当前位置:文档之家› 基于ZEMAX的红外光学系统设计与优化

基于ZEMAX的红外光学系统设计与优化

基于ZEMAX的红外光学系统设计与优化
基于ZEMAX的红外光学系统设计与优化

zemax自聚焦透镜设计

目录 摘要................................................................ I Abstract........................................................... II 绪论. (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致谢 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

ZEMAX优化操作数

ZEMAX优化操作数 ZEMAX Merit Function,是在网上下下来的一个word文档,觉得蛮好的,一般用到的好像就是EFFL。呵呵,这个收集下,以后有用。 一阶光学性能 1. EFFL 透镜单元的有效焦距 2. AXCL 透镜单元的轴向色差 3. LACL 透镜单元的垂轴色差 4. PIMH 规定波长的近轴像高 5. PMAG 近轴放大率 6. AMAG 角放大率 7. ENPP 透镜单元入瞳位置 8. EXPP透镜单元出瞳位置 9. PETZ 透镜单元的PETZVAL半径 10. PETC反向透镜单元的PETZVAL半径 11. LINV 透镜单元的拉格朗日不变量 12. WFNO 像空间F/# 13. POWR 指定表面的权重 14. EPDI 透镜单元的入瞳直径

15. ISFN 像空间F/# (近轴) 16. OBSN 物空间数值孔径 17. EFLX “X”向有效焦距 18. EFLY “Y”向有效焦距 19. SFNO 弧矢有效F/# 像差 1. SPHA 在规定面出的波球差分布(0则计算全局) 2. COMA 透过面慧差(3阶近轴) 3. ASTI 透过面像散(3阶近轴) 4. FCUR透过面场曲(3阶近轴) 5. DIST透过面波畸变(3阶近轴) 6. DIMX 畸变最大值 7. AXCL 轴像色差(近轴) 8. LACL 垂轴色差 9. TRAR 径像像对于主光线的横向像差 10. TRAX “X”向横向色差 11. TRAY “Y”向横向色差

12. TRAI 规定面上的径像横向像差 13. TRAC径像像对于质心的横向像差 14. OPDC 主光线光程差 15. OPDX 衍射面心光程差 16. PETZ 透镜单元的PETZVAL半径 17. PETC反向透镜单元的PETZVAL半径 18. RSCH 主光线的RMS光斑尺寸 19. RSCE 类RSCH 20. RWCH主光线的RMS波前偏差 21. RWCE衍射面心的RMS波前偏差 22. ANAR像差测试 23. ZERN Zernike系数 24. RSRE 几何像点的RMS点尺寸(质心参考) 25. RSRH 类同RSRE(主光线参考) 26. RWRE类同RSRE(波前偏差) 27. TRAD “X”像TRAR比较 28. TRAE “Y”像TRAR比较 29. TRCX 像面子午像差”X”向(质心基准)

红外系统光学系统

中波红外连续变焦光学系统 红外成像技术由于具有众多优势而应用于侦查、制导等军事领域。连续变焦光学系统是解决大视场搜索小视场分辨的最佳途径。因此对红外连续变焦光学系统的需求会日益增强。本文将介绍中波红外连续变焦光学系统的设计方法,并给出设计实例。设计采用中波红外凝视型焦平面320 μm×240μm像元制冷探测器,探测器像元为30μm×30μm。系统工作波段为3.7~4.8μm;焦距变化范围20~200 mm;F数为2.5;像高12 mm。 光学补偿型的工作方式是变倍组固定,通过聚焦组与补偿组的移动来实现系统焦距的变化,像面位置在变焦过程中有漂移,如图1所示。聚焦组与补偿组的移动是同方向等速度的,只需用机械把两镜组连在一起作线形移动即可,因此其机械结构简单、不需要凸轮。不过镜组必须移动到某些特殊的位置才能得到稳定清晰地像面。适用于变倍范围和数值孔径较小的系统。 机械补偿型的工作方式是聚焦组固定,变倍组与补偿组按不同的运动规律作较复杂移动以实现变化焦距,像面位置在变焦过程中保持稳定,如图2所示。机械补偿法可以实现焦距连续变化,但其机械结构复杂、凸轮加工难度大。不过随着机械加工工艺的提高,机械补偿法的优势越来越明显。故选择机械补偿式的变焦系统。 共口径双通道红外扫描成像光学系统 该系统包括前端共用的双反射系统、分束镜、准直镜组、扫描镜和成像镜组。光波经过双反射系统在主镜之后被分束镜分成中波红外通道(3μm~5μm)和长波红外通道(10μm~12μm),经准直镜组及成像镜组会聚探测器上,实现中波红外系统与长波红外系统共口径同步成像。

