当前位置:文档之家› 689-船舶柴油机燃油粘度控制系统的仿真与在线粘度计(黏度-船用柴油机-燃油系统-PID控制)

689-船舶柴油机燃油粘度控制系统的仿真与在线粘度计(黏度-船用柴油机-燃油系统-PID控制)

689-船舶柴油机燃油粘度控制系统的仿真与在线粘度计(黏度-船用柴油机-燃油系统-PID控制)
689-船舶柴油机燃油粘度控制系统的仿真与在线粘度计(黏度-船用柴油机-燃油系统-PID控制)

船舶柴油机燃油粘度控制系统的仿真

作者:伍斯杰, 王永坚, 杨小明, 陈志明, WU Si-jie, WANG Yong-jian, YANG Xiao-ming, CHEN Zhi-ming

作者单位:伍斯杰,王永坚,WU Si-jie,WANG Yong-jian(集美大学轮机工程学院,福建厦门,361021), 杨小明,YANG Xiao-ming(福建省厦门轮船有限公司,福建厦门,361012), 陈志明,CHEN Zhi-ming(广东海洋大学工程学院

,广东湛江,524088)

刊名:

集美大学学报(自然科学版)

英文刊名:Journal of Jimei University(Natural Science)

年,卷(期):2013,18(5)

参考文献(7条)

1.王春芳;叶伟强轮机自动化 2011

2.杨世铭;陶文铨传热学 2006

3.李斌船舶柴油机 2008

4.ASTROM K J;HAGGLUND T PID controllers 1995

5.方泉根计算机仿真技术在21世纪航海教育中的发展与应用[期刊论文]-上海海运学院学报 2001(02)

6.肖玲娟主机燃油粘度的模糊控制设计[学位论文] 2004

7.潘瑞船舶柴油机燃油系统的建模与仿真研究[学位论文] 2008

引用本文格式:伍斯杰.王永坚.杨小明.陈志明.WU Si-jie.WANG Yong-jian.YANG Xiao-ming.CHEN Zhi-ming船舶柴油机燃油粘度控制系统的仿真[期刊论文]-集美大学学报(自然科学版) 2013(5)

船舶柴油机复习资料

1.柴油机特性曲线:用曲线形式表现的柴油机性能指标和工作参数随运转工况变化的规律。2.扫气过量空气系数:每一循环中通过扫气口的全部扫气量与进气状态下充满气缸工作容积的理论容气量之比 3.封缸运行:航行时船舶柴油机的一个或一个以上的气缸发生了一时无法排除的故障,所采取的停止有故障气缸运转的措施。 4.12小时功率:柴油机允许连续运行12小时的最大有效功率。 5.有效燃油消耗率:每一千瓦有效功率每小时所消耗的燃油数量。 6.示功图:是气缸内工质压力随气缸容积或曲轴转角变化的图形。 7.燃烧过量空气系数:对于1kg燃料,实际供给的空气量与理论空气需要量之比。 8.敲缸:柴油机在运行中产生有规律性的不正常异音或敲击声的现象。 9.1小时功率:柴油机允许连续运行1小时的最大有效功率。(是超负荷功率,为持续功率的110%。) 10.平均有效压力:柴油机单位气缸工作容积每循环所作的有效功。 11.热机:把热能转换成机械能的动力机械。 12.内燃机:两次能量转化(即第一次燃料的化学能转化成热能,第二次热能转化成机械能)过程在同一机械设备的内部完成的热机。 13.外燃机: 14.柴油机:以柴油或劣质燃料油为燃料,压缩发火的往复式内燃机。 15.上止点:活塞在气缸中运动的最上端位置,也是活塞离曲轴中心线最远的位置。下止点 16.行程:活塞从上止点移动到丅止点间的位移,等于曲轴曲柄半径R的两倍。 17.气缸工作容积:活塞在气缸中从上止点移动到丅止点时扫过的容积。 18.压缩比:气缸总容积与压缩室容积之比值,也称几何压缩比。 19.气阀定时:进排气阀在上.丅止点前启闭的时刻称为气阀定时,通常气阀定时用距相应止点的曲轴转角表示。 20.气阀重叠角:同一气缸在上止点前后进气阀与排气阀同时开启的曲轴转角。(进排气阀相通,依靠废气流动惯性,利用新鲜空气将燃烧室内废气扫出气缸) 21.扫气:二冲程柴油机进气和排气几乎重叠在丅止点前后120-150曲轴转角内同时进行,用新气驱赶废气的过程。 22.直流扫气:气流在缸内的流动方向是自下而上的直线运动。(空气从气缸下部扫气口,沿气缸中心线上行驱赶废气从气缸盖排气阀排出气缸) 23.弯流扫气:扫气空气由下而上,然后由上而下清扫废气。 24.横流扫气:进排气口位于气缸中心线两侧,空气从进气口一侧沿气缸中心线向上,然后再燃烧室部位回转到排气口的另一侧,再沿中心线向下,把废气从排气口清扫出气缸。 25.回流扫气:进排气口在气缸下部同一侧,排气口在进气口上方,进气流沿活塞顶面向对侧的缸壁流动并沿缸壁向上流动,到气缸盖转向下流动,把废气从排气口中清扫出气缸。 26.增压:提高气缸进气压力的方法,使进入气缸的空气密度增加,从而增加喷入气缸的燃油量,提高柴油机平均有效压力和功率。 27.指示指标:以气缸内工作循环示功图为基础确定的一些列指标。只考虑缸内燃烧不完全及传热等方面的热损失,不考虑各运动副件存在的摩擦损失,评定缸内工作循环的完善程度。 28.有效指标:以柴油机输出轴得到的有效功为基础,考虑热损失,也考虑机械损失,是评定柴油机工作性能的最终指标。 29.平均指示压力:一个工作循环中每单位气缸工作容积的指示功。 30.指示功率:柴油机气缸内的工质在单位时间所做的指示功。 31.有效功率:从柴油机曲轴飞轮端传出的功率。

