当前位置:文档之家› 硅微粉增韧增强聚丙烯材料研究

硅微粉增韧增强聚丙烯材料研究

硅微粉增韧增强聚丙烯材料研究
硅微粉增韧增强聚丙烯材料研究

聚丙烯材料改性研究

聚丙烯材料改性研究 摘要:利用共混的方法,针对聚丙烯制品在实际应用中出现韧性差,易燃烧的缺点,重点研究了增塑剂POE 不同的量对聚丙烯抗冲击强度的影响,以及氢氧化镁对聚丙烯燃烧性能的影响。本次试验采用了高混机对所用原料进行共混,再将共混的原料放入双螺杆挤出机中挤出造粒,然后将制成的粒料利用注射机制作我们所需的的标准样条,最后对标准样条测试抗冲击强度和氧指数。结果显示,POE 增塑剂的量越多,则对聚丙烯的韧性改善更好,氢氧化镁由于加的量比较少,对聚丙烯的阻燃作用不明显。 关键词:聚丙烯;改性;造粒;增塑;阻燃 1前言 聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规聚丙烯(isotactic polypropylene)、无规聚丙烯(atactic polypropylene)和间规聚丙烯(syndiotactic polypropylene)三种。甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧称无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含量约为95%,其余为无规或间规聚丙烯。工业产品以等规物为主要成分。聚丙烯也包括丙烯与少量乙烯的共聚物在内。通常为半透明无色固体,无臭无毒。由于结构规整而高度结晶化,故熔点可高达167℃。耐热、耐腐蚀,制品可用蒸汽消毒是其突出优点。密度小,是最轻的通用塑料。缺点是耐低温冲击性差,较易老化,但可分别通过改性予以克服。 采用相容剂技术和反应性共混技术对PP 进行共混改性是当前PP 共混改性发展的主要特点。它能在保证共混材料具有一定的拉伸强度和弯曲强度的前提下大幅度提高PP 耐冲击性。相容剂在共混体系中可以改善两相界面黏结状况,有利于实现微观多相体系的稳定,而宏观上是均匀的结构状态。反应型相容剂除具有一般相容剂的功效外,在共混过程中还能在两相之间产生分子链接,显著提高共混材料性能。 PP/弹性体二元共混体系虽有很好的韧性效果,但往往降低了材料的强度和刚度,耐热性能也有所降低。在二元共混体系中加入有增容作用或协同效应的物质,形成多元共混体系,则其综合性能可得到进一步提高。为了提高增韧PP 的硬度、热变形温度及尺寸稳定性,可使用经偶联剂活化处理的填料或增强材料进行补强。例如采用弹性体/无机刚性粒子/PP 三元复合增韧体系实现PP 的增韧增强,提高材料的综合性能,并且具有较低的成本。 溴系阻燃剂效率高、用量少,对材料的性能影响小,并且溴系阻燃剂价格适中。与其它类型的阻燃剂相比,溴系阻燃剂效能/价格比更具有优越性,我国供出口电子电气类产品中70%~80%都用此类阻燃剂。但是,近年来欧盟一些国家认为溴系阻燃剂燃烧时会产生有毒致癌的多溴代苯并恶瑛(PBDD)和多溴代二苯并呋喃(PBDF)。欧盟出台了禁令,在欧盟国家销售的所有电子电气设备,不能含有多溴联苯及多溴二苯醚。阻燃剂的种类众多,其用量和性能都各自不同,需要在不同的情况下选用不同的阻燃剂。现如今,聚丙烯的阻燃剂正向着高效、低烟、绿色、环保和低成本的方向发展。所以本次实验采用比较绿色的阻燃剂氢氧化镁。 本次实验采用POE 对聚丙烯增韧;氢氧化镁对聚丙烯进行阻燃改性,由于加入氢氧化镁的量太多,挤出机挤出较困难,所以同时加入少量三氧化二锑(Sb 2O 3)来减少氢氧化镁用量, 降低加工难度。 2.实验 2.1配方设计

