当前位置:文档之家› 北邮物理研究性实验报告

北邮物理研究性实验报告

北邮物理研究性实验报告
北邮物理研究性实验报告

衍射光栅实验

作者:侯在鹏

(北京邮电大学信息与通信工程学院北京市邮编:100876)

摘要:衍射光栅由大量相互平行,等宽,等间距的狭缝组成,它利用多缝衍射原理使光发生色散。由于它具有较大的角色散和较高的分辨本领,已经被广泛用于各种光谱仪中。本文对衍射光栅进行基础分析,同时进行实验数据的处理。

关键字:光栅;衍射;角色散

中图分类号:O436.1 文献标识码:A

Diffraction grating experiment

Author:houzaipeng

(Beijing University of Telecommunication,Beijing, 100876, China)

Abstract:Diffraction grating is constituted by a large amount of slits which are of equal width, equally

spaced, and paralleled to each other. It uses multi-slit diffraction theory to make light dispersion occurs.

Because it has a larger angular dispersion and high resolving power, it has already been widely used in a

variety of spectrometers. This paper explore the influence of the parallel incident light is not precise vertical

grating on the results , in addition to the basic analysis of the experimental data of the diffraction grating.

Keywords: grating; diffraction ; non-normal incidence; Angular dispersion

1.引言

衍射光栅是极其精密的光谱分光元件,作为各种光谱仪器的核心元件广泛应用于石油化工,医药卫生,食品,生物,环保等国民经济和科学研究的各个领域。因此,对衍射光栅的实验研究具有重要意义。在大学的物理实验中,衍射光栅实验成为一个必不可少的实验,它有利于培养学生的对实验现象的观察能力及科学实践动手能力。

衍射现象可以分为两种:菲涅耳衍射和夫琅禾费衍射。衍射光栅实验借助于分光计和光

栅测量波长,属于夫琅禾费衍射的范畴。所谓夫琅禾费衍射是指观察点和光源都是无限

远时的衍射现象,本实验通过分光计的望远镜的会聚作用将观察范围缩小至实验台上。

本文在光栅衍射实验基础上进行基本数据处理和误差分析,对斜入射情况下引起的误差

进行定量讨论,并给出最大可允许的斜入射角的推导计算式和理论计算值,以总结减少

误差的理论依据,为更可靠的实验数据处理提供参考.

2.实验目的

(1)观察光的衍射现象,加深对光栅衍射原理的理解。

图 1(2)分光计的调节和使用

(3)测量平面透射光栅的光栅常数

(4)用平面透射光栅测定光波波长

(5)学会测量光栅的角色散

3.实验原理

3.1衍射光栅和光栅方程

平面透射光栅是由大量等宽、等距、排列紧密的平行狭缝构成,能将入射的复色光按波长的大小以不同角度衍射而达到分光的目的。设缝宽为a,相邻两缝间不透光部分的宽度为b,d=a+b称为光栅常数。

一束平行单色光与光栅法线成θ角入射到光栅平面上时,通过每一条狭缝的光线发生衍射现象,通过许多狭缝衍射后的平行光,用会聚透镜会聚,则产生干涉现象。如果在透镜焦平面上的会聚点P处的光振动是加强的,就会产生明条纹。明条纹实际上是光源狭缝的衍射像,是一条锐细的亮线。其光程差CA+AD等于波长的整数倍kλ,即

d(sinφk+sinθ)=kλ (1)

式(1)称为光栅方程,式中的加号表示衍射光和入射光在光栅法线的同一侧,减号表示两者分别在法线的两侧。

如果光线垂直入射,θ=0,则光栅方程简化为

dsinφk=kλ (2)

由光栅方程式(2)可知,用分光计测出某已知波长λ谱线的第k级衍射角φk,便可计算出光栅常数d;如果光栅常数d为已知,则可测出光波的波长λ。

3.2衍射光栅的角色散

角色散是光栅、棱镜等分光元件的重要参数,它表示单位波长间隔内两单色谱线之间的角间距,即角色散

D=dφk/dλ

由光栅方程式(2)对λ微分,可得光栅的角色散D;

光栅常量d愈小,角色散愈大。此外,光谱的级次愈高,角色散也愈大。而且光栅衍射时,如果衍射角不大,则cosφk近似于不变,光谱的角色散几乎与波长无关,即光谱随波长的分布比较均匀,这和棱镜的不均匀色散有明显的不同。

4实验仪器

分光计、光栅、汞灯。

5.主要步骤

(1)调节分光计达到测量要求;

(2)调节光栅平面与平行光管光轴垂直、光栅刻痕与分光计中心转轴平行;

(3)观测衍射光谱:测汞灯光谱线的衍射角,求光栅常数和汞灯光谱线的波长以及光栅的角色散;

6.数据处理

6.1原始数据表格

6.2计算衍射角及不确定度

因为望远镜从位置1转到位置2的过程中,刻度盘的0°刻线通过了左侧游标的零刻线,所以左侧游标读数θL2应加上360°。

衍射角为望远镜转过角度的一半。

注:代入数据,过程不再赘述,直接给出衍射角。

一级蓝紫光:φk=7°36′

一级绿光:φk=9°28′

一级黄光:φk=10°2′

一级黄光2::φk=10°22′

二级蓝紫光:φk=15°16′

二级绿光:φk=19°16′

二级黄光:φk=20°22′

2级黄光2:φk=20°27′

6.3计算光栅常数

对于一级绿光:φk=9°28′ k=1 λ=546.08nm

d=kλ/sinφk=3.304um

对于二级绿光:φk=19°16′ k=2 λ=546.08nm

d=kλ/sinφk=3.312um

6.4计算二级蓝紫光、黄光波长及不确定度

二级蓝紫光:

λ=dsinφk/k=436.25nm 理论值:435.83nm

百分误差:Δλ=(436.25-435.83)/435.83*100%=0.096%

二级黄光1:

λ=dsinφk/k=576.89nm 理论值:576.96nm

百分误差:Δλ=(576.96-576.89)/576.96*100%=0.012%

二级黄光2:

λ=dsinφk/k=578.69nm 理论值:579.07nm

百分误差:Δλ=(578.69-578.07)/579.07*100%=0.066%

6.5计算光栅一级、二级衍射的角色散

代入数据

一级黄光1:D=k/dcosφk=306.72nm

一级黄光2:D=k/dcosφk=307.03nm

二级黄光1:D=k/dcosφk=644.66nm

二级黄光2:D=k/dcosφk=644.94nm

比较分析:光谱的级次愈高,角色散愈大。衍射角不大时,角色散与光谱级次近似成正比7思考题

7.1如果光栅刻痕与分光计主轴不平行,会产生什么现象,如何调节?

如果光栅刻痕不平行于分光计主轴,将会发现衍射光谱是倾斜的并且倾斜方向垂直于光栅刻痕的方向。通过调整与光栅平面垂直的两个载物台调平螺钉调节。

7.2如果平行光不是垂直入射光栅,对测量结果有什么影响?

