当前位置:文档之家› 高中物理学业考试压轴题训练

高中物理学业考试压轴题训练

高中物理学业考试压轴题训练
高中物理学业考试压轴题训练

高中物理学业考试压轴题训练

1.如图所示,水平地面上固定有高为h 的平台,台面上有固定的光滑坡道,坡道顶端距台面高也为h ,坡道底端与台面相切。小球A 从坡道顶端由静止开始滑下,到达水平光滑的台面后与静止在台面上的小球B 发生碰撞,并粘连在一起,共同沿台面滑行并从台面边缘飞出,落地点与飞出点的水平距离恰好为台高的一半。两球均可视为质点,忽略空气阻力,重力加速度为g 。求

(1)小球A 刚滑至水平台面的速度V A

(2)碰后A 、B 一起运动的速度。

2.如图所示,圆管构成的半圆形竖直轨道固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球以某一初速度冲进轨道,到达半圆轨道最高点M 并飞出轨道,落地点距N 为2R 。重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求: (1)球从飞出轨道到落地的时间t ;

(2)小球冲进轨道时速度v 的大小。

3.光滑水平面上放着质量,m A =1kg 的物块A 与质量m B =2kg 的物块B , A 与B 均可视为质点,A 靠在竖直墙壁上,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能E P =49J 。在A 、B 间系一轻质细绳,细绳长度大于弹簧的自然长度,如图所示。放手后B 向右运动,绳在短暂时间内被拉断,之后B 冲上与水平面相切的竖直半圆光滑轨道,其半径R =0.5m, B 恰能到达最高点C 。取g =10m/s 2,求 (1)绳拉断后瞬间B 的速度v B 的大小;

(2)绳拉断过程绳对B 做的功; (3)绳拉断过程中A 获得的速度为4m/s ,求绳拉断过程中损失的机械能。

4.如图所示,质量为3m ,长度为L 的木块置于光滑的水平面上,质量为m 的子弹以初速度v 0水平向右射入木块,穿出木块时速度为

52

v 0,木块获得的速度为5

1v 0设木块对子弹的阻力始终保持不变. 求子弹穿透木块的过程中,木块滑行的距离s ;

5.质量kg m 5.1=的物块(可视为质点)在水平恒力F 作用下,从水平面上A 点由静止开始运动,运动一段距离撤去该力,物块继续滑行s t 0.2=停在B 点,已知A 、B 两点间的距离m s 0.5=,物块与水平面间的动摩擦因数20.0=μ,求恒力F 多大。

6.如图所示,坡道顶端距水平面高度为h ,质量为m 的小物块A 从坡道顶端由静止滑下,进入水平面上的滑道时无机械能损失,为使A 制动,将轻弹簧的一端固定在水平滑道延长线M 处的墙上,另一端与与质量也为m 的档板相连,弹簧处于原长时,B 恰好位于滑道的末端O 点。A 与B 碰撞时间极短,碰撞后结合在一起以A 碰前速度的一半共同压缩弹簧。已知在OM 段A 、B 与水平面间的动摩擦因数为μ,其

余各处的摩擦不计,重力加速度为g ,求

(1)物块A 在档板B 碰撞瞬间的速度v 的大小;

(2)弹簧最大压缩时为d 时的弹性势能E P (设弹簧处于原长时弹性势能为零)。

7.由光滑细管组成的轨道如图所示,其中AB 段和BC 段是半径为R 的四分之一圆弧,轨道固定在竖直平面内。一质量为m 的小球,从距离水平地面为H 的管口D 处静止释放,最

后能够从A 端水平抛出落到地面上。

(1)求小球落到地面时相对于A 点的水平位移。

(2)小球能到A 点的条件下,随着H 的不同,小球在A 点受到的轨道对它的作用力也不同,取里的方向向上为正,请在下面坐标系中

作出F N -H 图像

8.如图所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L=1.5 m,现有质量m 2=0.2 kg 可视为质点的物块,

以水平向右的速度v 0=2 m/s 从左端滑上小车,最后在车面上某处与小车保持相对静止。物块与车面间的动摩擦因数μ=0.5,取g=10 m/s 2,求

(1)物块在车面上滑行的时间t;

(2)要使物块不从小车右端滑出,物块滑上小车左端的速度v′0不超过多少。 9.如图,一不可伸长的轻绳上端悬挂于O 点,T 端系一质量m=1.0kg 的小球。现将小球拉到A 点(保持绳绷直)由静止释放,当它经过B 点时绳恰好被拉断,小球平抛后落在水平地面上的C 点。地面上的D 点与OB 在同一竖直线上,已知绳长L=1.0 m ,B 点离地高度H=1.0 m ,A 、B 两点的高度差h =0.5 m ,重力加速

度g 取10m/s 2

,不计空气影响, (1)地面上DC 两点间的距离s ; (2)轻绳所受的最大拉力大小。

10.如图,在竖直平面内有一固定光滑轨道,其中AB 是长为R 的水平直轨道,BCD 是圆心为O 、半径为R 的3/4圆弧轨道,两轨道相切于B 点。在外力作用下,一小球从A 点由静止开始做匀加速直线运动,到达B 点时撤除外力。已知小球刚好能沿圆轨道经过最高点C ,重力加速度为g 。求:

(1)小球在AB 段运动的加速度的大小; (2)小球从D 点运动到A 点所用的时间。

11.如图,跳台滑雪运动员经过一段加速滑行后从O 点水平飞出,经过3.0 s 落到斜坡上的A 点。已知O 点是斜坡的起点,斜坡与水平面的夹角θ=37°,运动员的质量m =50 kg 。不计空气阻力。(取sin37°=0.60,cos37°

=0.80;g 取10 m/s 2

)求 (1)A 点与O 点的距离L ; (2)运动员离开O 点时的速度大小; (3)运动员落到A 点时的动能。

12.如图所示,水平光滑地面上停放着一辆小车,左侧靠在竖直墙壁上,小车的四分之一圆弧轨道AB 是光滑的,在最低点B 与水平轨道BC 相切,BC 的长度是圆弧半径的10倍,整个轨道处于同一竖直平面内。可视为质点的物块从A 点正上方某处无初速度下落,恰好落入小车圆弧轨道滑动,然后沿水平轨道沿街至轨道末端C 处恰好没有滑出。已知物块到达圆弧轨道最低点B 时对轨道的压力是物块重力的9倍,小车的质量是物块的3倍,不考虑空气阻力和物块落入圆弧轨道时的能量损失。求

(1)物块开始下落的位置距水平轨道BC 的竖直高度是圆弧半径的几倍;

(2)物块与水平轨道BC 间的动摩擦因数μ。 13.如图,可视为质点的小球A 、B 用不可伸长的细软轻线连接,跨过固定在地面上、半径为R 的光滑圆柱,A 的质量为B 的两倍。当B 位于地面时,A 恰与圆柱轴心等高。将A 由静止释放,求B 上升的最大高度。

14.如图所示,在竖直平面内有一半径为R 的圆弧轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力。已知AP=2R,重力加速度为g ,则小球从P 到B 的运动过程中重力做功 ; 机械能减少 ; 合外力做功 ; 克服摩擦力做功 。

