当前位置:文档之家› 函数奇偶性练习题及答案

函数奇偶性练习题及答案

函数奇偶性练习题及答案
函数奇偶性练习题及答案

函数的奇偶性练习题

1、判断下列函数的奇偶性。

(1)x x

x x f -+-=11)1()((非奇非偶)

(2) 2|2|)

1lg()(2---=x x x f (奇)

(3)

33)(22-+-=x x x f (奇偶) (4)2||)(2

+--=a x x x f (a=0,偶;a ≠0,非奇非偶) (5)1

212)(-+=x x x f (奇) (6)

)1lg(2x x y ++=(奇) (7)1cos sin ()1cos sin x x f x x x

-+=++ (8

)1

()x f x +-=(奇)

2、设函数)(x f 是定义在R 上的奇函数,对于R x ∈?,都有)2

3()23(x f x f --=+成立。

(1)证明:)(x f 是周期函数,并指出周期。

)()()]2

3(23[]23)23[()3()()(),23()23(x f x f x f x f x f x f x f x f x f =--=+--=++=+∴=---=+ 所以,

)(x f 是周期函数,且3=T (2)若2)1(=f ,求)3()2(f f +的值。-2

3.设()f x 是定义在R 上的奇函数,当x ≤0时,()f x x x 2=2-,则()f 1=( A )

A .-3

B .-1

C .1

D .3

4.函数)(x f 的定义域为()()+∞?∞-,11,,且)1(+x f 为奇函数,当1>x 时,

16122)(2+-=x x x f ,则直线2=y 与函数)(x f 图象的所有交点的横坐标之和是( D )

A .1

B .2

C .4

D .5

解:

f(x+1)是奇函数

所以 f(x+1)的图像关于(0,0)对称,且f(0+1)=0

f(x+1)的图像向右平移1个单位,得到f(x)

所以 f(x)的图像关于(1,0)对称, f(1)=0

则当 x>1时

(1) 2x2-12x+16=2

x2-6x+7=0

x=3±√2 两根都大于1

即x>1时,y=2与函数f(x)图像交点的横坐标为3±√2

(2) 2x2-12x+16=-2

x2-6x+9=0

x=3

所以 x=3时,y=-2

(3,-2)关于(1,0)的对称点为(-1,2)

即 x<1时,y=2与函数f(x)图像交点的横坐标为-1

所以 ,直线y=2与函数f(x)图象的所有交点的横坐标之和是

3+√2+3-√2+(-1)=5

5.下面四个结论中,正确命题的个数是 ( A )

①偶函数的图象一定与y 轴相交

②奇函数的图象一定通过原点

③偶函数的图象关于y 轴对称

④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )

A.1

B.2

C.3

D.4

6.设f (x )是定义在R 上以2为周期的偶函数,已知x ∈(0,1)时,)1(log )(2

1x x f -=,则函数f (x )在(1,2)上( D )

A .是增函数,且f (x )<0

B .是增函数,且f (x )>0

C .是减函数,且f (x )<0

D .是减函数,且f (x )>0

7.已知函数)(x f y =,R x ∈,有下列4个命题:

①若)

=

+,则)

f的图象关于直线1

x

(x

f-

f

2

)

1(

1(x

2

x对称;

=

②)2

f-的图象关于直线2

2(x

f与)

x

(-

x对称;

=

③若)

=

+,则)

f-

f的图象关于直线2

x

(x

)

f为偶函数,且)

(

f

2(x

(x

x对称;

=

④若)

x

f,则)

(x

f的图象关于直线1

=x

f

-

(x

(

f为奇函数,且)2

)

(-

x对称.

=其中正确命题的个数为(C ).

A. 1个

B. 2个

C. 3个

D. 4个

分析:①先用换元法将f(1+2x)=f(1-2x)转化,再由转化后的形式判断对称轴的方程.

②y=f(x-2)与y=f(2-x)的图象关于直线x=2对称可转化为证明y=f(x)与y=f(-x)的图象关于直线

x=0对称的问题,再结合图象的平移知识进行判断.

③用-x换x,由题设条件和偶函数的性质得,f(2-x)=-f(-x)=-f(x)=f(2+x),故f(x)的图象关于直线x=2对称.

④用-x换x,由题设条件和奇函数的性质得,f(-x)=f(x-2),故y=f(x)的图象关于直线x=-1对称.解答:解:①令t=1+2x,可得2x=t-1,代入f(1+2x)=f(1-2x)得f(t )=f(2-t)

由于|t-1|=|2-t-1|,故可知函数y=f(x)图象关于直线x=1对称

即y=f(x)的图象关于直线x=1对称,故①是真命题.

②由题设知y=f(2-x)=f[-(x-2)]

由于函数y=f(x)与y=f(-x)的图象关于直线x=0对称,

又y=f(x-2)与y=f(2-x)的图象可由函数y=f(x)与y=f(-x)的图象右移动2个单位而得到,

∴y=f(x-2)与y=f(2-x)的图象关于直线x=2对称,故②是真命题.

③f(x)为偶函数,且f(2+x)=-f(x),用-x换x得,f(2-x)=-f(-x)=-f(x)=f(2+x)

∴f(x)的图象关于直线x=2对称,故③是真命题.