船舶柴油机考试题2

2004 ——2005 学年第二学期考学生姓名班级学号 课程名称船舶柴油机(二)第 1 页共5页共76 题 题目 得分 阅卷人 总分 一.单项选择题(每小题1分, 共70分) 1.不同牌号的重油混舱时产生大量油泥沉淀物的原因是: A.燃油中不同烃的化学反应 B.燃油中添加剂的化学反应 C.燃油的不相容性 D.燃油中机械杂质凝聚产物 2.柴油机润滑系统中,滑油冷却器进出口温度差一般在: A. 8~10℃ B. 10~12℃ C. 10~15℃ D.10~20℃ 3.船用柴油机润滑系统中滑油泵的出口压力在数值上应保证: A. 各轴承连接续油 B. 抬起轴颈 C. 各轴承形成全油膜 D.保护轴颈表面 4.柴油机冷却系统的冷却水,合理的流动路线和调节方法应该是: A. 冷却水自下而上流动,调节进口阀开度大小控制温度 B.冷却水自下而上流动,调节出口阀开度大小控制温度 C.冷却水自上而下流动,调节出口阀开度大小控制温度 D. 冷却水自上而下流动,调节进口阀开度大小控制温度 5.分油机油水分界面向转轴侧移动时,会引起: A. 净化效果变差 B. 水中带油现象 C. 水封不易建立 D. 排渣口跑油 6.分油机停止分油工作后,应置于“空位“的目的是: A. 防止高置水箱的水流失 B. 放去管系中的残油 C. 防止净油倒流 D. A+B+C 7.自动排渣型分油机,其控制阀从停止工况至分油工况的操作顺序为:(1.补偿 2.密封 3.空位 4.开启) A. 3-4-1 B. 3-2-1 C. 2-1-3 D. 3-1-2 8.可能造成分油机跑油的原因是: A. 进油阀开得过猛 B. 油加热温度过高 C. 重力环口径过小 D. 油的粘度过低 9.分油机最佳分离量的确定,应根据____ 。 A. 分离温度 B. 含杂量 C. 分油机类型 D. A+C 10.下列关于冷却水系统管理中,哪一项说法是错误的? A. 淡水压力应高于海水压力 B.闭式淡水冷却系统中应设置膨胀水箱 C.进港用低位海水阀 D.定期清洗海底阀的海水滤器 11.船用大型低速柴油机的气缸注油器在结构原理上的特点一般为: A. 注油量可调,注油正时可调 B.注油量可调,注油正时不可调 C.注油量,注油正时均不可调 D.注油量可调,注油正时随机 12.自动排渣分油机控制阀在“密封“位置时: A. 工作水经外接管进入滑动阀下方 B.水封水经外接管进入活动底盘下方 C.工作水经内接管进入活动底盘下方 D.工作水经外接管进入活动底盘下方 13.为了保证柴油机经济而可靠地工作,其冷却水出口温度在数值上应:A. 接近允许下限值 B. 取允许限中值 C. 接近允许上限值 D. 按工况不同而异 14.现代大型船用柴油机采用的加压式燃油系统其主要目的是: A. 防止燃油汽化 B. 加速燃油循环 C. 冷却喷油泵柱塞偶件 D. 备用燃油系统 15.燃油系统中滤器堵塞的现象为: A.滤器前燃油压力急剧升高 B. 滤器前后燃油压力差增大 C. 滤器后燃油压力急剧升高 D. 滤器前后压力差变小 16.根据柴油机油品使用要求,燃油与滑油的粘温特性好表示: A.燃油粘度随温度变化大,滑油粘度随温度变化小 B.燃油粘度随温度变化大,滑油粘度随温度变化大 C.燃油粘度随温度变化小,滑油粘度随温度变化小 D.燃油粘度随温度变化小,滑油粘度随温度变化大 注:必须用电脑打印试卷题目,不准用手抄写。 试

船舶发动机冷却系统

第六章冷却系统 第一节冷却系统的功用、组成和布置 一、冷却系统的功用 柴油机工作时的燃气温度高达1800℃左右,使与燃气直接接触的气缸盖、气缸套、活塞、气阀、喷油器等部件严重受热。严重的受热会造成: ①材料的机械性能下降,产生较大的热应力与变形,导致上述部件产生疲劳裂纹或塑性变形; ②破坏运动部件之间的正常间隙,引起过度磨损,甚至发生相互咬死或损坏事故; ③燃烧室周围部件温度过高,使进气温度升高,密度降低,从而减少进气量;增压 后的空气温度也会升高,并影响进气量; ④润滑油的温度也逐渐升高,粘度下降,不利于摩擦表面油膜的形成,甚至失去润 滑作用。 综上所述,为了保证柴油机可靠工作必须对柴油机受热机件,滑油及增压后的空气等进行冷却。 然而从能量利用观点来看,柴油机的冷却是一种能量损失,过分冷却将导致燃油滞燃期延长,产生爆燃和燃烧不完全,增加加散热损失;机件内外温度差过大,以致热应力超过材料本身的强度而产生裂纹,润滑油粘度变大而增加摩擦功的消耗;在燃用含硫量较高的重油时,将产生低温腐蚀,使缸套严重腐蚀等。 因此,在管理中应既不使柴油机因缺乏冷却而导致机件过热,也不使柴油机因过分冷却而造成不良后果,应有所兼顾。冷却系统的主要任务应是保证柴油机在最适宜的温度状态下工作,达到既能避免零件的损坏和减小其磨损,又能充分发出它的有效功率。近代,从尽量减少冷却损失以充分利用燃烧能量出发,国内、外正在进行绝热发动机的研究,相应发展了一批耐高温的受热部件材料,如陶瓷材料等。 目前,柴油机的冷却方式分为强制液体冷却和风冷两种,绝大多数柴油机使用前者。 而液体冷却的介质通常有淡水、海水、滑油等三种。 淡水的水质稳定,传热效果好并可采用水处理解决其腐蚀和结垢的缺陷,因而它是目前使用最广泛的一种理想冷却介质; 海水的水源充裕但水质难以控制且其腐蚀和结垢问题比较突出,为减少腐蚀和结垢应限制海水的出口温度不应超过55℃; 滑油的比热小,传热效果较差,在高温状态易在冷却腔内产生结焦,但它不存在因漏泄而污染曲轴箱油的危险,因而适于作为活塞的冷却介质。 二、冷却系统的组成和布置 柴油机冷却系统一般是用海水强制冷却淡水和其它载热流体(如滑油、增压空气等)。在系统布置上,海水系统属开式循环,淡水及滑油等属于闭式循环,两者组成的冷却系统称“闭式冷却系统”。 (一)开式循环冷却系统