15.某校物理兴趣小组决定举行遥控赛车比赛。比赛路径如图所示,赛车从起点A 出发,沿水平直线轨道运动L 后,由B 点进入半径为R 的光滑竖直圆轨道,离开竖直圆轨道后继续在光滑平直轨道上运动到C 点,并能越过壕沟。已知赛车质量m=0.1kg ,通电后以额定功率P=1.5W 工作,进入竖直轨道前受到阻力恒为0.3N ,随后在运动中受到的阻力均可不计。图中L=10.00m ,R=0.32m ,h=1.25m ,S=1.50m 。问:要使赛车完成比赛,电动机至少工作多

长时间?(取g=10m/s 2

16. 如图8所示,四分之一圆轨道OA 与水平轨道AB 相切,它们与另一水平轨道CD 在同一竖直面内,圆轨道OA 的半径R=0.45m ,水平轨道AB 长s 1=3m, OA 与AB 均光滑。一滑块从O 点由静止释放,当滑块经过A 点时,静止在CD 上的小车在F=1.6N 的水平恒力作用下启动,运动一段时间后撤去力F 。当小车在CD 上运动了s 2=3.28m 时速度v =2.4m/s ,此时滑块恰好落入小车中。已知小车质量M=0.2kg,与CD 间的动摩擦因数μ=0.4。(取

g=10m/s 2

)求

(1)恒力F 的作用时间t 。 (2)AB 与CD 的高度差h 。

17.如图所示,某货场需将质量为m 1=100 kg 的货物(可视为质点)从高处运送至地面,为避免货物与地面发生撞击,现利用固定于地面的光滑四分之一圆轨道,使货物由轨道顶端无初速滑下,轨道半径R=1.8m 。地面上紧靠轨道依次排放两块完全相同的木板A 、B ,长度均为l =2m ,质量均为m 2=100 kg ,木板上表面与轨道末端相切。货物与木板间的动摩擦因数为μ1,木板与地面间的动摩擦因数μ2=0.2。(最大静摩擦力与滑动摩擦力大小相等,

取g=10 m/s 2

(1)求货物到达圆轨道末端时对轨道的压力。

(2)若货物滑上木板A 时,木板不动,而滑上木板B 时,木板B 开始滑动,求μ1应满足的条件。 (3)若μ1=0.5,求货物滑到木板A 末端时的速度和在木板A 上运动的时间。

18.游乐场的过山车的运动过程可以抽象为图13所示模型。弧形轨道下端与圆轨道相撞,使小球

从弧形轨道上端A 点静止滑下,进入圆轨道后沿圆轨道运动,最

后离开。试分析A 点离地面的高度h 至少要多大,小球才可以顺利通过圆轨道最高点(已知圆轨道的半径为R ,不考虑摩擦等阻力)。

19.倾斜雪道的长为25 m ,顶端高为15 m ,下端经过一小段圆弧过渡后与很长的水平雪道相接,如图所示。一滑雪运动员在倾斜雪道的顶端以水平速度v 0=8 m/s 飞出,在落到倾斜雪道上时,运动员靠改变姿势进行缓冲使自己只保留沿斜面的分速度而不弹起。除缓冲外运动员可视为质点,过渡轨道光滑,其长度可忽略。设滑雪板与雪道的动摩擦因数μ=0.2,求运动员在水平雪道上滑行的距离

(取g =10 m/s 2

20.如图,质量为1m 的物体A 经一轻质弹簧与下方地面上的质量为2m 的物体B 相连,弹簧的劲度系数为k ,A 、B 都处于静止状态。一条不可伸长的轻绳绕过轻滑轮,一端连物体A ,另一端连一轻挂钩。开始时各段绳都处于伸直状态,A 上方的一段绳沿竖直方向。现在挂钩上升一质量为3m 的物体C 并从静止状态释放,已知它恰好能使B 离开地面但不继续上升。若将C 换成另一个质量为)(21m m 的

物体D ,仍从上述初始位置由静止状态释放,则

这次B 刚离地时D 的速度的大小是多少?已知重力加速度为g 。 21.某兴趣小组设计了如图所示的玩具轨道,其中“2008”四个等高数字用内壁光滑的薄壁细圆管弯成,固定在竖直平面内(所有数字均由圆或半圆组成,圆半径比细管的内径大得多),底端与水平地面相切.弹射装置将一个小物体(可视为质点)以v a =5 m/s 的水平初速度由a 点弹出,从b 点进入轨道,依次经过“8002”后从p 点水平抛出.小物体与地面ab 段间的动摩擦因数μ=0.3,不计其它机械能损失.已知ab 段长L =1. 5 m ,数字“0”的半径R =0.2 m ,小物

体质量m =0.01 kg ,g =10 m/s 2

.求:

⑴小物体从p 点

抛出后的水平射程.

⑵小物体经过数字“0”的最高点时管道对小物体作用力的大小和方向.

b

p

22.AB 是竖直平面内的四分之一圆弧轨道,在下端B 与水平直轨道相切,如图所示。一小球自A 点起由静止开始沿轨道下滑。已知圆轨道半径为R ,小球的质量为m ,不计各处摩擦。求: (1)小球运动到B 点时的动

能;

(2)小球下滑到距水平轨道的高度为1

2

R 时的速度大小

和方向;

(3)小球经过圆弧轨道的B 点和水平轨道的C 点时,所受轨道支持力N B 、N C 各是多大?

23.图中滑块和小球的质量均为m ,滑块可在水平放置的光滑固定导轨上自 由滑动,小球与滑块上的悬点O 由一不可伸长的轻绳相连,轻绳长为l .开始时,轻绳处于水平拉直状态,小球和滑块均静止.现将小球由静止释放,当小球到达最低点时,滑块刚 好被一表面涂有粘性物质的固定挡板粘住,在极短的时间内速度减为零,小球继续向左摆动,当轻绳与竖直方向的夹角θ=60°时小球达到最高点.求

:

(1)从滑块与挡板接触到速度刚好变为零的过程中,挡板阻力对滑块做的功.

(2)小球从释放到第一次到达最低点的过程中,绳的拉力对小球做功的大小.

24.一探险队员在探险时遇到一山沟,山沟的一侧竖直,另一侧的坡面呈抛物线形状。此队员从山沟的竖直一侧,以速度v 0沿水平方向跳向另一侧坡面。如图所示,以沟底的O 点为原点建立坐标系Oxy 。已知,山沟竖直一侧的高度为2h ,坡面的抛物线方程为y=

h

21x 2

,探险队员的质量为m 。人视为质点,忽略空气阻力,重力加速度为g 。

(1)求此人落到坡面时的动能;

(2)此人水平跳出的速度为多大时,他落在坡面时的动能最小?动能的最小值为多少?