④∵y=f(x)为奇函数,且f(x)=f(-x-2),用-x换x得,f(-x)=f(x-2),

∴y=f(x)的图象关于直线x=-1对称,故④是假命题.

故选C.

8.设)(x f 是),(+∞-∞上的奇函数,),()2(x f x f -=+当10≤≤x 时,x x f =)(,则)5.7(f 等于( B )

A.0.5

B.-0.5

C.1.5

D.-1.5

9.设f (x )是连续的偶函数,且当x >0时是单调函数,则满足f (x )=f ? ??

??x +3x +4的所有x 之和为( C ) A .-3 B .3 C .-8 D .8

10.已知函数f (x )满足:f (1)=2,)

(1)(1)1(x f x f x f -+=+,则f (2011)等于( C ) A .2 B .-3 C .-12 D.13

[解析] 由条件知,f (2)=-3,f (3)=-12,f (4)=13

,f (5)=f (1)=2,故f (x +4)=f (x ) (x ∈N *).∴f (x )的周期为4,故f (2011)=f (3)=-12.[点评] 严格推证如下:f (x +2)=1+f (x +1)1-f (x +1)

=-1f (x )

,∴f (x +4)=f [(x +2)+2]=f (x ).即f (x )周期为 11.函数y =log 22-x 2+x

的图象( A ) A .关于原点对称 B .关于直线y =-x 对称

C .关于y 轴对称

D .关于直线y =x 对称

12.已知f (x )是奇函数,当x ∈(0,1)时,f (x )=lg

x +11,那么当x ∈(-1,0)时,f (x )的表达式是__________.

解析:当x ∈(-1,0)时,-x ∈(0,1),∴f (x )=-f (-x )=-lg x

-11=lg (1-x ).答案:lg (1-x )

13.定义在R 上的奇函数f (x )满足:当x >0时,f (x )=2008x +log 2008x ,则方程f (x )=0的实根的个数为 3 .

14.若y =(m -1)x 2+2mx +3是偶函数,则m =_________.

0解析:因为函数y =(m -1)x 2

+2mx +3为偶函数,

∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.(

15.已知函数f(x)定义域为R ,则下列命题: ①y=f(x)为偶函数,则y=f(x+2)的图像关于y 轴对称;

②y=f(x+2)为偶函数,则y=f(x)的图像关于直线x=2对称;

③若函数f(2x+1)是偶函数,则f(2x)的图像关于直线x=1/2对称;

④若f(x-2)=f(2-x),则y=f(x)的图像关于直线x=2对称;

⑤y=f(x-2)和y=f(2-x)的图像关于x=2对称。其中正确的命题序号为_______. ②③⑤

16.定义在()+∞∞-,上的偶函数()x f 满足()()x f x f -=+1,且在[]0,1-上是增函数,下面是关于f(x)的判断:

①()x f 关于点P(02

1,)对称 ②()x f 的图像关于直线1=x 对称; ③()x f 在[0,1]上是增函数; ④()()02f f =.

其中正确的判断是________________(把你认为正确的判断都填上)(1)(2)(4)

17.关于y=f(x),给出下列五个命题:

①若f(-1+x)=f(1+x),则y=f(x)是周期函数;

②若f(1-x)= -f(1+x),则y=f(x)为奇函数;

③若函数y=f(x-1)的图像关于x=1对称,则y=f(x)为偶函数;

④函数y=f(1+x)与函数y=f(1-x)的图像关于直线x=1对称;

⑤若f(1-x)=f(1+x),则y=f(x)的图像关于点(1,0)对称;

其中真命题的序号是_______.①③

18. 设函数)x (f y =是定义在R 上的偶函数,它的图象关于直线2x =对称,已

知]2,2[x -∈时,函数1x )x (f 2+-=,则]2,6[x --∈时,=)x (f .

1)4x ()x (f 2++-=

高中数学解题方法谈:函数奇偶性的判定方法

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面把常见的判定方法分类加以研究分析. 1.定义域判定法 例1 判定()(1)2f x x x =-- 的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称, ∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数的奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-和奇偶性. 解: 函数()f x x a x a =++-的定义域为R ,且 ()()()()f a x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数的奇偶性. 3.等价形式判定法 例3 判定2211 ()11x x f x x x ++-=+++的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =, ∴图象过原点. 又0x ≠ 时,22 22 ()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--, (1)()f f x ∴-=-. 又(0)0f =,∴()f x 为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,()([])f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数,试判定()()()x f x g x ?= 的奇偶性.

函数的单调性及奇偶性(含答案)

函数的单调性及奇偶性 一、单选题(共10道,每道10分) 1.已知函数是上的增函数,若,则下列不一定正确的是( ) A. B. C. D. 答案:D 解题思路: 试题难度:三颗星知识点:函数单调性的定义 2.已知定义在上的函数满足:对任意不同的x1,x2,都有.若 ,则实数a的取值范围是( ) A. B. C. D. 答案:C 解题思路:

试题难度:三颗星知识点:函数单调性的定义 3.已知定义在上的函数满足:对任意不同的x1,x2,都有 .若,则实数a的取值范围是( ) A. B. C. D. 答案:B 解题思路:

试题难度:三颗星知识点:函数单调性的定义 4.函数的单调递减区间是( ) A. B. C. D.无减区间 答案:A 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 5.函数的单调递减区间是( ) A., B., C., D., 答案:A 解题思路:

试题难度:三颗星知识点:函数的单调性及单调区间 6.函数的单调递增区间是( ) A. B. C. D. 答案:B 解题思路: 试题难度:三颗星知识点:含绝对值函数的单调性 7.若是奇函数,则实数a的值为( ) A.1 B.-1

C.0 D.±1 答案:A 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 8.若是定义在上的偶函数,则a的值为( ) A.±1 B.1 C.-1 D.-3 答案:C 解题思路: 试题难度:三颗星知识点:函数奇偶性的性质 9.设是定义在[-2,2]上的奇函数,若在[-2,0]上单调递减,则使成立的实数a的取值范围是( ) A.[-1,2] B. C.(0,1) D.

