阳离子。 2. 试回答影响限制性内切核酸酶切割效率的因素?(影响酶活性的因素?) 答:外因:反应条件、底物纯度(是否有杂质、是否有盐离子和苯酚的污染)、何时加酶、操作是否恰当,反应体系的选择、反应时间的长短 内因:星星活性、底物甲基化、底物的构象 3、 DNA末端长度对酶切割的影响 答:限制酶切割 DNA 时,对识别序列两端的非识别序列有长度要求,也就是说在识别序列两端必须要有一定数量的 核苷酸,否则限制酶将难以发挥切割活性。在设计PCR引物时,如果要在末端引入一个酶切位点,为保证能够顺利切 割扩增的 PCR产物,应在设计的引物末端加上能够满足要求的碱基数目。一般需加 3 ~4 个碱基对。 4、何为载体?一个理想的载体应具备那些特点? 答:将外源 DNA 或目的基因携带入宿主细胞的工具称为载体。载体应具备:①在宿主细胞内必须能够自主复制(具 备复制原点);②必须具备合适的酶切位点,供外源DNA 片段插入,同时不影响其复制;③有一定的选择标记,用于 筛选;④其它:有一定的拷贝数,便于制备。 5 抗性基因( Resistant gene)是目前使用的最广泛的选择标记,常用的抗生素抗性有哪几种?并举两例说明其原理? 答:氨苄青霉素抗性基因( ampr)、四环素抗性基因(tetr )、氯霉素抗性基因( Cmr)、卡那霉素和新霉素抗性基因( kanr , neor )以及琥珀突变抑制基因supF 。 ⑴青霉素抑制细胞壁肽聚糖的合成,与有关的酶结合,抑制转肽反应并抑制其活性。氨苄青霉素抗性Ampr 编码一个酶,可分泌进入细胞的周质区,并催化β - 内酰胺环水解,从而解除氨苄青霉素的毒性。 ⑵四环素与核糖体 30S 亚基的一种蛋白质结合,从而抑制核糖体的转位。 Tetr 编码一个由 399 个氨基酸组成的膜 结合蛋白,可阻止四环素进入细胞。 6. 何为α - 互补?如何利用α - 互补来筛选插入了外源DNA 的重组质粒? 答:α - 互补指 lacZ 基因上缺失近操纵基因区段的突变体与带有完整的近操纵基因区段的β - 半乳糖苷酶阴性的突变体之间实现互补。α - 互补是基于在两个不同的缺陷β-半乳糖苷酶之间可实现功能互补而建立的。实现α- 互补主要有两部分组成:LacZ △ M15 ,放在 F 质粒或染色体上,随宿主传代;LacZ' ,放在载体上,作为筛选标记,当在 LacZ' 中插入一个片断后,将不可避免地导致产生无α- 互补能力的β-半乳糖苷酶片断。在诱导物IPTG 和底物 X-gal (同时可作为生色剂)的作用下,含重组质粒的菌落不能产生有活性的β-半乳糖苷酶,不能分解 X-gal ,呈现白色,而含非重组质粒的菌落则呈现兰色。以此达到筛选的目的。 7、试简述λ噬菌体的裂解生长状态Lytic growth 和溶原状态 Lysogenic state 两种循环的分化及其调节过程? 答:裂解生长状态是λ噬菌体在宿主中大量复制并组装成子代λ噬菌体颗粒,导致宿主细胞裂 解。溶原状态为λ噬菌体基因组 DNA 通过位点专一性重组整合到宿主染色体DNA 中随宿主的繁殖传到子代细胞。调节过程:由感染复数

基因工程技术与应用知识点

v1.0 可编辑可修改 基因工程的定义:按照预先设计好的蓝图,利用现代分子生物学技术,特别是酶学技术,对遗传物质DNA直接进行体外重组操作与改造, 将一种生物(供体)的基因转移到另外一种生物(受体)中去,从而实现受体生物的定向改造与改良。 基因工程的基本过程:切、接、转、增、检 基因工程理论依据:a) 生物的遗传物质是DNA。b) DNA的双螺旋结构和半保留复制机理。 c) 遗传信息的传递方式(中心法则)和三联体密码子系统的建立 遗传工程:指以改变生物有机体性状为目标,采用类似工程技术手段而进行的对遗传物质的操作,以改良品质或创造新品种。包括细胞工程和基因工程等不同的技术层次。 克隆。指由同个祖先经过无性繁殖方式得到的一群由遗传上同一的DNA分子、细胞或个体组成的特殊生命群体。 限制性核酸内切酶。是一类能识别双链DNA中特殊核苷酸序列,并使每条链的一个磷酸二酯键断开的内脱氧核糖核酸酶。 限制性内切酶由三个基因位点所控制:hsd R---限制性内切酶, hsd M---限制性甲基化酶, hsd S---控制两个系统的表达。Hsd S -识别特定DNA序列,Hsd M-甲基化,Hsd R -限制性内切酶功能。 命名法:例如Haemophilus influenzue)d 株中分离的第三个酶:Hin d III 同裂酶:不同来源的限制酶具有相同的识别位点和切割位点。同尾酶:来源不同、识别序列不同,但产生相同粘性末端的酶 粘性末端:DNA末端一条链突出的几个核苷酸能与另一个具有突出单链的DNA末端通过互补配对粘合,这样的DNA末端,称之。 酶活性单位。在合适的温度和缓冲液中,在50μl反应体系中,1小时内完全切割1微克DNA所需的酶量为1个酶活性单位U。 星活性:指限制性内切酶在非标准条件下,对与识别序列相似的其它序列也进行切割反应,导致出现非特异性的DNA片段的现象。引起星活性原因:若使用buffer不当, 会有star activity,而star activity是指限制酶对所作用的DNA及序列失去专一性, 当酶辨认切割位置的能力降低,导致相似的序列或是错误的辨认序列长度也会作用,而产生错误的结果。 连杆:化学合成的8~12个核苷酸组成的寡核苷酸片段。以中线为轴两边对称,其上有一种或几种限制性核酸内切酶的识别序列,酶切后