(完整word版)纤维增强复合材料

纤维增强复合材料由增强纤维和基体组成。纤维(或晶须)的直径很小,一般在l0μm以下,缺陷较少又小,断裂应变不大于百分之三,是脆性材料,容易损伤、断裂和受到腐蚀。基体相对于纤维来说,强度和模量要低得多,但可经受较大的应变,往往具有粘弹性和弹塑性,是韧性材料。 纤维增强复合材料,由纤维的长短可分为短纤维增强复合材料、长纤维复合材料和杂乱短纤维增强复合材料。纤维增强复合材料由于纤维和基体的不同,品种很多,如碳纤维增强环氧、硼纤维增强环氧、Kevlar纤维增强环氧、Kevlar 纤维增强橡胶、玻璃纤维增强塑料、硼纤维增强铝、石墨纤维增强铝、碳纤维增强陶瓷、碳纤维增强碳和玻璃纤维增强水泥等。(1新型纺织材料及应用宗亚宁主编中国纺织出版社) 纤维增强复合材料的性能体现在以下方面: 比强度高比刚度大,成型工艺好,材料性能可以设计,抗疲劳性能好。破损安全性能好。多数增强纤维拉伸时的断裂应变很小、叠层复合材料的层间剪切强度和层间拉伸强度很低、影响复合材料性能的因素很多,会引起复合材料性能的较大变化、用硼纤维、碳纤维和碳化硅纤维等高性能纤维制成的树脂基复合材料,虽然某些性能很好,但价格昂贵、纤维增强复合材料与传统的金属材料相比,具有较高的强度和模量,较低的密度、纤维增强复合材料还具有独特的高阻尼性能,因而能较好地吸收振动能量,同时减少对相邻结构件的影响。 从本世纪40年代起,复合材料的发展已经历了整整半个世纪。随着技术的提高,应用领域已从航空航天和国防军工扩展到建筑与土木工程、陆上交通运输、船舶和近海工程、化工防腐、电气与电子、体育与娱乐用品、医疗器械与仿生制品以及家庭与办公用品等等各部门。复合材料在建筑上可作为结构材料、装饰材料、功能材料以及用来制造各种卫生洁具和水箱等。 纤维增强复合材料由增强材料和基体材料构成,每部分都有各自的作用,影响复合材料的性能。 作为增强材料的纤维是组成复合材料的主要成分。在纤维增强复合材料中占有相当的体积分数,同时是结构复合材料承受载荷的主要部分。增强纤维的类型、数量和取向对纤维增强复合材料的性能十分重要,它主要影响以下的方面:(1)密度;

塑料材料-聚丙烯(PP)的基本物理化学特性及典型应用介绍

聚丙烯(PP)的介绍 聚丙烯概述 聚丙烯采用齐格勒-纳塔催化剂使丙烯催化聚合而得,它是分子链节排列得很规整的结晶形等规聚合物。聚丙烯的英文名称为Polypropylene,简称PP,俗称百折胶。聚丙烯按其结晶度可以分为等规聚丙烯和无规聚丙烯,等规聚丙烯为高度结晶的热塑性树脂,结晶度高达95%以上,分子量在8~15万之间,以下介绍的聚丙烯主要为等规聚丙烯。而无规聚丙烯在室温下是一种非结晶的、微带粘性的白色蜡状物,分子量低(3000~10000),结构不规整缺乏内聚力,应用较少。 聚丙烯(PP)作为热塑塑料聚合物在塑料领域内有十分广泛的应用,因所用催化剂和聚合工艺不同,所得聚合物性能,用途也不同。PP有很多有用的性能,但还缺乏固有的韧性,特别是在低于其玻璃化温度的条件下。然而,通过添加冲击改性剂,可以提高其抗冲击性能。 一、聚丙烯的特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。(2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下,由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性,如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙

相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。(5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。 (6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 二、聚丙烯的用途 (1)薄膜制品:聚丙烯薄膜制品透明而有光泽,对水蒸汽和空气的渗透性小,它分为吹膜薄膜、流延薄膜(CPP)、双向拉伸薄膜(BOPP)等。 (2)注塑制品:可用于汽车、电气、机械、仪表、无线电、纺织、国防等工程配件,日用品,周转箱,医疗卫生器材,建筑材料。 (3)挤塑制品:可做管材、型材、单丝、渔用绳索。打包带、捆扎绳、编织袋,纤维,复合涂层,片材,板材等。吹塑中空成型制品各种小型容器等。 (4)其它:低发泡、钙塑板,合成木材,层压板,合成纸,高发泡可作结构泡沫体。 三、聚丙烯的成型加工 聚丙烯的成型加工性好,成型的方法很多,如注塑、吹塑、真空热成型、涂覆、旋转成型、熔接、机加工、电镀和发泡等,并可在金属表面喷涂。其中注塑成型的比例大,注塑温度在180~200 之间,注塑压力在68.6~137.2MPa,模具温度为40~60℃。预干燥温度在80℃左右。应避免PP 长时间与金属壁接触。 聚丙烯的二次加工性很好,其印刷性比聚乙烯好,照相凸版,胶版、平凹板等印刷方法均可使用,要获得良好的良好的耐热、耐油、耐水等要求的印刷性能,须经电晕放电处理等再行印刷。 四、聚丙烯的改性 聚丙烯可通过填充、增强、共混、共聚、交联来改性。如添加碳酸钙、滑石粉、无机矿物质等填料,可提高刚性、硬度、耐热性和尺寸稳定性;添加玻璃纤维、石棉纤维、云母、玻璃微珠等可提高拉伸强度,并可改善抗蠕变性、低温抗冲击性;添加弹性体和橡胶等可提高冲击性能、透明性等等。 均聚PP和共聚PP的介绍 1. PP均聚物 聚丙烯(PP)作为热塑塑料聚合物于1957年开始商品化生产,是有规立构聚合物中的第一个。其历史意义更体现在,它一直是增长最快的主要热塑性塑料,2004年它的全国总产量达到300万吨。它在热塑性塑料领域内有十分广泛的应用,特别是在纤维和长丝、薄膜挤压、注塑加工等方面。 1.1 化学和性质

