当前位置:文档之家› 线性电阻电路分析

线性电阻电路分析

线性电阻电路分析
线性电阻电路分析

第二章线性电阻电路分析

电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。

上一章介绍的2b法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。

1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。

2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。

§2-l 电阻单口网络

单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络部的情况时,称二端网络为单口网络,简称为单口(One-port)。

电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是

u-i平面上的一条曲线)。等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。

单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口部的结构和参数并不相同,谈不上什么等效问题。

利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。

一、线性电阻的串联和并联

1.线性电阻的串联

N1N2

VCR相同

等效

两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n个线性电阻串联形成的单口网络。

用2b方程求得端口的VCR方程为

其中

上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。

2.线性电阻的并联两个二端电阻首尾分别相联,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n个线性电阻的并联。

求得端口的VCR方程为

上式表明n个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算

Ri

i

R

R

R

R

i

R

i

R

i

R

i R

u

u

u

u

u

n

n

n

n

=

+???+

+

+

=

+???+

+

+

=

+???+

+

+

=

)

(

3

2

1

3

3

2

2

1

1

3

2

1

=

=

=

n

k

k

R

i

u

R

1

Gu

u

G

G

G

G

u

G

u

G

u

G

u

G

i

i

i

i

i

n

n

n

n

=

+???+

+

+

=

+???+

+

+

=

+???+

+

+

=

)

(

3

2

1

3

3

2

2

1

1

3

2

1

3.线性电阻的串并联由若干个线性电阻的串联和并联所形成的单口网络,就端口特性而言,等效于一个线性二端电阻,其等效电阻值可以根据具体电路,多次利用电阻串联和并联单口的等效电阻公式(2-l)和(2-2)计

算出来。

例2-l 电路如图2-3Ωa)所示。已知R1=6Ω, R2=15Ω,R3=R4=5Ω。试求ab两端和cd两端的等效电阻。

图2-3

为求R

ab

,在ab两端外加电压源,根据各电阻中的电流电压是否相同来判断电阻的串联或并联。

2

1

2

1

R

R

R

R

R

+

=

15Ω10Ω

Ω

=

+

=10

4

3

34

R

R

=

Ω

+

?

=

+

=6

10

15

10

15

34

2

34

2

234R

R

R

R

R

6Ω12Ω

Ω

=

Ω

+

Ω

=

+

=12

6

6

234

1

ab

R

R

R

Ω

=

Ω

+

+

+

+

Ω

=

+

+

+

+

=12

5

5

15

)5

5(

15

6

)

(

4

3

2

4

3

2

1

ab R

R

R

R

R

R

R

R

显然,cd 两点间的等效电阻为

二、独立电源的串联和并联

根据独立电源的VCR 方程和 KCL 、KVL 方程可得到以下公式: 1.n 个独立电压源的串联单口网络,如图2-4(a)所示,就端口特性而言,等效于一个独立电压源,其电压等于各电压源电压的代数和

图2-4

其中与u S 参考方向相同的电压源u S k 取正号,相反则取负号。

2. n 个独立电流源的并联单口网络,如图2-5(a)所示,就端口特性而言,等效于一独立电流源,其电流等于各电流源电流的代数和与i S 参考方向相同的电流源i S k 取正号,相反则取负号。

图2-5

15Ω Ω

=Ω+++=+++=

45

155)

515(5)(423423cd R R R R R R R )42(1

S S -=∑=n k k u u 图

)

52(1

S S -=∑=n

k k

i i 图

就电路模型而言,两个电压完全相同的电压源才能并联;两个电流完全相同的电流源才能串联,否则将违反KCL、KVL和独立电源的定义。发生这种情况的原因往往是模型设置不当,而需要修改电路模型。

例2-2 图2-6(a)电路中。已知u

S1

=10V,

u

S2

=20V,u

S3

=5V,R

1

=2Ω,R

2

=4Ω, R

3

=6Ω和R

L

=3Ω。求电阻R

L

的电流和电

压。

图2-6解: 为求电阻R

L

的电压和电流,可将三个串联的电压源等效为一个电压源,其电压为

将三个串联的电阻等效为一个电阻,其电阻为

由图(b)电路可求得电阻R L的电流和电压分别为:

例2-3 电路如图2-7(a)所示。已知i

S1

=10A, i

S2

=5A, i

S3

=1A,G

1

=1S,

G

2

=2S和G

3

=3S,求电流i

1

和i

3

图2-7解:为求电流i

1

和i

3

,可将三个并联的电流源等效为一个电流源,其电流为

V

15

V

5

V

10

V

20

S3

S1

S2

S

=

+

-

=

+

-

=u

u

u

u

Ω

=

Ω

+

Ω

+

Ω

=

+

+

=12

6

2

4

3

1

2

R

R

R

R

V

3

A

1

3

A

1

3

12

V

15

L

L

S=

?

Ω

=

=

=

Ω

+

Ω

=

+

=i

R

u

R

R

u

i

A

6

A

1

A

5

A

10

S3

S2

S1

S

=

+

-

=

+

-

=i

i

i

i

A

1

A

6

3

2

1

1

S

3

2

1

1

1

=

?