光栅方程式(1)不再可以简化为式(2),由式(1)可得:,所以衍射图样会发生偏移,造成实验误差。

7.3比较光栅分光和三棱镜分光的主要区别。

光栅分光原理:不同颜色的光波长不同,通过光栅后产生衍射图样的亮线位置分布不同;三棱镜分光原理:不同颜色的光在同一介质中折射率不同。

三棱镜分光只有一组光谱,而且色散不均匀;光栅分光会产生多组光谱,如果衍射角不大则角色散几乎与波长无关,光谱随波长分布比较均匀。

7.4测量时,如何微调望远镜的位置?

使用望远镜微调螺钉可以微调望远镜位置。

7.5如何区分同一级次的谱线?并判断不同级次的谱线是否重叠?

可见光范围内,前两级谱线一般不重叠。望远镜从中央亮纹向两侧转动的过程中,在蓝紫光谱线后看到的第一条绿光、黄1和黄2谱线为同一级次。如果谱线次序发生改变,不再是蓝紫-绿-黄1-黄2时,说明不同级次谱线发生了重叠。

8实验总结:

通过之前的学习,已经能够熟练使用分光计,所以本实验总体上并没有给我带来什么困难。但是还是有些地方需要注意:

其中最重要的就是:平行光尽量垂直入射光栅。同时,每做完一个步骤就要进行检验,这样在误读数据后,仪器能够保持原状,便于重新读数。当寻找谱线时不要移动过快,避免错过其中的谱线。

参考文献

[1] 肖井华,蒋达娅,陈以方,等.大学物理实验教程[M].北京:北京邮电大学出版社,2005.147.

[2] 刘战存.衍射光栅发展历史的回顾[J].物理实验,1999,19(1):48

[3] 王琪琨,张兆钧.斜入射光波的光栅衍射研究[J].大学物理实验,1999,12(2):27.

[4] 刘春平,宋汉阁.光栅衍射实验现象引发的新思考[J].大学物理实验2004,17(1):22.

扭摆法测转动惯量研究性实验报告

吞吞吐吐吞吞吐吐吞吞吐吐 吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞11-21 2011

吐吐物 理研究 性实验 报告 研究性报告————扭摆法测转动惯量 第一作者:孟勤超10031123 第二作者:郭瑾10031126 第三作者:张金凯10031108

目录 摘要 (2) 一、实验目的 (2) 二、实验原理 (2) 1.基本原理 (2) 2.间接比较测量法,确定扭转常数K (2) 3.验证平行轴定理 (3) 4.光电转换测量周期 (3) 三、实验仪器 (3) 四、实验步骤 (3) 1.调整测量系统 (3) 2.测量数据 (4) 五、注意事项 (4) 六、数据记录与处理 (4) 1.原始数据记录 (4) 2.数据处理 (5) 七、讨论 (8) 1.误差分析 (8) 2.总结 (8)

实验名称:扭摆法测转动惯量 摘要 转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。转动惯量的测量,一般都是使刚体以一定的形式运动。通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。 一、实验目的 1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用; 2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数; 3.验证转动惯量的平行轴定理; 4.学会测量时间的累积放大法; 5.掌握不确定度的计算方法。 二、实验原理 1.基本原理 转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系 来测量转动惯量。 2.间接比较测量法,确定扭转常数K 已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:

北邮数字电路综合实验报告

数字电路综合实验报告 简易智能密码锁 一、实验课题及任务要求 设计并实现一个数字密码锁,密码锁有四位数字密码和一个确认开锁按键,密码输入正确,密码锁打开,密码输入错误进行警示。 基本要求: 1、密码设置:通过键盘进行4 位数字密码设定输入,在数码管上显示所输入数字。通过密码设置确定键(BTN 键)进行锁定。 2、开锁:在闭锁状态下,可以输入密码开锁,且每输入一位密码,在数码管上显示“-”,提示已输入密码的位数。输入四位核对密码后,按“开锁”键,若密码正确则系统开锁,若密码错误系统仍然处于闭锁状态,并用蜂鸣器或led 闪烁报警。 3、在开锁状态下,可以通过密码复位键(BTN 键)来清除密码,恢复初始密码“0000”。闭锁状态下不能清除密码。 4、用点阵显示开锁和闭锁状态。 提高要求: 1、输入密码数字由右向左依次显示,即:每输入一数字显示在最右边的数码管上,同时将先前输入的所有数字向左移动一位。 2、密码锁的密码位数(4~6 位)可调。

3、自拟其它功能。 二、系统设计 2.1系统总体框图 2.2逻辑流程图

2.3MDS图 2.4分块说明 程序主要分为6个模块:键盘模块,数码管模块,点阵模块,报警模块,防抖模块,控制模块。以下进行详细介绍。 1.键盘模块 本模块主要完成是4×4键盘扫描,然后获取其键值,并对其进行编码,从而进行按键的识别,并将相应的按键值进行显示。 键盘扫描的实现过程如下:对于4×4键盘,通常连接为4行、4列,因此要识别按键,只需要知道是哪一行和哪一列即可,为了完成这一识别过程,我们的思想是,首先固定输出高电平,在读入输出的行值时,通常高电平会被低电平拉低,当当前位置为高电平“1”时,没有按键按下,否则,如果读入的4行有一位为低电平,那么对应的该行肯定有一个按键按下,这样便可以获取到按键的行值。同理,获取列值也是如此,先输出4列为高电平,然后在输出4行为低电平,再读入列值,如果其中有哪一位为低电平,那么肯定对应的那一列有按键按下。由此可确定按键位置。

北邮通电实验报告

实验3 集成乘法器幅度调制电路 信息与通信工程学院 2016211112班 苏晓玥杨宇宁 2016210349 2016210350

一.实验目的 1.通过实验了解振幅调制的工作原理。 2.掌握用MC1496来实现AM和DSB的方法,并研究已调波与调制信号,载波之间的关系。3.掌握用示波器测量调幅系数的方法。 二.实验准备 1.本实验时应具备的知识点 (1)幅度调制 (2)用模拟乘法器实现幅度调制 (3)MC1496四象限模拟相乘器 2.本实验时所用到的仪器 (1)③号实验板《调幅与功率放大器电路》 (2)示波器 (3)万用表 (4)直流稳压电源 (5)高频信号源 三.实验内容 1.模拟相乘调幅器的输入失调电压调节。 2.用示波器观察正常调幅波(AM)波形,并测量其调幅系数。 3.用示波器观察平衡调幅波(抑制载波的双边带波形DSB)波形。 四.实验波形记录、说明 1.DSB信号波形观察