25.如图所示,一固定在竖直平面

内的光滑半圆形轨道ABC ,其半径R =0.5m ,轨道在C 处与水平地面相切。在C 放一小物块,给它一水平向左的初速度v0=5m/s ,结果它

沿CBA 运动,通过A 点,最后落在

水平地面上的D 点,求C 、D 间的距离s 。取重力加速度g =10m/s 2

。 26.质量为m 的飞机以水平速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力)。今测得当飞机在水

平方向的位移为l 时,它的上升高度为h ,求:(1)飞机受到的升力大小;(2)从起飞到上升至h 高度的过程中升力所作的功及在高度h 处飞机的动能。

27.图所示为一种摆式摩擦因数测量仪,可测量轮胎与地面间动摩擦因数,基主要部件有:底部固定有轮胎橡胶片的摆锤和连接摆锤的轻质细杆。摆锤的质量为m ,细杆可绕轴O 在竖直平面内自由转动,摆锤重心到O 点距离为L 。测量时,测量仪固定于水平地面,将摆锤从与O 等高的位置处静止释放。摆锤到最低点附近时,橡胶片紧压地面擦过一小段距离s (s

(1)摆锤在上述过程中损失的机械能;

(2)在上述过程中摩擦力对摆锤所做的功; (3)橡胶片与地面之间的动摩擦因数。

28.如图所示,质量m A 为4.0kg 的木板A 放在水平面C 上,木板与水平面间的动摩擦因数μ为0.24,木板右端放着质量m B 为1.0kg 的小物块B (视为质点),它们均处于静止状态。木板突然受到水平向右的瞬时冲击作用

开始以3m/s 速度运动,当小物块滑离木板时,木板的动能E M

为8.0J ,小物块的动能为0.50J ,重力加速度取10m/s 2,求木板的长度L 。

29.如图所示,长度为l 的轻绳上端固定在O 点,下端系一质量为m 的小球(小球的大小可以忽略)。

(1)在水平拉力F 的作用下,轻绳与竖直方向的夹角为α,小球保持静止,画出此时小球的受力图,并求力F 的大小。 (2)由图示位置无初速度释放小球,求当小球通过最低点时的速度大小及轻绳对小球的拉力。不计空气阻力。

30.如题24图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m ,人在极端的时间内给第一辆车一水平冲力使其运动,当车运动了距离L 时与第二辆车相碰,碰后速度为碰前速度的一半,两车以共同速度继续运动了距离L 时与第三车相碰,碰后速度为碰前速度的

3

2

,三车以共同速度又运动了距离L 时停止。车运动时受到的摩擦阻力恒为车所受重力的k

倍,重力加速度为g,若车与车之间仅在碰撞时发生相互作用,碰撞时间很短,忽略空气阻力,求:

(1)整个过程中摩擦阻力 所做的总功; (2)人给第一辆车水平速度的大小;

(3)第一次与第二次碰撞系统动能损失之比。

A

D

高考物理压轴题集(精选)

1(20分) 如图12所示,PR是一块长为L=4 m的绝缘平板固定在水平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC=L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 图12 2(10分)如图2—14所示,光滑水平桌面上有长L=2m的木板C,质量m c=5kg,在其正中央并排放着两个小滑块A和B,m A=1kg,m B=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大? (2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、 ,放手后,木板沿斜面下滑,稳定后弹小球放在斜面上,用手固定木板时,弹簧示数为F 1 簧示数为F ,测得斜面斜角为θ,则木板与斜面间动摩擦因数为多少?(斜面体固定在地 2 面上)

高考物理复习资料高中物理综合题难题汇编(三)高考物理压轴题汇编

高考物理复习资料高考物理压轴题汇编高中物理综合题难 题汇编(3) 1. (17分)如图所示,两根足够长的光滑直金属导轨MN、PQ平行放置在倾角为θ的绝缘斜面上,两导轨间距为L,M、P两点间接有阻值为R的电阻。一根质量为m的均匀直金属杆ab放在两导轨上,并与导轨垂直。整套装置处于匀强磁场中,磁场方向垂直于斜面向上。导轨和金属杆的电阻可忽略。让金属杆ab沿导轨由静止开始下滑,经过一段时间后,金属杆达到最大速度v m,在这个过程中,电阻R上产生的热量为Q。导轨和金属杆接触良好,重力加速度为g。求: (1)金属杆达到最大速度时安培力的大小; (2)磁感应强度的大小; (3)金属杆从静止开始至达到最大速度的过程中杆下降的高度。 2. (16分)如图所示,绝缘长方体B置于水平面上,两端固定一对平行带电极板,极板间形成匀强电场E。长方体B的上表面光滑,下表面与水平面的动摩擦因数 =0.05(设最大静摩擦力与滑动摩擦力相同)。B与极板的总质量 m=1.0kg。带正电的小滑块A质量 B m=0.60kg,其受到的电场力大小F=1.2N。假设A所带的电量不影响极板间的电场分布。 A t=0时刻,小滑块A从B表面上的a点以相对地面的速度 v=1.6m/s向左运动,同时,B A (连同极板)以相对地面的速度 v=0.40m/s向右运动。(g取10m/s2)问: B

(1)A 和B 刚开始运动时的加速度大小分别为多少? (2)若A 最远能到达b 点,a 、b 的距离L 应为多少?从t=0时刻至A 运动到b 点时,摩擦力对B 做的功为多少? 3. (18分)如图所示,一个质量为m 的木块,在平行于斜面向上的推力F 作用下,沿着倾角为θ的斜面匀速向上运动,木块与斜面间的动摩擦因数为μ.(θμtan <) (1)求拉力F 的大小; (2)若将平行于斜面向上的推力F 改为水平推力F 作用在木块上,使木块能沿着斜面匀速运动,求水平推力F 的大小。 4. (21分)如图所示,倾角为θ=30°的光滑斜面固定在水平地面上,斜面底端固定一垂直斜面的挡板。质量为m =0.20kg 的物块甲紧靠挡板放在斜面上,轻弹簧一端连接物块甲,另一端自由静止于A 点,再将质量相同的物块乙与弹簧另一端连接,当甲、乙及弹簧均处于静止状态时,乙位于B 点。现用力沿斜面向下缓慢压乙,当其沿斜面下降到C 点时将弹簧锁定,A 、 C 两点间的距离为△L =0.06m 。一个质量也为m 的小球丙从距离乙的斜面上方L =0.40m 处由静止自由下滑,当小球丙与乙将要接触时,弹簧立即被解除锁定。之后小球丙与乙发生碰撞(碰撞时间极短且无机械能损失),碰后立即取走小球丙。当甲第一次刚要离开挡板时,乙的速度为v =2.0m/s 。(甲、乙和小球丙均可看作质点,g 取10m/s 2)求:

2019浙江高考物理压轴题练习

浙江高考物理压轴题练习 1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量04.0=m kg 、电量4102-?+=q C 的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A 点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B 点,并沿轨道滑下。已知AB 的竖直高度h =0.45m ,倾斜轨道与水平方向夹角为0 37=α、倾斜轨道长为2.0=L m ,带电小球与倾斜轨道的动摩擦因数5.0=μ。倾斜轨道通过光滑水平轨道CD 与光滑竖直圆轨道相连,在C 点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强3100.2?=E V/m 。(cos37°=0.8,sin37°=0.6,取g=10m/s 2 ) 求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径9.0=R m ,小球进入轨道后可以有多 少次通过竖直圆轨道上距水平轨道高为0.01m 的某一点P ? 解:(1)A 到B 平抛运动:gh v y 22 = 解得: 3=y v m/s 1分 A x v v ==4 m/s 2分 2分 33.01=R m 2分 825.02=R m 2分