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理

聚丙烯增韧改性的方法及机理 PP本身脆性(尤其是低温脆性)较大,用于对韧性要求较高的产品(特别是结构材料)时必须对PP进行增韧改性。 1 无规共聚改性 采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚,即可制得主链中无规则分布丙烯和乙烯链节的共聚物。共聚物中乙烯的质量分数一般为1%~7%。乙烯链节的无规引入降低了PP的结晶度,乙烯含量为20%时结晶变得困难,含量为30%时几乎完全不能结晶。 与等规PP相比,无规共聚PP结晶度和熔点低,较柔软,透明,温度低于0℃时仍具有良好的冲击强度,一20%时才达到应用极限,但其刚性、硬度、耐蠕变性等要比均聚PP低10%~15%。 无规共聚PP主要用于生产透明度和冲击强度好的薄膜、中空吹塑和注塑制品。其初始热合温度较低,乙烯含量高的共聚物在共挤出薄膜或复合薄膜中作为特殊热合层得到了广泛应用 2 嵌段共聚改性 乙丙嵌段共聚技术在20世纪60年代即已出现,其后很快得到推广。美国从1962年开始工业化规模生产(丙烯/乙烯)嵌段共聚物,该共聚物含有65%一85%的等规PP、10%一30%的乙丙共聚物和5%的无规PP 。(丙烯/乙烯)嵌段共聚物与无规共聚PP一样,也可以在制造等规PP的设备中生产,有连续法和间歇法两种工艺路线。(丙烯/乙烯)嵌段共聚物具有与等规PP及高密度聚乙烯(HDPE)相似的高结晶度及相应特征,其具体性能取决于乙烯含量、嵌段结构、分子量大小及分布等。共聚物的嵌段结构有多种形式,如有嵌段的无规共聚物、分段嵌段共聚物、末端嵌段共聚物等。目前工业生产的主要是末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物。通常(丙烯/乙烯)嵌段共聚物中乙烯质量分数为5%一20%。(丙烯/乙烯)嵌段共聚物既有较好的刚性,又有好的低温韧性,其增韧效果比无规共聚物要好。其主要用途为制造大型容器、周转箱、中空吹塑容器、机械零件、电线电缆包覆制品,也可用于生产薄膜等产品 3 接枝共聚改性 PP接枝共聚物是在PP主链的某些原子上接枝化学结构与主链不同的大分子链段,以赋予聚合物优良的特性。在PP分子链上接枝弹性链段有助于提高PP的冲击强度和低温性能。接枝共聚的方法有溶液接枝、悬浮接枝、熔融接枝和固相接枝。PP接枝共聚物经常用作PP与其它聚合物或无机填料之间的增容剂。单独用作PP增韧剂的例子也有报道,如Xu Gang等通过紫外线照射得到了高接枝率的PP一丙烯酰亚胺接枝共聚物,发现它对PP有很好的增韧效果。单独用做塑料的例子几乎没有 4 改变立体结构 工业上所用的PP通常都是等规立构PP。近年来采用间规选择性茂金属催化剂合成了间规立构PP。与等规立构PP相比,间规立构PP具有较低的结晶度和弯曲强度、较高的熔体粘度和弯曲弹性模量、良好的透明性和热密封性、优异的抗冲击性和压延性等。另外选用对称性好的单点茂金属催化剂可以合成具有良好弹性的高相对分子质量的无规立构PP和无规一等规立体嵌段的弹性PP。特别是后者,由于等规链段的物理交联作用,使之具有良好的弹性和力学性能,属于一种新型的热塑性弹性体。