基因工程知识点 超全资料

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外DNA重组和转基因等技术,赋予生物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 二、基因工程的基本工具 1、限制性核酸内切酶-----“分子手术刀” 2、DNA连接酶-----“分子缝合针” 3、基因进入受体细胞的载体-----“分子运输车” 1.“分子手术刀”——限制性核酸内切酶(限制酶) (1)存在:主要存在于原核生物中。 (2)特性:特异性,一种限制酶只能 识别一种特定的核苷酸序列,并且能在 特定的切点上切割DNA分子。 (3)切割部位:磷酸二酯键 (4)作用:能够识别双链DNA分子的 某种特定核苷酸序列,并且使每一条链 中特定部位的两个核苷酸之间的磷酸 二酯键断开。

(5)识别序列的特点: (6)切割后末端的种类:DNA 分子经限制酶切割产生的DNA 片段末端通常有两种形式——黏性末端和平末端。当限制酶在它识别序列的中轴线两侧将DNA 的两条链分别切开时,产生的是黏性末端,而当限制酶在它识别序列的中轴线处切开时,产生的则是平末端。

2.“分子缝合针”——DNA连接酶 (1)作用:将限制酶切割下来的DNA片段拼接成DNA分子。 (2)类型 相同点:都连接磷酸二酯键 3.“分子运输车”——载体 (1)载体具备的条件: ①能在受体细胞中复制并稳定保存。 ②具有一个至多个限制酶切点,供外源DNA片段插入。 ③具有标记基因,供重组DNA的鉴定和选择。 (2)最常用的载体是质粒,它是一种裸露的、结构简单的、独立于细菌拟核之外,并具有自我复制能力的双链环状DNA分子。 (3)其他载体:λ噬菌体的衍生物、动植物病毒。 (4)载体的作用: ①作为运载工具,将目的基因送入受体细胞。 ②在受体细胞内对目的基因进行大量复制。 【解题技巧】 (1)限制酶是一类酶,而不是一种酶。 (2)限制酶的成分为蛋白质,其作用的发挥需要适宜的理化条件,高温、强酸或强碱均易使之变性失活。 (3)在切割目的基因和载体时要求用同一种限制酶,目的是产生相同的黏性末端。 (4)获取一个目的基因需限制酶剪切两次,共产生4个黏性末端或平末端。 (5)不同DNA分子用同一种限制酶切割产生的黏性末端都相同,同一个DNA分子用不同的限制酶切割,产生的黏性末端一般不相同。 (6)限制酶切割位点应位于标记基因之外,不能破坏标记基因,以便于进行检测。 (7)基因工程中的载体与细胞膜上物质运输的载体不同。基因工程中的载体是DNA分子,能将目的

“材料基因工程关键技术与支撑平台”重点专项2016年度项目申报指南

附件7 “材料基因工程关键技术与支撑平台”重点专项 2016年度项目申报指南 依据国务院《中国制造2025》、科技部《国家关键技术研究报告》(初稿)、工程院《材料系统工程发展战略研究—中国版材料基因组计划咨询报告》、中科院《实施材料基因组计划,推进我国高端制造业材料发展》、发展改革委、教育部、工业和信息化部、中科院、工程院、食品药品监管总局《材料基因工程重点专项建议书》等,科技部会同相关部门组织开展了国家重点研发计划《材料基因工程关键技术与支撑平台重点专项实施方案》编制工作,在此基础上启动“材料基因工程关键技术与支撑平台重点专项”2016年度项目,并发布本指南。 本专项总体目标是:融合高通量计算(理论)/高通量实验(制备和表征)/专用数据库三大技术,变革材料研发理念和模式,实现新材料研发由“经验指导实验”的传统模式向“理论预测、实验验证”的新模式转变,显著提高新材料的研发效率,实现新材料“研发周期缩短一半、研发成本降低一半”的目标;增强我国在新材料领域的知识和技术储备,提升应对高性能新材料需求的快速反应和生产能力;培养一批具有材料研发新思想和新理念, —1—