2.DSB信号反相点观察 3.DSB信号波形与载波波形的相位比较 结论:在调制信号正半周期间,两者同相;负半周期间,两者反相。

4.AM正常波形观测 5.过调制时的AM波形观察(1)调制度为100%

(2)调制度大于100% (3)调制度为30% A=260.0mv B=140.0mv

五.实验结论 我们通过实验了解振幅调制的工作原理是:调幅调制就是用低频调制信号去控制高频振荡(载波)的幅度,使其成为带有低频信息的调幅波。目前由于集成电路的发展,集成模拟相乘器得到广泛的应用,为此本实验采用价格较低廉的MC1496集成模拟相乘器来实现调幅之功能。 DSB信号波形与载波波形的相位关系是:在调制信号正半周期间,两者同相;负半周期间,两者反相。 通过实验了解到了调制度的计算方法 六.课程心得体会 通过本次实验,我们了解了振幅调制的工作原理并掌握了实现AM和DSB的方法,学会计算调制度,具体见实验结论。我们对集成乘法器幅度调制电路有了更好的了解,对他有了更深入的认识,提高了对通信电子电路的兴趣。 和模电实验的单独进行,通电实验增强了团队配合的能力,两个人的有效分工提高了实验的效率,减少了一个人的独自苦恼。

物理实验研究性实验报告——钠黄光双线波长差的测量及其应用概要

研究型实验报告 院(系)名称机械工程及自动化学院专业名称机械工程及自动化 实验作者学生姓名学生学号第一作者王路明11071172 第二作者马天行11071160 第三作者吴宏宇11071167

钠黄光双线波长差的测量及其应用 王路明11071172 马天行11071160 吴宏宇11071167 摘要:迈克逊干涉仪是一种精密干涉仪,其测量结果可精确到与波长相比拟。本文从实验的原理和方法等方面对用此仪器精确测定钠黄双线差及钠的相干长度进行了讨论, 并用实验数据验证了理论值,达到了预期的效果。 关键词:迈克尔逊干涉仪,双线波长差,钠黄光,光程差,玻璃折射率, 一.实验基本要求 1.掌握迈克尔逊干涉仪的工作原理和结构,学会它的调整方法和技巧; 2.利用干涉条纹变化的特点测定光源波长; 3.了解光源的非单色性对干涉条纹的影响; 4.学会用迈克尔逊干涉仪测透明玻璃片折射率。 二.仪器简介 He 激光器、钠光灯、毛玻璃、扩束镜、千分尺、透明玻璃等迈克尔逊干涉仪、Ne 三.实验原理 迈克尔逊干涉仪是l883年美国物理学家迈克尔逊(A.A.Michelson)和莫雷(E.W.Morley)合作,为研究“以太漂移实验而设计制造出来的精密光学仪器。用它可以高度准确地测定微小长度、光的波长、透明体的折射率等。后人利用该仪器的原理,研究出了多种专用干涉仪,这

些干涉仪在近代物理和近代计量技术中被广泛应用。 1.波长差的测量 钠黄光中包含波长为λ1=589.6nm 和λ2=589.0nm 的两条黄谱线,当用它做光源时,两条谱线形成各自的干涉条纹,在视场中的两套干涉条纹相互叠加。由于波长不同,同级条纹之间会产生错位,当变化两束光的光程差时,干涉条纹的清晰度发生周期性变化 ()() L k I L I ?+=?101cos 1()() L k I L I ?+=?202cos 1 ? ?? ?? ???? ???+???? ????+=L k k L k I I 2cos 2cos 1221021k k k -=? 衬比度:?? ? ????=L k 2cos γ半周期:λ λ?≈ ?22 0L L ? γ 图1.钠黄光双线结构使干涉条纹的衬比度随ΔL 做周期性变化 在视场E 中心处λ 1 和λ2两种单色光干涉条纹相互叠加。若逐渐增大镜M1与M2的间距d ,当λ1得第k1级亮纹和的第k2级暗纹相重合时,叠加而成的干涉条纹清晰度最低,此时增大d ,条纹由逐渐清晰,直到光程差δ的改变达到 22112λ2 1 k λk 2d δ)(+=== (1) 时,叠加而成的干涉条纹再次变得模糊。可得 2112λ1m m λd d 2)()(+==-(2) 则λ1和λ2的波长差为 Δd 2λλλ-λΔλ2 121= = (3) Δd=d2-d1 ,当λ1和λ2的波长差相差很小时,λ2 λλλλ2 121=+= (λ=589.3nm ), 则可得 d 22 21?=-=? λ λλλ (4)

北邮微波实验报告整理版

北京邮电大学信息与通信工程学院 微波实验报告 班级:20112111xx 姓名:xxx 学号:20112103xx 指导老师:徐林娟 2014年6月

目录 实验二分支线匹配器 (1) 实验目的 (1) 实验原理 (1) 实验内容 (1) 实验步骤 (1) 单支节 (2) 双支节 (7) 实验三四分之一波长阻抗变换器 (12) 实验目的 (12) 实验原理 (12) 实验内容 (13) 实验步骤 (13) 纯电阻负载 (14) 复数负载 (19) 实验四功分器 (23) 实验目的 (23) 实验原理 (23) 实验内容 (24) 实验步骤 (24) 公分比为1.5 (25) 公分比为1(等功分器) (29) 心得体会 (32)

201121111x 班-xx 号-xx ——电磁场与微波技术实验报告 实验二 分支线匹配器 实验目的 1.熟悉支节匹配器的匹配原理 2.了解微带线的工作原理和实际应用 3.掌握Smith 图解法设计微带线匹配网络 实验原理 支节匹配器是在主传输线上并联适当的电纳(或者串联适当的电抗),用附加的反射来抵消主传输线上原来的反射波,以达到匹配的目的。 单支节匹配器,调谐时主要有两个可调参量:距离d 和由并联开路或短路短截线提供的电纳。匹配的基本思想是选择d ,使其在距离负载d 处向主线看去的导纳Y 是Y0+jB 形式。然后,此短截线的电纳选择为-jB ,根据该电纳值确定分支短截线的长度,这样就达到匹配条件。 双支节匹配器,通过增加一个支节,改进了单支节匹配器需要调节支节位置的不足,只需调节两个分支线长度,就能够达到匹配(但是双支节匹配不是对任意负载阻抗都能匹配的,即存在一个不能得到匹配的禁区)。 微带线是有介质εr (εr >1)和空气混合填充,基片上方是空气,导体带条和接地板之间是介质εr ,可以近似等效为均匀介质填充的传输线,等效介质电常数为 εe ,介于1和εr 之间,依赖于基片厚度H 和导体宽度W 。而微带线的特性阻抗与其等效介质电常数为εe 、基片厚度H 和导体宽度W 有关。 实验内容 已知:输入阻抗Z 75in ,负载阻抗Z (6435)l j ,特性阻抗0Z 75 ,介质基片 2.55r ,1H mm 。 假定负载在2GHz 时实现匹配,利用图解法设计微带线单支节和双支节匹配网络,假设双支节网络分支线与负载的距离114d ,两分支线之间的距离为21 8 d 。画出几种可能的电路图并且比较输入端反射系数幅度从1.8GHz 至2.2GHz 的变化。 实验步骤 1.根据已知计算出各参量,确定项目频率。 2.将归一化阻抗和负载阻抗所在位置分别标在Smith 圆上。 3.设计单枝节匹配网络,在图上确定分支线与负载的距离以及分支线的长度,根据给定的介质基片、特性阻抗和频率用TXLINE 计算微带线物理长度和宽度。此处应该注意电长度和实际长度的联系。 4.画出原理图,在用微带线画出基本的原理图时,注意还要把衬底添加到图中,将各部分的参数填入。注意微带 分支线处的不均匀性所引起的影响,选择适当的模型。 5.负载阻抗选择电阻和电感串联的形式,连接各端口,完成原理图,并且将项目的频率改为1.8—2.2GHz 。 6.添加矩形图,添加测量,点击分析,测量输入端的反射系数幅值。 7.同理设计双枝节匹配网络,重复上面的步骤。