船舶柴油机

船舶柴油机 第一章 柴油机基本工作原理 第一节 柴油机概述 1.柴油机的优点: ①热效率最高可达到55% ②功率范围广,从0.6kw至47000kw ③机动性好,起动方便,加速性能好,便于使用和管理 2.柴油机的缺点: ①存在振动和噪音 ②工作环境恶劣,高温,高压 第二节 柴油机的基本结构和几何术语 一、柴油机的基本结构 1.固定部件 主要包括机座、机体、气缸盖、气缸套和主轴承等。 2.运动部件 主要包括活塞组件、连杆组件和曲轴飞轮组件等。 3.主要系统 主要有配气系统、燃油系统、冷却系统、润滑系统以及起动、换向和调速等系统。 二、常用几何术语 ⑴上止点:活塞在气缸中运动的最上端位置,即离曲轴中心线最远的位置。 ⑵下止点:活塞在气缸中运动的最下端位置,即离曲轴中心线最近的位置。 ⑶曲柄半径R:曲轴回转中心线到曲柄销中心线的距离。 ⑷冲程S:活塞在上、下止点之间移动的距离。冲程又称行程,它等于曲轴曲柄半径R的两倍,即S=2R。 ⑸缸径D:气缸套的内径。 ⑹压缩室容积:活塞位于上止点时,活塞顶与气缸盖底面之间的气缸容积,又称燃烧室容积。 ⑺气缸工作容积:活塞从上止点移动到下止点所扫过的气缸容积。 ⑻气缸总容积:活塞位于下止点时,活塞顶以上的全部气缸容积,是压缩室容积与气缸工作容积之和。 ⑼压缩比ε:气缸总容积与压缩室容积的比值亦称几何压缩比。 第三节 柴油机的工作原理 一、四冲程柴油机工作原理

⒈四冲程柴油机工作原理 第一冲程——进气冲程 这一冲程的任务是使气缸内充满新鲜空气。活塞由上止点下行,进气阀已打开,由于气缸容积不断增大,缸内压力下降,依靠气缸内外的气压差作用,新鲜空气通过进气阀被吸入气缸。由于受流阻等影响,在进气过程的大部分时间里,气缸内压力低于大气压力,到下止点时,缸内气压的为0.08~0.95Mpa,温度约为30~70℃。为了使柴油机作功更完善,必须在进气过程尽可能多吸入新鲜空气。进气阀开启始点至上上点的曲柄转角叫做进气提前角。下止点到进气阀关闭位置的曲柄转角叫做进气延迟角。 第二冲程——压缩冲程 这一冲程的任务是压缩第一冲程吸入的空气,提高空气的温度与压力,为柴油机燃烧及膨胀作功创造条件。活塞从下止点向上运动,自进气阀关闭开始压缩,一直到活塞到达上止点为止。活塞上行,气缸容积减少,缸内气体压力和温度随之升高,到达压缩终点时,压力增高到 3~6MPa,温度升至 600~700℃(柴油的自燃温度为270℃左右)。 第三冲程——燃烧和膨胀冲程 这一冲程的任务是完成两次能量转换。在活塞到达上止点前,燃油经喷油器以雾状喷入气缸的高温高压空气中,并与其混合,在上止点附近自燃,由于燃油强烈燃烧,使气缸内气体温度迅速上升到1400~1800℃或更高些,压力增加至5~8MPa,甚至15MPa以上。燃烧产生的最高压力称最高爆发压力,用p z表示,最高温度t z表示。高温高压燃气膨胀推动活塞下行作功。在上止点后的某一时刻燃烧基本结束,燃气继续膨胀,到排气阀下止点前开启时膨胀过程结束。 第四冲程——排气冲程 这一冲程的任务是将作功后的废气排出气缸外,为下一循环新鲜空气的进入提供条件。这一阶段,要求废气排得越干净越好,所以与进气阀启闭一样,排气阀也是提前开启,延迟关闭。排气阀开启时,活塞尚在下行,废气靠气缸内外压力差进行自由排气。从排气阀开启到下止点的曲柄转角叫做排气提前角。当活塞从下止点上行时,废气被活塞推出气缸,此时排气过程是在略高于大气压力(约1.05~1.1大气压),且在压力基本不变的情况下进行的。排气阀一直延迟到活塞到达上止点之后才关闭,这样可利用气流的惯性作用,继续排出一些废气。上止点到排气阀关闭位置的曲柄转角叫做排气延迟角。 总结:四冲程柴油机每完成一个工作循环,曲轴要转两转,每个

柴油机的燃油系统

柴油机的燃油系统 1.商用车发动机增压式共轨喷射系统及关键技术的研究 随着未来排放法规(美国2010年及欧6排放标准)在重型商用车柴油机上的实施,以共轨喷射系统替代目前尚在许多场合使用的单体泵或泵喷嘴系统的趋势将进一步加快,而废气再循环(EGR)在所有重要的燃烧过程中的应用推动了共轨喷射系统方案的实施。由此产生的发动机对部分负荷时最高喷油压力的需求只能由带蓄压器的喷射系统采用液力方式才能有效地实现。 Bosch公司的产品系列以共轨系统(CRS)的2种变型来支持高负荷运转工况的燃烧过程设计。CRSN3.3系统提供了可挑选的柔性多次喷射自由度,它可用于采用高增压压力和高EGR率的燃烧过程。目前,喷油压力为220~250 MPa的产品分级可满足匹配特殊发动机的需求。 CRSN4.2增压式共轨喷射系统能提供可选择喷油开始时喷油速率的柔性功能,故能降低对氮氧化物(NOx)敏感的特性曲线场范围内的NOx形成。在与传统共轨喷射系统相同的喷油压力下,增压式共轨喷射系统生成NOx较少有利于降低高负荷运转工况下的燃油耗。此外,还能减少发动机在进气增压和废气流冷却方面的费用。 在发动机采用增压式共轨喷射系统进行全面优化时,实际行驶循环的燃油耗最多能降低3.5%。预测表明,在4年使用期内,欧洲长途运输由此而削减的二氧化碳(CO2)排放高达200 t,并能节省10 000欧元的燃油成本。 (1)系统设计 增压式共轨系统的基本结构具有以下众所周知的共轨系统部件及功能:(1)高压泵供应燃油;(2)共轨储存压力,并将燃油分配到各个气缸;(3)喷油器喷射燃油。 与传统共轨系统的最大区别是系统中产生压力的功能被分成两级:高压泵作为产生压力的第1级,将燃油压缩到25~90 MPa范围;第2级由集成在喷油器中的增压装置,即1个阶梯型柱塞,将燃油增压到额定喷油压力210 MPa,而增压装置由其自身的电磁阀来控制。 这种带增压装置的系统配置对于开发先进的发动机方案具有以下优点:(1)柔性和高液力效率的喷油特性曲线可优化高负荷运转工况的燃油耗;(2)共轨压力≤90 MPa的预喷射和后喷射降低了油束的动量,减小了燃油对气缸工作表面的浸湿及对发动机机油的稀释;(3)将喷油器中少数几个零件上承受最高压力的份额降至最少程度,而高压泵、共轨和高压油管最多只需按90 MPa压力来设计。 避免发动机机油掺入燃油是尽可能延长排气后处理装置使用寿命的重要环节,因此,增压式共轨系统将通常商用车上采用发动机机油润滑的高压泵传动机构改成燃油润滑的传动机构。 共轨选用与重型柴油机一样长度的结构型式,与紧凑型结构相比,它具有许多优点:(1)高压油管的变型数目减少了30%;(2)高压油管结构紧凑;(3)减小了共轨 高压油管 喷油器中的压力波动;(4)因共轨和高压油管的连接刚度好,降低了振动加速度。 (2)增压式共轨系统中的喷油器 由于对其提出的任务和要求不同,商用车发动机用的第4代喷油器与老产品有所不同。这主要体现在功能及设计方面,故在形式上考虑采用增压式喷油器,并缩小了最初采用电执行器行使原来喷射及控制功能的喷油器(包括喷油器中的构件)尺寸,使其只占普通商用车发动机共轨系统喷油器的一小部分,为扩展功能范围提供了空间。