掌握新模式和新方法,富有创新精神和协同创新能力的高素质人才队伍;促进高端制造业和高新技术的发展,为实现“中国制造2025”的目标做出贡献。 本专项的主要研究内容是,构建高通量计算、高通量制备与表征和专用数据库等三大示范平台;研发多尺度集成化高通量计算方法与计算软件、高通量材料制备技术、高通量表征与服役行为评价技术,以及面向材料基因工程的材料大数据技术等四大关键技术;在能源材料、生物医用材料、稀土功能材料、催化材料和特种合金等支撑高端制造业和高新技术发展的典型材料上开展应用示范。专项共部署40个重点研究任务,实施周期为5年。 按照分步实施、重点突破的原则,2016年度在材料基因工程关键技术和验证性示范应用中启动13个研究任务。 所有项目均应整体申报,须覆盖全部考核指标。各项目所列考核指标,除发明专利和软件为预期性指标外,其余指标均为约束性指标。所有任务研究均必须突出高通量计算/高通量制备/高通量表征与评价的特点,其中任务6~13的研究还必须体现从应用基础研究、关键技术研发到规模制备的全链条、协同创新研究的特点。所有研究项目结题验收前,均须进行数据汇交。 每个项目设1名项目负责人,项目下设课题数原则上不超过5个,每个课题设1名课题负责人,课题承担单位原则上不超过5个。对于企业牵头的应用示范类任务,其他经费(包括地方财政—2—

2018-2019年高考生物真题与模拟类编:专题(21)基因工程

选修3 第10单元现代生物科技专题 专题21 基因工程 考点六十三基因工程的原理及技术 高考试题 1.(2013年安徽理综,T6,6分,★★☆)如图为通过DNA分子杂交鉴定含有某特定DNA的细菌克隆示意图。下列叙述正确的是( ) A.根据培养皿中菌落数可以准确计算样品中含有的活菌实际数目 B.外源DNA必须位于重组质粒的启动子和终止子之间才能进行复制 C.重组质粒与探针能进行分子杂交是因为DNA分子脱氧核糖和磷酸交替连接 D.放射自显影结果可以显示原培养皿中含有特定DNA的细菌菌落位置 点睛:本题考查了微生物的分离和培养及某种微生物数量的测定。意在考查考生对微生物分离、培养、数量测定等操作过程的理解能力。 解析:据图可知,该操作为稀释涂布平板法,只能估算样品中的活细菌数,不能准确计算,A错误;转录从启动子开始,到终止子结束,故外源DNA必须位于重组质粒的启动子和终止子之间才能进行表达,B错误;重组质粒与探针之间的杂交原理是碱基互补配对,C错误;放射自显影结果显示的杂交链位置与原培养皿中含有特定DNA的细菌菌落位置相同,D正确。 答案:D 2.(2012年浙江理综,T6,6分,★★☆)天然的玫瑰没有蓝色花,这是由于缺少控制蓝色色素合成的基因B,而开蓝色花的矮牵牛中存在序列已知的基因B。现用基因工程技术培育蓝玫瑰,下列操作正确的是( ) A.提取矮牵牛蓝色花的mRNA,经逆转录获得互补的DNA,再扩增基因B B.利用限制性核酸内切酶从开蓝色花矮牵牛的基因文库中获取基因B C.利用DNA聚合酶将基因B与质粒连接后导入玫瑰细胞 D.将基因B直接导入大肠杆菌,然后感染并转入玫瑰细胞 点睛:本题主要考查基因工程技术中目的基因的获取和转化的方法,是对识记能力和理解能力的考查。 解析:提取矮牵牛蓝色花的mRNA,逆转录得到DNA,然后扩增,可获得大量的基因B,A正确。从基因文库中获取目的基因,只要根据目的基因的相关信息和基因文库中的信息进行筛选对比即可,不需要用限制酶进行切割,B错误。目的基因与质粒的连接需要用DNA连接酶,而不是DNA聚合酶,C错误。目的基因需要和运载体连接后形成重组质粒再导入,而且应该用农杆菌进行感染,而不是大肠杆菌,D错误。 答案:A 3.(2011年浙江理综,T6,6分,★☆☆)将ada(腺苷酸脱氨酶基因)通过质粒pET28b导入大肠杆菌并成功表达腺苷酸脱氨酶。下列叙述错误的是( ) A.每个大肠杆菌细胞至少含一个重组质粒 B.每个重组质粒至少含一个限制性核酸内切酶识别位点 C.每个限制性核酸内切酶识别位点至少插入一个ada D.每个插入的ada至少表达一个腺苷酸脱氨酶分子 点睛:本题主要考查基因表达载体的构建及目的基因的表达,是对理解能力的考查。 解析:题干所述转基因操作已经成功,故每个大肠杆菌细胞中都导入了重组质粒且目的基因成功表达,A、D正确。重组质粒是由同种限制酶切割开的质粒和目的基因连接而成,因此重组质粒上仍含限制酶识别位点,B正确。每个限制性核酸内切酶识别位点只能插入一个ada,C错误。 答案:C 4.(2013年新课标全国理综Ⅰ,T40(1),15分,★☆☆)阅读如下资料: 资料甲:科学家将牛生长激素基因导入小鼠受精卵中,得到了体型巨大的“超级小鼠”;科学家采用农杆菌转化法培育出转基因烟草。 回答下列问题:

基因工程知识点超全资料

基因工程 一、基因工程的概念 基因工程是指按照人们的愿望,进行严格的设计,并通过体外 DNA 重组和转基因等技术,赋予生 物以新的遗传特性,从而创造出更符合人们需要的新的生物类型和生物产品。由于基因工程是在 DNA 分子水平上进行设计和施工的额,因此又叫做 DNA 重组技术。 二、基因工程的基本工具 限制性核酸内切酶-----“分子手术刀” DNA 连接酶-----“分子缝合针” 基因进入受体细胞的载体-----“分子运输车” 限制性核酸内切酶 (限制酶) (2 )特性:特异性,一种限制酶只能 中特定部位的两个核苷酸之间的磷酸 二酯键断开。 1、 2 、 分子手术刀 (1 )存在:主要存在于 原核生物 .中。 识别一种特定的核苷酸序列,— 并且能在 特定的切点上切割 DNA 分子。 (3 )切割部位: 磷酸二酯键 (4)作用: 能够识别双链 DNA 分子的 某种特定核苷酸序列, 并且使每一条链

条链分别切开时, 产生的是黏性末端, 时,产生的则是平末端。 黏性末躺 中轴线 OOO il, cue 中铀线 切害UDNA 分于时产生 M 两种木同末:躺 <饰头表示酶旳切刚位宣) (5)识别序列的特点: 呈现碱基互补对弑无论是奇数个碱基还是偶数个碱基, 都可以找到一条中心轴线创图冲轴线两侧的双链DNA 上的裁基是反向对称重复排列亂如(X GCIGC CG 以中心线为 CCAGG A 轴、两?碱基互补对称; 以为轴?两侧碱基互 补 GGTCC T 中轴线 对称。 (6 )切割后末端的种类: DNA 分子经限 制酶切割产生的 DNA 片段末端通常有两 种形式 黏性末端 和平末端 。当限制酶 在它识别序列的 中轴线两侧 将 DNA 的两 当限制酶在它识别序列的 中轴线处 切开 cec GGGr GGG 珂 K I G 快A (A CZTT 之冋切書u > ST'C AAG t CTTAA AAT*rC G 平木端

基因工程技术的现状和前景发展

基因工程技术的现状和前景发展 摘要 从20世纪70年代初发展起来的基因工程技术,经过30多年来的进步与发展,已成为生物技术的核心内容。许多科学家预言,生物学将成为21世纪最重要的学科,基因工程及相关领域的产业将成为21世纪的主导产业之一。基因工程研究和应用范围涉及农业、工业、医药、能源、环保等许多领域。 基因工程应用于植物方面 农业领域是目前转基因技术应用最为广泛的领域之一。农作物生物技术的目的是提高作物产量,改善品质,增强作物抗逆性、抗病虫害的能力。基因工程在这些领域已取得了令人瞩目的成就。由于植物病毒分子生物学的发展,植物抗病基因工程也也已全面展开。自从发现烟草花叶病毒(TMV)的外壳蛋白基因导入烟草中,在转基因植株上明显延迟发病时间或减轻病害的症状,通过导入植物病毒外壳蛋白来提高植物抗病毒的能力,已用多种植物病毒进行了试验。?在利用基因工程手段增强植物对细菌和真菌病的抗性方面,也已取得很大进展。植物对逆境的抗性一直是植物生物学家关心的问题。由于植物生理学家、遗传学家和分子生物学家协同作战,耐涝、耐盐碱、耐旱和耐冷的转基因作物新品种(系)也已获得成功。植物的抗寒性对其生长发育尤为重要。科学家发现极地的鱼体内有一些特殊蛋白可以抑制冰晶的增长,从而免受低温的冻害并正常地生活在寒冷的极地中。将这种抗冻蛋白基因从鱼基因组中分离出来,导入植物体可获得转基因植物,目前这种基因已被转入番茄和黄瓜中。?随着生活水平的提高,人们越来越关注口味、口感、营养成分、欣赏价值等品质性状。实践证明,利用基因工程可以有效地改善植物的品质,而且越来越多的基因工程植物进入了商品化生产领域,近几年利用基因工程改良作物品质也取得了不少进展,如美国国际植物研究所的科学家们从大豆中获取蛋白质合成基因,成功地导入到马铃薯中,培育出高蛋白马铃薯品种,其蛋白质含量接近大豆,**提高了营养价值,得到了农场主及消费者的普遍欢迎。在花色、花香、花姿等性状的改良上也作了大量的研究。? 基因工程应用于医药方面 目前,以基因工程药物为主导的基因工程应用产业已成为全球发展最快的产业之一,发展前景非常广阔。基因工程药物主要包括细胞因子、抗体、疫苗、激素和寡核甘酸药物等。它们对预防人类的肿瘤、心血管疾病、遗传病、糖尿病、包括艾滋病在内的各种传染病、类风湿疾病等有重要作用。在很多领域特别是疑难病症上,基因工程工程药物起到了传统化学药物难以达到的作用。我们最为熟悉的干扰素(IFN)就是一类利用基因工程技术研制成的多功能细胞因子,在临床上已用于治疗白血病、乙肝、丙肝、多发性硬化症和类风湿关节炎等多种疾病。?目前,应用基因工程研制的艾滋病疫苗已完成中试,并进入临床验证阶段;专门用于治疗肿瘤的“肿瘤基因导弹”也将在不久完成研制,它可有目的地寻找并杀死肿瘤,将使癌症的治愈成为可能。由中国、美国、德国三国科学家及中外六家研究机构参与研制的专门用于治疗乙肝、慢迁肝、慢活肝、丙肝、肝硬化的体细胞基因生物注射剂,最终解决了从剪切、分离到吞食肝细胞内肝炎病毒,修复、促进肝细胞再生的全过程。经4年临床试验已在全国面向肝炎患者。此项基因学研究成果在国际治肝领域中,是继干扰素等药物之后的一项具有革命性转变的重大医学成果。 基因工程应用于环保方面