初中物理课实验教学模式探究结题报告

初中物理实验课教学模式研究课题结题报告 我们课题组教师在教研组长王海军主任的领导下,在各级领导的关怀下,在理科组全体老师的努力下,本着自主合作的原则,以《初中物理实验课教学模式研究》为课题进行有效的探索。 一、课题提出的背景 我国多年来受应试教育的影响,使教师和学生在思想上、观念上存在着重理论、轻实验;重实验结论、轻实验过程的倾向。针对目前课堂教学中普遍存在的问题,如演示实验通常由教师独揽,学生没有动手操作机会;用“做实验题”代替“做实验”等现象。 初中物理新课程力求贴近学生生活,并将其应用于社会生活的实际,使学生体会科学技术与社会的关系;强调以物理知识和技能为载体,让学生亲历科学探究的过程,在此过程中学习科学探究的方法,培养学生科学探究精神、实践能力、创新意识。注意将科学技术的新成就引入物理课程。 我们为什么要提出这一课题呢? 第一、科学探究是物理课程标准提出的新要求,是物理新课程的一大突出特征,而实验教学活动是物理课程中科学探究的重要组成部分。在课程标准中,科学探究是与科学内容并列并处于上位的内容,因而,科学探究贯穿于新课程始终。 科学探究既是学生的学习目标,又是重要的教学方式之一。 基础课的实验课堂应当也必然是开展探究活动重要阵地。

在课堂教学中,学生需要实验过程的体验来激发兴趣、感受方法,学生也需要实验的结果来获得愉悦,满足成就感。物理课堂实验教学不是忽视物理知识的学习,而是注重了学生对物理知识的自主建构过程,实验教学与知识的建构是在同一过程中发生的。所以学生课堂上的实验活动是需要设计的,这种设计并不是将学生带入一个固有的套路中,而是教师要提供给学生适当的器材,对学生可能遇到的困难有所思考和估计,在活动中给予学生必要的指导和帮助。 第二、课程改革越来越注重学生学习积极性的调动,重视人的发展和培养,注重人文主义的教育。它的最大特点就是不是仅注重知识研究的结果,而是更重视研究知识的过程;不是仅注重知识的传授,而是更重视学生自主学习知识的能力;不是课堂上教师为中心,而是重视师生的互动性学习、探究性学习。与时俱进的形势要求我们冷静思考,如何进行这一课题的研究。 第三、科研应该为实践服务,我们的实践是实验教学,也就是说,要通过我们教师的实验教学,有效地提高学生的知识水平,能力水平,提升我们整体水平,能在新课程改革中取得实质性的好成绩,那就不会辜负父老乡亲对我们的厚望。从这一点上说,我们更应该实事求是,认真地去进行这一课题的研究。 二、课题研究的目的和意义 1.对初中物理实验教学进行重新定位和认识。本研究将使我校一线物理教师对于如何开展实验探究教学七大环节、如何备课评课、如何开展物理教学研究给予理论和实践的指导和定位。

北京邮电大学数字电路实验报告

北京邮电大学 数字电路与逻辑设计实验 实验报告 实验名称:QuartusII原理图输入 法设计与实现 学院:北京邮电大学 班级: 姓名: 学号:

一.实验名称和实验任务要求 实验名称:QuartusII原理图输入法设计与实现 实验目的:⑴熟悉用QuartusII原理图输入法进行电路设计和仿真。 ⑵掌握QuartusII图形模块单元的生成与调用; ⑶熟悉实验板的使用。 实验任务要求:⑴掌握QuartusII的基础上,利用QuartusII用逻辑 门设计实现一个半加器,生成新的半加器图像模 块。 ⑵用实验内容(1)中生成的半加器模块以及逻辑门 实现一个全加器,仿真验证其功能,并能下载到实 验板上进行测试,要求用拨码开关设定输入信号, 发光二级管显示输出信号。 ⑶用3线—8线译码器(74L138)和逻辑门实现要求 的函数:CBA F+ C + =,仿真验证其 + B C B A A A B C 功能,,并能下载到实验板上进行测试,要求用拨 码开关设定输入信号,发光二级管显示输出信号。二.设计思路和过程 半加器的设计实现过程:⑴半加器的应有两个输入值,两个输出值。 a表示加数,b表示被加数,s表示半加和, co表示向高位的进位。

⑵由数字电路与逻辑设计理论知识可知 b a s ⊕=;b a co ?= 选择两个逻辑门:异或门和与门。a,b 为异 或门和与门的输入,S 为异或门的输出,C 为与门的输出。 (3)利用QuartusII 仿真实现其逻辑功能, 并生成新的半加器图形模块单元。 (4)下载到电路板,并检验是否正确。 全加器的设计实现过程:⑴全加器可以由两个半加器和一个或门构 成。全加器有三个输入值a,b,ci ,两个输 出值s,co :a 为被加数,b 为加数,ci 为低 位向高位的进位。 ⑵全加器的逻辑表达式为: c b a s ⊕⊕= b a ci b a co ?+?⊕=)( ⑶利用全加器的逻辑表达式和半加器的逻 辑功能,实现全加器。 用3线—8线译码器(74L138)和逻辑门设计实现函数 CBA A B C A B C A B C F +++= 设计实现过程:⑴利用QuartusII 选择译码器(74L138)的图形模块

北京邮电大学通信原理软件实验报告

北京邮电大学实验报告 题目:基于SYSTEMVIEW通信原理实验报告

实验一:验证抽样定理 一、实验目的 1、掌握抽样定理 2. 通过时域频域波形分析系统性能 二、实验原理 低通滤波器频率与m(t)相同 三、实验步骤 1. 要求三个基带信号相加后抽样,然后通过低通滤波器恢复出原信号。 2. 连接各模块完成系统,同时在必要输出端设置观察窗。 3. 设置各模块参数。 三个基带信号的频率从上到下分别设置为10hz、12hz、14hz。 抽样信号频率设置为28hz,即2*14hz。(由抽样定理知,) 将低通滤波器频率设置为14hz,则将恢复第三个信号(其频率为14hz)进行系统定时设置,起始时间设为0,终止时间设为1s.抽样率设为1khz。 3.观察基带信号、抽样后的信号、最终恢复的信号波形