第一章_船舶动力装置系统_第一节_燃油系统

第一章船舶动力装置系统 现代船舶动力装置,按推进装置的形式,可分为5大类: (1)·柴油机推进动力装置;(2)·汽油机推进动力装置;(3)·燃气轮机推进动力装置;(4)·核动力推进动力装置;(5)·联合动力推进装置。 现代民用船舶中,所采用的动力装置系统绝大多数是柴油机动力装置,因此,本书主要介绍以柴油机为动力装置的船舶,图1-1为船舶柴油机动力装置系统燃油供应系统原理图。 图1-1 柴油机动力装置系统燃油供应系统原理图 柴油机燃油系统包括三大功能系统,分别是输送、日用和净化。 1)油输送系统 燃油输送系统是为了实现船上各燃油舱柜间驳运及注入排出而设计的,所以,系统应包括燃油舱柜、输送泵、通岸接头和相应的管子和阀件。通过管路的正确连接和阀件的正确设置,实现规格书所要求的注入、调拨和溢流等功能。 设计前,要认真阅读规格书和规范的有关章节,落实本系统所涉及的舱柜和设备所要求的输送功能。 设计时,应注意如下几个方面: a.规格书无特殊要求,注入管应直接注入至各储油舱,再通过输送泵送至各日用柜和沉淀柜,各种油类的注入总管应设有安全阀,泄油至溢流舱,泄油管配液流视察器; b.所有用泵注入的燃油舱柜都要有不小于注入管直径的溢流管,溢流至相应的溢流舱或储油舱,具体规定见各船级社规范,溢流管要配液流视察器; c.从日用柜至沉淀柜的溢流,在日用柜哪的管子上都要开透气孔以防止虹吸作用,两柜的连接管处要有液流视察器。 d.装在日用柜和沉淀壁上低于液面的阀,有的船级社规范对其材料有具体的规定,选阀时应予以注意。 e.一般情况下输送系统的介质,温度和压力都是较低的,所以系统的管材选用III级管即可。

柴油机燃油喷射系统的工作原理及故障诊断

柴油机燃油喷射系统的工作原理及故障诊断 一、柴油机的工作原理 柴油发动机是一种压燃式发动机,压燃式发动机吸入气缸的是纯净的空气,并被压缩到很高的温度,柴油经喷射装置以高压喷入气缸并与高温空气混合着火燃烧,对外作功,从而将化学能转变为机械能。柴油发动机的优点是:燃油消耗低,较低的有害废气排放。柴油发动机有四冲程也有二冲程的,汽车使用的柴油机多为四冲程。 柴油机工作循环(四冲程) 第一冲程活塞由上死点向下运动,将空气经打开的进气门吸入气缸,故而称之为进气冲程; 第二冲程活塞由下死点向上运动,进、排气门关闭,气缸内的空气以14:1—24:1的压缩比被压缩,空气升温至800℃,在压缩行程结束时,喷油器以接近1500巴的压力将柴油喷入气缸。该冲程称之为压缩冲程。 第三冲程在一定的发火延迟后,雾化的燃油与空气混合自行发火燃烧,气缸内空气压力迅速升高,推动活塞下行对外作功。该冲程称之为作功冲程。 第四冲程活塞向上运动,排气门打开,燃烧的废气被子排出气缸。该冲程称之为排气冲程。 二、发动机的构造 发动机由:机体、曲柄连杆机构、配气机构、供给系、冷却系、润滑系、起动系组成。 三、燃油喷射系的工作过程 1、功用:按照柴油机的工作顺利及负荷的新变化,将清洁的柴油定时、定量、定压 并以一定的空间状态雾化喷入燃烧室。 2、组成:由低压油路与高压油路两大部分组成。 低压油路:由燃油箱、滤清器、输油泵、低压油管等组成; 高压油路:由喷油泵、高压油管、喷油器等组成。 3、燃油供给路线:柴油从燃油箱内被吸出,经油管进入输油泵,输油泵以一定的压 力将柴油压送到柴油滤清器,经滤清器过滤后的清洁柴油输入到喷油泵,再经喷

船用柴油机

上海国际海事信息与文献网发布时间:2007-03-20 浏览:3123 【摘要】从船用柴油机的市场、产品、技术等方面介绍了柴油机的现状及发展动向。论述当前国外气缸直径160 mm以上,单机功率大于1000 kW的大功率低速、中速、高速柴油机的总体技术水平、技术发展概况,特别是在提高可靠性、改善其低工况特性、降低其排放和智能柴油机等方面进行阐述,并预测今后的发展趋势。 0 引言 柴油机因其功率范围大、效率高、能耗低、使用维修方便而优于蒸汽机、燃气轮机等,在民用船舶和中小型舰艇推进装置中确立了主导地位。船用柴油机的整体结构及其零部件结构不断改进,特别是电子技术、自动控制技术在柴油机上的应用,使其各项技术指标不断创新,市场上已有一批性能好、油耗低、功率范围大、废气排放符合法定标准、可靠性高的产品。 柴油机相对汽油机的最大优点在于高压缩比。这使最大功率、热效率提高,油耗降低;发动机坚固、耐用,寿命变长。但柴油机缺点在于比功率低于汽油机,对空气利用率低,摩擦损失大。 1 低速柴油机 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。 MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子计算机完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。 通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正