2015-2017基因工程高考题附答案

选修3——基因工程高考题 1.(2017?新课标Ⅰ卷.38)(15分) 真核生物基因中通常有内含子,而原核生物基因中没有,原核生物没有真核生物所具有的切除内含子对应的RNA序列的机制。已知在人体中基因A(有内含子)可以表达出某种特定蛋白(简称蛋白A)。回答下列问题: (1)某同学从人的基因组文库中获得了基因A,以大肠杆菌作为受体细胞却未得到蛋白A,其原因是_____________________________________________。 (2)若用家蚕作为表达基因A的受体,在噬菌体和昆虫病毒两种载体中,不选用______________作为载体,其原因是_______________________________________________________________。(3)若要高效地获得蛋白A,可选用大肠杆菌作为受体。因为与家蚕相比,大肠杆菌具有_____________________________________________________(答出两点即可)等优点。 (4)若要检测基因A是否翻译出蛋白A,可用的检测物质是___________________(填“蛋白A 的基因”或“蛋白A的抗体”)。 (5)艾弗里等人的肺炎双球菌转化实验为证明DNA是遗传物质做出了重要贡献,也可以说是基因工程的先导,如果说他们的工作为基因工程理论的建立提供了启示,那么,这一启示是_______________________________________________________________________________。2.(2017?新课标Ⅱ卷.38)(15分) 几丁质是许多真菌细胞壁的重要成分,几丁质酶可催化几丁质水解。通过基因工程将几丁质酶基因转入植物体内,可增强其抗真菌病的能力。回答下列问题: (1)在进行基因工程操作时,若要从植物体中提取几丁质酶的mRNA,常选用嫩叶而不选用老叶作为实验材料,原因是________________________________。提取RNA时,提取液中需添加RNA酶抑制剂,其目的是______________________________________。 (2)以mRNA为材料可以获得cDNA,其原理是________________________________。 (3)若要使目的基因在受体细胞中表达,需要通过质粒载体而不能直接将目的基因导入受体细胞,原因是________________________________________________________(答出两点即可)。(4)当几丁质酶基因和质粒载体连接时,DNA连接酶催化形成的化学键是__________________________。 (5)若获得的转基因植株(几丁质酶基因已经整合到植物的基因组中)抗真菌病的能力没有提高,根据中心法则分析,其可能的原因是____________________________________________。 3.(2017?新课标Ⅲ卷.38)(15分)编码蛋白甲的DNA序列(序列甲)由A、B、C、D、E五个片段组成,编码蛋白乙和丙的序列由序列甲的部分片段组成,如图1所示。 回答下列问题: (1)现要通过基因工程的方法获得蛋白乙,若在启动子的下游直接接上编码蛋白乙的DNA序列(TTCGCTTCT……CAGGAAGGA),则所构建的表达载体转入宿主细胞后不能翻译出蛋白乙,原因是_____________________________________________________________。(2)某同学在用PCR技术获取DNA片段B或D的过程中,在PCR反应体系中加入了DNA聚合酶、引物等,还加入了序列甲作为________________,加入了________________作为合成DNA的原料。 (3)现通过基因工程方法获得了甲、乙、丙三种蛋白,要鉴定这三种蛋白是否具有刺激T淋巴细胞增殖的作用,某同学做了如下实验:将一定量的含T淋巴细胞的培养液平均分成四组,其中三组分别加入等量的蛋白甲、乙、丙,另一组作为对照,培养并定期检测T淋巴细胞浓度,结果如图2。 ①由图2 可知,当细胞浓度达到a时,添加蛋白乙的培养液中T淋巴细胞浓度不再增加,此时若要使T淋巴细胞继续增殖,可采用的方法是________________________。细胞培养过程中,培养箱中通常要维持一定的CO2浓度,CO2的作用是________________________。 ②仅根据图、图2可知,上述甲、乙、丙三种蛋白中,若缺少______________(填“A”“B”“C”“D”或“E”)片段所编码的肽段,则会降低其刺激T淋巴细胞增殖的效果。 4.(2017·天津理综卷9)(20分)玉米自交系(遗传稳定的育种材料)B具有高产、抗病等优良性质,但难以直接培育成转基因植株,为使其获得抗除草剂性状,需依次进行步骤I、II试验。 Ⅰ.获得抗除草剂转基因玉米自交系A,技术路线如下图。 (1)为防止酶切产物自身环化,构建表达载体需用2种限制酶,选择的原则是______(单选)。 ①Ti质粒内,每种限制酶只有一个切割位点 ②G基因编码蛋白质的序列中,每种限制酶只有一个切割位点