聚丙烯(PP)塑料的分类情况大全

聚丙烯(PP)塑料的分类情况大全 聚丙烯是所有塑料范围中个别用量最大宗的一类别,也是应用范围最广的一类,可以 基材不同做分类,在分类内仍可以不同的熔融流率定规格,甚至可依个别商品需要添加额 外添加剂再区定出用途规范,例如:单聚合物中,MFR:12 左右可用于一般射出成品, 也可生产复丝纤维,更可特意制造宽广分子量分布去改善纤维织布的后段加工性;同时也 可添加滑剂及抗相黏剂以增加开口性方便塑料袋成品的要求。因此便延伸出众多规格,但 大体物性差不多,在非特意主用途之外是彼此有替代性。这里尝试以基材之不同做分类供 参考,并逐一解说。 1.一般级(HOMOPOLYMER) 单聚合物,大陆称为均聚,系纯丙烯聚合而成的原料。 2.耐冲击级(IMPACT COPOLYMER) 系单聚合物添加乙烯丙烯橡胶,冲击强度高低主 要看橡胶含量高低,耐寒程度好坏主要看乙烯含量高低。各原料厂商制程不同,最高乙烯 含量也不同。 3.透明级(RANDOM COPOLYMER) 随机共聚合物,系丙烯添加乙烯共聚合,乙烯不 规则散布在聚合物中,主要减少聚合物的结晶度进而改善透明性。 4.高结晶级(HIGH ISOTACTICITY or HIGH CRYSTALLINITY) 减少PP聚合物中错位 结构的含量,相对就提高规则性结构含量,也就提高结晶度。主要改善原料的刚性、热变 性温度、表面硬度、抗刮性及光泽性。当然再添加增核剂也会有助于上述物性的增进 5.热封级(TERPOLYMER) 是随机共聚合物的延伸,一般丙烯含乙烯(非EPR)含量最 高在3.5%,但也有制程可添加至5%,乙烯含量越高产品越柔软,热变型温度、软化点、热封温度越低,有时为了要增加乙烯含量要藉助丁二烯或其它第三成份成为三共聚合物以 达上述物性要求。 6.合金级(ALLOY) 不同的塑料原料高比例的混合皆可谓合金级,例如PP添加LDPE 可改善柔软性及冲击强度,在加工上也可减少颈缩及增加平整性,在成型也可减低坠料现象。PP加EPR加HDPE可维系刚性,减少高EPR含量造成的白化现象,改善冲击强度。 7.复合材料(COMPOUNDING) 不同材料混合谓之复合材料,譬如添加玻璃纤维、各类无机物矿粉、有机物木粉、纸屑或谷物微片,在PP材料内以改善各种物性。矿粉又包括:滑石粉、碳酸钙、硫酸钡、云母、碳黑、碳纤维及溴化物等。 8.橡胶(RUBBER) 橡胶,TPR(热可塑性橡胶)与TPE(热可塑性弹性体),有时很难界分,而各种界定说法都有,大部份的橡胶都可与PP相混合,除EPR系列外,也很难界定混合 是定位在合金或复合材料项内。一般常与PP混合的橡胶有EPR及EPDM,适合与PP直 接混料的产牌有CATALLOY、PLASTOMER、ENGAGE、TAFMER、KRATON及SANTOPLENE等。 9.特殊规格(SPECIALS) 未含盖在前项类的都可归入此类,例如:高熔融强度原料(HMS、High Melt Strength)可用在发泡材内改善表面气密性提高发泡效果,也可减少板材 成型的坠料现象。

聚丙烯增韧改性

聚丙烯增韧 1.聚丙烯的发展历程 自1957年意大利蒙科卡迪公司首次实现工业化以来,聚丙烯(PP)树脂及其制品发展速度一直位于各种塑料之首。在1978年PP的世界产量超过了400万吨/年,仅次于聚乙烯、聚氯乙烯和聚苯乙烯,位居世界第四位;1995年PP的世界产量达1910万吨/年,超过聚苯乙烯位居第三;2000年PP的世界产量为2820万吨/年,超过聚氯乙烯的2600万吨/年上升为世界第二;目前聚丙烯的世界产量达到了3838万吨/年。在此同时,我国聚丙烯工业发展迅猛,1995年产量为万吨,2000年已经突破300万吨,2004年产量迅猛增至万吨。初步估计到2006年底,我国PP 的年总生产能力已经超过650万吨,在一定程度上缓解我国PP的供需紧张。 聚丙烯由于其优异的使用潜能,广泛应用于注塑成型、薄膜薄片、单丝、纤维、中空成型、挤出成型等制品,普及及工农业及生活日用品的各个方面。如此迅速的增长速度主要归因于其可以替代其它塑料树脂以及能够开发应用各种新型的塑料、橡胶和纤维的优异性能:原料来源丰富,价格低廉并且无毒无害;相对密度小,透光性好,有较好的耐热性等。 但是PP有个很明显的缺点就是韧性较差,对缺口十分敏感,这在很大程度上限制了其在工程领域的应用空间。因此近些年来,国内外众多学者专家在PP改性的理论基础和应用研究中展开了众多的研究取得一定成效的工作,通过共混、填充和增强等方法改性之后的聚丙烯复合材料也已经成功地运用到了实际生产中,扩大了材料的使用范围,在家电、汽车、仪表等工业各领域占据了重要地位。 近十多年来,在我国经济高速增长的带动下,聚丙烯的应用技术不断进步。但是我国的聚丙烯进展与国外相比,在聚合技术、工业化成本、产品数量、品种类别等方面都存在着很明显的差距。根据我国发展中国家的国情,大力开展聚丙烯多元复合材料改性研究是解决上述问题最有效的途径。采用塑料的高性能化合成本不断的降低来推动PP的发展,因此目前是聚丙烯快速发展的良好机会。通过各种手段改善PP性能,最终使得PP几乎可以与某些工程塑料相媲美,从而增加PP 和其它热塑性塑料树脂甚至是某些工程塑料的竞争能力。 2. 聚丙烯的性能及其改性