要使小球不离开轨道,竖直圆弧轨道的半径33.0≤R m 或825.0≥R m 2分 (3) 9.0=R m >R 2,小球冲上圆轨道H 1=0.825m 高度时速度变为0,然后返回倾斜轨道h 1高处再滑下,然后再次进入圆轨道达到的高度为H 2。 之后物块在竖直圆轨道和倾斜轨道之间往返运动 , 当n =4时,上升的最大高度小于0.01m 则小球共有6次通过距水平轨道高为0.01m 的某一点。 2分 2、如图所示,MN 、PQ 是足够长的光滑平行导轨,其间距为L ,且MP ⊥MN .导轨平面与水平面间的夹角θ=30°.MP 接有电阻R .有一匀强磁场垂直于导轨平面,磁感应强度为B 0.将一根质量为m 的 金属棒ab 紧靠MP 放在导轨上,且与导轨接触良好,金属棒的电阻也为R ,其余电阻均不计.现用与导轨平行的恒力F =mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP 平行.当金属棒滑行至cd 处时已经达到稳定速度,cd 到MP 的距离为S .已知重力加速度为g ,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd 的过程中,电阻R 上产生的热量; (3)若将金属棒滑行至cd 处的时刻记作t =0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B 随时间t 变化的关系式. 解:(1)当金属棒稳定运动时做匀速运动,则有 F =mg sin θ+F 安 又安培力 F 安=R v L B 222 解得:2 2L B mgR v = (2)金属棒从静止开始运动到cd 的过程,由动能定理得:

高考物理压轴题和高级高中物理初赛难题汇集一

高考物理压轴题和高级高中物理初赛难题汇集 一 文件排版存档编号:[UYTR-OUPT28-KBNTL98-UYNN208]

高考物理压轴题和高中物理初赛难题汇集-1 1. 地球质量为M ,半径为 R ,自转角速度为ω,万有引力恒量为 G ,如果规定 物体在离地球无穷远处势能为 0,则质量为 m 的物体离地心距离为 r 时,具有的万有引力势能可表示为 E p = -G r Mm .国际空间站是迄今世界上最大的航天工程,它是在地球大气层上空地球飞行的一个巨大的人造天体,可供宇航员在其上居住和进行科学实验.设空间站离地面高度为 h ,如果在该空间站上直接发射一颗质量为 m 的小卫星,使其能到达地球同步卫星轨道并能在轨道上正常运行,则该卫星在离开空间站时必须具有多大的动能 解析: 由G 2r Mm =r mv 2得,卫星在空间站上的动能为 E k =21 mv 2 = G ) (2h R Mm +。 卫星在空间站上的引力势能在 E p = -G h R Mm + 机械能为 E 1 = E k + E p =-G ) (2h R Mm + 同步卫星在轨道上正常运行时有 G 2r Mm =m ω2 r 故其轨道半径 r = 3 2 ω MG 由③式得,同步卫星的机械能E 2 = -G r Mm 2=-G 2 Mm 3 2 GM ω =-2 1 m (3ωGM )2

卫星在运行过程中机械能守恒,故离开航天飞机的卫星的机械能应为 E 2,设离 开航天飞机时卫星的动能为 E k x ,则E k x = E 2 - E p -21 32ωGM +G h R Mm + 2. 如图甲所示,一粗糙斜面的倾角为37°,一物块m=5kg 在斜面上,用F=50N 的力沿斜面向上作用于物体,使物体沿斜面匀速上升,g 取10N/kg ,sin37°=,cos37°=,求: (1)物块与斜面间的动摩擦因数μ; (2)若将F 改为水平向右推力F ',如图乙,则至少要用多大的力F '才能使物体沿斜面上升。(设最大静摩擦力等于滑动摩擦力) 解析: (1)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向,由物体匀速运动知物体受力平衡 解得 f=20N N=40N 因为N F N =,由N F f μ=得5.02 1 === N f μ (2)物体受力情况如图,取平行于斜面为x 轴方向,垂直斜面为y 轴方向。当物体匀速上行时力F '取最小。由平衡条件 且有N f '='μ 联立上三式求解得 N F 100=' 3. 一质量为m =3000kg 的人造卫星在离地面的高度为H =180 km 的高空绕地球作圆周运动,那里的重力加速度g =9.3m·s-2.由于受到空气阻力的作用,在一年时间内,人造卫星的高度要下降△H=0.50km .已知物体在密度为ρ的 流体中以速度v 运动时受到的阻力F 可表示为F =21 ρACv2,式中A 是物体的

挑战高中物理压轴题

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道 高为0.01m的某一点P?

2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R. .将一根质量为有一匀强磁场垂直于导轨平面,磁感应强度为B m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg 沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd的过程中,电 阻R上产生的热量; (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

挑战高中物理压轴题

1、如图所示,足够长的光滑绝缘水平台左端固定一被压缩的绝缘轻质弹簧,一个质量、电量的可视为质点的带电小球与弹簧接触但不栓接。某一瞬间释放弹簧弹出小球,小球从水平台右端A点飞出,恰好能没有碰撞地落到粗糙倾斜轨道的最高B点,并沿轨道滑下。已知AB的竖直高度,倾斜轨道与水平方向夹角为、倾斜轨道长为,带电小球与倾斜轨道的动摩擦因数。倾斜轨道通过光滑水平轨道CD与光滑竖直圆轨道相连,在C点没有能量损失,所有轨道都绝缘,运动过程小球的电量保持不变。只有过山车模型的竖直圆轨道处在范围足够大竖直向下的匀强电场中,场强。(cos37°=0.8,sin37°=0.6,取g=10m/s2)求: (1)被释放前弹簧的弹性势能? (2)要使小球不离开轨道(水平轨道足够长),竖直圆弧轨道的半径应该满足什么条件? (3)如果竖直圆弧轨道的半径,小球进入轨道后可以有多少次通过竖直圆轨道上距水平轨道高为0.01m的某一点P? 2、如图所示,MN、PQ是足够长的光滑平行导轨,其间距为L,且MP⊥MN.导轨平面与水平面间的夹角θ=30°.MP接有电阻R.有一匀强磁场垂直于导轨平面,磁感应强度为B0.将一根质量为m的金属棒ab紧靠MP放在导轨上,且与导轨接触良好,金属棒的电阻也为R,其余电阻均不计.现用与导轨平行的恒力F=mg沿导轨平面向上拉金属棒,使金属棒从静止开始沿导轨向上运动,金属棒运动过程中始终与MP平行.当金属棒滑行至cd处时已经达到稳定速度,cd 到MP的距离为S.已知重力加速度为g,求: (1)金属棒达到的稳定速度; (2)金属棒从静止开始运动到cd的过程中,电阻R上产生的热量; (3)若将金属棒滑行至cd处的时刻记作t=0,从此时刻起,让磁感应强度逐渐减小,可使 金属棒中不产生感应电流,写出磁感应强度B随时间t变化的关系式.