船用柴油机主要系统介绍-燃油-滑油-冷却

第五章柴油机系统 第一节燃油系统 一、作用和组成 燃油系统是柴油机重要的动力系统之一,其作用是把符合使用要求的燃油畅通无阻地输送到喷油泵入口端。该系统通常由五个基本环节组成:加装和测量、贮存、驳运、净化处理、供给。 燃油的加装是通过船上甲板两舷装设的燃油注入法兰接头进行的。这样,从两舷均可将轻、重燃油直接注入油舱。注入管应有防止超压设施。如安全阀作为防止超压设备,则该阀的溢油应排至溢油舱或其他安全处所。注入接头必须高出甲板平面,并加盖板密封,以防风浪天甲板上浪时海水灌入油舱。燃油的测量可以通过各燃油舱柜的测量孔进行,若燃油舱柜装有测深仪表的话,也可以通过测深仪表,然后对照舱容表进行。 加装的燃油贮存在燃油舱柜中。对于重油舱,一般还装设加热盘管,以加热重油,保持其流动性,便于驳油。 燃油系统中还装设有调驳阀箱和驳运泵,用于各油舱柜间驳油。 从油舱柜中驳出的燃油在进机使用前必须经过净化系统净化。燃油净化系统包括燃油的加热、沉淀、过滤和离心分离。图5-1示出了目前大多数船舶使用的重质燃油净化系统。 图5-1 重质燃油净化系统 1-调驳阀箱;2-沉淀油柜燃油进口;3-高位报警;3-低位报警;4-温度传感器;5-沉淀油柜;6、16-水位传感器;7-供油泵; 8-滤器;9-气动恒压阀;9’-流量调节器;10-温度控制器;11、12-分油机;13-连接管;14-日用柜溢油管;15-日用油柜从图可以看出,通过调驳阀箱1,燃油被驳运泵从油舱送入沉淀油柜5,每次补油量限制在液位传感器3与3之间,自动调节蒸汽流量的加温系统加速油的沉淀分离并且可使沉淀油柜

提供给供油泵7的油温变化幅度很小。供油泵后设气动恒压阀9和流量控制阀9’,以确保平稳地向分油机输送燃油,有利于提高净化质量。燃油进入分油机前,通过分油机加热器加温,加热温度由温度控制器10控制,使进入分油机的燃油温度几乎保持恒定。系统设有既能与主分油机串联也能并联的备用分油机,还设有备用供油泵,提高了系统的可靠性。分油机所分的净油进入日用油柜15,日用油柜设溢流管。在船舶正常航行的情况下,分油机的分油量将比柴油机的消耗量大一些,故在吸入口接近日用油柜低部设有溢流管,可使日用油柜低部温度较低、杂质和水含量较多的燃油引回沉淀柜,既实现循环分离提高分离效果,又使分油机起停次数减少,延长分油机使用寿命。沉淀柜和日用柜都设有水位传感器6、16,以提醒及时放残。 燃油经净化后,便可通过燃油供给系统送给船舶柴油机。近年来由于高粘度劣质燃油的使用,其预热温度大大提高。为避免在使用高(700mm2/s)重油时因预热温度过高而汽化,出现了一种加压式燃油系统。如图5-2所示,在日用燃油柜与燃油循环油路之间增设一台输送泵,保证柴油机喷油泵进口处的燃油压力为800kPa(循环泵出口压力为1Mpa),循环油路(回路)中压力为400kPa,防止燃油系统在高预热温度(如150℃)时发生汽化和空泡现象。 图5-2 加压式燃油供给系统 二、主要设备与作用 1.重油驳运泵 重油驳运泵的作用是将任一重油舱中的重油驳至重油沉淀柜中进行沉淀澄清处理;在各

柴油机燃油系统的技术路线

柴油机燃油系统的技术路线 国Ⅳ排放,国内主流厂家比较认可SCR技术路线。预计国Ⅳ时代,高速物流用牵引车会采用SCR技术路线,而对于中短途载货车及自卸车将会采用EGR+DPF技术路线。 汽车排放是指从废气中排出的CO、HC+NOx、PM等有害气体。为了抑制这些有害气体的产生,促使汽车生产厂家改进产品以降低这些有害气体的产生源头。目前世界上排放法规主要有三个体系,即欧洲、美国和日本的排放法规体系,其中欧洲标准是我国借鉴的汽车排放标准,所以下面重点介绍欧洲排放法规的要求。 A、欧洲排放标准