开发高性能聚丙烯改性材料

(总第154期> 2004年10月30日 开发高性能聚丙烯改性材料 提升湛江电饭煲地质量档次 湛江市包装材料企业有限公司 涂志刚 市科技专家咨询委员会专家 众所周知,在小家电行业,湛江地电饭煲全国有名,早在八十年代半球地广告就遍布全国大中城市.据统计目前湛江生产地电饭煲市场占有率为30%左右,而且大量出口到东南亚.电饭煲产业地发展也带动了相关配件行业地发展,其中包括电饭煲上用到地大量塑料制件,因此在湛江催生了塑料注塑成型加工行业,通过注塑成型,生产电饭煲上地塑料制件,如外壳、内盖、中环、蒸笼、底座等.电饭煲上用到地塑料材料主要是聚丙烯改性材料,最初,这些改性材料主要从珠三角地区购买,近年来在湛江本地逐步有一些私人小企业开始生产,由于价格低廉,但是技术水平与广州附近地企业相比有较,很快地占有了大部分市场 大差距,产品质量较差,因此最终会使电饭煲地质量受到一定程度地影响,这将成为电饭煲产业链拓展地薄弱环节.由此可见在湛江开发高性能地聚丙烯改性材料,对促进电饭煲产业群地发展具有十分重要地意义.b5E2RGbCAP

一聚丙烯

聚丙烯改性技术的研究进展

聚丙烯改性技术的研究进展 五大通用塑料中,聚丙烯(PP)发展历史虽短,却是发展最快的一种。与其他通用塑料相比,PP具有较好的综合性能,例如:相对密度小,有较好的耐热性,维卡软化点高于HDPE和ABS,加工性能优良;机械性能如屈服强度、拉伸强度及弹性模量均较高,刚性和耐磨都较优异;具有较小的介电率,电绝缘性良好,耐应力龟裂及耐化学药品性能较佳等。但由于PP成型收缩率大、脆性高、缺口冲击强度低,特别是在低温时尤为严重,这大大限制了PP的推广和应用。为此,从上世纪70年代中期,国内外就对PP改性进行了大量的研究,特别是在提高PP的缺口冲击强度和低温韧性方面,目前已成为国内外研究的重点和热点。 1 橡胶增韧PP 橡胶或热塑性弹性体以弹性微粒状分散结构增韧塑料,已被证实是增韧效果较为明显的一种方法。由于PP具有较大的晶粒,故在加工时球晶界面容易出现裂纹,导致其脆性。通过掺人各种含有柔性高分子链的橡胶或弹性体,可大幅度提高PP的冲击强度,改善低温韧性。传统的PP增韧剂有三元乙丙橡胶(EPDM)、二元乙丙橡胶(EPR)、苯乙烯与丁二烯类热塑性弹性体(SBS)、顺丁橡胶(BR)、丁苯橡胶(SBR)等,其中以EPDM或EPR取效果最好。 1.1 PP/乙丙橡胶共混体系 PP与乙丙橡胶都含有丙基,溶度参数相近,根据相似相容原理,它们之间应具有较好的相容性。由于乙丙橡胶具有高弹性和良好的低温性能,因此与PP 共混可改善PP的冲击性能和低温脆性。 李蕴能等研究了乙丙橡胶心P共混物的性能,得出结论:在相同橡胶含量下,增韧共聚PP的效果远优于增韧均聚PP,且增韧效果与橡胶的种类有关。通常情况下,EPR的增韧效果优于EPDM。通过实验发现,当橡胶含量为30%时,增韧效果最好;不同结晶度的EPR对PP的增韧效果也不一样,结晶度越低,其增韧效果越好。 刘晓辉等对不同PP心Pr)M共混物的力学性能进行了研究。结果表明:(1)随着体系中EPDM加入量的增多,材料的冲击强度明显上升,当EPDM含量为30%左右时,冲击强度出现极值;(2)冲击强度的提高和变化与EPDM在PP中的形态和分布有关;(3)EPDM的加入对共混晶体结构有影响,但晶体结构上的差

pp材料介绍

PP材料概述 PP塑料,化学名称:聚丙烯 英文名称:Polypropylene(简称PP) 比重:0.9-0.91克/立方厘米成型收缩率:1.0-2.5% 成型温度:160-220℃ PP为结晶型高聚物,常用塑料中PP最轻,密度仅为0.91g/cm3(比水小)。通用塑料中,PP的耐热性最好,其热变形温度为80-100℃,能在沸水中煮。PP有良好的耐应力开裂性,有很高的弯曲疲劳寿命,俗称“百折胶”。PP的综合性能优于PE料。PP产品质轻、韧性好、耐化学性好。PP的缺点:尺寸精度低、刚性不足、耐候性差、易产生“铜害”,它具有后收缩现象,脱模后,易老化、变脆、易变形。 日常生活中,常用的保鲜盒就是由PP材料制成。 成型特性: 1.结晶料,吸湿性小,易发生融体破裂,长期与热金属接触易分解. 2.流动性好,但收缩范围及收缩值大,易发生缩孔.凹痕,变形. 3.冷却速度快,浇注系统及冷却系统应缓慢散热,并注意控制成型温度.料温低温高压时容易取向,模具温度低于50度时,塑件不光滑,易产生熔接不良,流痕,90度以上易发生翘曲变形 4.塑料壁厚须均匀,避免缺胶,尖角,以防应力集中. PP 的工艺特点 PP在熔融温度下有较好的流动性,成型性能好,PP在加工上有两个特点:其一:PP熔体的粘度随剪切速度的提高而有明显的下降(受温度影响较小);其二:分子取向程度高而呈现较大的收缩率。 PP的加工温度在200-300℃左右较好,它有良好的热稳定性(分解温度为310℃),但高温下(270-300℃),长时间停留在炮筒中会有降解的可能。因PP的粘度随着剪切速度的提高有明显的降低,所以提高注射压力和注射速度会提高其流动性,改善收缩变形和凹陷。模温宜控制在30-50℃范围内。PP熔体能穿越很窄的模具缝隙而出现披锋。PP在熔化过程中,要吸收大量的熔解热(比热较大),产品出模后比较烫。PP料加工时不需干燥,PP的收缩率和结晶度比PE低。 聚丙烯(PP)性能概述与横向比较 PP与其它几种主要的通用塑料的性能比较 塑料种类PP PE PVC PS ABS 密度最小小于水较大略高于水略高于水 刚性较好差好好好 收缩率一般差好好好 韧性低温下差好差差好 强度较高低较高高高 耐热性好一般差较差较差 化学稳定性好好好好好 耐候性差差一般一般较差 毒性无毒无毒可以无毒无毒无毒