长波红外光学系统设计 ①共用结构两反系统 对于两反系统,主镜相对口径的选择主要和两反系统的相对口径有关。若两反系统焦距较长,主镜相对口径可以取小一些,即焦距长一些,容易加工。若两反系统焦距较短,主镜的焦距也就越短,在口径一定的情况下,主镜焦距越短,主镜的相对口径就越大,从缩短镜筒长度来说,当然主镜相对口径越大越有利,但加工难度增加,加工难度同相对口径的立方成正比,所以两反系统的相对口径不能取得太小。 图3 双反射光学系统 考虑到系统结构尺寸应尽量小,在保证主镜焦比合理、焦点伸出量也一定的情况下,遮拦比与次镜的放大率成反比,如果两反系统的F数取值过小,必然导致次镜对主镜的放大率较小,最终导致遮拦比过大,中心遮光损失太大,尤其是对于红外系统,接收的能量本来就很紧张。综合考虑,取两反系统相对口径为1:4主镜相对口径1:0.9。 ②长波红外准直镜组 准直镜组与前面共用的两反系统组成一个望远系统,本系统采用普通的三片式结构可以满足要求。对于长波红外可选的玻璃材料较为有限,本系统中只采用了一种玻璃——锗。

zemax优化操作函数汇总

优化函数 1、像差 SPHA(球差):surf表面编号/wave波长/target设定目标值/weight权重 指定表面产生的球差贡献值,以波长表示。如果表面编号值为零,则为整个系统的总和 COMA(彗差) :surf表面编号/wave波长/target设定目标值/weight权重 指定表面产生的贡献值,以波长表示。如果表面编号值为0,则是针对整个系统。这是 由塞得和数计算得到的第三级彗差,对非近轴系统无效. ASTI(像散):指定表面产生像散的贡献值,以波长表示。如果表面编号值为0,则是针对整个系统。这是由塞得和数计算得到的第三级色散,对非近轴系统无效 FCUR(场曲):指定表面产生的场曲贡献值,以波长表示。如果表面编号值为0,则是计算整个系统的场曲。这是由塞得系数计算出的第三级场曲,对非近轴系统无效. DIST(畸变):指定表面产生的畸变贡献值,以波长表示。如果表面编号值为0,则使用整个系统。同样,如果表面编号值为0,则畸变以百分数形式给出。这是由塞得系数计算出的第三级畸变,对与非近轴系统无效. DIMX(最大畸变值):它与DIST 相似,只不过它仅规定了畸变的绝对值的上限。视场的整数编号可以是0,这说明使用最大的视场坐标,也可以是任何有效的视场编号。注意,最大的畸变不一定总是在最大视场处产生。得到的值总是以百分数为单位,以系统作为一个整体。这个操作数对于非旋转对称系统可能无效。 AXCL(轴向色差):以镜头长度单位为单位的轴向色差。这是两种定义的最边缘的波长的理想焦面的间隔。这个距离是沿着Z 轴测量的。对非近轴系统无效. LACL(垂轴色差):这是定义的两种极端波长的主光线截点的y方向的距离。对于非近轴系统无效TRAR(垂轴像差):在像面半径方向测定的相对于主光线的垂轴像差. TRAX(x方向垂轴像差):在像面x方向测定的相对于主光线的垂轴像差 TRAY(Y方向垂轴像差):在像面Y方向测定的相对于主光线的垂轴像差 TRAI(垂轴像差):在指定表面半口径方向测定的相对于主光线的垂轴像差.类似于TRAR,只不过是针对一个表面,而不是指定的像面. OPDC(光程差):指定波长的主光线的光程差. PETZ(匹兹伐曲率半径):以镜头长度单位表示,对非近轴系统无效 PETC(匹兹伐曲率):以镜头长度单位的倒数表示,对非近轴系统无效 RSCH:相对于主光线的RMS 斑点尺寸(光线像差)。 RSCE:环带波长Hx,Hy,以镜头长度单位测量的,相对于几何像质心的RMS 斑点尺寸(光线像差)。这个操作数类似于RSCH,只不过参考点是像质心,而不是主光线。详细内容可参见RSCH。!R0Y}N ~Q