(完整版)高中物理压轴题精选

50 (22分)如图所示,电容为C 、带电量为Q 、极板间距为d 的电容器固定在绝缘底座上, 两板竖直放置,总质量为M ,整个装置静止在光滑水平面上。在电容器右板上有一小孔,一质量为m 、带电量为+q 的弹丸以速度v 0从小孔水平射入电容器中(不计弹丸重力,设电容器周围电场强度为0),弹丸最远可到达距右板为x 的P 点,求: (1)弹丸在电容器中受到的电场力的大小; (2)x 的值; (3)当弹丸到达P 点时,电容器电容已移动的距离s ; (4)电容器获得的最大速度。 51两块长木板A 、B 的外形完全相同、质量相等,长度均为L =1m ,置于光滑的水平面上.一小物块C ,质量也与A 、B 相等,若以水平初速度v 0=2m/s ,滑上B 木板左端,C 恰好能滑到B 木板的右端,与B 保持相对静止.现在让B 静止在水平面上,C 置于B 的左端,木板A 以初速度2v 0向左运动与木板B 发生碰撞,碰后A 、B 速度相同,但A 、B 不粘连.已知C 与A 、C 与B 之间的动摩擦因数相同.(g =10m/s 2 )求: (1)C 与B 之间的动摩擦因数; (2)物块C 最后停在A 上何处? 52(19分)如图所示,一根电阻为R =12Ω的电阻丝做成一个半径为r =1m 的圆形导线框,竖直放置在水平匀强磁场中,线框平面与磁场方向垂直,磁感强度为B =0.2T ,现有一根质量为m =0.1kg 、电阻不计的导体棒,自圆形线框最高点静止起沿线框下落,在下落过程中始终与线框良好接触,已知下落距离为 r /2时,棒的速度大小为v 1=3 8 m/s ,下落到经过圆心时棒的速度大小为v 2 = 3 10 m/s ,(取g=10m/s 2) 试求: ⑴下落距离为r /2时棒的加速度, ⑵从开始下落到经过圆心的过程中线框中产生的热量. 53(20分)如图所示,为一个实验室模拟货物传送的装置,A 是一个表面绝缘质量为1kg 的小车,小车置于光滑的水平面上,在小车左端放置一质量为0.1kg 带电量为q =1×10-2C 的绝缘货柜,现将一质量为0.9kg 的货物放在货柜内.在传送途中有一水平电场,可以通过开关控制其有、无及方向.先产生一个方向水平向右,大小E 1=3×102N/m 的电场,小车和货柜开始运动,作用时间2s 后,改变电场,电场大小变为E 2=1×102N/m ,方向向左,电场作 C B A 2v 0 ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? B o

历年高考物理压轴题精选(三)详细解答

历年高考物理压轴题精选(三) (宁夏卷) 23.(15分) 天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。双星系统在银河系中很普遍。利用双星系统中两颗恒星的运动特征可推算出它们的总质量。已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。(引力常量为G ) 24.(17分) 如图所示,在xOy 平面的第一象限有一匀强电场,电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。 质点到达x 轴上A 点时,速度方向与x 轴的夹角?,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角为?,求 (1)粒子在磁场中运动速度的大小: (2)匀强电场的场强大小。 24.(17分) (1)质点在磁场中的轨迹为一圆弧。由于质点飞离磁场时,速度垂直于OC ,故圆弧的圆心在OC 上。依题意,质点轨迹与x 轴的交点为A ,过A 点作与A 点的 速度方向垂直的直线,与OC 交于O '。由几何关系知,AO '垂直于OC ',O '是圆弧的圆心。设圆弧的半径为R ,则有 R =dsin ? ? 由洛化兹力公式和牛顿第二定律得 R v m qvB 2 = ②

将?式代入②式,得 ?sin m qBd v = ③ (2)质点在电场中的运动为类平抛运动。设质点射入电场的速度为v 0,在电场中的加速度为a ,运动时间为t ,则有 v 0=v cos ? ④ v sin ?=at ⑤ d =v 0t ⑥ 联立④⑤⑥得 d v a ??cos sin 2= ⑦ 设电场强度的大小为E ,由牛顿第二定律得 qE =ma ⑧ 联立③⑦⑧得 ??cos 3sin 2m d qB E = ⑨ (海南卷) 16.如图,空间存在匀强电场和匀强磁场,电场方向为y 轴正方向,磁场方向垂直于xy 平面(纸面)向外,电场和磁场都可以随意加上或撤除,重新加上的电场或磁场与撤除前的一样.一带正电荷的粒子从P(x=0,y=h)点以一定的速度平行于x 轴正向入射.这时若只有磁场,粒子将做半径为R 0的圆周运动;若同时存在电场和磁场,粒子恰好做直线运动.现在,只加电场,当粒子从P 点运动到x=R 0平面(图中虚线所示)时,立即撤除电场同时加上磁场,粒子继续运动,其轨迹与x 轴交于M 点.不计重力.求 (I)粒子到达x=R 0平面时速度方向与x 轴的夹角以及粒子到x 轴的距离; (Ⅱ)M 点的横坐标x M . 16.(I)设粒子质量、带电量和入射速度分别为m 、q 和v 0,则电场的场强E 和磁场的磁感应强度B 应满足下述条件 qE=qv o B ①

高考物理压轴题电磁场大全

1、在半径为R 的半圆形区域中有一匀强磁场,磁场的方 向 垂直于纸面,磁感应强度为B 。一质量为m ,带有电 量q 的粒子以一定的速度沿垂直于半圆直径AD 方向经P 点 (AP =d )射入磁场(不计重力影响)。 ⑴如果粒子恰好从A 点射出磁场,求入射粒子的速度。 ⑵如果粒子经纸面内Q 点从磁场中射出,出射方向与半圆在Q 点切线方向的夹角为φ(如图)。求入射粒子的速度。 解:⑴由于粒子在P 点垂直射入磁场,故圆弧轨道的圆心在AP 上,AP 是直径。 设入射粒子的速度为v 1 2 11/2 v m qBv d = 解得:12qBd v m = ⑵设O /是粒子在磁场中圆弧轨道的圆心,连接O / Q ,设O /Q =R /。 由几何关系得: /OQO ?∠= 由余弦定理得:2 /22//()2cos OO R R RR ?=+ - 解得:[] /(2) 2(1cos )d R d R R d ?-= +- 设入射粒子的速度为v ,由2 /v m qvB R = 解出:[] (2) 2(1cos )qBd R d v m R d ?-= +- 2、(17分) 如图所示,在xOy 平面的第一象限有一匀强电场, 电场的方向平行于y 轴向下;在x 轴和第四象限的射线OC 之间有一匀强磁场,磁感应强度的大小为B ,方向垂直于纸面向外。有一质量为m ,带有电荷量+q 的质点由电场左侧平行于x 轴射入电场。质点到达x 轴上A 点时,速度方向与x 轴的夹角为φ,A 点与原点O 的距离为d 。接着,质点进入磁场,并垂直于OC 飞离磁场。不计重力影响。若OC 与x 轴的夹角也为φ,求:⑴质点在磁场中运动速度的大小;⑵匀强电场的场强大小。 解:质点在磁场中偏转 90o ,半径qB mv d r = =φsin ,得m qBd v φsin =; v