欧洲标准是由欧洲经济委员会(ECE)的排放法规和欧共体(EEC,即现在的欧盟EU)的排放指令共同加以实现的。排放法规由ECE 参与国自愿认可,排放指令是EEC或EU参与国强制实施的。汽车排放的欧洲法规(指令)标准1992年前已实施若干阶段,1992年之前为欧0阶段,具体实施时间及排放标准见表1。 欧0阶段:采用纯机械式的供油系统(燃油泵或柴油泵)和自然吸气技术。 欧Ⅰ阶段:在欧0发动机的机械供油系统(燃油泵)基础上,主要辅以废气涡轮增压技术。 欧Ⅱ阶段:在欧Ⅰ发动机平台上适当改进,主要辅以废气涡轮增压(水空)中冷技术或废气涡轮增压(空空)中冷技术,供油系统没有本质变化。 欧Ⅲ阶段:对欧II发动机平台进行重大升级,主要是供油系统发生了本质变化,实现了供油系统由机械式控制向电子控制的转化,主要技术路线包括电控泵喷嘴、电控高压共轨、电控单体泵和电控H泵+EGR。EGR(废气再循环)技术主要是针对有害气体(NOx)设置的排气净化装置,它将一部分排气循入进气管与新鲜空气混合后进入气缸燃烧,以增加混合气的热容量,降低燃烧时的最高温度,抑制NOx的生成。 欧Ⅳ阶段:在该阶段,PM与NOx的排放都做了进一步限制,其技术路线是在欧Ⅲ发动机基础上,供油系统没有本质变化,主要是采取一系列机内净化技术如提高供油系统的控制灵敏性和压力,燃烧室和进气等进一步优化,并综合使用机外净化(后处理)技术。机外净化(后处理)技术目前主要有两条技术路线:一种是SCR(选择性催化还原)技术,通过机内净化PM,机外催化还原;另一种是EGR (废气再循环)+DPF(微粒捕集器)+DOC(氧化催化转换器)技术,通过机内净化降低NOx,机外通过微粒捕捉器过滤PM。 欧Ⅴ阶段:在该阶段,对PM的要求与欧Ⅳ相同,仅对NOx的排放做了进一步限制。其技术路线在欧Ⅳ发动机基础上,根据欧Ⅳ阶段采取的技术路线的不同,进行相应的调整。采用SCR技术的发动机相对容易,只需要进行部分配件和电控参数上的局部调整,而采用EGR 技术的发动机则需要在管路上进行重新设计,改动较大。总之,在每一级的排放技术提升中,整个发动机都需要对进气系统、供油系统和排气后处理系统进行改进和优化。 国内排放实施时间 为了早日与世界接轨,我国正积极地实施更为严格的排放法规,特别是制定了中重型柴油车的排放标准,其实施步骤是: 2007年初引进欧Ⅲ标准,2010年引进欧Ⅳ标准 B、中国国Ⅲ排放技术之争 1. 国Ⅲ排放实施路线 从欧洲的发展看,欧Ⅱ到欧Ⅲ和欧Ⅲ到欧Ⅳ,不是一个量的进步方式,而是质的飞跃。发动机内从机械式喷油变为更加经济和高效率的电子喷油。在尾气处理上增加一些微粒捕集器、催化剂之类,进一步提高排放和燃烧效率。 目前,国内车用柴油机针对国Ⅲ排放标准实施的燃油系统技术路线主要有四种:电控泵喷嘴(EUI)、高压共轨(Common Rail)、电控单体泵(EUP)和电控直列泵(EIL)+EGR。在这四种技术路线中,德尔福在中国市场针对中轻型车推广共轨技术,针对重型车提供泵喷嘴和单体泵技术;博世在中国市场主推高压共轨系统;电装目前正在研发第3代、第4代共轨系统和为中国市场的共轨系统作适应性二次开发;而中国重汽则推出电控直列泵(EIL)+EGR,由于价格便宜(比共轨便宜1.5万元左右),一经推出就受到市场的追捧。但刚开始实行国Ⅲ的时候,市场上几乎一边倒都主推共轨技术,而重汽的电控直列泵(EIL)+EGR则被竞争对手戏称为“假国Ⅲ”。国内外柴油机燃油系统的技术路线之争都已经到了白日化阶段,现对各种路线做一个剖析。 (1)电控泵喷嘴技术(EUI) 在泵喷嘴系统中,电控油泵和喷油嘴之间没有管路连接,做成一体直接安装在气缸盖上,这样不占用更多的空间。每一个油泵都由顶置凸轮轴同时驱动气门和泵喷嘴,顶置凸轮轴必须具有极高的硬度和刚度以承受喷油器产生的高压。同时,凸轮轴的驱动系统也需要专门设计。电控泵喷嘴系统的优势在于系统结构紧凑,喷油嘴孔径非常小,所以燃油喷射压力非常高,形成优良的混合气,确保燃油雾化良好,燃烧效率很高,同时还可以精确控制喷油始点和喷油量,从而提高柴油机的动力性、燃油经济性,降低排放和改善NVH特性。目前,采用该项技术的车用柴油机可满足欧Ⅳ排放标准,峰值压力可达到2000bar。 该技术被沃尔沃、曼、依维柯、东风、陕汽等企业采用,另外,美国康明斯的全电控发动机应用的也是电控泵喷嘴技术,目前采用该技术的发动机全球保有量已经超过40万台,行驶里程达3000亿km,是久经考验的成熟产品。 (2)高压共轨技术(Common Rail) “CRDI”是英文Common Rail Direct Injection的缩写,意为高压共轨柴油直喷系统。该系统主要由高压油泵、喷油管、高压蓄压器(共轨)、喷油器、电控单元、传感器及执行器组成。在高压油泵、压力传感器和ECU组成的闭环系统中,喷射压力的产生和喷射过程彼此完全分开,由高压油泵把高压燃油输送到公共供油管,通过控制高压油泵电磁阀开启持续时间从而对公共供油管内的燃油压力实

船舶柴油机的基本知识讲解

课题一船舶柴油机的基本知识 目的要求: 1.了解船舶柴油机的基本概念及优缺点。 2.掌握柴油机基本结构和主要系统。 3.掌握柴油机主要结构参数。 4.掌握四、二冲程柴油机的工作原理。 5.比较四、二冲程柴油机工作原理与结构上的差别。 6.了解船舶柴油机的基本分类和型号。 重点难点: 1.柴油机与汽油机的区别。 2.进排气重叠角、定时图。 教学时数:4学时 教学方法:多媒体讲授 课外思考题: 1.柴油机与汽油机有哪些区别? 2.柴油机主要结构组成和作用。 3.压缩比ε意义及对柴油机工作性能有什么影响? 4.四冲程柴油机各工作过程特征及特点。 5.二、四冲程换气在工作上原理及结构上有什么差别? 6.四冲程柴油机进、排气为什么都要提前和滞后?气阀重叠角有何作用?

课题一船舶柴油机的基本知识 第一节柴油机的概述及发展趋势 一、柴油机的概述 1.热机 热机是指把热能转换成机械能的动力机械。蒸汽机、蒸汽轮机以及柴油机、汽油机等是热机中较典型的机型。 蒸汽机与蒸汽轮机同属外燃机。在该类机械中,燃烧(燃料的化学能转变成热能)发生在汽缸外部(锅炉),热能转变成机械能发生在汽缸内部。此种机械由于热能需经某中间工质(水蒸气)传递,必然存在热损失,所以它的热效率不高,况且整个动力装置十分笨重。在能源问题十分突出的当前,它无法与内燃机竞争,因而已经在船舶动力装置中消失。 2.内燃机 汽油机、柴油机以及燃气轮机同属内燃机。虽然它们的机械运动形式(往复、回转)不同,但具有相同的工作特点──都是燃料在发动机的气缸内燃烧并直接利用燃料燃烧产生的高温高压燃气在气缸中膨胀作功。从能量转换观点,此类机械能量损失小,具有较高的热效率。另外,在尺寸和重量等方面也具有明显优势,因而在与外燃机竞争中已经取得明显的领先地位。 在内燃机中根据所用燃料不同,可大致分为汽油机、煤气机、柴油机和燃气轮机。它们都具有内燃机的共同特点,但又都具有各自的工作特点。由于这些各自不同的特点使它们在工作原理、工作经济性以及使用范围上均存在一定差异。如汽油机使用挥发性好的汽油做燃料,采用外部混合法(汽油与空气在气缸外部进气管中的汽化器进行混合)形成可燃混合气。缸内燃烧为电点火式(电火花塞点火)。这种工作特点使汽油机不能采用高压缩比,因而限制了汽油机的经济性不能大幅度提高,而且也不允许作为船用发动机使用(汽油的火灾危险性大)。但它广泛应用于运输车辆。 3.柴油机 柴油机是一种压缩发火的往复式内燃机。它使用挥发性较差的柴油或劣质燃料油做燃料。采用内部混合法(燃油与空气的混合发生在气缸内部)形成可燃混合气;缸内燃烧采用压缩式(靠缸内空气压缩形成的高温自行发火)。这种工作特点使柴油机在热机领域内具有最高的热效率(已达到55%左右),而且允许作为船用发动机使用。因而,柴油机在工程界应用十分广泛。尤其在船用发动机中,柴油机已经取得了绝对领先地位。 根据英国劳氏船级社统计,1985年全世界制造的船舶中(2000t以上)以柴油机作为推进装置者占99.89%,而到1987年100%为柴油机船。船用主机经济性、可靠性、寿命是第一位,尺寸、重量是第二位,低速机适用作船用主机,大功率四冲程中速机适用作滚装船和集装箱船,中、高速机适用作发电机组。柴油机通常具有以下突出优点: (1)经济性好。有效热效率可达50%以上,可使用廉价的重油,燃油费用低。 (2)功率范围宽广,单机功率从0.6kW~45600kW,适用的领域广。