+

+

=

+

+

=i

G

G

G

G

i

得到图(b)所示电路,用分流公式求得:

三、含独立电源的电阻单口网络

一般来说,由一些独立电源和一些线性电阻元件组成的线性电阻单口网络,就端口特性而言,可以等效为一个线性电阻和电压源的串联,或者等效为一个线性电阻和电流源的并联。可以通过计算端口VCR方程,得到相应的等效电路

例2-4 图2-8(a)单口网络中。已知u

S

=6V,i

S

=2A,R

1

=2W,R

2

=3W。求单口网络的VCR方程,并画出单口的等效电路。

图2-8

解:在端口外加电流源i,写出端口电压的表达式

其中:

根据上式所得到的单口等效电路是电阻R

o

和电压源u

OC

的串联,如图(b)所示。

例2-5 图2-9(a)单口网络中,已知u

S

=5V,i

S

=4A,G

1

=2S, G

2

=3S。求单口网络的VCR方程,并画出单口的等效电路。

oc

o

S

1

S

2

1

2

S

1

S

)

(

)

(

u

i

R

i R

u

i

R

R

i

R

i

i

R

u

u

+

=

+

+

+

=

+

+

+

=

V

10

A

2

2

V

6

5

3

2

1

oc

2

1

o

=

?

Ω

+

=

+

=

Ω

=

Ω

+

Ω

=

+

=

S

S

i R

u

u

R

R

R

图15S

图2-9

解:在端口外加电压源u,用2b方程写出端口电流的表达式为

其中:

根据上式所得到的单口等效电路是电导G

o

和电流源i

SC

的并联,如图(b)所示。

例2-6 求图2-10(a)和(c)所示单口的VCR方程,并画出单口的等效电路。

图2-10

解:图(a)所示单口的VCR方程为

根据电压源的定义,该单口网络的等效电路是一个电压为u S的电压源,如图(b)所示。

图2-10

图(c)所示单口VCR方程为根据电流源的定义,该单口网络的等效电

路是一个电流为i S的电流源,如图(d)所示。

四、含源线性电阻单口两种等效电路的等效变换

含源线性电阻单口可能存在两种形式的VCR方程,即

sc

o

S

1

S

2

1

S

1

2

S

)

(

)

(

)

(

i

u

G

u

G

i

u

G

G

u

u

G

u

G

i

i

-

=

+

-

+

=

-

+

+

-

=

A

14

V

5

S2

A

4

S5

S3

S2

S

1

S

sc

2

1

o

=

?

+

=

+

=

=

+

=

+

=

u

G

i

i

G

G

G

<

<

-

=i

u

u

S

<

<

-

=u

i

i

S

7)

-

(2

6)

-

(2

sc

o

oc

o

i

u

G

i

u

i

R

u

-

=

+

=

相应的两种等效电路,如图(a)和(c)所示。

式(2-7)改写为

令式(2-6)和(2-8)对应系数相等,可求得等效条件为

单口网络两种等效电路的等效变换可用下图表示。

例2-7 用电源等效变换求图2-12(a)单口网络的等效电路。

图2-12

7)

-

(2

6)

-

(2

sc

o

oc

o

i

u

G

i

u

i

R

u

-

=

+

=

8)

-

(2

1

1

sc

o

o

i

G

i

G

u+

=

o

oc

sc

sc

o

oc

o

o

1

R

u

i

i

R

u

G

R=

=

=或

将电压源与电阻的串联等效变换为电流源与电阻的

将电流源与电阻的并联变换为电压源与电阻的串联

09非线性电阻电路分析

非线性电阻电路分析 一、是非题 1.非线性电阻的电流增加k倍,则电压也增加k倍。 2.单调型非线性电阻,随着电压升高,动态电阻也增加。 3.非线性电阻电路小信号分析法的实质是将工作点附近的非线性伏安特性线性化。 4.半导体二极管电路模型是单调型非线性电阻,不属电压控制型、电流控制型。 5.不论非线性电阻或线性电阻串联,总功率等于各元件功率之和,总电压等于各元件电压之和。 答案部分 1.答案(-) 2.答案(-) 3.答案(+) 4.答案(-) 5.答案(+)

二、单项选择题 1.影响非线性电阻阻值变化的因素主要是 (A)时间 (B)温度 (C)电压或电流 2.双向性非线性电阻的伏安特性曲线为 3.有关非线性电阻电路的正确概念应是 (A)不同类型的非线性电阻其动态电阻定义不同 (B)单向型非线性电阻不具有单调型电阻性质 (C)非线性电阻可能在有关电压下具有多个电流值 (D)非线性电阻电路功率不守恒 4.图示非线性电阻伏安特性曲线中的BC段对应于下列哪个等效电路?