利用ZEMAX进行长波红外消热差系统设计

利用ZEMAX进行长波红外消热差系统设计 2012/11/26 12:11:09 标签:ZEMAX红外消热差系统 南京光研软件系统有限公司张泽佳 通常,红外光学系统所处的使用环境都在常温常压下,未考虑温度变化等因素对光学系统成像质量的影响。然而对于特殊用途的红外光学系统而言,所处的环境温度会有很大的变化。当温度改变时,由于光学材料与结构材料的热不稳定性,当环境温度变化时,光学元件的曲率、厚度和间隔将发生变化,同时元件材料的折射率也发生改变,从而引起系统焦距变化,像面发生位移,导致系统性能急剧下降,图像质量恶化。因此,需要对该类系统进行消热差设计。 本文利用ZEMAX光学设计软件,设计了一个4片式长波红外折射消热差系统,全部使用球面。该系统在-40℃~60℃范围内,弥散斑均方根半径均小于像元大小,成像质量接近衍射极限,达到系统要求。 1 光学系统设计和结果 光学系统的消热差设计一般有以下几种方法: (1) 被动式机械补偿;(2) 被动式光学补偿;(3) 主动式机械补偿。通过对3 种方法的比较可知:光学被动式补偿方法使得光学系统结构更为简单,重量更轻。随着衍射光学元件(DOE)的出现,采用其与传统的折射系统混合进行消热差设计,衍射元件的光热膨胀系数始终为正,折射元件的光热膨胀系数有正有负,但是衍射元件的光热膨胀系数的绝对值比折射元件小很多,因此,可以通过正、负光焦度的热差效应来实现消热差设计。 ZEMAX作为业界领先的光学设计软件,内置了功能强大的光学系统初始结构寻找功能,本文中的设计依靠ZEMAX所提供的各项功能完成了系统的设计要求。 光学系统的设计参数如下:工作波段为8~4 μm,有效焦距60 mm,F为1.4,系统总长91 mm,后工作距9.56 mm,工作温度范围-40℃~60℃。采用4片球面透镜,材料分别为Ge、KBR、KRS5、AGCl,镜筒采用铝铸铝,热膨胀系数为 αH=23.6×10-6℃-1。该系统适用于像元尺寸为25 μm,像元数为384×288的现代非制冷型焦平面阵列探测器。 1.1 初始结构的寻找 本设计中依靠ZEMAX所提供的全局搜索功能来进行系统的初始结构选择。从而跳过了传统的系统初始结构计算和挑选过程,提供了光学系统初始结构选择的新思路和方法。

zemax自聚焦透镜设计

目录 摘要 .................................................................................................................................................. I Abstract .......................................................................................................................................... I I 绪论 . (1) 1 自聚焦透镜简介 (2) 1.1自聚焦透镜 (2) 1.2 自聚焦透镜的特点 (2) 1.3 自聚焦透镜的主要参数 (3) 2 自聚焦透镜的应用 (4) 2.1 聚焦和准直 (4) 2.2 光耦合 (5) 2.3 单透镜成像 (6) 2.4 自聚焦透镜阵列成像 (6) 3 球面自聚焦透镜设计仿真 (8) 3.1 确定透镜模型 (8) 3.2 设置波长 (8) 3.3数值孔径设定 (9) 3.4 自聚焦透镜光路 (9) 4 优化参数 (10) 4.1光线相差分析 (10) 4.2聚焦光斑分析 (12) 4.3 3D模型 (12) 结束语 (13) 致 (14) 参考文献 (15)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

用Zemax进行优化设计

目录 摘要 (1) ABSTRACT (2) 引言 (3) 1 光学传递函数和点列图 (4) 1.1光学传递函数 (4) 1.1.1利用MTF曲线来评价成像质量 (4) 1.1.2利用MTF曲线的积分值来评价成像质量 (5) 1.2点列图 (5) 2 像差综述 (6) 2.1轴上点球差 (6) 2.1.1球差的定义和表示方法 (6) 2.1.2球差的校正 (8) 2.2像散与像面弯曲(场曲) (8) 2.2.1像散 (8) 2.2.2场曲 (9) 2.3正弦差和彗差 (9) 2.3.1正弦差和彗差的定义 (9) 2.3.2彗差的校正 (12) 2.4畸变 (12) 2.5色差 (13) 2.5.1位置色差 (13) 2.5.2倍率色差 (14) 2.6波相差 (15) 3 表面类型 (16) 3.1简介 (16) 3.2内含表面 (16) 3.3非球面镜片 (19) 3.3.1简介 (19) 3.3.2非球面镜片光学原理 (20) 4 用ZEMAX进行优化设计 (20) 4.1由抛物反射镜产生的初级球面像差: (20) 4.2求由抛物面反射镜和两单透镜组成的初始光学系统 (21) 4.3计算抛物面反射镜和两单透镜组成的初始光学系统 (23) 5 结论 (27) 致谢 (28) 参考文献................................................................................................................... 错误!未定义书签。