基因工程应用

第3节基因工程的应用 【本节重难点】 重点:1.基因工程在农业和医疗等方面的应用 难点:1.基因治疗 【知识精讲】 教材梳理 知识点一植物基因工程的应用 植物基因工程技术主要用于提高农作物的抗逆能力(如抗除草剂、抗虫、抗病、抗干旱和抗盐碱等)以及改良农作物的品质和利用植物生产药物等方面。 1.提高抗逆性 (1)常用抗虫基因:用于抗虫(杀虫)的基因主要是Bt毒蛋白基因、蛋白酶抑制剂基因、淀粉酶抑制剂基因、植物凝集素基因等。 (2)常用抗病基因:a.抗病毒基因有:病毒外壳蛋白基因和病毒的复制酶基因;b.抗真菌基因有:几丁质酶基因和抗毒素合成基因 (3)其他抗逆基因:环境条件对农作物的生产会造成很大影响,并且这些影响是多方面的,因此,抗逆性基因也有多种多样,如:抗盐碱和干旱的调节细胞渗透压基因、抗冻基因、抗除草剂基因等等。 2.改良植物品质 由于人们的食品含有的营养不平衡,不能满足人们对食品的要求,这样,可以通过转基因技术,使植物能够合成某些本来不能合成的物质。如科学家将必需氨基酸含量多的蛋白质编码基因导入植物中,或者改变这些氨基酸合成途径中某种关键酶的活性,以提高氨基酸的含量。 3.生产药物 基因工程不但促进了传统技术的变革,也为人类提供了传统产业难以得到的许多昂贵药品,并已形成基因工程制药业的雏形。目前诸如人胰岛素、人生长激素、人脑激素、 α-干扰素、乙肝疫苗、蛋白C、组织血纤维蛋白溶酶原激活剂等数十种基因工程药物已实现商品化。此外,还有促红细胞生成素、白细胞介素-2、肾素、心钠素等一大批珍贵药品正处于试用或临床试验阶段。 知识点二动物基因工程的应用 1.用于提高动物生长速度:由于外援生长激素基因的表达可以使转基因动物生长得更快,将这类基因导入动物体内,以提高动物的生长速率。如:转基因绵羊和转基因鲤鱼。 2.用于改善畜产品的品质:基因工程可用于改善畜产品的品质。如:有些人对牛奶中的乳糖不能完全消化或食用后会出现过敏、腹泻、恶心等不适症状,科学家将肠乳糖酶基因导入奶牛基因组,这样所获得的牛奶其成分不受影响,但乳糖的含量大大减低。 3.用转基因动物做器官移植的供体:目前,人体移植器官短缺是一个世界性的难题,用其它动物的器官替代,又会出现免疫排斥现象,现在,科学家正试图利用基因工程方法对一些动物的器官进行改造,培育出没有免疫排斥反应的转基因克隆器官。 知识点三基因治疗 1.概念:基因治疗是把正常基因导入病人体内,使该基因的表达产物发挥功能,从而达到治疗疾病的目的,这是治疗遗传病的最有效的手段。 2.方法:体外基因治疗和体内基因治疗 体外基因治疗:先从病人体内获得某种相关细胞,进行培养,然后在体外完成基因转移,再