5.与图示非线性电阻伏安特性曲线AB段对应的等效电路是 答案部分 1.答案(C) 2.答案(B) 3.答案(C) 4.答案(B) 5.答案(B)

三、填空题 1.非线性电阻元件的性质一般用__________来表示。 2.图示电路中的理想二极管,流过的电流I为_______A。 3.右上图示曲线①和②为非线性电阻R1和R2的伏安特性曲线。试画出R1、R2并联后的等效伏安特性。 4.图示隧道二极管伏安特性曲线,试分析i S=4mA、i S=1mA、i S=-2mA三种情况下,隧道二极管的工作点。i S=4mA时____,i S=1mA时_____,i S=-2mA时____。 6.理想二极管伏安特性曲线如图(b)折线所示,试绘出图(a)所示网络的伏安特性曲线。

第一章 直流电路及其分析方法

《电工与电子技术基础》自测题 第1章直流电路及其分析方法 判断题 1.1 电路的基本概念 1.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 2.电路中各物理量的正方向不能任意选取。 [ ] 答案:X 3.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相同。 答案:X 4.某电路图中,已知电流I=-3A,则说明图中电流实际方向与所标电流方向相反。 答案:V 5.电路中各物理量的正方向都可以任意选取。 [ ] 答案:V 6.某电路图中,已知电压U=-30V,则说明图中电压实际方向与所标电压方向相反。 答案:V 7.组成电路的最基本部件是:电源、负载和中间环节 [ ] 答案:V 8.电源就是将其它形式的能量转换成电能的装置。 [ ] 答案:V 9.如果电流的大小和方向均不随时间变化,就称为直流。 [ ] 答案:V 10.电场力是使正电荷从高电位移向低电位。 [ ] 答案:V 11.电场力是使正电荷从低电位移向高电位。 [ ] 答案:X 1.2 电路基础知识 1.所求电路中的电流(或电压)为+。说明元件的电流(或电压)的实际方向与参考方向一致;若为-,则实际方向与参考方向相反。[ ] 答案:V 2.阻值不同的几个电阻相并联,阻值小的电阻消耗功率小。[ ] 答案:X

答案:X 4.电路就是电流通过的路径。 [ ] 答案:V 5.电路中选取各物理量的正方向,应尽量选择它的实际方向。 [ ] 答案:V 6.电路中电流的实际方向总是和任意选取的正方向相同。 [ ] 答案:X 7.电阻是用来表示电流通过导体时所受到阻碍作用大小的物理量。[ ] 答案:V 8.导体的电阻不仅与其材料有关,还与其尺寸有关。 [ ] 答案:V 9.导体的电阻只与其材料有关,而与其尺寸无关。 [ ] 答案:X 10.导体的电阻与其材料无关,而只与其尺寸有关。 [ ] 答案:X 11.电阻中电流I的大小与加在电阻两端的电压U成正比,与其电阻值成反比。[ ] 答案:V 12.电阻中电流I的大小与加在电阻两端的电压U成反比,与其电阻值成正比。[ ] 答案:X 13.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较差的外特性。 [ ]答案:X 14.如果电源的端电压随着电流的增大而下降很少,则说明电源具有较好的外特性。 [ ]答案:V 15.欧姆定律是分析计算简单电路的基本定律。 [ ] 答案:V 16.平时我们常说负载增大,其含义是指电路取用的功率增大。 [ ] 答案:V 17.平时我们常说负载减小,其含义是指电路取用的功率减小。 [ ] 答案:V 18.平时我们常说负载增大,其含义是指电路取用的功率减小。 [ ] 答案:X 19.平时我们常说负载减小,其含义是指电路取用的功率增大。 [ ] 答案:X 20.在串联电路中,电阻越大,分得的电压越大。 [ ] 答案:V 21.在串联电路中,电阻越小,分得的电压越大。 [ ] 答案:X 22.在串联电路中,电阻越大,分得的电压越小。 [ ] 答案:X 23.在串联电路中,电阻越小,分得的电压越小。 [ ] 答案:V 24.在并联电路中,电阻越小,通过的电流越大。 [ ] 答案:V 25.在并联电路中,电阻越大,通过的电流越大。 [ ]

电路的分析方法电子教案

第2章 电路的分析方法 本章要求: 1. 掌握支路电流法、叠加原理和戴维宁定理等电路的基本分析方法。 2. 理解实际电源的两种模型及其等效变换。 3. 了解非线性电阻元件的伏安特性及静态电阻、动态电阻的概念,以及简单非线性电阻电路的图解分析法。 重点: 1. 支路电流法; 2. 叠加原理; 3.戴维宁定理。 难点: 1. 电流源模型; 2. 结点电压公式; 3. 戴维宁定理。 2.1 电阻串并联联接的等效变换 1.电阻的串联 特点: 1)各电阻一个接一个地顺序相联; 2)各电阻中通过同一电流; 3)等效电阻等于各电阻之和; 4)串联电阻上电压的分配与电阻成正比。 两电阻串联时的分压公式: 2.电阻的并联 特点: 1)各电阻联接在两个公共的结点之间; 2)各电阻两端的电压相同; 3)等效电阻的倒数等于各电阻倒数之和; 4)并联电阻上电流的分配与电阻成反比。 U R R R U 2111+=U R R R U 2 122+=