高考物理压轴题解析及题型特点-教育文档

2019年高考物理压轴题解析及题型特点 2019年高考物理压轴题特点与解答思路 一份试卷的压轴题,难度大,分值也大,是用来鉴别考生掌握知识与综合应用能力高下的分档题。所以,拿下压轴题,就能胜券在握。 压轴题显著特点 综合的知识多一般是三个以上知识点融汇于一题。譬如:电磁感应综合的压轴题,可以渗透磁场安培力、闭合电路欧姆定律、电功、电功率、功能原理、能量转化与守恒定律、牛顿定律、运动学公式,力学平衡等多个知识点。 物理技能要求高解题时布列的物理方程多,需要等量代换,有时用到待定系数法;研究的物理量是时间、位移或其他相 关物理量的函数时,则通过解析式进行分析讨论;当研究的 物理量出现极值、临界值,可能涉及三角函数,也有用到判别式、不等式性质等。 难易设计有梯度虽说压轴题有难度,但并不是一竿子难到底,让你望题生畏,而是先易后难。通常情况下的第(1)、(2)问,估计绝大多数考生还是有能力和信心完成的,所以,绝对不能全部放弃。 压轴题解答思路 压轴题综合这么多知识点,又能清晰地呈现物理情境。其中,物理问题的发生、变化、发展的全过程,正是我们研究问题

的思路要沿袭的。 分析物理过程根据题设条件,设问所求,把问题的全过程分解为几个与答题有直接关系的子过程,使复杂问题化为简单。有时压轴题的设问前后呼应,即前问对后问有作用,这样子过程中某个结论成为衔接两个设问的纽带;也有的压轴题设 问彼此独立,即前问不影响后问,那就细致地把该子过程分析解答完整。分析过程,看清设问间关系才能使解答胸有成竹。 分析原因与结果针对每一道压轴题,无论从整体还是局部考虑,物理过程都包含有原因与结果。所以,分析原因与结果成为解压轴题的必经之路。譬如:引起电磁感应现象的原因,是导体棒切割磁感线、还是穿过回路的磁通量发生变化,或者两者同作用。导体棒切割磁感线,是受外作用(恒力、变力),还是具有初速度。正是原因不同、研究问题所选用的 物理规律就不同,进而,我们结合题意分析这些原因导致怎样的结果。针对题目需要我们回答的问题,不外乎从受力情况、运动状态、能量转化等方面着手研究,最终得出题目要求的结果。 确定思路方法解压轴题不必刻意追求方法的创新,因为试题知识容量大,综合性强,很难做到解题方法大包大揽的巧妙与简捷。还是踏踏实实地从读题、审题开始。提取复杂情境中有价值信息,明确已知条件、挖掘隐含条件、预测临界条

高中物理常见的物理模型-附带经典63道压轴题

高三物理第二轮总复习 (大纲版) 第9专题高中物理常见的物理模型 方法概述 高考命题以《考试大纲》为依据,考查学生对高中物理知识的掌握情况,体现了“知识与技能、过程与方法并重”的高中物理学习思想.每年各地的高考题为了避免雷同而千变万化、多姿多彩,但又总有一些共性,这些共性可粗略地总结如下: (1)选择题中一般都包含3~4道关于振动与波、原子物理、光学、热学的试题. (2)实验题以考查电路、电学测量为主,两道实验小题中出一道较新颖的设计性实验题的可能性较大. (3)试卷中下列常见的物理模型出现的概率较大:斜面问题、叠加体模型(包含子弹射入)、带电粒子的加速与偏转、天体问题(圆周运动)、轻绳(轻杆)连接体模型、传送带问题、含弹簧的连接体模型. 高考中常出现的物理模型中,有些问题在高考中变化较大,或者在前面专题中已有较全面的论述,在这里就不再论述和例举.斜面问题、叠加体模型、含弹簧的连接体模型等在高考中的地位特别重要,本专题就这几类模型进行归纳总结和强化训练;传送带问题在高考中出现的概率也较大,而且解题思路独特,本专题也略加论述. 热点、重点、难点 一、斜面问题 在每年各地的高考卷中几乎都有关于斜面模型的试题.如2009年高考全国理综卷Ⅰ第25题、理综卷第18题、天津理综卷第1题、物理卷第22题等,2008年高考全国理综卷Ⅰ第14题、全国理综卷Ⅱ第16题、理综卷第20题、物理卷第7题和第15题等.在前面的复习中,我们对这一模型的例举和训练也比较多,遇到这类问题时,以下结论可以帮助大家更好、更快地理清解题思路和选择解题方法. 1.自由释放的滑块能在斜面上(如图9-1 甲所示)匀速下滑时,m与M之间的动摩擦因数μ=g tan θ. 图9-1甲 2.自由释放的滑块在斜面上(如图9-1 甲所示): (1)静止或匀速下滑时,斜面M对水平地面的静摩擦力为零; (2)加速下滑时,斜面对水平地面的静摩擦力水平向右; (3)减速下滑时,斜面对水平地面的静摩擦力水平向左. 3.自由释放的滑块在斜面上(如图9-1乙所示)匀速下滑时,M对水平地面的静摩擦力为零,这一过程中再在m上加上任何方向的作用力,(在m停止前)M对水平地面的静摩擦

高考物理法拉第电磁感应定律-经典压轴题含答案

一、法拉第电磁感应定律 1.如图所示,在磁感应强度B =1.0 T 的有界匀强磁场中(MN 为边界),用外力将边长为L =10 cm 的正方形金属线框向右匀速拉出磁场,已知在线框拉出磁场的过程中,ab 边受到的磁场力F 随时间t 变化的关系如图所示,bc 边刚离开磁场的时刻为计时起点(即此时t =0).求: (1)将金属框拉出的过程中产生的热量Q ; (2)线框的电阻R . 【答案】(1)2.0×10-3 J (2)1.0 Ω 【解析】 【详解】 (1)由题意及图象可知,当0t =时刻ab 边的受力最大,为: 10.02N F BIL == 可得: 10.02A 0.2A 1.00.1 F I BL = ==? 线框匀速运动,其受到的安培力为阻力大小即为1F ,由能量守恒: Q W =安310.020.1J 2.010J F L -==?=? (2) 金属框拉出的过程中产生的热量: 2Q I Rt = 线框的电阻: 3 22 2.010Ω 1.0Ω0.20.05 Q R I t -?===? 2.如图所示,电阻不计的相同的光滑弯折金属轨道MON 与M O N '''均固定在竖直平面内,二者平行且正对,间距为L =1m ,构成的斜面ONN O ''跟水平面夹角均为30α =?,两 侧斜面均处在垂直斜面向上的匀强磁场中,磁感应强度大小均为B =0.1T .t =0时,将长度也为L =1m ,电阻R =0.1Ω的金属杆ab 在轨道上无初速释放.金属杆与轨道接触良好,轨道足够长.重力加速度g =10m/s 2;不计空气阻力,轨道与地面绝缘. (1)求t =2s 时杆ab 产生的电动势E 的大小并判断a 、b 两端哪端电势高 (2)在t =2s 时将与ab 完全相同的金属杆cd 放在MOO'M'上,发现cd 杆刚好能静止,求ab 杆的质量m 以及放上cd 杆后ab 杆每下滑位移s =1m 回路产生的焦耳热Q