摘要 本文研究了用Zemax设计非球面补偿系统的优化。非球面抛物面反射镜在许多光学系统中被采用, 但加工检验较难。在Zemax中优化控制设计零位补偿系统。设计既方便, 加工又容易, 是一种较好的方法。文中介绍了七种像差的定义和表示方法以及对于像差的校正方法;波像差的定义、形成原因及其与像差的关系;由于涉及到面型,本文还介绍了Zemax中包含的面型以及重要面型的简介。最后,利用Zemax进行一个实例的优化设计,得到了优化后的数据。 关键字:像差,波像差,表面类型

zemax自聚焦透镜设计学习资料

目录摘要Abstract............................................................ I 绪论. 0 1 自聚焦透镜简介 (1) 1.1自聚焦透镜 (1) 1.2 自聚焦透镜的特点 (1) 1.3 自聚焦透镜的主要参数 (2) 2 自聚焦透镜的应用 (3) 2.1 聚焦和准直 (3) 2.2 光耦合 (4) 2.3 单透镜成像 (5) 2.4 自聚焦透镜阵列成像 (5) 3 球面自聚焦透镜设计仿真 (7) 3.1 确定透镜模型 (7) 3.2 设置波长 (7) 3.3数值孔径设定 (8) 3.4 自聚焦透镜光路 (8) 4 优化参数 (9) 4.1光线相差分析 (9) 4.2聚焦光斑分析 (11) 4.3 3D模型 (11) 结束语 (12) 致谢 (13)

参考文献 (14)

摘要 本文主要说明应用梯度折射率对光传播的影响分析设计自聚焦透镜(GRIN lens),自聚焦透镜主要应用于光纤传输系统中。自聚焦透镜同普通透镜的区别在于,自聚焦透镜材料能够使沿轴向传输的光产生折射,并使折射率的分布沿径向逐渐减小,从而实现出射光线被平滑且连续的汇聚到一点。利用此特性,G-lens 在光纤传输系统中是构成准直、耦合、成像系统的主要部分。而它结构简单,体积小的特点更适用于小型光学器材中,例如窥镜系统。 关键词:梯度折射率,自聚焦,光耦合,准直

Abstract This article main showing the impact analysis designs the self-focusing lens using the gradient refractive index to the light emission (GRIN lens), the self-focusing lens mainly apply in the optical fiber transmission system. The self-focusing lens lie in with the ordinary lens' difference, the self-focusing lens material can cause along the axial transmission light to have the refraction, and causes the refractive index the distribution to reduce gradually along the radial direction, thus realizes the exit ray by smooth and the continual gathering to a spot. Using this characteristic, G-lens in the optical fiber transmission system is the constitution collimation, the coupling, imaging system's main part. But its structure is simple, the volume small characteristic is suitable in the small optics equipment, for example looking glass system. Keywords:Gradient index, GRIN lens, Light coupling,Collimation

镜头设计

光学镜头设计 自 聚 焦 透 镜 姓名:董杏杰 学号:120514130 专业:12级光伏 2015年6月22日

光学系统的设计要求 任何一种光学仪器的用途和使用条件必然会对它的光学系统提出一定的要求,因此,在我们进行光学设计之前一定要了解对光学系统的要求,这些要求概况起来有以下几个方面: 一、光学系统的基本特性 光学系统的基本特性有:数值孔径或相对孔径;视场角或线视角;系统的放大率或焦距。此外还有这些基本特性相关的一些参数,如光瞳的大小和位置、后工作距离、共轭距等。 二、系统的外形尺寸 外形尺寸也就是系统的横向尺寸和纵向尺寸。在设计多光组的复杂光学系统时,外形尺寸计算以及各光组之间光瞳的衔接都是很重要的。 三、成像质量 成像质量的要求和光学系统的用途有关。不同的光学系统按其用途可提出不同的成像质量要求。对于望远系统和一般的显微镜只要求中心视场有较好的成像质量;对于照相物镜要求整个视场都要有较好的成像质量。 四、仪器的使用条件 在对光学系统提出使用要求时,一定要考虑在技术上和物理上可实现的可能性。如生物显微镜的放大率m要满足500NA≤m≤1000NA条件,望远镜的视觉放大率一定要把望远系统的极限分辨率和眼睛的极限分辨率一起来考虑。 光学系统的设计过程 所谓光学系统设计就是根据使用条件,来决定满足使用要求的各种数据,即决定光学系统的性能参数、外形尺寸和各光组的结构等。因此我们可以把光学设计过程分为四个阶段:外形尺寸计算、初始结构计算、象差校正和平衡以及象质评价。 一、外形尺寸计算 在各个阶段里要设计拟定出光学系统原理图,确定基本光学特性,使满足给定的技术要求,即确定放大倍率或焦距、线视场或角视场、数值孔径或相对孔径、共轭距、后工作距离光阑位置和外形尺寸等。因此,常把这个阶段成为外形尺寸计算。一般都按理想光学系统的理论和计算公式进行外形尺寸计算。在计算时一定要考虑机械结构和电气系统,以防止在机构结构上无法实现。每项性能的确定一定要合理,过高的要求会使设计结果复杂造成浪费,过低要求会使设计