四、实验结果 最上面的图为原基带信号波形,中间图为最终恢复的信号波形,最下面的图为抽样后的信号波形。 五、实验讨论 从实验结果可以看出,正如前面实验原理所述,满足抽样定理的理想抽样应该使抽样后的波形图如同冲激信号,且其包络图形为原基带信号波形图。抽样后的信号通过低通滤波器后,恢复出的信号波形与原基带信号相同。 由此可知,如果每秒对基带模拟信号均匀抽样不少于2次,则所得样值序列含有原基带信号的全部信息,从该样值序列可以无失真地恢复成原来的基带信号。 讨论:若抽样速率少于每秒2次,会出现什么情况? 答:会产生失真,这种失真被称为混叠失真。 六、实验建议、意见 增加改变抽样率的步骤,观察是否产生失真。

实验二:奈奎斯特第一准则 一、实验目的 (1)理解无码间干扰数字基带信号的传输; (2)掌握升余弦滚降滤波器的特性; (3)通过时域、频域波形分析系统性能。 二、实验原理 在现代通信系统中,码元是按照一定的间隔发送的,接收端只要能够正确地恢复出幅度序列,就能够无误地恢复传送的信号。因此,只需要研究如何使波形在特定的时刻无失真,而不必追求整个波形不变。 奈奎斯特准则提出:只要信号经过整形后能够在抽样点保持不变,即使其波形已经发生了变化,也能够在抽样判决后恢复原始的信号,因为信息完全恢复携带在抽样点幅度上。 奈奎斯特准则要求在波形成形输入到接收端的滤波器输出的整个传送过程传递函数满足:,其充分必要条件是x(t)的傅氏变换X ( f )必须满足 奈奎斯特准则还指出了信道带宽与码速率的基本关系。即R B =1/T B =2? N =2B N。 式中R b 为传码率,单位为比特/每秒(bps)。f N 和B N 分别为理想信道的低通截止 频率和奈奎斯特带宽。上式说明了理想信道的频带利用率为R B /B N =2。 在实际应用中,理想低通滤波器是不可能实现的,升余弦滤波器是在实际中满足无码间干扰传输的充要条件,已获得广泛应用的滤波器。 升余弦滤波器的带宽为:。其中,α为滚降系数,0 ≤α≤1, 三、实验步骤 1.根据奈奎斯特准则,设计实现验证奈奎斯特第一准则的仿真系统,同时在必 要输出端设置观察窗。设计图如下

初中物理探究性实验问卷调查报告

竭诚为您提供优质文档/双击可除初中物理探究性实验问卷调查报告 篇一:大通县初中物理实验教学问卷调查及分析报告 学生问卷调查表(后期) 亲爱的同学: 你们好!物理是一门以实验为基础的自然学科,实验是物理学习的重要内容,为此,我 县初中物理学科组在部分学校开展了有关实验教学的研究,现在研究工作已接近尾声,借此,我们想了解全县实验教学的状况及实验学校的研究效果,以更好地开展今后的实验教学工作,希望能了解到你个人的一些理解和想法。本问卷采取不记名方式,请你认真逐条填写,并在你意见一致的“□”里打“√”,谢谢你的合作。 19、对于将要学习的探究实验,你希望老师先讲后让你们去做,还是希望先让你们尝试去探究? 20、在科学探究的学习过程中,对你来说最难解决或最困难的环节是什么?请你简要回答。 21、在科学探究的学习过程中,你对老师有什么建议或

意见?请简要回答。 大通县初中物理科学探究教学问卷调查分析报告(后期)20XX年5月大通县初中物理学科组基于目前我县实验教学比较薄弱的现 实,申报了市级课题《基于课标的初中物理科学探究教学的研究与实践》,课题组经过两年的研究与实践,积累了一定的经验,也取得了一定的成绩,为了全面检验课题的研究成果,更好地开展今后的实验教学工作,我们在全县实验学校和非实验学校进行了大面积地问卷调查,现将调查情况汇总如下: 一、问卷调查对象:全县所有初中学校八、九年级学生中抽样调查。 二、问卷调查时间:20XX年12月20日——12月30日 三、问卷调查目的: 1、了解全县开展科学探究实验教学的状况。 2、通过对比非实验学校和实验学校的学生问卷,了解课题实施的效果。 3、根据学生的答卷,分析全县科学探究实验教学现状,为以后更好的开展 实验教学把握方向。 四、问卷调查方式: 由班主任简明向学生说明调查的目的和内容,后组织学

扭摆法测转动惯量研究性实验报告

吞吞吐吐吞吞吐吐吞 吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐吞吞吐吐[11-21 2011 研究性报告————扭摆法测转动惯量 第一作者:孟勤超 10031123 第二作者:郭瑾 10031126 第三作者:张金凯 10031108

目录

实验名称:扭摆法测转动惯量 摘要 转动惯量是刚体转动惯性大小的量度,是表征刚体特性的一个物理量。转动惯量的测量,一般都是使刚体以一定的形式运动。通过表征这种运动特征的物理量与转动惯量之间的关系,进行转换测量。本实验使物体作扭转摆动,由摆动周期及其它参数的测定算出物体的转动惯量。 一、实验目的 1.熟悉扭摆的构造、使用方法和转动惯量测量仪的使用; 2.利用扭摆法测量不同形状物体的转动惯量和扭摆弹簧的扭摆常数; 3.验证转动惯量的平行轴定理; 4.学会测量时间的累积放大法; 5.掌握不确定度的计算方法。 二、实验原理 1.基本原理 转动惯量的测量,基本实验方法是转换测量,使物体以一定的形式运动,通过表征这种运动特征的物理量与转动惯量的关系,进行转换测量。实验中采用扭摆法测量不同形状物体的转动惯量,就是使物体摆动,测量摆动周期,通过物体摆动周期T与转动惯量I的关系 来测量转动惯量。 2.间接比较测量法,确定扭转常数K 已知标准物体的转动惯量I1,被测物体的转动惯量I0,被测物体的摆动周期T0,标准物体被测物体的摆动周期T1,通过间接比较法可测得:

也可以确定出扭转常数K 定出仪器的扭转常数K,测出物体的摆动周期T,就可计算出转动惯量I。 3.验证平行轴定理 平行轴定理:若质量为m的物体(小金属滑块)绕通过质心轴的转动惯量为I0时,当转轴平行移动距离x时,则此物体的转动惯量变为。为了避免相对转轴出现非对 称情况,由于重力矩的作用使摆轴不垂直而增大测量误差。实验中采用两个金属滑块辅助金属杆的对称测量法,验证金属滑块的平行轴定理。这样,I0为两个金属滑块绕通过质心轴的转动惯量,m为两个金属滑块的质量,杆绕摆轴的转动惯量I杆,当转轴平行移动距离x时(实际上移动的是通过质心的轴),测得的转动惯量 I=I杆+I0+mx2 两个金属滑块的转动惯量 I x=I-I 杆=I0+mx2 4.光电转换测量周期 光电门和电脑计数器组成光电计时系统,测量摆动周期。光电门(光电传感器)由红外发射管和红外接受管构成,将光信号转换为脉冲电信号,送入电脑计数器测量周期(计数测量时间)。 三、实验仪器 扭摆、金属载物盘、塑料圆柱体、金属空心圆筒、实心塑料球、金属细长杆(两个滑块可在上面自由移动)、数字式计时器、电子天平。(由于待测物体的尺寸已经给出,故不需要游标卡尺、米尺等测量长度的工具)