函数奇偶性的判定方法

函数奇偶性的判定方法 山东 刘海 函数奇偶性的判定方法较多,下面举例介绍常见的判定方法. 1.定义域判定法 例1 判定()(1)f x x =- 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称,∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原点对称,来否定一个函数具有奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-的奇偶性. 解: 函数()f x x a x a =++-的定义域为R , 且 ()()()()f x x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数奇偶性. 3.等价形式判定法 例3 判定()f x =的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =,∴图象过原点. 又0x ≠ 时,22 22()(1)(1)1()(1)(1) f x x x f x x x -+-+==-+--,()()f x f x ∴-=-. 又(0)0f =,()f x ∴为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,[]()()f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数, 试判定()()()x f x g x ?= 的奇偶性.

最新函数的奇偶性和单调性综合训练及答案

一、选择题 1.下列判断正确的是( ) A .函数2 2)(2--=x x x x f 是奇函数 B .函数1()(1)1x f x x x +=--是偶函数 C .函数2()1f x x x =+ -是非奇非偶函数 D .函数1)(=x f 既是奇函数又是偶函数 2.若函数2 ()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(],40-∞ B .[40,64] C .(][),4064,-∞+∞ D .[)64,+∞ 3.函数11y x x = +--的值域为( ) A .( ]2,∞- B .(] 2,0 C .[ ) +∞,2 D .[)+∞,0 4.已知函数()()2212f x x a x =+-+在区间(]4,∞-上是减函数, 则实数a 的取值范围是( ) A .3a ≤- B .3a ≥- C .5a ≤ D .3a ≥ 5.下列四个命题:(1)函数f x ()在0x >时是增函数,0x <也是增函数,所以)(x f 是增函数;(2)若函数2 ()2f x ax bx =++与x 轴没有交点,则2 80b a -<且0a >;(3) 223y x x =--的 递增区间为[)1,+∞;(4) 1y x =+和2(1)y x = +表示相等函数。 其中正确命题的个数是( ) A .0 B .1 C .2 D .3 6.某学生离家去学校,由于怕迟到,所以一开始就跑步,等跑累了再走余下的路程. 在下图中纵轴表示离学校的距离,横轴表示出发后的时间,则下图中的四个图形中较符合该学生走法的是( ) 二、填空题 1.函数x x x f -=2 )(的单调递减区间是____________________。 2.已知定义在R 上的奇函数()f x ,当0x >时,1||)(2 -+=x x x f , 那么0x <时,()f x = . d d 0 t 0 t O A . d d 0 t 0 t O B . d d 0 t 0 t O C . d d 0 t 0 t O D .

函数的奇偶性

函数的奇偶性 【学习目标】 1.理解函数的奇偶性定义; 2.会利用图象和定义判断函数的奇偶性; 3.掌握利用函数性质在解决有关综合问题方面的应用. 【要点梳理】 要点一、函数的奇偶性概念及判断步骤 1.函数奇偶性的概念 偶函数:若对于定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)称为偶函数. 奇函数:若对于定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)称为奇函数. 要点诠释: (1)奇偶性是整体性质; (2)x 在定义域中,那么-x 在定义域中吗?----具有奇偶性的函数,其定义域必定是关于原点对称的; (3)f(-x)=f(x)的等价形式为:() ()()0, 1(()0)() f x f x f x f x f x ---==≠, f(-x)=-f(x)的等价形式为:() ()()01(()0)() f x f x f x f x f x -+-==-≠, ; (4)由定义不难得出若一个函数是奇函数且在原点有定义,则必有f(0)=0; (5)若f(x)既是奇函数又是偶函数,则必有f(x)=0. 2.奇偶函数的图象与性质 (1)如果一个函数是奇函数,则这个函数的图象是以坐标原点为对称中心的中心对称图形;反之,如果一个函数的图象是以坐标原点为对称中心的中心对称图形,则这个函数是奇函数. (2)如果一个函数为偶函数,则它的图象关于y 轴对称;反之,如果一个函数的图像关于y 轴对称,则这个函数是偶函数. 3.用定义判断函数奇偶性的步骤 (1)求函数()f x 的定义域,判断函数的定义域是否关于原点对称,若不关于原点对称,则该函数既不是奇函数,也不是偶函数,若关于原点对称,则进行下一步; (2)结合函数()f x 的定义域,化简函数()f x 的解析式; (3)求()f x -,可根据()f x -与()f x 之间的关系,判断函数()f x 的奇偶性. 若()f x -=-()f x ,则()f x 是奇函数; 若()f x -=()f x ,则()f x 是偶函数; 若()f x -()f x ≠±,则()f x 既不是奇函数,也不是偶函数; 若()f x -()f x =且()f x -=-()f x ,则()f x 既是奇函数,又是偶函数 要点二、判断函数奇偶性的常用方法