高中生物基因工程试题

阶段质量检测(一)基因工程 (时间:45分钟,满分:100分) 一、选择题(每小题3分,共45分) 1 ?下列有关基因工程技术的叙述,正确的是() A. 重组DNA技术所用的工具酶是限制酶、连接酶和载体 B. 所有的限制酶都只能识别同一种特定的核苷酸序列 C. 只要是细菌中的质粒都可以直接作为基因工程中的载体 D. 载体必须具备的条件之一是有多个限制酶切割位点,以便与外源基因进行连接 2. (浙江高考)天然的玫瑰没有蓝色花,这是由于缺少控制蓝色色素合成的基因B,而 开蓝色花的矮牵牛中存在序列已知的基因B。现用基因工程技术培育蓝玫瑰,下列操作正确 的是() A. 提取矮牵牛蓝色花的mRNA经逆转录获得互补的DNA再扩增基因B B. 利用限制性核酸内切酶从开蓝色花矮牵牛的基因文库中获取基因B C. 利用DNA聚合酶将基因B与质粒连接后导入玫瑰细胞 D. 将基因B直接导入大肠杆菌,然后感染并转入玫瑰细胞 3. 日本下村修、美国沙尔菲和钱永健因在发现绿色荧光蛋白(GFP)等研究方面做出突出贡献,获得2008年度诺贝尔化学奖。GFP在紫外光的照射下会发出绿色荧光。依据GFP的特性,你认为该蛋白在生物工程中的应用价值是() A. 作为标记基因,研究基因的表达 B. 作为标记蛋白,研究细胞的转移 C. 注入肌肉细胞,繁殖发光小白鼠 D. 标记噬菌体外壳,示踪DNA路径 4. 下列有关质粒的叙述,正确的是() A. 质粒是广泛存在于细菌细胞中的一种颗粒状细胞器 B. 质粒是细菌细胞质中能自主复制的小型环状 DNA C. 质粒只有在侵入宿主细胞后,才能在宿主细胞内复制 D. 基因工程中常用的载体除了质粒外,还有核 DNA动植物病毒以及入噬菌体的衍生物

基因工程复习资料

基因工程复习资料 生物技术在制药行业的应用:基因工程制药、细胞工程制药、酶工程制药、发酵工程制药。 基因工程:基因工程是在分子水平上进行的遗传操作,是指将一种或多种生物体的基因分离出来或人工合成基因,按照人们的愿望,进行严密的设计和体外加工重组,转移到另一种生物体的细胞内,使之能在受体细胞中遗传表达并获得新的遗传性状而形成新的生物类型的生物技术。(又称遗传工程) 基因工程流程:分、切、接、转、筛、表。 基因工程的四大要素(或基本条件):目的基因、载体、工具酶、受体。 基因工程的突出特点:打破物种间基因交流的界限。 连接酶:T4连接酶(辅助因子为ATP,高等生物,实验采用)和大肠杆菌连接酶(辅助因子为NAD+,低等生物)。 基因工程诞生的理论基础:证明生物的遗传物质是DNA(20世纪40年代)、明确了DNA的双螺旋结构和半保留复制机制(20世纪50年代)、明确了遗传信息的传递方式(20世纪60年代)。 基因工程诞生的技术突破:工具酶(限制性内切酶和DNA连接酶)的发现与应用(基因操作的剪刀,针线)、载体的发现(发现了运载工具)、逆转录酶的发现(便于真核生物基因的获取,因其常有内含子,不便于操作)。 基因工程诞生的元年:1973年的DNA体外重组和大肠杆菌转化实验。 基因工程制药:利用重组DNA技术,结合发酵工程、细胞工程、酶工程等现代生物技术研制预防和治疗人类、动物重大疾病的蛋白质药物、核酸药物,以及生物制品的一门技术。 工具酶:工具酶是指基因工程操作中所使用的核酸酶类。 核酸酶:核酸酶是指对核酸片段可以进行操作(核酸的扩增、核酸的切割、核酸的连接)的一类酶。 工具酶:限制性内切酶、连接酶、聚合酶、修饰酶。 胰蛋白酶:动物细胞消散需要胰蛋白酶。 限制性核酸内切酶的限制作用:指一定类型的细菌可以通过限制酶的作用,破坏入侵的噬菌体DNA,导致噬菌体的寄主幅度受到限制;这是维护宿主遗传稳定的保护机制。 限制性核酸内切酶的修饰作用:指寄主本身的DNA,由于在合成后通过甲基化酶的作用得以甲基化,使DNA得以修饰,从而免遭自身限制性酶的破坏;这是宿主细胞识别自身遗传物质和外来遗传物质的作用