北邮arduino实验报告

电子电路综合实验设计 实验名称: 基于 Arduino 的电压有效值测量电路设计与实现 学院: 班级: 学号: 姓名: 班内序号:

实验 基于Arduino 的电压有效值测量电路设计与实现 一. 摘要 Arduino是一个基于开放原始码的软硬件平台,可用来开发独立运作、并具互动性的电子产品,也可以开发与PC 相连的周边装置,同时能在运行时与PC 上的软件进行交互。为了测量正弦波电压有效值,首先我们设计了单电源供电的半波整流电路,并进行整流滤波输出,然后选择了通过Arduino设计了读取电压有效值的程序,并实现使用此最小系统来测量和显示电压有效值。在频率和直流电压幅度限定在小范围的情况下,最小系统的示数基本和毫伏表测量的值相同。根据交流电压有效值的定义,运用集成运放和设计的Arduino最小系统的结合,实现了运用少量元器件对交流电压有效值的测量。 关键字:半波整流整流滤波 Arduino最小系统读取电压有效值 二. 实验目的 1、熟悉Arduino 最小系统的构建和使用方法; 2、掌握峰值半波整流电路的工作原理; 3、根据技术指标通过分析计算确定电路形式和元器件参数; 4、画出电路原理图(元器件标准化,电路图规范化); 5、熟悉计算机仿真方法; 6、熟悉Arduino 系统编程方法。 三. 实验任务及设计要求 设计实现 Arduino 最小系统,并基于该系统实现对正弦波电压有效值的测量和显示。 1、基本要求 (1)实现Arduino 最小系统,并能下载完成Blink 测试程序,驱动Arduino 数字13 口LED 闪烁; (2)电源部分稳定输出5V 工作电压,用于系统供电; (3)设计峰值半波整流电路,技术指标要求如下:

北航物理研究性实验报告——示波器

北航物理研究性实验报告 专题:模拟示波器的使用及其应用 学号:10151192 班级:101517

姓名:王波 目录 目录 (2) 摘要 (3) 一.实验目的 (3) 二.实验原理 (3) 1.模拟示波器简介 (3) 2.示波器的应用 (6) 三.实验仪器 (6) 四.实验步骤 (7) 1.模拟示波器的使用 (7) 2.声速测量 (8) 五.数据记录与处理 (8) 六.讨论 (10)

摘要 示波器是一种用途十分广泛的电子测量仪器,它能直观、动态地显示电压信号随时间变化的波形,便于人们研究各种电现象的变化过程,并可直接测量信号的幅度、频率以及信号之间相位关系等各种参数。示波器是观察电路实验现象、分析实验中的问题、测量实验结果的重要仪器,也是调试、检验、修理和制作各种电子仪表、设备时不可或缺的工具。 一.实验目的 1.了解示波器的主要结构和波形显示及参数测量的基本原理,掌握 示波器、信号发生器的使用方法; 2.学习用示波器观察波形以及测量电压、周期和频率的方法; 3.学会用连续波方法测量空气速度,加深对共振、相位等概念的理 解; 4.用示波器研究电信号谐振频率、二极管的伏安特性曲线、同轴电 缆中电信号传播速度等测量方法。 二.实验原理

1.模拟示波器简介 模拟示波器是利用电子示波管的特性,将人眼无法直接观测的交变电信号转换成图像并显示在荧光屏上以便测量和分析的电子仪器。它主要由阴极射线示波管,扫描、触发系统,放大系统,电源系统四部分组成。 示波管结构图 (1)工作原理 模拟示波器的基本工作原理是:被测信号经Y轴衰减后送至Y1放大器,经延迟级后到Y2放大器,信号放大后加到示波管的Y轴偏转板上。 若Y轴所加信号为图所示的正弦信号,X输入开关S切换到“外”输入,且X轴没有输入信号,则光点在荧光屏竖直方向上按正弦规律上下运动,随着Y轴方向信号的提高,由于视觉暂留,在荧光屏上显示一条竖直扫描线。同理,如在X轴所加信号为锯齿波信号,且Y轴没有输入信号,则光点在荧光屏上显示一条水平直线。

北京邮电大学电路实验报告-(小彩灯)

北京邮电大学电路实验报告-(小彩灯)

电子电路综合实验报告课题名称:基于运算放大器的彩灯显示电路的设计与实现 姓名:班级:学号: 一、摘要: 运用运算放大器设计一个彩灯显示电路,通过迟滞电压比较器和反向积分器构成方波—三角波发生器,三角波送入比较器与一系列直流电平比较,比较器输出端会分别输出高电平和低电平,从而顺序点亮或熄灭接在比较器输出端的发光管。 关键字: 模拟电路,高低电平,运算放大器,振荡,比较 二、设计任务要求: 利用运算放大器LM324设计一个彩灯显示电路,让排成一排的5个红色发光二极管(R1~R5)重复地依次点亮再依次熄灭(全灭→R1→R1R2→R1R2R3→R1R2R3R4→R1R2R3R4R5→R1R2R3R4→R1R2R3→R1R2→R1→全灭),同时让排成一排的6个绿色发光二极管(G1~G6)单光

三角波振荡电路可以采用如图2-28所示电路,这是一种常见的由集成运算放大器构成的方波和三角波发生器电路,图2-28中运放A1接成迟滞电压比较器,A2接成反相输入式积分器,积分器的输入电压取自迟滞电压比较器的输出,迟滞电压比较器的输入信号来自积分器的输出。假设迟滞电压比较器输出U o1初始值为高电平,该高电平经过积分器在U o2端得到线性下降的输出信号,此线性下降的信号又反馈至迟滞电压比较器的输入端,当其下降至比较器的下门限电压U th-时,比较器的输出发生跳变,由高电平跳变为低电平,该低电平经过积分器在U o2端得到线性上升的输出信号,此线性上升的信号又反馈至迟

滞电压比较器的输入端,当其上升至比较器的上门限电压U th+时,比较器的输出发生跳变,由低电平跳变为高电平,此后,不断重复上述过程,从而在迟滞电压比较器的输出端U o1得到方波信号,在反向积分器的输出端U o2得到三角波信号。假设稳压管反向击穿时的稳定电压为U Z,正向导通电压为U D,由理论分析可知,该电路方波和三角波的输出幅度分别为: 式(5)中R P2为电位器R P动头2端对地电阻,R P1为电位器1端对地的电阻。 由上述各式可知,该电路输出方波的幅度由稳压管的稳压值和正向导通电压决定,三角波的输 出幅度决定于稳压管的稳压值和正向导通电压以及反馈比R1/R f,而振荡频率与稳压管的稳压值和正向导通电压无关,因此,通过调换具有不同稳压值和正向 导通电压的稳压管可以成比例地改变方波和三角波的幅度而不改变振荡频率。 电位器的滑动比R P2/R P1和积分器的积分时间常数R2C的改变只影响振荡频率而 不影响振荡幅度,而反馈比R1/R f的改变会使振荡频率和振荡幅度同时发生变化。因此,一般用改变积分时间常数的方法进行频段的转换,用调节电位器滑动头 的位置来进行频段内的频率调节。