函数的奇偶性的典型例题

函数的奇偶性的典型例题 函数的奇偶性的判断 判断函数的奇偶性大致有下列两种方法: 第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下: ①、定义域是否关于原点对称; ②、数量关系)()(x f x f ±=-哪个成立; 例1:判断下列各函数是否具有奇偶性 ⑴、x x x f 2)(3+= ⑵、2 432)(x x x f += ⑶、1 )(2 3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-= 解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数 ⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数 注:教材中的解答过程中对定义域的判断忽略了。 例2:判断函数???<≥-=)0()0()(22x x x x x f 的奇偶性。 .)(),()() ()()()(,0,0) ()()(,0,0) (0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-== 第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。 四、关于函数的奇偶性的几个命题的判定。 命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分

函数的奇偶性及周期性综合运用

函数的奇偶性及周期性 1. 已知定义在 R 上的奇函数 f(x) 满足 f(x+2)= -f(x) f(6) 的值为 ( ) A.-1 B.0 C.1 D.2 【答案】 B 【解析】 ∵ f(x+2)=-f(x), ∴ f(6)=f(4+2)=-f(4)=f(2)= -f(0) 又 f(x) 为R 上的奇函数 , ∴ f(0)=0. ∴ f(6)=0. 2. 函数 f ( x) x 3 sin x 1( x R), 若 f(a)=2, 则 f(-a) 的值为 ( ) A.3 B.0 C.-1 D.-2 【答案】 B 【解析】 设 g ( x) 3 sinx, 很明显 g(x) 是一个奇函数 . x ∴ f(x)=g(x)+1. ∵ f(a)=g(a)+1=2, ∴ g(a)=1. ∴ g(-a)=-1. ∴ f(-a)=g(-a)+1=-1+1=0. 3. 已知 f(x) 是定义在 R 上的偶函数 , 并满足 f(x+2)= 1 1 x 2 时 ,f(x)=x-2, 则 f ( x) f(6.5) 等于?? ( ) A.4.5 B.-4.5 C.0.5 D.-0.5 【答案】 D 【 解 析 】 由 f(x 2) 1 得 f(x 4) 1 f ( x ) f ( x 2) f(6.5)=f(2.5). 因为 f(x) 是偶函数 , 得 f(2.5)=f(-2.5)=f(1.5), 而 1 x 2 时 ,f(x)=x-2, 所以 f(1.5)=-0.5. 综上 , 知f(6.5)=-0.5. 4. 已知函数 f(x) 是定义在 R 上的奇函数 , 当 x>0时 ,f(x)= - 是 ( ) A. ( 1) B. ( 1] C. (1 ) D. [1 ) 【答案】 A 【解析】 当 x>0时 f ( x ) 1 2 x 1 1 x 2 当 x<0时,-x>0, ∴ f( x ) 1 2 x . 又∵ f(x) 为 R 上的奇函数 , ∴ f(-x)=-f(x). ∴ f ( x ) 1 2 x . ∴ f ( x ) 2 x 1 . ∴ f ( x) 2 1 1 即 2 x 1 . x ∴ x<-1. 2 2 ∴不等式 f ( x ) 1 的解集是 ( 1) . 2 5. 设 g(x) 是定义在 R 上、以 1为周期的函数 . 若函数 f(x)=x+g(x) 则f(x) 在区间 [0,3] . f ( x) 那 么 f(x) 的 周 期 是 4, 得 2 x 则不等式 f ( x) 1 的解集 2 1 2 在区间 [0,1] 上的值域为 [-2,5],

(完整版)函数奇偶性的归纳总结

函数的奇偶性的归纳总结 考纲要求:了解函数的奇偶性的概念,掌握判断一些简单函数的奇偶性的方法。 教学目标:1、理解函数奇偶性的概念; 2、掌握判断函数的奇偶性的类型和方法; 3、掌握函数的奇偶性应用的类型和方法; 4、培养学生观察和归纳的能力,培养学生勇于探索创新的精神。 教学重点:1、理解奇偶函数的定义; 2、掌握判断函数的奇偶性的类型和方法,并探索其中简单的规律。 教学难点:1、对奇偶性定义的理解; 2、较复杂函数奇偶性的判断及函数奇偶性的某些应用。 教学过程: 一、知识要点: 1、函数奇偶性的概念 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f =-,那么函数)(x f 就叫做偶函数。 一般地,对于函数)(x f ,如果对于函数定义域内任意一个x ,都有)()(x f x f -=-,那么函数)(x f 就叫做奇函数。 理解: (1)奇偶性是针对整个定义域而言的,单调性是针对定义域内的某个区间而言的。这两个概念的区别之一就是,奇偶性是一个“整体”性质,单调性是一个“局部”性质; (2)定义域关于原点对称是函数具有奇偶性的必要条件。 2、按奇偶性分类,函数可分为四类: 奇函数非偶函数、偶函数非奇函数、非奇非偶函数、亦奇亦偶函数. 3、奇偶函数的图象:

奇函数?图象关于原点成中心对称的函数,偶函数?图象关于y 轴对称的函数。 4、函数奇偶性的性质: ①具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称)。 ②常用的结论:若f(x)是奇函数,且x 在0处有定义,则f(0)=0。 ③奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同,最值相反。奇函数f(x)在区间[a,b](0≤a

函数奇偶性与单调性的综合应用 专题

函数奇偶性与单调性的综合应用 专题 【寄语:亲爱的孩子,将来的你一定会感现在拼命努力的自己!】 教学目标:1.掌握函数的单调性与奇偶性的概念以及基本性质;. 2.能综合运用函数的单调性与奇偶性来分析函数的图像或性质; 3.能够根据函数的一些特点来判断其单调性或奇偶性. 教学重难点:函数单调性的证明;根据单调性或奇偶性分析函数的性质. 【复习旧识】 1.函数单调性的概念是什么?如何证明一个函数的单调性? 2.函数奇偶性的概念是什么?如何证明一个函数的奇偶性? 3.奇函数在关于原点对称的区间上,其单调性有何特点?偶函数呢? 【新课讲解】 一、常考题型 1.根据奇偶性与单调性,比较两个或多个函数值的大小; 2.当题目中出现“2 121) ()(x x x f x f -->0(或<0)”或“)(x xf >0(或<0)”时,往往还是 考察单调性; 3.证明或判断某一函数的单调性; 4.证明或判断某一函数的奇偶性; 5.根据奇偶性与单调性,解某一函数不等式(有时是“)(x f >0(或<0)”时x 的取值围); 6.确定函数解析式或定义域中某一未知数(参数)的取值围.

二、常用解题方法 1.画简图(草图),利用数形结合; 2.运用奇偶性进行自变量正负之间的转化; 3.证明或判断函数的单调性时,有时需要分类讨论. 三、误区 1.函数的奇偶性是函数的整体性质,与区间无关; 2.判断函数奇偶性,应首先判断其定义域是否关于原点对称; 3.奇函数若在“0=x ”处有定义,必有“0)0(=f ”; 4.函数单调性可以是整体性质也可以是局部性质,因题而异; 5.运用单调性解不等式时,应注意自变量取值围受函数自身定义域的限制. 四、函数单调性证明的步骤: (1) 根据题意在区间上设 ; (2) 比较大小 ; (3) 下结论 . 函数奇偶性证明的步骤: (1)考察函数的定义域 ; 例1 设)(x f 是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a =)3 1(log 2 f ,b =)2 1 (log 3 f ,c =)2(-f ,则a ,b ,c 的大小关系是( ) A .c b a >> B .a c b >> C .b a c >> D .a b c >> 【考点】函数单调性;函数奇偶性,对数函数的性质. 【解析】 因为log 2 3

函数奇偶性的判断方法

函数奇偶性的判断方法 (周口卫生学校 马爱华 466000) 摘要:本文由两个高考题来验证判断函数奇偶性的三种常见方法:1、利用奇偶函数的定义来判断(这是最基本,最常用的方法);2、用求和(差)法判断;3、用求商法判断。 关键词:奇函数 偶函数 定义域 求和(差)法 求商法 函数的奇偶性是函数的一个重要的性质,其重要性质体现在它与函数的各种性质的联系之中,那么,怎样来判断函数的奇偶性呢? 函数的奇偶性的判断应从两方面来进行,一是看函数的定义域是否关于原点对称(这是判断奇偶性的必要性)二是看)(x f 与)(x f -的关系。判断方法有以下三种: 1、利用奇偶函数的定义来判断(这是最基本,最常用的方法) 定义:如果对于函数y=f (x )的定义域A 内的任意一个值x , 都有f (-x )=-f (x )则这个涵数叫做奇函数 f (-x )=f (x ) 则这个函数叫做偶函数 2、用求和(差)法判断 若0)()(=-+x f x f (()()2())f x f x f x --=则)(x f 为奇函数 若())(2)()(0)()(x f x f x f x f x f =-+=-- 则)(x f 为偶函数 3、用求商法判断 若 ()0)(1)()(≠-=-x f x f x f 则)(x f 为奇函数 若()0)(1) ()(≠=-x f x f x f 则)(x f 为偶函数

例1、判断函数()x x x f ++=21lg )(的奇偶性(对口升学07年高考题) 解法一(定义法) 函数的定义域为R ,关于原点对称 () x x x f -+=-21lg )( =222(1)(1) lg 1x x x x x x +-++++=()1221lg 11lg -++=++x x x x = 2lg(1)x x -++ ()f x =- )(x f ∴为奇函数 解法二(求和(差)法) ()()x x x x x f x f -++++=-+221lg 1lg )()( ()() x x x x -+++=2211lg =01lg = )(x f ∴为奇函数 解法三(求商法) ()()()() ()x x x x x x x x x x x x x f x f ++++-=+++=++-+=-2222221lg 1lg 1lg 11 lg 1lg 1lg )()( )0(1≠-=x )(x f ∴为奇函数 例2判断函数?? ? ??+-=21121)(x x x f 的奇偶性(对口升学08年高考题) 解法一(定义法) 函数的定义域为0≠x 的全体实数,关于原点对称