三元乙丙橡胶增韧聚丙烯的通用特点及其应用

【基础知识】三元乙丙橡胶/聚丙烯(EPDM/PP)的特点应用 近年来,聚合物新材料不断涌现,热塑性弹性体已形成一个新的工业原料体系。三元乙丙橡胶/聚丙烯(EPDM/PP)热塑性弹性体具有优异的耐候、耐臭氧、耐紫外线及良好的耐高温、抗冲击性能,其耐油和耐溶剂性能与通用型氯丁橡胶不相上下,可以用普通热塑性塑料的加工设备进行加工,具有加工简便、成本低、可连续生产并可回收利用等优点。 目前EPDM/PP主要应用于以下领域: 汽车:用于保险杠、仪表板、挡泥板、空气导管、轴承、电缆护套、软管、挡风玻璃密封条、防护罩、防震座垫、管件等。 电子电气:用于电线及电缆绝缘层及护套、矿山电缆、电动机支座、变压器外壳、配线壳、按键膜片、拼结带等。 建筑:用于高档防水卷材、玻璃幕墙密封条、门窗密封条、排水口密封件、卫生设备等。 机械:用于防冲杆、小脚轮、垫圈及垫片、胶辊、手持工具的手柄、软管外覆层等。

运动器械:用于球皮、球拍手柄、步枪托垫、潜水呼吸设备、滑雪杖手柄等。 用EPDM/PP制成的汽车保险杠具有高钢性、抗冲击性、耐损伤性、较好的光泽、弹性及易涂装等性能。用EPDM/PP制成的汽车保险杠在汽车高速行驶时受到冲撞不易碎裂,而且装饰美观,也可注射成型。在性能方面,EPDM/PP与聚氨酯差不多,而成本比聚氨酯低10%~20%,因此目前汽车保险杠成为EPDM/PP最具代表性的应用领域。可回收再利用也是EPDM/PP汽车保险杠发展的重要原因。 目前EPDM/PP用于汽车保险杠是汽车工业发展趋势。国外一些公司开发了许多回收EPDM/PP汽车保险杠的方法。如德国大众汽车公司采用先粉碎、清洗,然后再造粒及模塑的方法。这种方法简单可行、效率高。也有一些公司将回收的EPDM/PP汽车保险杠先粉碎,然后用二甲苯作溶剂分离聚合物的方法生产EPDM/PP。日本汽车公司则先除去保险杠涂料,然后再加工成新的汽车保险杠。再生的EPDM/PP 汽车保险杠与新生产的EPDM/PP汽车保险杠一样,可装在汽车上使用。 日本目前80%的汽车保险杠采用EPDM/PP制造。欧洲汽车保险杠材料大多采用德国BASF公司生产的产品。

碳纤维增强复合材料概述

碳纤维增强复合材料概述 摘要:本文对碳纤维增强复合材料进行了介绍,详细介绍了其优点和应用。并对碳纤维复合材料存在的问题提出建议。 关键字:碳纤维,复合材料,应用 Abstract: In this paper, the carbon fiber reinforced composite materials are introduced, its advantages and application was introduced in detail. And puts forward Suggestions on the problems existing in the carbon fiber composite materials. Key words: carbon fiber, composite materials, applications 1.碳纤维增强复合材料介绍 复合材料是将两种或两种以上不同品质的材料通过专门的成型工艺和制造方法复合而成的一种高性能新材料,按使用要求可分为结构复合材料和功能复合材料,到目前为止,主要的发展方向是结构复合材料,但现在也正在发展集结构和功能一体化的复合材料。通常将组成复合材料的材料或原材料称之为组分材料(constituent materials),它们可以是金属陶瓷或高聚物材料。对结构复合材料而言,组分材料包括基体和增强体,基体是复合材料中的连续相,其作用是将增强体固结在一起并在增强体之间传递载荷;增强体是复合材料中承载的主体,包括纤维、颗粒、晶须或片状物等的增强体,其中纤维可分为连续纤维、长纤维和短切纤维,按纤维材料又可分为金属纤维、陶瓷纤维和聚合物纤维,而目前用得最多的和最重要的是碳纤维[1]。 碳纤维是一种直径极细的连续细丝材料,直径范围在6~8 μm 内,是近几十年发展起来的一种新型材料。目前用在复合材料中的碳纤维主要有两大类:聚丙烯腈基碳纤维和沥青基碳纤维,分别用聚丙烯腈原丝(称之为前驱体)、沥青原丝通过专门而又复杂的碳化工艺制备而得。通过碳化工艺,使纤维中的氢、