两电阻并联时的分流公式: 2.3 电源的两种模型及其等效变换 1.电压源 电压源是由电动势 E 和内阻 R 0 串联的电源的电路模型。若 R 0 = 0,称为理想电压源。 特点: (1) 内阻R 0 = 0; (2) 输出电压是一定值,恒等于电动势(对直流电压,有 U ≡ E ),与恒压源并联的电路电压恒定; (3) 恒压源中的电流由外电路决定。 2.电流源 电流源是由电流 I S 和内阻 R 0 并联的电源的电路模型。若 R 0 = ∞,称为理想电流源。 特点: (1) 内阻R 0 = ∞ ; (2) 输出电流是一定值,恒等于电流 I S ,与恒流源串联的电路电流恒定; (3) 恒流源两端的电压 U 由外电路决定。 3.电压源与电流源的等效变换 等效变换条件: E = I S R 0 0 R E I = S 注意: ① 电压源和电流源的等效关系只对外电路而言,对电源内部则是不等效的。 ② 等效变换时,两电源的参考方向要一一对应。 ③ 理想电压源与理想电流源之间无等效关系。 ④ 任何一个电动势 E 和某个电阻 R 串联的电路,都可化为一个电流为 I S 和这个电阻并联的电路。 4.电源等效变换法 (1) 分析电路结构,搞清联接关系; (2) 根据需要进行电源等效变换; (3) 元件合并化简:电压源串联合并,电流源并联合并,电阻串并联合并; I R R R I 2121+=I R R R I 2 112+=

习题六 简单非线性电阻电路分析.

习题六 简单非线性电阻电路分析 6-1 如题图6-1所示电路中,其中二极管和稳压二极管均采用理想特性,试分别画出其端口的DP 图。 题图6-1 6-2 设一混频器所用的非线性电阻特性为 2 210u a u a a i ++= 当其两端电压)()(t w A t w A u 2211cos cos +=时,求)。(t i 6-3 试画出下列电阻元件的u -i 特性,并指出3的单调性、压控的还是流控的? (1)u e i -=; (2)2 i u =; (3)3 01.01.0u u i +-=。 6-4 试写出题图6-4所示分段线性非线性电阻的u -i 特性表达式。 题图6-4 6-5 如题图6-5(a )所示电路为一逻辑电路,其中二极管的特性如题图6-5(b )所示。当U 1 = 2 V ,U 2 = 3 V ,U 3 = 5 V 时,试求工作点u 。

题图6-5 6-6 如题图6-6所示电路含有理想二极管,试判断二极管是否导通? 6-7 设有一非线性电阻的特性为u u i 343 -=,它是压控的还是流控的?若) (wt u cos =,求该电阻上的电流i 。 6-8 如题图6-8所示为自动控制系统常用的开关电路,K 1和K 2 为继电器,导通工作电 流为0.5 mA 。D 1和D 2为理想二极管。试问在图示状态下,继电器是否导通工作? 题图6-6 题图6-8 6-9 如题图6-9所示为非线性网络,试求工作点u 和i 。 题图6-9 6-10 如题图6-10所示网络,其中N 的A 矩阵为 A =? ? ? ? ??Ω5.1s 05.055.2

线性电路分析中受控电源的等效方法

线性电路分析中受控电源的等效方法 摘要:利用等效变换把受控源支路等效为电阻或电阻与独立电压源串联组合求解含有受控源的现行电路。 关键词:受控电源;等效变换;独立电源 前言: 在求解含有受控源的线性电路中,存在着很大的局限性.下面就此问题作进一步的探讨. 受控源支路的电压或电流受其他支路电压、电流的控制.受控源又间接地影响着电路中的响应.因此,不同支路的网络变量间除了拓扑关系外,又增加了新的约束关系,从而使分析计算复杂化.如何揭示受控源隐藏的电路性质,这对简化受控源的计算是非常重要的.本文在对受控源的电路性质进行系统分析的基础上,给出了含受控源的线性电路的等效计算方法. 正文:根据受控源的控制量所在支路的位置不同,分别采取如下3种等效变换法. 1. 1.当电流控制型的受控电压源的控制电流就是该受控电压源支路的电流、 或当电压控制型的受控电流源的控制电压就是该受控电流源支路两端的电压时,该受控源的端电压与电流之间就成线性比例关系,其比值就是该受控源的控制系数.因此,可采用置换定理,将受控源置换为一电阻,再进一步等效化简. 例1-1:如图求解图a中所示电路的入端电阻R AB. 解:首先,将电压控制型的受控电流源gu 1与R 1 并联的诺顿支路等效变化成电压 控制型的受控电压源gu 1R 1 与电阻R 1 串联的等效戴维南支路,如图b所示.在电 阻R 1与电阻R 2 串联化简之前,应将受控电压源的控制电压转换为端口电流i,即 u 1=-R 2 i.然后,将由电压u 1 控制的电压控制型受控电压源gu 1 R 1 转化为电流控 制型的受控电压源-gR 1R 2 i,如图c所示.由图c可知,由于该电流控制型的受 控电压源的控制电流i就是该受控电压源支路的电流,因此,可最终将该电流控 制型的受控电压源简化成一个电阻,其阻值为-gR 1R 2 .这样,该一端口网络的入 端电阻R AB=R 1+R 2 -gR 1 R 2 . 例1—2 例1—2求解图a中所示电路的入端电阻R AB. 解:可对该一端口网络连续运用戴维南-诺顿等效变换,最后可得到图 b所示的电路.由于电压控制型的受控电流源 u1 8Ω的控制量u1就是它的端电压,且二者的假定正方向相反,因此,可将其简化为一阻值为-8Ω的电阻.这样,该一端口网络的入端电阻 R AB=1/(1 2+1 2-1 8)=8 7 2. 2.受控源的控制量为网络的端口电压或电流时,可将各支路进行等效变 换,可将受控源作为独立源处理.当电路等效到端口时,若控制量是端口电流,则可将电路等效成受控电压源、独立电压源和电阻的串联组合;若控制量是端口电压,则可将电路等效成受控电流源、独立电流源和电阻的并联组合.再进一步将受控源置换为一电阻,最后可求出最简单的等效电路. 例2—1 例2—1简化图a所示电路.