函数的奇偶性的经典总结

函数的奇偶性 一、函数奇偶性的基本概念 1.偶函数:一般地,如果对于函数()x f 的定义域内任意一个x ,都有()()x f x f =-, 0)()(=--x f x f ,那么函数()x f 就叫做偶函数。 2.奇函数:一般地,如果对于函数()x f 的定义域内任一个x ,都有()()x f x f -=-, 0)()(=+-x f x f ,那么函数()x f 就叫做奇函数。 注意:(1)判断函数的奇偶性,首先看定义域是否关于原点对称,不关于原点对称是非奇非偶函数,若函数的定义域是关于原点对称的,再判断 ()()x f x f ±=- 之一是否成立。 (2)在判断()x f 与()x f -的关系时,只需验证()()0=±-x f x f 及) () (x f x f -=1±是否成立即可来确定函数的奇偶性。 题型一 判断下列函数的奇偶性。 ⑴x x x f +=2 )(,(2)x x x f -=3 )( (3)()()()R x x f x f x G ∈--=,(4) (5)x x x f cos )(= (6)x x x f sin )(= (7) x x x f --=22)(,(8) 提示:上述函数是用函数奇偶性的定义和一些性质来判断 (1)判断上述函数的奇偶性的方法就是用定义。 (2)常见的奇函数有:x x f =)(,3 )(x x f =,x x f sin )(=, (3)常见的奇函数有:2 )(x x f =,x x f =)(,x x f cos )(= (4)若()x f 、()x g 都是偶函数,那么在(x f 与()x g 的公共定义域上,()x f +()x g 为 偶函数,()-x f ()x g 为偶函数。当()x g ≠0时, ) () (x g x f 为偶函数。 (5)若()x f ,()x g 都是奇函数,那么在()x f 与()x g 的公共定义域上,()x f +()x g 是奇函数,()-x f ()x g 是奇函数,()()x g x f ?是偶函数,当()x g ≠0时, ) () (x g x f 是偶函数。 (6)常函数()()为常数c c x f =是偶函数,()f x =0既是偶函数又是奇函数。 (7)在公共定义域内偶函数的和、差、积、商(分母不为零)仍为偶函数;奇函数和、差仍为奇函数;奇(偶)数个奇函数积、商(分母不为零)为奇(偶)函数;一个奇函数与一个偶函数的积为奇函数.(8)对于复合函数()()[]x g f x F =;若()x g 为偶函数, ()f x 为奇(偶)函数,则()x F 都为

函数的奇偶性(讲义).docx

函数的奇偶性 【知识要点】 1.函数奇偶性的定义:一般地,对于函数 f (x) 定义域内的任意一个x,都有 f (x) f (x), 那么函数f ( x)f (x) f ( x) 叫偶函数(, 那么函数 even function).如果对于函数定义域内的任意一个 f ( x) 叫奇函数( odd function). x,都有 2.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之亦真.由此,可由函数图象的对称性判断函数的奇偶性,也可由函数的奇偶性作函数的图象. 3.判别方法:先考察定义域是否关于原点对称,再用比较法、计算和差、比商法等判别 f (x)与 f ( x) 的关系; (1)奇函数 f (x) 1( f (x) 0) ; f ( x)f (x)f ( x) f (x) 0 f (x) (2)偶函数 f x f x f xf x f x 0 1 f x 0 . f x 4.函数奇偶性的几个性质: (1)奇偶函数的定义域关于原点对称,在判断函数奇偶性时,应先考察函数的定义域;(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立; (3)若奇函数 f x在原点有意义,则 f 00 ; (4)根据奇偶性可将函数分为四类:奇函数、偶函数、既是奇函数又是偶函数、既不是奇函数,又不是偶函数; (5)在公共的定义域内:两个奇(偶)函数的和与差仍是奇(偶)函数;两个奇(偶)函数的积是偶函数;一个奇函数与一个偶函数的积是奇函数; (6)函数 f x与函数 1 有相同的奇偶性 . f x

5.奇偶性与单调性: (1)奇函数在两个关于原点对称的区间 b, a , a, b 上有相同的单调性; (2)偶函数在两个关于原点对称的区间 b, a , a, b 上有相反的单调性 . 【典例精讲】 类型一 函数奇偶性的判断 例 1 判断下列函数的奇偶性: (1) f x x 2 2 x ; (2) f x 1 x 2 x 2 1 ; (3) f x ax b ax b a b 0 ; 1 1 (4) f x x ; 2 x 1 2 x 2 x 1, x x 2 2x 3, x 0, (5) f ( x) 0, x 0, 2 x 1, x ( 6) f ( x)0, x 0; 2x 3, x 0. x 2 变式 判断下列函数的奇偶性: 4 5 1 1 (1) f ( x )= x ; (2) f ( x )= x ; (3)f ( x )= x + x 2 ;(4) f ( x )= x 2 . ( 5) f ( x ) x 3 2 x ( 6) f ( x) 2 x 4 4 x 2 ( ) y ax b ( a 0, b 0) ( 8) y x ( k 0) 7 x k x 2