复合材料学复习

1.复合材料是由两种或两种以上物理和化学性质不同的物质组合而成的一种 多相固体材料 2.(1)按基体材料的类型分:金属基复合材料,聚合物基复合材料,无机非金 属基复合材料 (2)按增强材料的种类分:玻璃纤维复合材料,碳纤维复合材料,有机纤维复合材料,金属纤维复合材料,陶瓷纤维复合材料 (3)按用途分:结构复合材料,功能复合材料 3.结构复合材料是由基体、增强体和两者之间的界面组成,复合材料的性能则 取决于增强体与基体的比例以及三个组成部分的性能 4. 5.RMC中聚合物基体的主要作用是: a.把纤维粘接在一起; 》 b.分配纤维间的荷载; c.保护纤维不受环境影响。 6.无机凝胶材料主要包括水泥、石膏、菱苦土和水玻璃等 7.复合材料的增强体作用:增加强度、改善性能 8.界面是复合材料的特征 9.复合材料的增强体按其几何形状和尺寸主要有三种形式:颗粒、纤维和晶须。 与之对应的增强机理可分颗粒增强原理、纤维增强原理、短纤维增强原理和颗粒与纤维混杂增强原理。 10.颗粒增强原理分为: (1)弥散增强原理: ) 承力:基体弥散颗粒:阻碍位错 颗粒尺寸越小,体积分数越高,强化效果越好 (2)颗粒增强原理: 承力:基体(主),颗粒(次)大颗粒:阻碍位错;承受载荷

颗粒尺寸越小,体积分数越高,颗粒对复合材的增强效果越好。 11.混合法则:纤维、基体对复合材料平均性能的贡献正比于它们各自的体 积分数 % 对于单向连续纤维增强复合材料弹性模量、抗张强度、泊松比、剪切强度等性能均符合混合法则。 12.平行于纤维方向称为“纵向”,垂直于纤维方向为“横向” 12.复合材料初始变形后的行为: 四个阶段:1)纤维与基体均为线弹性变形;2)纤维继续线弹性变形,基体为非线性变形;3)纤维与基体都是非线性变形;4)随着纤维断裂,复合材料断裂 金属基复合材料的第二阶段占比较大的比例,而脆性纤维复合材料未观察到第三阶段。 13.短纤维一般指长径比小于100的各种增强纤维。 14.复合材料的界面是指一层具有一定厚度(纳米以上)、结构随基体和增强体而异的、与基体有明显差别的新相 复合材料的界面虽然很小,但它是有尺寸的,约几个纳米到几个微米,是一个区域,或一个带、一层,它的厚度呈不均匀分布状态 ; 15. 聚合物基复合材料界面及改性方法: 在聚合物基复合材料的设计中: (1)首先应考虑如何改善增强材料与基体间的浸润性; (2)还要保证有适度的界面结合强度; (3)同时还要减少复合材料成型中形成的残余应力; (4)调节界面内应力和减缓应力集中 浸润不良将会在界面产生空隙,易产生应力集中而使复合材料发生开裂。 在复合材料成型过程中形成的界面残余应力,会使界面传递应力的能力下降,最终导致复合材料的力学性能降低。 — 在增强纤维与基体之间引入一层可产生变形的界面层,在应力作用下吸收导致

聚丙烯的材料性能资料

中英名称 中文名称 (聚丙烯)[1] 英文名称 Polypropylene 性能特性 (1)物理性能:聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~.091g/cm3,是目前所有塑料中最轻的品种之一。 它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。 (2)力学性能:聚丙烯的结晶度高,结构规整,因而具有优良的力学性能,其强度和硬度、弹性都比HDPE高,但在室温和低温下, 由于本身的分子结构规整度高,所以冲击强度较差,分子量增加的时候,冲击强度也增大,但成型加工性能变差。PP最突出的性能就是抗弯曲疲劳性, 如用PP注塑一体活动铰链,能承受7×107次开闭的折迭弯曲而无损坏痕迹,干摩擦系数与尼龙相似,但在油润滑下,不如尼龙。 (3)热性能:PP具有良好的耐热性,熔点在164~170℃,制品能在100℃以上温度进行消毒灭菌,在不受外力的,150℃也不变形。脆化温度为-35℃,在低于-35℃会发生脆化,耐寒性不如聚乙烯。 (4)化学稳定性:聚丙烯的化学稳定性很好,除能被浓硫酸、浓硝酸侵蚀外,对其它各种化学试剂都比较稳定,但低分子量的脂肪烃、芳香烃和氯化烃等能使PP软化和溶胀,同时它的化学稳定性随结晶度的增加还有所提高,所以聚丙烯适合制作各种化工管道和配件,防腐蚀效果良好。 (5)电性能:聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。(6)耐候性:聚丙烯对紫外线很敏感,加入氧化锌、硫代丙酸二月桂酯、碳黑或类似的乳白填料等可以改善其耐老化性能。 PP聚丙烯为无毒、无臭、无味的乳白色高结晶的聚合物,密度只有0.90~0.91g/cm3,是目前所有塑料中最轻的品种之一。它对水特别稳定,在水中24h的吸水率仅为0.01%,分子量约8~15万之间。成型性好,但因收缩率大,厚壁制品易凹陷。制品表面光泽好,易于着色。PP聚丙烯的高频绝缘性能优良,由于它几乎不吸水,故绝缘性能不受湿度的影响。它有较高的介电系数,且随温度的上升,可以用来制作受热的电气绝缘制品,它的击穿电压也很高,适合用作电气配件等。抗电压、耐电弧性好,但静电度高,与铜接触易老化。