线性电阻电路分析

长春理工大学 国家级电工电子实验教学示范中心学生实验报告 2019-2020学年第2学期 实验题目:线性电阻电路分析 实验地点:东1教414 学院:电子信息工程 班级学号:190412125 姓名:谷东月 报告成绩:

一、实验目的 1、熟悉EWB工作平台的操作环境 2、练习利用EWB进行电路的创建 3、会用电压表和电流表对所设计电路进行测量 4、研究电压表、电流表内阻对电路测量的影响 5、通过对线性电路叠加定理验证实验的设计,训练工程实践思维模式 二、实验性质 验证性实验 三、实验内容 1、分压电路 (1)复制电子工作平台上的实验电路图 (2)测量数据记录 测量R1电压的 电压表内阻测量值R01R02R03R04 25M 25k 25 25m V R1 (V) 6 5.883 0.286 0.3 V R2 (V) 6 6.117 11.714 12 (3)数据分析及结论

1.当R1和R2相差不大时,满足分压公式V R1=(R1/R1+R2)*U,V R2=(R2/R1+R2)*U 2.V R1+V R2=U 2、分流电路 (1)复制电子工作平台上的实验电路图 (2)测量数据记录 R1电阻(Ω)测量值R11 R12 R13 25 50 75 I R1 5 3.33 2.5 I R2 5 6.67 7.5 (3)数据分析及结论 1、并联电阻分流并与电阻成反比 2、并联电阻分流之和等于电路电流 3、I R1+I R2=I,I R1/I R2=R2/R1 3、叠加定理验证实验 (1)设计思路

(2)测量数据及分析 图1 图2 图3 U1 1.5 2.25 -0.75 U2 30 22.5 7.5 U3 0 1.125 -1.125 (3)理论分析及结论 分析:图二,图三数据相加等于相对应的图一的数据。 结论:在线性电路中,任一支路的电压和电流,在各个独立源的作用下,在该支路中

线性电阻电路分析

线性电阻电路分析标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

第二章 线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b 法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。 当强调二端网络的端口特性,而不关心网络内部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u - i 平面上的一条曲线)。等效单口网络:当两个单口网络的VCR 关系完全相同时,称这两个单口是互相等效的。 N 1 N 2 VCR 相同 等效

单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口内部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻 的串联。图(a)表示n个线性电阻串联形成的单口网络。 用2b方程求得端口的VCR方程为 其中 上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一 Ri i R R R R i R i R i R i R u u u u u n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1 ∑ = = = n k k R i u R 1

电路的几种分析方法

几种常见电路分析方法浅析 摘要:对电路进行分析的方法很多,如叠加定理、支路分析法、网孔分析法、结点分析法、戴维南和诺顿定理等。根据具体电路及相关条件灵活运用这些方法,对基本电路的分析有重要的意义。现就具体电路采用不同方法进行如下比较。 关键词:电路分析电流源支路电流法网孔电流法结点分析法叠加定理戴维宁定理与诺顿定理 Several Commonly Used Analytical Methods in Circuit Abstract: on the circuit analysis methods, such as superposition theorem, branch analysis method, mesh analysis method, nodal analysis method, Thevenin and Norton's theorem. According to the specific circuit and related conditions of flexibility in the use of these methods, the basic circuit analysis has important significance. The specific circuit using different methods are compared. Key words :Circuit Analysis of voltage source current source branch current method mesh current method nodal analysis method of superposition theorem and David theorem and Norton theorem in Nanjing. 引言:每种电路的分析方法,一般都有其适用范围。应用霍夫定律求解适用于求多支路的电流,但电路不能太复杂;电源法等效变换法适用于电源较多的电路;节点电位法适用于支路多、节点少的电路;网孔分析法使适用于支路多、节点多、但网孔少的电路;戴维宁定理和叠加定理适用于求某一支路的电流或某段电路两端电压。上面例题的电路比较简单,可选择任意一种方法求解,对于一些比较复杂但有一

电路及其分析方法教学教案

第1章电路及其分析方法 电路的基本概念与基本定律 一、学时:10 学时 二、目的和要求: 1.掌握电路的基本概念与基本定律; 2.理解电压、电流参考方向的意义; 3.了解电路的有载工作、开路与短路状态并能理解电功率和额定值的意义; 三、重点: 1.电压、电流的参考方向; 2.基尔霍夫定律; 四、难点: 基本概念的理解。 五、教学方式:多媒体或胶片投影或传统方法 六、习题安排: 七、教学内容: 1.1 电路模型 1、电路的作用与组成部分(举例:如日光灯电路) (1)电路的作用 ①电能的传输与转换,如电力系统。 ②传递和处理信号,如扩音机。 (2)电路的组成部分 ①电源:是供应电能的设备。如发电厂、电池等。 ②负载:是取用电能的设备。如电灯、电机等 ③中间环节:是连接电源和负载的部分,起传输和分配电能的作用。如变压器、输电线等。 2、电路的模型 由理想化电路元件组成的电路即是实际电路的电路模型,如下图所示,3、电路的基本元件