红外光学系统

光学系统 1 概述 ●作用:就是接收辐射能量,并把它传送给探测器。 ●特点: 1.多采用反射式和折反式系统 光学玻璃的透光特性及机械性能,限制了透镜系统在红外光学系统中的应用。 2.性能评定是以与探测器匹配的灵敏度、信噪比为主 红外系统属光电子系统,接收器是光电器件,分辨率受到光电器件尺寸的限制,对光学系统的要求有 所降低。 3.视场小,孔径大 探测器接收面积较小、反射系统没有色差、系统对象质要求不高。 4.采用扫描器 当探测器阵列为线列时,为实现对空间目标的扫描成像,常采用扫描器。 5.波长的特殊性使得系统的重量重、成本高 常用红外波段的波长约为可见光的5~20倍,要得到高分辨率的系统,必须有大的孔径。 ●设计光学系统时应遵循的原则: 1.光学系统与目标、大气窗口、探测器之间的光谱匹配。 2.接收口径、相对孔径尽可能大,以保证系统有高的灵敏度。 3.系统应对噪声有较强的抑制能力。 4.系统的形式和组成应有利于发挥探测器的效能。 5.系统和组成元件力求简单,减少能量损失。 6.根据不同要求,选择合适的元件组成所需的系统。 2 光学系统的主要参数 2.1光阑、入瞳 ●在光学系统中起拦光作用的透镜和屏孔统称为光阑。

孔径光阑:决定最小入射光束截面积的光阑,如透镜的边框MN 和特加的圆孔光阑I 。 视场光阑:限制物空间的被成像范围,如光阑II 。 ● 入射光瞳:通过光学系统的光束的最大孔径角,描述目标辐射能量有多少为光学系统接收。 AB 是系统的孔径光阑。从F 点来看,AB 的大小相当于以孔径光阑为物,通过透镜L 在物空间所成的像A ,B ,,这个像的边缘对物点F 所作的张角,就是通过光学系统的光束的最大孔径角。光阑AB 的像A ,B ,就称为系统的入射光瞳。 2.2相对孔径、F/数 1、焦距 ● F ,点为像方焦点,F 点为物方焦点; ● 过F ,点且垂直于光轴的平面称为像方焦面; ● H ,为象方主点,H 为物方主点; ● 象方主点与像方焦点之间的距离称为后焦距f ,一般称焦距。 2、相对孔径 ● 入瞳直径0D 与焦距f 之比,即f D 0 。

宽谱段红外消热差光学系统设计

第35卷第3期2014年5月应 用 光 学 Journal of Applied OpticsVol.35No.3 May  2014文章编号:1002-2082(2014)03-0510- 05收稿日期:2013-10-12; 修回日期: 2013-11-28基金项目:国家自然科学基金(61108044),吉林省自然科学基金(201215131 )作者简介:付跃刚(1972-),男,吉林人,教授,博士生导师,主要从事光学设计及检测技术方面的研究。E-mail:Fuyg @cust.edu.cn宽谱段红外消热差光学系统设计 付跃刚, 黄蕴涵,刘智颖(长春理工大学测控分析中心,吉林长春130022 )摘 要:宽谱段红外光学系统可以获取宽谱段的图像信息并增大目标信息获取程度。从红外光学系统的简洁性出发,对红外光学系统进行设计,系统仅由4片球面透镜组成,实现了4.4μm~ 8.8μm波段清晰成像,F#为2.68,达到了100%的冷光阑效应。采用被动消热差方式通过合理选择镜片材料及公式推导最终实现了各个波段内的消热差,镜筒材料为钛合金,透镜采用硒化锌(ZnSe),锗(Ge)及硫化锌(ZnS)材料,给出20lp/mm处系统在各个波段在-40℃~60℃的工作温度下的调制传递函数(MTF),以及各个波段下的光学系统畸变值。实验结果表明:设计的宽谱段红外光学系统结构简单,满足设计要求。关键词:宽谱段;红外;消热差;光学设计 中图分类号:TN202;TH703 文献标志码:A doi:10.5768/JAO201435.0306001 Design of multispectral infrared athermal optical sy stemFU Yue-gang,HUANG Yun-han,LIU Zhi-ying (Test,Control&Analysis Centre,Changchun University  of Science and Technology,Changchun 130022,China)Abstract:The infrared multi-band optical system can track the band information stretchingfrom mid-wave infrared to long-wave infrared,which can greatly improve the information ac-quisition capability.A infrared multi-band optical system composed of 4spherical lenses wasdesigned based on the compact principle.It could image clearly  at 4.4μm~8.8μm continuous-ly,the F#was 2.68which strictly matched with the cold light bar so that the cold light bareffect reached 100%.The system used the passive athermalization method to get rid of tem-perature compensation problem and finally realized athermalization for continuous bandsthrough selection of lens materials and formula derivation.The tube was made of titanium al-loy,the lens was made of ZnSe,Germanium and ZnS materials.The modulation transfer funtion(MTF)at 40℃to 60℃was given,as well as the distortion over every wavebands.The resultshows that the design of the system structure is relatively simple,which satisfies the require-ments of a standard infrared thermal imag er.Key  words:wide band;infrared;athermalization;optical design引言 红外光学系统在现代目标识别与探索领域具有不可替代的作用。跨越连续红外波段探测器的出现,扩大了对不同类型目标的探测能力,这样可 以在不同探测环境下使用同一光学系统对不同目标进行探测、识别。本文设计的宽谱段红外消热差光学系统在红外成像领域具有很大应用前景。 设计的中长波红外消热差光学系统采用法国