高三物理压轴题及其答案

高三物理压轴题及其答案(10道) 1(20分).如图12所示,PR 是一块长为L =4m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1kg ,带电量为q =0.5C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其 正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某 同学设计如图所示实验,在小木板上固定一个轻弹簧, 弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行, 现将木板连同弹簧、小球放在斜面上,用手固定木板 时,弹簧示数为F 1,放手后,木板沿斜面下滑,稳定后 弹簧示数为F 2,测得斜面斜角为θ,则木板与斜面间动 摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为θ的斜面,其底端固定一挡板M ,另有三个木块A 、B 和C ,它们的质 量分别为m A =m B =m ,m C =3m ,它们与斜面间的动摩擦因数都相同.其中木块A 连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M 相连,如图所示.开始时,木块A 静止在P 处,弹簧处于自然伸长状态.木块B 在Q 点以初速度v 0向下运动,P 、Q 间的距离为L.已知木块B 在下滑过程中做匀速直线运动,与木块A 相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B 向上运动恰好能回到Q 点.若木块A 静止于P 点,木块C 从Q 点开始以初速度032v 向下运动,经历同样过程,图12

历年高考物理压轴题精选(一)详细解答

页眉内容 历年高考物理压轴题精选 (一) 一、力学 2001年全国理综(江苏、安徽、福建卷) 31.(28分)太阳现正处于主序星演化阶段。它主要是由电子和H 11、He 4 2等原子核组成。维持太阳辐射的是它内部的核聚变反应,核反应方程是2e+4H 11→He 4 2+释放的核能,这些核能最后转化为辐射能。根据目前关于恒星演化的理论,若由于聚变反应而使太阳中的H 1 1核数目从现有数减少10%,太阳将离开主序垦阶段而转入红巨星的演化阶段。为了简化,假定目前太阳全部由电子和H 1 1核组成。 (1)为了研究太阳演化进程,需知道目前太阳的质量M 。已知地球半径R =6.4×106 m ,地球质量m =6.0×1024 kg ,日地中心的距离r =1.5×1011 m ,地球表面处的重力加速度g =10 m/s 2,1年约为3.2×107秒。试估算目前太阳的质量M 。 (2)已知质子质量m p =1.6726×10 -27 kg ,He 42质量m α=6.6458×10 -27 kg ,电子质量m e =0.9 ×10- 30 kg ,光速c =3×108 m/s 。求每发生一次题中所述的核聚变反应所释放的核能。 (3)又知地球上与太阳光垂直的每平方米截面上,每秒通过的太阳辐射能w =1.35×103 W/m 2。试估算太阳继续保持在主序星阶段还有多少年的寿命。 (估算结果只要求一位有效数字。) 参考解答: (1)估算太阳的质量M 设T 为地球绕日心运动的周期,则由万有引力定律和牛顿定律可知 ① 地球表面处的重力加速度 2R m G g ② 由①、②式联立解得 ③ 以题给数值代入,得M =2×1030 kg ④

高考物理磁场压轴题参考-word

2019高考物理磁场压轴题参考 高考将至,2019年高考将于6月7日如期举行,以下是一篇高考物理磁场压轴题,详细内容点击查看全文。 1如图12所示,PR是一块长为L=4 m的绝缘平板固定在水 平地面上,整个空间有一个平行于PR的匀强电场E,在板的右半部分有一个垂直于纸面向外的匀强磁场B,一个质量为 m=0.1 kg,带电量为q=0.5 C的物体,从板的P端由静止开始在电场力和摩擦力的作用下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C点,PC=L/4,物体与平板间的动摩擦因数为=0.4,取g=10m/s2,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v1和v2 (3)磁感应强度B的大小 (4)电场强度E的大小和方向 2(10分)如图214所示,光滑水平桌面上有长L=2m的木板C,质量mc=5kg,在其正中央并排放着两个小滑块A和B,mA=1kg,mB=4kg,开始时三物都静止.在A、B间有少量塑胶炸药,爆炸后A以速度6m/s水平向左运动,A、B中任一块与挡板碰 撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A、B都与挡板碰撞后,C的速度是多大?

(2)到A、B都与挡板碰撞为止,C的位移为多少? 3(10分)为了测量小木板和斜面间的摩擦因数,某同学设计如图所示实验,在小木板上固定一个轻弹簧,弹簧下端吊一个光滑小球,弹簧长度方向与斜面平行,现将木板连同弹簧、小球放在斜面上,用手固定木板时,弹簧示数为F ,放手后,木板沿斜面下滑,稳定后弹簧示数为F ,测得斜面斜角为,则木板与斜面间动摩擦因数为多少?(斜面体固定在地面上) 4有一倾角为的斜面,其底端固定一挡板M,另有三个木块A、B和C,它们的质 量分别为m =m =m,m =3 m,它们与斜面间的动摩擦因数都相同.其中木块A连接一轻弹簧放于斜面上,并通过轻弹簧与挡板M相连,如图所示.开始时,木块A静止在P处,弹簧处于自然伸长状态.木块B在Q点以初速度v 向下运动,P、Q间的距离为L.已知木块B在下滑过程中做匀速直线运动,与木块A相碰后立刻一起向下运动,但不粘连,它们到达一个最低点后又向上运动,木块B向上运动恰好能回到Q点.若木块A静止于P点,木块C从Q点开始以初速度向下运动,经历同样过程,最后木块C停在斜面上的R点,求P、R 间的距离L的大小。 5 如图,足够长的水平传送带始终以大小为v=3m/s的速度向

最新高考物理压轴题常考点及解题方法汇总

最新高考物理压轴题常考点及解题方法汇 总 1,力学综合型 力学综合试题往往呈现出研究对象的多体性、物理过程的复杂性、已知条件的隐含性、问题讨论的多样性、数学方法的技巧性和一题多解的灵活性等特点,能力要求较高.具体问题中可能涉及到单个物体单一运动过程,也可能涉及到多个物体,多个运动过程,在知识的考查上可能涉及到运动学、动力学、功能关系等多个规律的综合运用。 应试策略: (1)对于多体问题:要灵活选取研究对象,善于寻找相互联系。 选取研究对象和寻找相互联系是求解多体问题的两个关键.选取研究对象需根据不同的条件,或采用隔离法,即把研究对象从其所在的系统中抽取出来进行研究;或采用整体法,即把几个研究对象组成的系统作为整体来进行研究;或将隔离法与整体法交叉使用。 (2)对于多过程问题:要仔细观察过程特征,妥善运用物理规律。