北邮通信原理实验报告

北京邮电大学通信原理实验报告 学院:信息与通信工程学院班级: 姓名: 姓名:

实验一:双边带抑制载波调幅(DSB-SC AM ) 一、实验目的 1、了解DSB-SC AM 信号的产生以及相干解调的原理和实现方法。 2、了解DSB-SC AM 信号波形以及振幅频谱特点,并掌握其测量方法。 3、了解在发送DSB-SC AM 信号加导频分量的条件下,收端用锁相环提取载波的原理及其实现方法。 4、掌握锁相环的同步带和捕捉带的测量方法,掌握锁相环提取载波的调试方法。 二、实验原理 DSB 信号的时域表达式为 ()()cos DSB c s t m t t ω= 频域表达式为 1 ()[()()]2 DSB c c S M M ωωωωω=-++ 其波形和频谱如下图所示 DSB-SC AM 信号的产生及相干解调原理框图如下图所示

将均值为零的模拟基带信号m(t)与正弦载波c(t)相乘得到DSB—SC AM信号,其频谱不包含离散的载波分量。 DSB—SC AM信号的解调只能采用相干解调。为了能在接收端获取载波,一种方法是在发送端加导频,如上图所示。收端可用锁相环来提取导频信号作为恢复载波。此锁相环必须是窄带锁相,仅用来跟踪导频信号。 在锁相环锁定时,VCO输出信号sin2πf c t+φ与输入的导频信号cos2πf c t 的频率相同,但二者的相位差为φ+90°,其中很小。锁相环中乘法器的两个 输入信号分别为发来的信号s(t)(已调信号加导频)与锁相环中VCO的输出信号,二者相乘得到 A C m t cos2πf c t+A p cos2πf c t?sin2πf c t+φ =A c 2 m t sinφ+sin4πf c t+φ+ A p 2 sinφ+sin4πf c t+φ 在锁相环中的LPF带宽窄,能通过A p 2 sinφ分量,滤除m(t)的频率分量及四倍频载频分量,因为很小,所以约等于。LPF的输出以负反馈的方式控制VCO,使其保持在锁相状态。锁定后的VCO输出信号sin2πf c t+φ经90度移相后,以cos2πf c t+φ作为相干解调的恢复载波,它与输入的导频信号cos2πf c t 同频,几乎同相。 相干解调是将发来的信号s(t)与恢复载波相乘,再经过低通滤波后输出模拟基带信号 A C m t cos2πf c t+A p cos2πf c t?cos2πf c t+φ =A c 2 m t cosφ+cos4πf c t+φ+ A p 2 cosφ+cos4πf c t+φ 经过低通滤波可以滤除四倍载频分量,而A p 2 cosφ是直流分量,可以通过隔直

大学物理探究性实验报告汇总

椎体上滚 ●实验原理 在重力场中,物体在地球引力的作用下,总是以降低重心来趋于稳定。本实验中锥体与轨道的形状巧妙组合,给人以锥体自动由低处向高处滚动的错觉:V形导轨的低端处,两根导轨相距较小,停于此处的锥体重心最高,重力势能最大;V形导轨的高端处,两根导轨相距较大,停于此处的锥体重心最低,重力势能最小。因此,从导轨低端处释放锥体,锥体就会沿导轨从低端滚向高端,这其间锥体的重心逐渐降低,重力势能逐渐减小,被转化为了锥体滚动时的动能,体现了机械能守恒。 ●实验现象 将锥体置于导轨的高端,锥体并不下滚;反之,将锥体置于导轨的低端,松手后锥体会自动上滚,直至高端后停住。 ●小结或讨论 刚开始看到这个实验装置时,还真的以为椎体是在“上滚”,因为两个金属滑轨确是一边高一边低,而椎体也确实是从低的那一端滚上了高的那一端。可是当到侧面观察是,很快便发现了这个装置的奥秘所在:我们的眼睛被欺骗了!虽然椎体看上去是从低处滚向高处,可椎体的重心却是由高到低!与此类似的错觉很多,比如“怪坡”现象。世界上已经发现了多处“怪坡”,在这些“怪坡”上,汽车下坡时必须加大油门,而上坡时即使熄火也可到达坡顶;骑自行车下坡时要使劲蹬,而上坡时却要紧扣车闸;人在坡上走,也是上坡省力,下坡费劲。如果仔细研究会发现,所谓的“怪坡”并没有违反科学规律,“怪坡”与它路边倾斜的参照物——护栏、石柱巧妙结合,给人一种错觉,就好比“锥体上滚”一样的错觉。物理规律是不会欺骗我们的:在重力场中,物体的能量总是自然地趋向最低状态,物体总是以降低重心力求稳定的。这些现象告诉我们,我们不能仅仅凭现象凭肉眼的观察就断定一个事物,必须以科学的态度、科学的方法去探究现象背后的本质。

北邮-电子电路综合设计实验(函数信号发生器)报告

电子电路综合设计实验报告 实验1 函数信号发生器的设计与实现 姓名:------ 学号:---------- 班内序号:--

一. 实验名称: 函数信号发生器的设计与调试 二.实验摘要: 采用运放组成的积分电路产生方波-三角波,可得到比较理想的方波和三角波。根据所需振荡频率的高低和对方波前后沿陡度的要求以及对所需方波、三角波的幅度可以确定合适的运放以及稳压管的型号、所需电阻的大小和电容的值。三角波-正弦波的转换是利用差分放大器来完成的,选取合适的滑动变阻器来调节三角波的幅度以及电路的对称性。同时利用隔直电容、滤波电容来改善输出正弦波的波形。 关键词: 方波三角波正弦波频率可调 三、设计任务要求 1.基本要求: (1)输出频率能在1-10KHz范围内连续可调,无明显失真; (2)方波输出电压Uopp=12V,上升、下降沿小于10us,占空比可调范围30%-70%; (3)三角波Uopp=8V; (4)正弦波Uopp错误!未找到引用源。1V. (5)设计该电路的电源电路(不要求实际搭建) 2.提高要求: (1)正弦波、三角波和方波输出波形的峰峰值Uopp均可在1V-10V内连续可调。 (2)三种输出波形的输出端口的输出阻抗小于100Ω。 (3)三种波形从同一端口输出,并能够显示当前输出信号的种类、大小和频率 (4)用CPLD设计DDS信号源 (5)其他函数信号发生器的设计方案 四、设计思路以及总体结构框图 本课题中函数发生器结构组成如下所示:由比较器和积分器组成方波—三角波产生电