(1)元件分类 按不同原则可将元件分成以下几类: A、线性元件与非线性元件 B、有源元件与无源元件 C、二端元件与多端元件 D、静态元件与动态元件 E、集中参数元件与分布参数元件 (2)元件符号 表1-1常用理想元件及符号 (3)电阻元件 电阻元件按其电压电流的关系曲线(又称伏安特性曲线)是否是过原点的直线而分为线性电阻元件(如上图a)和非线性电阻元件(如上图b)。按其特性是否随时间变化又可分为时变电阻元件和非时变电阻元件。本节重点介绍线性非时变电阻元件。 线性电阻元件是一个二端元件,其端电压u(t)和端电流i(t)取关联参考方向时,满足欧姆定律: u(t)=R i(t) i(t)=G u(t) 式中:R为线性电阻元件的电阻,G为线性电阻元件的电导,二者均为常量,其数值由元件本身决定,与其端电压和端电流无关。且 电阻的单位:欧姆(Ω);电导的单位:西门子(S)。 线性电阻的电阻值R就是线性电阻伏安特性中那条过原点的直线的斜率。当电阻值R=0时,伏安特性曲线与i轴重合,如下图所示。 此时不论电流i为何值,端电压u总为零,称其为“短路”。 当电阻值R=∞时,其伏安特性曲线与u轴重合如下图所示。 R=0时,不论端电压u为何值,电流i总为零,称其为“开路”或“断路”。电阻功率 在电阻元件取关联参考方向的情况下,电阻吸收的功率为 如电阻元件取非关联参考方向,电阻吸收的功率为 由以上两式知,无论电阻元件采用何种参考方向,任何时刻电阻吸收的功率都不可能为负值,也就是说电阻元件为耗能元件。

线性电阻电路分析

第二章线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是 u-i平面上的一条曲线)。等效单口网络:当两个单口网络的VCR关系完全相同时,称这两个单口是互相等效的。 单口的等效电路:根据单口VCR方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 N1N2 VCR相同 等效

两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n个线性电阻串联形成的单口网络。 用2b方程求得端口的VCR方程为 其中 上式表明n个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。 2.线性电阻的并联两个二端电阻首尾分别相联,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n个线性电阻的并联。 求得端口的VCR方程为 上式表明n个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算 Ri i R R R R i R i R i R i R u u u u u n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1 ∑ = = = n k k R i u R 1 Gu u G G G G u G u G u G u G i i i i i n n n n = +???+ + + = +???+ + + = +???+ + + = ) ( 3 2 1 3 3 2 2 1 1 3 2 1

线性电阻电路分析报告

第二章 线性电阻电路分析 电阻电路:由电阻元件和独立电源组成的电路,称为电阻电路。独立电源在电阻电路中所起的作用与其它电阻元件完全不同,它是电路的输入或激励。独立电源所产生的电压和电流,称为电路的输出或响应。线性电阻电路:由线性电阻元件和独立电源组成的电路,称为线性电阻电路。其响应与激励之间存在线性关系,利用这种线性关系,可以简化电路的分析和计算。 上一章介绍的2b 法的缺点是需要联立求解的方程数目太多,给手算求解带来困难。本章通过两个途径来解决这个问题。 1. 利用单口网络的等效电路来减小电路规模,从而减少方程数目。 2. 减少方程变量的数目,用独立电流或独立电压作变量来建立电路方程。 §2-l 电阻单口网络 单口网络:只有两个端钮与其它电路相连接的网络,称为二端网络。当强调二端网络的端口特性,而不关心网络部的情况时,称二端网络为单口网络,简称为单口(One-port)。 电阻单口网络的特性由端口电压电流关系(简称为VCR)来表征(它是u -i 平面上的一条曲线)。等效单口网络:当两个单口网络的VCR 关系完全相同时,称这两个单口是互相等效的。 单口的等效电路:根据单口VCR 方程得到的电路,称为单口的等效电路。单口网络与其等效电路的端口特性完全相同。一般来说,等效单口部的结构和参数并不相同,谈不上什么等效问题。 利用单口的等效来简化电路分析:将电路中的某些单口用其等效电路代替时,不会影响电路其余部分的支路电压和电流,但由于电路规模的减小,则可以简化电路的分析和计算。 一、线性电阻的串联和并联 1.线性电阻的串联 N 1 N 2 VCR 相同 等效

两个二端电阻首尾相联,各电阻流过同一电流的连接方式,称为电阻的串联。图(a)表示n 个线性电阻串联形成的单口网络。 用2b 方程求得端口的VCR 方程为 其中 上式表明n 个线性电阻串联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电阻值由上式确定。 2.线性电阻的并联两个二端电阻首尾分别相联,各电阻处于同一电压下的连接方式,称为电阻的并联。图(a)表示n 个线性电阻的并联。 求得端口的VCR 方程为 上式表明n 个线性电阻并联的单口网络,就端口特性而言,等效于一个线性二端电阻,其电导值由上式确定。两个线性电阻并联单口的等效电阻值,也可用以下公式计算 Ri i R R R R i R i R i R i R u u u u u n n n n =+???+++=+???+++=+???+++= )( 321332211321∑ ===n k k R i u R 1 Gu u G G G G u G u G u G u G i i i i i n n n n =+???+++=+???+++=+???+++= )( 321332211321