观察每一个过程特征和寻找过程之间的联系是求解多过程问题的两个关键.分析过程特征需仔细分析每个过程的约束条件,如物体的受力情况、状态参量等,以便运用相应的物理规律逐个进行研究。至于过程之间的联系,则可从物体运动的速度、位移、时间等方面去寻找。 (3)对于含有隐含条件的问题:要注重审题,深究细琢,努力挖掘隐含条件。 注重审题,深究细琢,综观全局重点推敲,挖掘并应用隐含条件,梳理解题思路或建立辅助方程,是求解的关键。通常,隐含条件可通过观察物理现象、认识物理模型和分析物理过程,甚至从试题的字里行间或图象图表中去挖掘。 (4)对于存在多种情况的问题:要认真分析制约条件,周密探讨多种情况。 解题时必须根据不同条件对各种可能情况进行全面分析,必要时要自己拟定讨论方案,将问题根据一定的标准分类,再逐类进行探讨,防止漏解。 2,带电粒子运动型 带电粒子运动型计算题大致有两类,一是粒子依次进入不同的有界场区,二是粒子进入复合场区.近年来高考重点就是

高考物理压轴题30道

高考物理压轴题 (30道) 1(20分) 如图12所示,PR 是一块长为L =4 m 的绝缘平板固定在水平地面上,整个空间有一个平行于PR 的匀强电场E ,在板的右半部分有一个垂直于纸面向外的匀强磁场B ,一个质量为m =0.1 kg ,带电量为 q =0.5 C 的物体,从板的P 端由静止开始在电场力和摩擦力的作用 下向右做匀加速运动,进入磁场后恰能做匀速运动。当物体碰到板R 端的挡板后被弹回,若在碰撞瞬间撤去电场,物体返回时在磁场中仍做匀速运动,离开磁场后做匀减速运动停在C 点,PC =L/4,物体与平板间的动摩擦因数为μ=0.4,取g=10m/s 2 ,求: (1)判断物体带电性质,正电荷还是负电荷? (2)物体与挡板碰撞前后的速度v 1和v 2 (3)磁感应强度B 的大小 (4)电场强度E 的大小和方向 1.(1)由于物体返回后在磁场中无电场,且仍做 匀速 运动,故知摩擦力为0,所以物体带正电荷.且: mg =qBv 2…………………………………………………………① (2)离开电场后,按动能定理,有:-μ mg 4L =0-2 1mv 2………………………………② 由①式得:v 2=22 m/s 图12

(3)代入前式①求得:B = 2 2 T (4)由于电荷由P 运动到C 点做匀加速运动,可知电场强度方向 水 平 向 右 , 且 :( Eq -μmg ) 2 12=L mv 12 -0……………………………………………③ 进入电磁场后做匀速运动,故有:Eq =μ (qBv 1+mg )……………………………④ 由以上③④两式得:?? ?==N/C 2.4m/s 241E v 2(10分)如图2—14所示,光滑水平桌面上有长L=2m 的木板C ,质量m c =5kg ,在其正中央并排放着两个小滑块A 和B ,m A =1kg ,m B =4kg ,开始时三物都静止.在A 、B 间有少量塑胶炸药,爆炸后A 以速度6m /s 水平向左运动,A 、B 中任一块与挡板碰撞后,都粘在一起,不计摩擦和碰撞时间,求: (1)当两滑块A 、B 都与挡板碰撞后,C 的速度是多大? (2)到A 、B 都与挡板碰撞为止,C 的位移为多少? 2(1)A 、B 、C 系统所受合外力为零,故系统动量守恒,且总动量为 零,故两物块与挡板碰撞后,C 的速度为零,即0=C v (2)炸药爆炸时有 B B A A v m v m = 解得s m v B /5.1= 又B B A A s m s m =

历年高考物理压轴题精选(二)详细解答

历年高考物理压轴题精选(二) 20XX 年理综(全国卷Ⅰ)(河南、河北、广西、新疆、湖北、江西、等省用) 25.(20分)有个演示实验,在上下面都是金属板的玻璃盒内,放了许多锡箔纸揉成的小球,当上下板间加上电压后,小球就上下不停地跳动。现取以下简化模型进行定量研究。 如图所示,电容量为C 的平行板电容器的极板A 和B 水平放置,相距为d ,与电动势为ε、内阻可不计的电源相连。设两板之间只有一个质量为m 的导电小球,小球可视为质点。已知:若小球与极板发生碰撞,则碰撞后小球的速度立即变为零,带电状态也立即改变,改变后,小球所带电荷符号与该极板相同,电量为极板电量的α倍(α<<1)。不计带电小球对极板间匀强电场的影响。重力加速度为g 。 (1)欲使小球能够不断地在两板间上下往返运动,电动势ε至少应大于多少? (2)设上述条件已满足,在较长的时间间隔T 内小球做了很多次往返运动。求在T 时间内小球往返运动的次数以及通过电源的总电量。 解析25.解:(1)用Q 表示极板电荷量的大小,q 表示碰后小球电荷量的大小。要 使小球能不停地往返运动,小球所受的向上的电场力至少应大于重力,则 q ε d >mg ① 其中 q=αQ ② 又有 Q=C ε ③ 由以上三式有 ε> mgd αC ④ (2)当小球带正电时,小球所受电场力与重力方向相同,向下做加速运动。以a 1表示其加速度,t 1表示从A 板到B 板所用的时间,则有 q ε d +mg=ma 1郝双制作 ⑤ d=12 a 1t 12 ⑥ 当小球带负电时,小球所受电场力与重力方向相反,向上做加速运动,以a2 表示其

加速度,t 2表示从B 板到A 板所用的时间,则有 q ε d -mg=ma 2 ⑦ d=12 a 2t 22 ⑧ 小球往返一次共用时间为(t 1+t 2),故小球在T 时间内往返的次数 n=T t 1+t 2 ⑨ 由以上关系式得: n= T 2md 2 αC ε2+mgd + 2md 2 αC ε2-mgd ⑩ 小球往返一次通过的电量为2q ,在T 时间内通过电源的总电量 Q'=2qn ○11 由以上两式可得:郝双制作 Q'= 2αC εT 2md 2 αC ε2+mgd + 2md 2 αC ε2-mgd 2007高考北京理综 25.(22分)离子推进器是新一代航天动力装置,可用于卫 星姿态控制和轨道修正。推进剂从图中P 处注入,在A 处电离出正离子,BC 之间加有恒定电压,正离子进入B 时的速度忽略不计,经加速后形成电流为I 的离子束后喷出。已知推进器获得的推力为F ,单位时间内喷出的离子质量为J 。为研究方便,假定离子推进器在太空飞 行时不受其他阻力,忽略推进器运动的速度。⑴求加在B C 间的电压U 离子推进器正常运行,必须在出口D 处向正离子束注入电子,试解释其原因。 ⑴JI F U 22=(动量定理:单位时间内F=Jv ;单位时间内2 2 1Jv UI =,消去v 得 U 。)⑵推进器持续喷出正离子束,会使带有负电荷的电子留在其中,由于库仑力作 用,将严重阻碍正离子的继续喷出。电子积累足够多时,甚至会将喷出的正离子再吸引回来,致使推进器无法正常工作。因此,必须在出口D 处发射电子注入到正离子束中,以中和正离子,使推进器持续推力。 难 三、磁场 20XX 年理综Ⅱ(黑龙江、吉林、广西、云南、贵州等省用) 25.(20分) 如图所示,在x <0与x >0的区域中,存在磁感应强度大小分别 x O P

相关主题
文本预览
相关文档 最新文档