基于Zemax的部分补偿透镜的优化设计

第31卷 第6期光 学 学 报V ol.31,N o.62011年6月 ACTA OPTICA SINICA June,2011 基于Zemax 的部分补偿透镜的优化设计 孟晓辰 郝 群 朱秋东 胡 摇 (北京理工大学光电学院,北京100081) 摘要 用部分补偿法检测非球面时,部分补偿透镜的优化设计是关键技术之一。针对这一难点,提出了一种以剩余波前斜率作为优化目标的基于Zemax 的部分补偿透镜设计方法,分析了剩余波前斜率与干涉条纹密度以及弥散圆之间的关系,得到了弥散圆可以定量表征剩余波前斜率的结论,并将弥散圆半径作为优化函数。针对3种不同参数的非球面进行了部分补偿透镜的优化设计,设计结果表明,该方法可在保证干涉条纹可探测的前提下,简单、快速、全面直观地实现部分补偿透镜的优化设计,减小剩余波前斜率,降低干涉条纹密度,从而扩大干涉仪可测非球面面形误差的测量范围,提高可测的空间频率。关键词 光学设计;部分补偿透镜;剩余波前斜率;弥散圆 中图分类号 O435 文献标识码 A do i :10.3788/AO S 201131.0622002 Optimization Design of Partially Compensating Le ns Base d on Ze max Meng Xiaochen Hao Qun Zhu Qiudong Hu Yao (School of Opt oelectr on ics ,Beijin g In stitu te of T echnology ,Beij in g ,100081,Chin a ) Abstract Optimization design of partially compensating lens is one of the key problems for aspheric surface testing using pa rtia lly compensating lens.A design method for the partially compensating lens based on Zemax,which takes the slope of wave -front as the optimization objective,is proposed.First the relation among residua l wave -front slope,and interference fringe density and dispersive spot are analyzed,leading to the conclusion that the dispersive spot can quantitatively charac terize the residual wave -front slope and its radius is taken as the optimization target.Then the m ethod is applied to the optimization design of partially compensating lenses corresponding to three kinds of aspheric surfaces.The results indic ate that,on the prec ondition that the interference fringes are detec table,the method can help complete the optimization design of partially compensating lens m ore simply,faster and more visually,resulting in dec rease of the residual wave -front slope and reduction in the interference fringes density.Therefore,the m ea surement range of the interferometer for testing aspheric surface is expanded,and aspheric surfaces with higher spa tial frequency can still be measured without increasing the resolution of interferogram detector.Key wo rds optical design;partially compensating lens;residual wave -front slope;dispersive spot OCIS co des 220.1250;220.2740;220.1000;220.3620;220.4840 收稿日期:2010-12-31;收到修改稿日期:2011-02-22 基金项目:国家自然科学基金(60578053)资助课题。 作者简介:孟晓辰(1985 ),女,博士研究生,主要从事光学精密测量方面的研究。E -mail:mengx c316@g https://www.doczj.com/doc/903844348.html, 导师简介:郝 群(1968 ),女,博士,教授,主要从事光电信息技术及精密光学测量等方面的研究。E -mail:qhao@https://www.doczj.com/doc/903844348.html, 1 引 言 干涉检测是非球面检测最常用的高精度定量方法[1],其中传统的零补偿检验是一种小剩余波前的检验方法,需要通过零补偿器的波前完全补偿被测非球面的法线像差[2],因此通常需要使用复杂的透镜组作为零补偿器[3,4] ,设计和加工难度较大[5~10] 。部分补偿检测法则不同于零补偿检验[11],它不要求 通过部分补偿透镜后的光线完全补偿非球面的法线 像差,因此系统本身可以有较大的剩余波前,部分补偿透镜的结构可以很简单,甚至只需单片透镜即可实现,降低了补偿器的设计和加工难度。 另一方面,剩余波前的斜率与干涉条纹密度相关,部分补偿检测法存在较大的剩余波前,将导致待探测的干涉条纹变密。由于探测器分辨率的限制,