基因工程技术的发展给人类带来的影响

基因工程技术的发展给人类带来的影响 摘要20世纪70年代末至80年代初借助于受精卵原核显微注射和早期胚胎细胞的逆转录病毒感染等手段人们已可将单一的功能基因或基因簇引入高等动物染色体DNA上实现了种系内和种系间细胞的基因转移并由此构建成各种转基因动物。转基因技术在人体中的应用目前仍局限于体细胞的基因治疗方面具有遗传特征修饰的转基因人研究因受到伦理学和法学的束缚而未能跨出第一步但并不意味着在技术上有不可逾越的障碍。事实上多莉绵羊克隆的成功表明人们不仅可以将任何基因转入包括人体在内的任何动物细胞中进行表达而且还能使转基因动物像重组微生物那样无性繁殖。关键词基因工程技术基因治疗实际应用安全隐患人类基因组研究是一项生命科学的基础性研究。有科学家吧基因组图谱看成是指路图或化学中的元素周期表也有科学家把基因谱比作字典但不论是从哪一个角度去阐释破译人类自身基因密码以促进人类健康、预防疾病、延长寿命其应用前景都是极其美好的。人类10万个基因的信息以及相应的染色体位置被破译后破译人类和动植物的基因密码为攻克疾病和提高农作物产量开拓了广阔的前景。将成为医学和生物制药产业知识和技术创新的源泉。最新基因工程技术一反义技术根据目前研究的内容反义技术antisense technology是指根据碱基互补原理用人工合成或生物体合

成的特定互补RNA或DNA片段或其化学修饰产物抑制或封闭基因表达的技术。反义技术理论的形成和发展是以原核生物中天然存在的反义RNA及其调控机理的研究为基础的。在真核生物中一直尚未找到天然存在的反义RNA调控系统但检测出了许多具有互补碱基序列的小分子RNA推测其中一部分可能参与基因表达调控起着类似于反义RNA的作用。反义技术的操作和突变不同能在不破坏目的基因的前提下调控基 因的表达因此它既是阐明基因功能的一种新手段又拓宽了 通过基因工程改良动、植物品质和治疗疾病的途径。反义技术的建立扩展了机体抵御外来微生物的经典免疫学概念 这就是用反义RNA通过核酸分子之间的相互作用可以抑制外源病毒等的侵袭。如用反义RNA已成功地抑制了流感病毒、疱疹病毒和人类免疫缺陷综合症病毒等对所培养的组织细 胞的侵袭。针对植物病毒的反义RNA可使植株产生保护和抗害作用。在癌症及遗传病治疗方面反义技术也同样展现了令人鼓舞的前景。如将携带反义RNA的骨髓白血病MYC基因及编码大肠杆菌黄嘌呤鸟嘌呤磷酸核糖转移酶基因的质粒通 过原生质体融合并引入到前骨髓白血病细胞系获得高水平 表达反义MYC RNA的细胞系其MYC蛋白质比对照组下降70。结果还表明反义RNA不仅能在转录水平而且还能在翻译水平抑制癌基因的表达。反义RNA对细胞内原癌基因的阻抑不仅使细胞增殖力下降还启动了单细胞分化进而使癌变得以缓

基因工程复习资料

细菌的限制—修饰作用 核酸限制性内切酶的类型及主要特性

一个单位的限制性核酸内切酶定义为:在合适的温度和缓冲液中,在50uL反应体系中,1h完全降解1ug底物DNA所需要的酶量。 星号(*)活性:如果改变反应条件就会影响酶的专一性和切割效率,内切酶出现切割与识别位点相似但不完全相同的序列,这一现象称为星号(*)活性。 同位酶:识别位点相同,但切点不同。 同裂酶:识别位点和切点均相同,但来源不同。 同尾酶:识别的序列不同,但能切出相同的粘性末端 两种DNA连接酶 (1)大肠杆菌DNA连接酶:只能连接粘性末端。分子质量为68ku (2)T4噬菌体DNA连接酶:不但能连接粘性末端,还能连接平齐末端。分子质量为75ku

p35页表2-4 简述DNA连接酶的作用机制及其特点 说明使用切口位移法进行DNA标记的原理及其步骤 基因工程载体根据来源和性质不同可分为质粒载体,噬菌体载体,黏粒载体,噬菌粒载体,病毒载体,人工染色体等 质粒的概念:质粒(plasmid)是一种存在于细菌或真菌染色体外的小型环状(线型质粒DNA 分子—眼虫、衣藻等)双链DNA 分子(酵母的“杀伤质粒”是RNA),可自身复制和表达。 共价闭合环状DNA(SC构型)开环DNA(oc构型)线形DNA (L构型) 同一质粒尽管分子量相同,不同的构型电泳迁移率不同: SC DNA最快、L DNA次之、OC DNA最慢。 理想质粒载体的必备条件: A、具有较小的分子质量和较高的拷贝数 B、具有若干限制性核酸内切酶的单一酶切位点(多克隆位点) C、具有两种以上的选择标记基因 D、缺失mob基因(载体的安全性:质粒不能随便转移、条件致死突变) E、插入外源基因的重组质粒较易导入宿主细胞并复制和表达(复制起点)、较小的宿主范围蓝白班筛选原理 穿梭质粒载体(shuttle vector) :由人工构建的具有两种不同复制子起点和选择性标记基因 黏粒载体也称柯斯质粒载体:它是一类含有λ噬菌体的cos序列的质粒载体 噬菌体载体的优越性p69

相关主题
文本预览
相关文档 最新文档