电路分析答案第三章

第三章习题 3.1 如题3.1图所示梯形电路。 ⑴ 已知24u V =,求1u 、i 和S u 。 ⑵ 已知27S u V =,求1u 、2u 和i 。 ⑶ 已知 1.5i A =,求1u 和2u 。 解:根据线性电路的性质,设: 211u k u = 22u k i = 23s u k u = 令: 2V u 2= 可推出 6V u 2= 1A i = 27V u s = 因而可得: 3k 1= 0.5k 2= 27/2k 3= ⑴ 当24u V =时,有: 12V 43u 1=?= 2A 40.5i =?= 56V 42 27 u s =?= ⑵ 当27S u V =时,有: 2V 2727 2u k 1u s 32=?== 1A 20.5u k i 22=?== 6V 23u k u 211=?== ⑶ 当 1.5i A =时,有: 3V 1.50.5 1i k 1u 22=?== 9V 33u k u 211=?== 3.2 如题3.2图所示电路,已知9S u V =,3S i A =,用叠加定理求电路i 。 解:S u 单独作用时,有: 1163 S u i A = =+ S i 单独作用时,有: 23 163 S i i A =-=-+ 根据叠加定理可得: 12110i i i =+=-= 3.3 如题3.3图所示电路,求电压u 。如独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,电压u 变为多少? 解:根据KVL 列一个回路 113132(32)4u i V A A i =Ω?++?Ω+-?Ω 两个电压源支路可列方程:

1131(3)610i i +=-+ 由此可得: 13i A = 代入上式得: 33132(323)4u V =?++?+-??= 若独立电压源的值均增至原值的两倍,独立电流源的值下降为原值的一半,由上式可知: 1132(1.5)620i i +=-+ 解得 13i A = 有: 332 1.52 (1.523)4 u V =?++?+-??=- 3.4 如题3.4图所示电路,N 为不含独立源的线性电路。已知:当12S u V =、 4S i A =时,0u V =;当12S u V =-、2S i A =-时,1u V =-;求当9S u V =、1S i A =-时的电压u 。 解:根据线性电路的叠加定理,有: 12S S u k u k i =+ 将已知数据代入,有: 120124k k =+ 121122k k -=-- 联立解得: 116k = 212 k =- 因而有: 11 62S S u u i =- 将9S u V =、1S i A =-代入 可得: 11 9(1)262 u V =--= 3.5 如题3.5图所示电路,已知当开关S 在位置1时,I=40mA ;当S 在位置2时,I=-60mA ;求当S 在位置3时的I 解:设电源S U 和S I 对电流I 的贡献为I 根据线性电路的叠加定理,有: /I I kU =+ 其中U 为开关外接电源的作用。 开关S 在位置1时,有 /400I k =+? 此时可将U 视为0 开关S 在位置2时,有 /604 I k -=- 由上可解得: 25k = /40I = 当S 在位置3时,6U V =,则有:

第二章电路的分析方法(答案).

第二章电路的分析方法 本章以电阻电路为例,依据电路的基本定律,主要讨论了支路电流法、弥尔曼定理等电路的分析方法以及线性电路的两个基本定理:叠加定理和戴维宁定理。 1.线性电路的基本分析方法 包括支路电流法和节点电压法等。 (1)支路电流法:以支路电流为未知量,根据基尔霍夫电流定律(KCL)和电压定律(KVL)列出所需的方程组,从中求解各支路电流,进而求解各元件的电压及功率。适用于支路较少的电路计算。 (2)节点电压法:在电路中任选一个结点作参考节点,其它节点与参考节点之间的电压称为节点电压。以节点电压作为未知量,列写节点电压的方程,求解节点电压,然后用欧姆定理求出支路电流。本章只讨论电路中仅有两个节点的情况,此时的节点电压法称为弥尔曼定理。 2 .线性电路的基本定理 包括叠加定理、戴维宁定理与诺顿定理,是分析线性电路的重要定理,也适用于交流电路。 (1)叠加定理:在由多个电源共同作用的线性电路中,任一支路电压(或电流)等于各个电源分别单独作用时在该支路上产生的电压(或电流)的叠加(代数和)。 ①“除源”方法 (a)电压源不作用:电压源短路即可。 (b)电流源不作用:电流源开路即可。 ②叠加定理只适用于电压、电流的叠加,对功率不满足。 (2)等效电源定理 包括戴维宁定理和诺顿定理。它们将一个复杂的线性有源二端网络等效为一个电压源形式或电流源形式的简单电路。在分析复杂电路某一支路时有重要意义。 ①戴维宁定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电压源和一个电阻的串联组合来等效代替,其中理想电压源的电压等于含源二端网络的开路电压,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 ②诺顿定理:任何一个线性含源的二端网络,对外电路来说,可以用一个理想电流源和一个电阻的并联组合来等效代替。此理想电流源的电流等于含源二端网络的短路电流,电阻等于该二端网络中全部独立电源置零以后的等效电阻。 3 .含受控源电路的分析 对含有受控源的电路,根据受控源的特点,选择相应的电路的分析方法进行分析。 4.非线性电阻电路分析

第二章线性电阻电路分析.