红外光学系统

第二章 红外光学系统 光学系统在红外系统中的作用十分类似于用于接收目标回波的雷达天线,就是接收辐射能量,并把它传送给探测器。可见光和红外本质上都是电磁波,只是谱段不同,用于可见光系统设计的工程光学的基本理论和设计方法,同样可用于红外光学系统的设计。本章2.1至2.4节对光学 首先对此作简要介绍。但是,红外光学系统基本结构、材料、薄膜以及涉及光学系统与探测器耦合的辅助光学系统,有其特殊的一面,应予阐述。 2.1 光学基本定律 2.1.1 光的波动性 光的波动理论认为,光源是一个辐射电磁波的波源,光的传播就是波动的传播。光在真空中传播的速度为3×108m/s ,在任何别的介质中的光速都要比真空中光速小。 光波是横波,其振动方向垂直于传播方向。机械简谐振动产生的横波的波动方程可表达为: )2cos(),(αωλ π+-?=t z A t z y 式中: ),(t z y 为t 时刻,空间位置为z 处的机械位移; A 为振幅,ν为振动频率,πνω2=为园频率,α为初始相位角。 具有同一振动相位的空间两个相邻点之间的距离可称为波长,例如两个相邻波峰或相邻波谷之间的距离。波长的倒数称为波数,其单位常取cm -1。在光谱学中使用波数比使用波长更方便。波动传播的速度即波峰或波谷传播速度,有: νλλ == T V 机械波是机械振动产生的,而电磁波则是电磁振荡产生的,反映为电场强度E 和磁感应强度B 的时空变化,其规律可用麦克斯韦方程表述。由于光对物质的作用主要是电场的作用,在光学中大多数情况下只研究电场强度E 的规律,E 矢

量即电矢量,也称为光矢量。 图2.2 偏振面为XY平面的偏振光 E矢量、B矢量和传播方向矢量相互垂直,构成右手螺旋。相对于传播轴,E矢量的分布不一定是均匀分布的,这种分布的不均匀性称为偏振。实际光源有数目众多且相互无关的发光分子,它们的电矢量虽然还是垂直于传播方向,其取向与大小都随时间作无规则的变化,但各取向上电矢量的时间平均值是相等的,这样的光称为自然光(图中a),只有单一取向的称为线偏振光,介于两者之间的是部分偏振光。 图2.3 自然光和偏振光 振动位相相同的各点在某一时刻所构成的曲面称为波面。波面可以是平面、球面或任何曲面。在各向同性的介质中,光能沿着波面的法线方向传播。在几何光学中,我们把光源发出的光抽象成无数条能传播能量的光线,光线也就是波面的法线。 光束由无数条光线组成,可以建立光束和波面的对应关系,如平行光束对应平面波,会聚或发散光束对应球面波。点光源发出的光束是发散的同心光束,经过实际光学系统后,由于像差的作用,将不再是同心光束,与之对应的光波则为非球面波。利用几何光学建立的光线、波面等概念,可将本质上十分复杂的光能传播与光学成像问题归结为简单的数学问题。

zemax像差图分析报告

ZEMAX像差深入以及像差各种图表分 析 初级像差深入 近轴光线和远轴光线的概念。 近轴光线和远轴光线都是指与光轴平行的光线,它们都成像在光轴上(下图中画的是主光轴情况)缩小的光圈可以拦去远轴光线,而由近轴光线来成像。 总的来说,镜头的像差可以分成两大类,即单色像差及色差。镜头的单色像差五种,它们分别是影响成像清晰度的球差、彗差、象散、场曲,以及影响物象相似度的畸变 光线称远轴光线 主光轴 /isnonci.oon 以下就分别介绍五种不同性质的单色像差: 球差

是由于镜头的透镜球面上各点的聚光能力不同而引起的。从无穷远处来的平行光线在理论上应该会聚 在焦点上。但是由于近轴光线与远轴光线的会聚点并不一致,会聚光线并不是形成一个点,而是一个以光轴为中心对称的弥散圆,这种像差就称为球差。球差的存在引起了成像的模糊,而从下图可以看出,这种模糊是与光圈的大小有关的。 小光圈时,由于光阑挡去了远轴光线,弥散圆的直径就小,图像就会清晰。大光圈时弥散圆直径就大, 图像就会比较模糊。 必须注意,这种由球差引起的图像模糊与景深中的模糊完全是两会事,不可以混为一谈的。球差可以 通过复合透镜或者非球面镜等办法在最大限度下消除的。在照相镜头中,光圈(孔径)数增加一档(光 孔缩小一档),球差就缩小一半。我们在拍摄时,只要光线条件允许,可以考虑使用较小的光圈 (孔 径)来减小球差的影响。