船舶柴油机发展趋势

【摘要】从船用柴油机的市场、产品、技术等方面介绍了柴油机的现状及发展动向。论述当前国外气缸直径160 mm以上,单机功率大于1000 kW的大功率低速、中速、高速柴油机的总体技术水平、技术发展概况,特别是在提高、改善其低工况特性、降低其排放和智能柴油机等方面进行阐述,并预测今后的发展趋势。 0 引言 柴油机因其功率范围大、效率高、能耗低、使用维修方便而优于蒸汽机、燃气轮机等,在民用和中小型舰艇推进装置中确立了主导地位。船用柴油机的整体结构及其零部件结构不断改进,特别是电子技术、自动控制技术在柴油机上的应用,使其各项技术指标不断创新,市场上已有一批性能好、油耗低、功率范围大、废气排放符合法定标准、高的产品。 柴油机相对汽油机的最大优点在于高压缩比。这使最大功率、热效率提高,油耗降低;发动机坚固、耐用,寿命变长。但柴油机缺点在于比功率低于汽油机,对空气利用率低,摩擦损失大。 1 低速柴油机 低速柴油机由于性能优良、可靠性好、使用维护方便、能燃用劣质燃油等优点,已成为大型油船、大型干散货船、大型集装箱船的主要动力。最新型低速柴油机在许多方面趋于一致。即结构方面,采用非冷却式喷油器、可变喷油定时油泵、长尺寸连杆、液压驱动式排气门、单气门直流扫气、定压增压、高效涡轮增压器;性能方面,平均有效压力不断提高,增加活塞平均速度,改进零部件结构,增加强度,保持原有的低燃油消耗水平,使单缸功率不断增大,使用寿命延长。电子液压控制系统取代传统的机械式的凸轮驱动机构,简化柴油机设

计,降低成本,优化运行控制。近年来,其爆发压力从8 MPa上升到16 MPa,燃油消耗率从208g/(kw·h)降至155g/(kw·h)左右。 目前世界船用低速柴油机市场仍被MAN B&W、Wartsila-New Sulzer和日本三菱重工三大公司垄断,以生产总功率来说,分别约占57%、33%和10%。MAN B&W公司通过提高气缸平均有效压力和活塞平均速度来提高单缸功率。为使MC系列柴油机的NOx排放量降低,采用提高压缩比和可导致平稳燃烧的喷射系统等措施。 为了在减少NOx排放时不影响燃油消耗率,在设计时应考虑采用增加喷射压力、压缩比、燃烧压力、增压器效率等措施。MAN B&W 6L60MC型柴油机是世界上第一台正式投入使用的“智能化”主机,其燃油喷射和排气阀控制均通过电子完成,达到了低油耗、NOx低排放的目标。 Wartsila-New Sulzer公司通过重组后,在开发、设计和制造能力方面骤然大增。RTA系列低速柴油机为该公司20世纪80年代开发,至今近20年来该公司通过提高平均有效压力、增加活塞平均速度,探索达到更大功率的可能性。通过增大行程/缸径比,探索提高推进效率的方法;通过提高最大燃烧压力和可变燃油正时、排气正时,挖掘柴油机热效率潜力;采用新,改进零部件的设计,随负荷控制气缸冷却水和气缸润滑油,以求提高零部件的工作可靠性,增加柴油机的使用寿命;通过电子控制技术,达到柴油机运行的智能化。该公司研制的12RTA96C柴油机是目前世界上实际输出功率最大的柴油机。 随着世界重心转向日本和韩国,近年来日、韩两国的低速柴油机产量已超过世界产量的2/3,其中韩国低速柴油机年产量为735万kW,并呈进一步上升的趋势。从产品市场占有率来看,在以低速柴油机为推进动力的2000 t以上的上,MAN B&W公司和Wartsila-New Sulzer公司的低速柴油机产品占世界份额