2—1图示电路,求i、U ab和R o 第二章线性电阻电路分析 &) 解:(a)经等效变换后,可得到右示a'电路。 6-2 (b)经等效变换后,可得到右示( 畑=5.4-2.4 = 3Z A = 30 4 2—2图示电路,求i o b'电路。 JitKn I T riioKa 少\ 解:电路(a)经等效变换后,可得到(b )图电路。 lOV r-—— + 3 lovr: 2-3图示电路,求i、u s o 3A 600 60 叩 2vt D —*- Q ) b —— ?- 仙‘) 一如

解:原电路经等效变换后,可得到下图电路。 i = 3A lA 132 u 2A 6 十 比=1 + 3-3二 3(D isoa r ? (K) 解:原电路经△— Y 等效变换可得到所示对应电路,其中: O 1 3 O 国) 5盒 2 (a) 尺IQ ■^10 = R 餉—鸟。=焉 00 耳=1X00 3潜g 3 赛 焉=160 2-5试求图示各电路的等效电阻 R ab (电路中的电阻单位均为欧姆) 。

6叫 「 、 -------- + 卩 5 应=7十 汽曾?_ = 9,5Q ( ----- + ----- ) + 5 6+3 6+6 =44 ________ T (仝空 4 10)+e 6+3 3A <1) ---- *- i m1 10Q 6 b. 解: 10 (3 5) 8 (C ) 14 i-T- b 解: 对网孔1: i mi =3A i m2 I '40Q + O l36V + lUo i m3 '+ ° 50V 2-6 3 JlOQ 1 20Q 2-7 iBOV 解!设各刚孔电流和支路电流如圈 (2 + -10/^ -78-130 (;10 + 20);2 -10/1 =130 鬲 h = —1川 a = 4討 5= -h = M [广【2= 用网孔电流法求解下图所示电路中的电压 Uo 。 8Q 6 用网孔电流法求图示电路的各支路电流。 (>Y O

第二章 电路的基本分析方法1

第二章电路的基本分析方法 一、填空题: 1. 有两个电阻,当它们串联起来的总电阻为10Ω,当他们并联起来的总电阻为 2.4Ω。这两个电阻的阻值分别为_ _4Ω ___和__6Ω。 = 1 Ω。 2. 下图所示的电路,A、B之间的等效电阻R AB = 3 Ω。 3. 下图所示的电路,A、B之间的等效电阻R AB A 2Ω B 4. 下图所示电路,每个电阻的阻值均为30Ω,电路的等效电阻R = 60 AB Ω。 5.下图所示电路中的A、B两点间的等效电阻为___12KΩ________.若图中所 示的电流I=6mA,则流经6K电阻的电流为__2mA _____;图中所示方向的电压 U为____12V____.此6K电阻消耗的功率为__24mW_________。 A U

6. 下图所示电路中,ab 两端的等效电阻为 12Ω ,cd 两端的等效电阻为 4Ω 。 a b c d 6Ω5Ω 15Ω 5Ω 7.下图所示电路a 、b 间的等效电阻Rab 为 4 Ω。 8. 下图所示电路中,ab 两点间的电压 ab U 为 10 V 。 + _++_ 10V 4V 24V a b 9. 下图所示电路中,已知 U S =3V , I S = 3 A 时,支路电流I 才等于2A 。 _+Ω 1Ω s I 3I 10. 某二端网络为理想电压源和理想电流源并联电路,则其等效电路为 理想电压源 。 11.已知一个有源二端网络的开路电压为20V ,其短路电流为5A ,则该有源二端网络外接 4 Ω电阻时,负载得到的功率最大,最大功率为 25W 。 12.应用叠加定理分析线性电路时,对暂不起作用的电源的处理, 电流 源应看作开路, 电压 源应看作短路。 13.用叠加定理分析下图电路时,当电流源单独作用时的I 1= 1A ,当

常见的四种电路及其分析方法

常见的五种电路及其分析方法 湖北省大悟县第一中学 432800 徐高本 1.静态电路用等效法分析 弄清电路中各电阻元件的连接方式,把握电路在稳定状态时所具有的上述两个特点,是解决稳态含容直流电路问题的关键. 例6.如图6所示,在A 、B 两点间接一电动势为4V ,内电阻为1Ω的直流电源,电阻R 1、R 2、R 3的阻值均为4Ω,电容器的电容为30μF,电流表的内阻不计,求: (1)电流表的读数; (2)电容器所带的电量; (3)断开电源后,通过R 2的电量。 分析与解:(1)A r R E I 8.03=+= (2)C CIR CU Q R 5 33106.9-?=== (3) 断开电源,R 1与R 2并联,与R 3、C 构成放电回路。所以通过R 2的电量 C Q Q 52108.42 -?== . 非理想电表的读数问题 同学们在求非理想电压表或非理想电流表的读数时,只要将电压表看作电阻R V ,求出R V 两端的电压就是电压表的示数;将同学们在求非理想电压表或非理想电流表的读数时,只要将电压表看作电阻R V ,求出R V 两端的电压就是电压表的示数;将电流表看作电阻R A ,求出通过R A 的电流就是电流表的示数。 例5.阻值较大的电阻R 1和R 2串联后,接入电压U 恒定的电路,如图4所示,现用同一电压表依次测量R 1与R 2的电压,测量值分别为U 1与U 2,已知电压表内阻与R 1、R 2相差不大,则: A .U 1+U 2=U ; B .U 1+U 2

相关主题
文本预览
相关文档 最新文档