实用文案彗差

是在轴外成像时产生的一种像差。从光轴外的某一点向镜头发岀一束平行光线,经光学系统后,在像平面上并不是成一个点的像,而是形成不对称的弥散光斑,这种弥散光斑的形状象彗星,从中心到边缘拖着一个由细到粗的尾巴,首端明亮、清晰,尾端宽大、暗淡、模糊。这种轴外光束引起的像差就称为彗差。彗差的大小既与光圈仔L径)有关,也与视场有关。我们在拍摄时也可以采取适当采用较小的光圈(孔径)来减少彗差对成象的影响。 像散 也是一种轴外像差。与彗差不同,像散仅仅与视场有关。由于轴外光束的不对称性,使得轴外点的子午细光束(即镜头的直径方向)的会聚点与弧矢细光束(镜头的园弧方向)的会聚点位置不同,这种现象称为象散。像散可以对照眼睛的散光来理解。带有散光的眼睛,实际上是在两个方向上的晶状体曲率不一致,造成看到的点弥散成了一条短线。象散也使得轴外成像的像质大大地下降。像散的大小只与视场角有关,与孔径是没有关系的。即使光圈开得很小,在子午和弧矢方向仍然无法同时获得非常清晰的像。在广角镜头中,由于视场角比较大, 像散现象就比较明显。我们在拍摄的时候应该尽量使被摄体处于画面的中心。这好象与构图要求不把 主要表现对象放在图面正中央有些冲突,如何掌握就要看实际情况了。

ZEMAX的像差控制与优化

ZEMAX的基本像差控制与优化 公安部第一研究所许正光 ZEMAX已经成为光学设计人员最常用的工具软件了。光学设计中,描述和控制一个光学系统的初级像差结构,通常使用轴上球差、轴向色差、彗差、场曲、畸变、垂轴色差、像散等像差参数。当我们企图更为详细的描述和控制轴外指定视场、指定光束的像差结构时,常常会使用轴外宽光束球差、彗差和细光束场曲等三个像差参数。然而,ZEMAX并不能像SOD88那样直接引用相对应的像差操作数来指定像差目标大小,更没有描述高级像差数的像差操作数,这些通常都需要设计者自行分析和定义。 描述和控制系统光束结构的方法因习惯而有一定的差异,由于某些像差变量之间有某种相关性,而设置的优化权重又可以不同,因此常常都能够达到相同的效果,只是所计算的数学步骤不同而已。到底选择多少个参数来描述一个系统,虽无统一规定,但是还是要因系统像差特性不同而区别选择。经验表明,最少最准确的参数描述量,能够尽可能的提高优化的效率,并且减少掉入效果较差的局部优化的次数。经验丰富的工程师,轻车熟路,在这个环节上少走了很多的弯路,从而其设计效率和设计出来的产品品质要比通常的设计人员有些得多,成功率高的多。 笔者撰写本文的目的就是企图浅显的探讨光学设计中,ZEMAX中光学结构的描述方法以及权重选择的问题。这些都是笔者在设计当中积累的经验,可能这个文章的论断会由于经验的多寡有一定的局限性,所以希望读者当作参考,不要照搬。 一基本像差描述和控制 1、轴上球差LONA 和SPHA LONA表示的是轴上物点指定波长,指定光束尺寸(光线对)的轴上成像交点到近轴焦平面之间轴向距离。这个定义和我们定义的轴向球差相同。光瞳尺寸(光束尺寸)在0~1之间,那么将追迹实际的光束汇交点计算轴向球差。 SPHA常用于指定面产生的像差数值。若不指定特殊面(取值为0),则计算所有面产生球差总和。注意这个总合不是像差计算公式中的经过各面逐个放大之后的加权和,而是代数和(有待读者进一步验证)。 经验:当选择LONA控制不住球差时,同时加入SPHA操作数,设置合理的权重,可以将轴向球差进一步改善。 2、轴向色差AXCL 定义为两个指定波长的近轴焦平面轴向距离。若光瞳尺寸(光束尺寸)定义为0,那么使用近轴焦平面进行色差计算,定义不为0,则使用实际的光线与轴交点位置进行色差计算。 3、垂轴色差(倍率色差) 在ZEMAX中没有直接定义垂轴色差的操作数,但是从垂轴色差的定义可以知道,

相关主题
文本预览
相关文档 最新文档