判定三类特殊函数的奇偶性

判定三类特殊函数的奇偶性 一、要点解读 1、理解奇、偶函数的定义要把握好两个问题:其一,定义域关于原点对称是函数f (x )为奇函数或偶函数的必须满足的条件;其二,)()(x f x f -=-或)()(x f x f =-是定义域上的恒等式. 2、具有奇偶性的函数的图像的特征;偶函数的图像关于y 轴对称;奇函数的图像关于 原点对称.所以判断函数的奇偶性,除了定义法还有图像法. 3、由奇函数的定义可知,在x =0处有意义的奇函数f (x ),有f (0)=0成立. 4、有时可以应用定义的等价形式来判断函数的奇偶性. )()(x f x f ±=-,即0)()(=-x f x f ,即).0)((1) ()(≠±=-x f x f x f 5、偶函数在关于原点对称的区间上单调性相反;奇函数在关于原点对称的区间上单调性相同. 二、典例剖析 1、常见函数的奇偶性的判断 例1、判断函数1||)(2-= x x x f 是否具有奇偶性. 解:先看定义域,由012≠-x 得1±≠x ,则定义域}1,|{±≠∈=x R x x D 关于原点 对称,即任取D x ∈,都有D x ∈-,又1)(||)(2---=-x x x f )(1 ||2x f x x =-=, 所以1 ||)(2-=x x x f 为偶函数. 点评:第一步:判断定义域是否关于原点对称;第二步:若定义域不关于原点对称,则该函数既不是奇函数也不是偶函数,若定义域关于原点对称,则进一步寻找f (-x )与f (x )之间的关系;第三步:根据定义下结论. 2.分段函数的奇偶性 例2、判断函数???>+-<-=) 0)(1()0)(1()(x x x x x x x f 的奇偶性. 解:由题意,得函数f (x )的定义域关于原点对称,当x<0时,-x>0,

函数的奇偶性与周期性

函数的奇偶性与周期性 1.函数的奇偶性 2.(1)周期函数 对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期. (2)最小正周期 如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期. 3.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)若f (x )是定义在R 上的奇函数,则f (-x )+f (x )=0.(√) (2)偶函数的图象不一定过原点,奇函数的图象一定过原点.(×) (3)如果函数f (x ),g (x )为定义域相同的偶函数,则F (x )=f (x )+g (x )是偶函数.(√) (4)定义域关于原点对称是函数具有奇偶性的一个必要条件.(√) (5)若T 是函数的一个周期,则nT (n ∈Z ,n ≠0)也是函数的周期.(√) (6)函数f (x )在定义域上满足f (x +a )=-f (x ),则f (x )是周期为2a (a >0)的周期函数.(√) (7)函数f (x )=0,x ∈(0,+∞)既是奇函数又是偶函数.(×) (8)若函数y =f (x +a )是偶函数,则函数y =f (x )关于直线x =a 对称.(√) (9)若函数y =f (x +b )是奇函数,则函数y =f (x )关于点(b,0)中心对称.(√) (10)若某函数的图象关于y 轴对称,则该函数为偶函数;若某函数的图象关于(0,0)对称,则该函数为奇函数.(√) 考点一 判断函数的奇偶性

高考数学复习点拨 函数奇偶性的判定方法.doc

函数奇偶性的判定方法 函数奇偶性的判定方法较多,下面举例介绍常见的判定方法. 1.定义域判定法 例1 判定()(1)2f x x x =--的奇偶性. 解:要使函数有意义,须20x -≥,解得2x ≥, 定义域不关于原点对称,∴原函数是非奇非偶函数. 评注:用定义域虽不能判定一个函数是奇函数还是偶函数,但可以通过定义域不关于原 点对称,来否定一个函数具有奇偶性. 2.定义判定法 例2 判断()f x x a x a =++-的奇偶性. 解:函数()f x x a x a =++-的定义域为R , 且 ()()()()f x x a x a x a x a x a x a f x -=-++--=--+-+=-++=, ∴函数()f x 是偶函数. 评注:在定义域关于原点对称的前提下,可根据定义判定函数奇偶性. 3.等价形式判定法 例3 判定()f x = 的奇偶性. 解:()f x 的定义域为R ,关于原点对称,当0x =时,()0f x =,∴图象过原点. 又 0x ≠时,22 22()(1)(1)1()(1)(1)f x x x f x x x -+-+==-+--,()()f x f x ∴-=-. 又(0)0f =,()f x ∴为奇函数. 评注:常用等价变形形式有:若()()0f x f x +-=或()1() f x f x -=-,则()f x 为奇函数;若()()0f x f x --=或 ()1() f x f x -=,则()f x 为偶函数(其中()0f x ≠). 4.性质判定法 例4 若0a >,[]()()f x x a a ∈-,是奇函数,()() g x x ∈R 是偶函数, 试判定()()()x f x g x ?=的奇偶性. 解:在()()f x g x ,的公共定义域[]a a -,内, 任取一个x ,则()()()x f x g x ?-=--,