路,比较器输出的方波经积分器得到三角波,三角波到正弦波的变换电路主要由差分放大器来完成。差分放大器具有工作点稳定,输入阻抗高,抗干扰能力较强等优点。特别是作为直流放大器时,可以有效地抑制零点漂移,因此可将频率很低的三角波变换成正弦波。波形变换的原理是利用差分放大器传输特性曲线的非线性。 图4-1 函数信号发生器的总体框图 五.分块电路和总体电路的设计 (1)方波——三角波产生电路 图5-1 方波-三角波产生电路

北邮程序设计实验报告

程序设计实践 设 计 报 告 课题名称:邮件客户端学生姓名: 班级: 2 班内序号:16 学号: 2 日期:2014.6.4

1.课题概述 1.1课题目标和主要内容 本课题主要通过MFC的方式,利用SOCKET以及SMTP相关知识,来实现邮件(可携带附件)的定向发送,借此来复习和巩固C++编程的基本思想;学习SOCKET以及SMTP的相关知识,了解复杂网络应用程序的设计方法,并独立完成一个网络应用。 1.2系统的主要功能 1.邮件的发送(不携带附件) 2.邮件的发送(携带附件) 3.邮件接收 2. 系统设计 2.1 系统总体框架 程序的功能由MyEmailClientDlg.cpp,SMTP.cpp,MailMessage.cpp,Base64.cpp, MIMECode.cpp,MIMEContentAgent.cpp,MIMEMessage.cpp,AppOctetStream.cpp, MyEmailClient.cpp,StdAfx.cpp,TextPlain.cpp来实现。其中MIMECode.cpp, MIMEContentAgent.cpp,MIMEMessage.cpp, AppOctetStream.cpp, TextPlain.cpp来对MIME 协议进行封装,Base64.cpp来对Base64编码进行封装,SMTP.cpp是对SMTP协议进行封装,MailMessage.cpp是利用MIME协议对邮件内容的一个处理,最终通过MyEmailClientDlg.cpp 来实现邮件的发送的功能。 2.2 系统详细设计 [1] 模块划分图及描述 协议模块:包括网络应用程序中的各种协议,包括STMP协议,MIME协议等。 处理模块:主要实现对数据的进行编码以及解码。 实现模块:主要内容为邮件发送的具体步骤,相关按钮操作。 [2] 类关系图及描述 协议类:CSMTP, CTEXTPlai, CMIMECode,C MIMEContentAgent,C MIMEMessage, CAppOctetStream, CTextPlain.主要为协议中信息处理的中作用 编码类:Base64, MailMessage.主要为对邮件信息的处理

2016年北邮数电实验报告

数字电路与逻辑设计 实验报告 学院:电子工程学院 班级: 姓名: 学号: 班内序号:

目录 (一)实验名称及实验任务要求 (1) (二)模块端口说明及连接图 (2) 1.1实验三(3)模块端口说明 (2) 1.2实验三(3)连接图 (2) 2.1实验四模块端口说明 (2) 2.2实验四连接图 (2) (三)原理图或VHDL代码 (3) 1.实验一(2)原理图 (3) 2.实验三(3)VHDL代码 (4) 3.实验四VHDL代码 (7) (四)仿真波形 (10) 1.实验一(2)仿真波形 (10) 2.实验三(3)仿真波形 (11) 3.实验四仿真波形 (11) (五)仿真波形分析 (11) 1.实验一(2)仿真波形分析 (11) 2.实验三(3)仿真波形分析 (11) 3.实验四仿真波形分析 (11) (六)故障及问题分析 (12) (七)总结和结论 (13)

(一)实验名称及实验任务要求 实验一 名称:QuartusII原理图输入法设计与实现 实验任务要求:EDA基础实验1(1)、(2)、(3)必做,选做VHDL 实现加法器。 实验二 名称:用VHDL设计与实现组合逻辑电路 实验任务要求:四人表决器、8421码转格雷码、数码管译码器(下载测试)。 实验三 名称:用VHDL设计与实现时序逻辑电路 实验任务要求:分频器、8421十进制计数器、将分频器/8421十进制计数器/数码管译码器3个电路进行连接并下载。 实验四 名称:用VHDL设计与实现相关电路 实验任务要求:数码管动态扫描控制器、点阵扫描控制器。

(二)模块端口说明及连接图 1.1实验三(3)模块端口说明 cp:时钟信号输入; rst:8421十进制计数器异步置位; c[6...0]:七段二极管数码管显示; cat[7...0]:数码管显示。 1.2实验三(3)连接图 2.1实验四模块端口说明 cp:时钟信号输入; rst:8421计数器异步复位; lgt[6...0]:七段二极管数码管显示; cat[7...0]:数码管显示。 2.2实验四连接图

北邮网管实验二实验报告

信息与通信工程学院 网络管理 实验报告 专业 班级 姓名 学号

实验一SNMP MIB信息的访问 一、实验目的 本实验的主要目的是学习SNMP服务在主机上的启动与配置,以及用MIB浏览器访问SNMP MIB对象的值,并通过直观的MIB-2树图加深对MIB被管对象的了解。 二、实验内容 1、SNMP服务在主机上的启动和配置; 2、分析MIB-2树的结构; 3、通过get、getNext、set、trap几种操作访问MIB对象的值。 三、实验环境要求 1、硬件要求 CPU:主频233MHz以上处理器。 内存容量:64MB以上。 硬盘空间:50MB或更高。 2、软件要求: Microsoft Windows 95/98/NT/2000操作系统。 AdventNet SNMP Utilities 4版本或更高。 四、实验原理

1、SNMP服务 保护SNMP代理与SNMP管理站之间的通信的方法是给这些代理和管理站指定一个共享的共同体名称。当SNMP管理站向SNMP服务发送查询时,请求方的共同体名称就会与代理的共同体进行比较。若匹配,则表明SNMP管理站已通过身份验证;若不匹配,则表明SNMP 代理认为该请求是“失败访问”尝试,并且可能会发送一条SNMP陷阱消息。 2、SNMP安全控制 管理站和代理之间可以是一对多、多对一和多对多等不同关系。由于一个代理可以收到来自不同管理站的对被管对象的操作命令,因此,要进行被管对象访问控制,需要解决以下三个问题: (1) 认证服务:将对MIB的访问限定在授权的管理站的范围内。 (2) 访问策略:对不同的管理站给予不同的访问权限。 (3) 代管服务:在代管服务中实现托管站的认证服务和访问权限。 SNMP通过共同体的概念来解决上述问题。共同体是一个在代理中定义的本地的概念。代理为每组可选的认证、访问控制和代管特性建立一个共同体。一个代理可以与多个管理站建立多个共同体,同一个管理站可以出现在不同的共同体中。不同的代理也可能会定义相同的共同体名。管理站将共同体名与代理联系起来加以应用。 3、管理信息库(MIB) 网络的所有对象都存在一个叫MIB的数据结构中,在其中,每个

相关主题
文本预览
相关文档 最新文档