柴油机高压共轨电控喷射系统介绍

柴油机高压共轨电控喷射系统介绍 一、共轨技术 在汽车柴油机中,高速运转使柴油喷射过程的时间只有千分之几秒,实验证明,在喷射过程中高压油管各处的压力是随时间和位置的不同而变化的。由于柴油的可压缩性和高压油管中柴油的压力波动,使实际的喷油状态与喷油泵所规定的柱塞供油规律有较大的差异。油管内的压力波动有时还会在主喷射之后,使高压油管内的压力再次上升,达到令喷油器的针阀开启的压力,将已经关闭的针阀又重新打开产生二次喷油现象,由于二次喷油不可能完全燃烧,于是增加了烟度和碳氢化合物(HC)的排放量,油耗增加。此外,每次喷射循环后高压油管内的残压都会发生变化,随之引起不稳定的喷射,尤其在低转速区域容易产生上述现象,严重时不仅喷油不均匀,而且会发生间歇性不喷射现象。为了解决柴油机这个燃油压力变化的缺陷,现代柴油机采用了一种称"共轨"的技术。 共轨技术是指高压油泵、压力传感器和ECU组成的闭环系统中,将喷射压力的产生和喷射过程彼此完全分开的一种供油方式,由高压油泵把高压燃油输送到公共供油管,通过对公共供油管内的油压实现精确控制,使高压油管压力大小与发动机的转速无关,可以大幅度减小柴油机供油压力随发动机转速的变化,因此也就减少了传统柴油机的缺陷。ECU控制喷油器的喷油量,喷油量大小取决于燃油轨(公共供油管)压力和电磁阀开启时间的长短。共轨式喷油系统于二十世纪90 年代中后期才正式进入实用化阶段。高压共轨系统可实现在传统喷油系统中无法实现的功能,其优点有: a、共轨系统中的喷油压力柔性可调,对不同工况可确定所需的最佳喷射压力,从而优化柴油机综合性能。 b、可独立地柔性控制喷油正时,配合高的喷射压力(120Mpa~200MPa),可同时控制NOx和微粒(PM)在较小的数值内,以满足排放要求。 c、柔性控制喷油速率变化,实现理想喷油规律,容易实现预喷射和多次喷射,既可降低柴油机NO x,又能保证优良的动力性和经济性。 d、由电磁阀控制喷油,其控制精度较高,高压油路中不会出现气泡和残压为零的现象,因此在柴油机运转范围内,循环喷油量变动小,各缸供油不均匀可得到改善,从而减轻柴油机的振动和降低排放。 由于高压共轨系统具有以上的优点,现在国内外柴油机的研究机构均投入了很大的精力对其进行研究。比较成熟的系统有:德国BOSCH公司的CR系统、日本电装公司的ECD-U2系统、意大利的FIAT集团的unijet系统、英国的DELPHI DIESEL SYSTEMS公司的LDCR 系统等。 二、高压共轨电控燃油喷射系统及基本单元 高压共轨电控燃油喷射系统主要由电控单元、高压油泵、蓄压器(共轨管)、电控喷油器以及各种传感器等组成。低压燃油泵将燃油输入高压油泵,高压油泵将燃油加压送入高压油轨(蓄压器),高压油轨中的压力由电控单元根据油轨压力传感器测量的油轨压力以及需要进行调节,高压油轨内的燃油经过高压油管,根据机器的运行状态,由电控单元从预设的map图中确定合适的喷油定时、喷油持续期由电液控制的电子喷油器将燃油喷入气缸。 1、高压油泵 高压油泵的供油量的设计准则是必须保证在任何情况下的柴油机的喷油量与控制油量之和的需求以及起动和加速时的油量变化的需求。由于共轨系统中喷油压力的产生于燃油喷射过程无关,且喷油正时也不由高压油泵的凸轮来保证,因此高压油泵的压油凸轮可以按照峰值扭矩最低、接触应力最小和最耐磨的设计原则来设计凸轮。

论柴油机电控燃油喷射系统

论柴油机电控燃油喷射系统 摘要:(……自己写……..) 关键词:柴油机;工作原理;优缺点;类型;特征;控制策略;故障诊断 一.什么是柴油机电控燃油喷射系统 柴油机电控燃油喷射系统由传感器、ECU(计算机)和执行机构三部分组成。 其任务是对喷油系统进行电子控制, 实现对喷油量以及喷油定时随运行工况的实时控制。 采用转速、油门踏板位置、喷油时刻、进气温度、进气压力、 燃油温度、冷却水温度等传感器, 将实时检测的参数同时输入计算机(ECU), 与已储存的设定参数值或参数图谱(MAP图)进行比较, 经过处理计算按照最佳值或计算后的目标值把指令送到执行器。 执行器根据ECU指令控制喷油量(供油齿条位置或电磁阀关闭持续时间) 和喷油正时(正时控制阀开闭或电磁阀关闭始点), 同时对废气再循环阀、 预热塞等执行机构进行控制,使柴油机运行状态达到最佳。 二.柴油机电控系统工作原理 以柴油机转速和负荷作为反映柴油机实际工况的基本信号, 参照由试验得出的柴油机各工况相对应的喷油量和喷油定时MAP来确定基本的喷油量和喷油定时, 然后根据各种因素(如水温、油温、、大气压力等)对其进行各种补偿,从而得到最佳的喷油量 和喷油正时,然后通过执行器进行控制输出。 三.柴油机电控燃油喷射系统的优点和难点 优点 1高的喷射压力

为满足排放法规的要求,柴油喷射压力从10MPa提高到200MPa。 如此高的喷射压力可明显改善柴油和空气的混合质量,缩短着 火延迟期,使燃烧更迅速、更彻底,并且控制燃烧温度,从而降低废气排放。 2独立的喷射压力控制 传统柴油机的供油系统的喷射压力与柴油机的转速负荷有关。 这种特性对于低转速、部分负荷条件下的燃油经济性和排放不利。 若供油系统具有不依赖转速和负荷的喷射压力控制能力,就可选择最合适的 喷射压力使喷射持续期、着火延迟期最佳,使柴油机在各种工况下的废气排 放最低而经济性最优。 3改善柴油机燃油经济性 用户对柴油机的燃油消耗率非常关注。高喷射压力、独立的喷射压力控制、 小喷孔、高平均喷油压力等措施都能降低燃油消耗率,从而提高了柴油机 的燃油使用经济性。 4独立的燃油喷射正时控制 喷射正时直接影响到柴油机活塞上止点前喷入汽缸的油量,决定着汽缸的 峰值爆发压力和最高温度。高的汽缸压力和温度可以改善燃油使用经济性, 但导致NOX增加。而不依赖于转速和负荷的喷射正时控制能力,是在燃油消 耗率和排放之间实现最佳平衡的关键措施。 5可变的预喷射控制能力 预喷射可以降低颗粒排放,又不增加NOX排放,还可改善柴油机冷启动性能、 降低冷态工况下白烟的排放,降低噪声,改善低速扭矩。但是预喷射量、 预喷射与主喷射之间的时间间隔在不同工况下的要求是不一样的。因此具有 可变的预喷射控制能力对柴油机的性能和排放十分有利。 6最小油量的控制能力 供油系统具有高喷射压力的能力与柴油机怠速所需要的小油量控制能力发生矛盾。 当供油系统具有预喷射能力后将会使控制小油量的能力进一步降低。由于工程机械 用柴油机的工况很复杂,怠速工况经常出现,而电喷柴油机容易实现最小油量控制。 7快速断油能力 喷射结束时必须快速断油,如果不能快速断油,在低压力下喷射的柴油就会因燃烧 不充分而冒黑烟,增加HC排放。电喷柴油机喷油器上采用的高速电磁开关阀很容易实现快速断油。

相关主题
文本预览
相关文档 最新文档