函数奇偶性的判断

函数奇偶性的判断 在函数奇偶性的定义中, 有两个必备条件,一是定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域对解决问题是有利的;二是判断f (x )与f (-x )是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f (x )+f (-x )=0(奇函数)或f (x )-f (-x )=0(偶函数))是否成立,这样能简化运算 如本题中(4),判断f (x )+f (-x )=0是否成立,要方便得 多.本题(3)是分段函数判断奇偶性,分段函数指在定义域的不同子集有不同对应关系的函数.分段函数奇偶性的 判断,要分别从x >0或x <0来寻找等式f (-x )=f (x )或f (- x )=-f (x )是否成立,只有当对称的两个区间上满足相同 关系时,分段函数才具有确定的奇偶性. 函数奇偶性的应用 ()()()()()()()()2 211lg 2(1(0)1134.212(0)x x f x f x x x x x x f x f x x x x -+?+>?≥?--<< +--++- ++≥≤<-- 由,得-,故的定义域关于原点对称. 又-==-=-,故原函数是奇函数.由,得-,定义域不关于原点对称,故原函数是非奇非【解析】偶函数.()()()()()()()()()2 2 22 (0)(0)000()000()() 112111 21212222134x x x x f x x f x x x x x f x x x f x x f x x x x x f x x x f x f x f x f x ∞∞><><><-=---R 的定义域为-, ,+,它关于原点对称. 又当时,=+,则当时,-,故-=-=;当时,=-,则当时,-,故-=+=. 故原函数是偶函数. 因为的定义域为,且-=-=-=-,()()()()()()()()21lg 12|2|23lg( 1 4211 f x x f x x f x x x x f x x x (-) --?≤??->??判断下列函数的奇偶性.=;【=.=变式练习】()()()()2{1,1}()1011|2|2()12f x f x x x x x f x f x ±><<因为定义域-关于原点对称,且-=,所以原函数既是奇函数又是偶函数. 【解析】由-,得-,则--=-,且-=-, 故原函数是奇函数. ()()()()())lg(34f x x x f x f x R 因为定义域为全体实数,且 -===-=-,故原函数是奇函数.因为定义域是,关于原点对称, 作出函数的图象,可知是偶函数. ()log (a f x x a 【若函数=是奇函数,求实例】 数2的值. ()()222()0log (log )0log 2021.0200log 0212a a a f x f x x x a a a a f a a >由+-=,得+=,即=,所以=因为,所以=因为奇函数的定义域为全体实数,所以函数在原点有定义,则=定义法:,即,则=,得性质【法:=解析】

函数的奇偶性练习题[(附答案)

函数的奇偶性 1.函数f (x )=x(-1﹤x ≦1)的奇偶性是 ( ) A .奇函数非偶函数 B .偶函数非奇函数 C .奇函数且偶函数 D .非奇非偶函数 2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( ) A .奇函数 B .偶函数 C .既奇又偶函数 D .非奇非偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数, 且f (2)=0,则使得f (x )<0的x 的取值范围是 ( ) A.(-∞,2) B. (2,+∞) C. (-∞,-2)?(2,+∞) D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数. 当x ∈(-∞,0)时,f (x )=x -x 4,则 当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性: (1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2 (3) f (x )=? ? ?>+<-). 0() 1(),0()1(x x x x x x 6.已知g (x )=-x 2-3,f (x )是二次函数,当x ∈[-1,2]时,f (x )的最小值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。 7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2 )<0,求a 的取值范围 8.已知函数21 ()(,,)ax f x a b c N bx c += ∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数, (1)求a,b,c 的值; (2)当x ∈[-1,0)时,讨论函数的单调性. 9.定义在R 上的单调函数f (x )满足f (3)=log 23且对任意x ,y ∈R 都有 f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数; (2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成立,求实数k 的取值范围.

函数单调性和奇偶性综合

函数单调性和奇偶性综合 ? 教学重点、难点:函数奇偶性、单调性的综合应用. ? 教学过程: 一、复习提问 1.奇偶函数的定义及奇偶函数的图象特征. 2. 练习:已知函数()f x 是定义在 R 上的奇函数,给出下列命题: (1)()0f x =; (2)若 ()f x 在 [0, )∞+上有最小值 -1,则()f x 在)(0,∞-上有最大值1; (3)若 ()f x 在 [1, )∞+上为增函数,则()f x 在](1,-∞-上为减函数. 其中正确的序号是: ① ② 二、新课讲解 例1.已知:函数()y f x =在R 上是奇函数,而且在(0,)+∞上是增函数,证明:()y f x =在(,0)-∞上也是增函数. 证明:设120x x <<,则120x x ->->∵()f x 在(0,)+∞上是增函数. ∴12()()f x f x ->-,又()f x 在R 上是奇函数. ∴12()()f x f x ->-,即12()()f x f x < 所以,()y f x =在(,0)-∞上也是增函数. 说明:函数的奇偶性和单调性的综合:奇函数在对称于原点的两个区间上的单调性一致;偶函数则在在对称于原点的两个区间上的单调性相反!

例2.()f x 为R 上的奇函数,当0x >时,2 ()231f x x x =-++,求()f x 的解析式. 解:设0x <,由于()f x 是奇函数,故()()f x f x =--, 又0x ->,由已知有22()2()3()1231f x x x x x -=--+-+=--+ 从而解析式为222310()0 02310x x x f x x x x x ?-++>?==??+--?-<-?解之得112m -≤<. 例4:(1)已知()f x 的定义域为{|0}x x ≠,且12()()f x f x x +=,试判断()f x 的奇偶性; (2)函数()f x 定义域为R ,且对于一切实数,x y 都有()()()f x y f x f y +=+,试判断()f x 的奇偶性. 解:(1)∵()f x 的定义域为{|0}x x ≠,且12()()f x f x x += ① 令①式中x 为1x 得:112()()f f x x x += ②

相关主题
文本预览
相关文档 最新文档