聚丙烯的增韧改性讲课稿

聚丙烯的增韧改性技术综述 摘要:本文阐述了聚丙烯(PP)的增韧改性,重点介绍了聚丙烯增韧改性的方法和成果,并对聚丙烯增韧改性历史和聚丙烯其他改性做了简介,归纳总结了聚丙烯增韧改性的未来发展方向。 关键词:聚丙烯;增韧改性;改性方法;改性成果 1引言 聚丙烯(PP)具有比重小、耐热性好、耐腐蚀性好、成型加工容易、力学性能优异且原料来源丰富、价格低廉等优点,所以它在全世界范围内被大量生产和使用,成为仅次于聚乙烯的第二大塑料品种。但同时聚丙烯的一些缺点也限制了其在各行各业中的应用。强度不高、易老化、易燃、韧性差、耐寒性差、低温易脆断、成型收缩率大、抗蠕变性能差、制品尺寸稳定性差等缺陷降低了它在生产中的使用率【1】。因此,对聚丙烯进行改性以期得到更好更适用于使用要求的改性聚丙烯成为了聚丙烯工业发展的重要领域;而在此篇文章中,主要阐述的是聚丙烯的增韧改性,这也是聚丙烯改性中十分重要的一个分支。 2发展历史 1962年,美国开始工业规模化生产丙烯和乙烯的嵌段共聚物,即聚丙烯的共聚改性,这是聚丙烯增韧改性工业化生产的开始; 20世纪70年代中期,乙丙共聚技术普遍推广,不再局限于个别工业发达国家; 1992年,中国盘锦乙烯工业公司与中科院化学研究所合作成功生产出了高韧性共聚聚丙烯,是中国聚丙烯增韧改性的重大进步【2】; 此后,聚丙烯增韧改性技术不断增多和优化,共聚改性、共混改性得到发展;而在最近,纳米粒子增韧改性是最新的研究发展方向。 3改性方法 3.1PP韧性差的原因 PP分子链中存在甲基,使分子链柔顺性下降,由此结晶度高、晶粒粗大,近而表现出成型收缩率大,脆性高,韧性差等缺陷。 3.2PP增韧机理 目前大多研究者采用Dr Wu 的剪切带屈服理论。 即在拉伸应力作用下,高聚物中某些薄弱部位由于应力集中而产生空化条纹状形变区,材料由此产生了银纹,它可以进一步发展为裂纹,所以它常是聚合物破裂的开端。但是形成银纹要消耗大量的热量,若银纹能被适当地终止而不致发展成裂纹,那么它反而可延迟聚合物的破裂,提高聚合物的韧性【3】。增韧也就是为了防止银纹变成裂纹,使聚合物不易破裂。3.3PP改性方法 PP的增韧改性方法主要有共聚改性、共混改性及添加成核剂等。 3.3.1共聚改性(化学改性) 共聚改性主要分为以下三类【4】:无规共聚改性,即采用生产等规PP的工艺路线和方法,使丙烯和乙烯的混合气体进行共聚;嵌段共聚改性,工业主要生产末端嵌段共聚物以及PP、聚乙烯、末端嵌段共聚物三者的混合物;接枝共聚改性,在PP主链的某些原子上接枝化学结构与主链不同的大分子链段。 3.3.2共混改性(物理改性) 通过PP与其他聚合物共混,使其他聚合物填入PP中较大的球晶内,改善其韧性和低温脆性。这种方法有比较明显的特点特点,耗资少并且生产周期短【5】。 PP共混增韧方法主要有4类【3】:

聚丙烯的共混改性

聚丙烯的共混改性 材料一班历晨 1205101018 摘要:聚丙烯,是由丙烯聚合而制得的一种热塑性树脂。按甲基排列位置分为等规,无规和间 规聚丙烯三种。 甲基排列在分子主链的同一侧称等规聚丙烯,若甲基无秩序的排列在分子主链的两侧无规聚丙烯,当甲基交替排列在分子主链的两侧称间规聚丙烯。一般工业生产的聚丙烯树脂中,等规结构含 量约为95%,其余为无规或间规聚丙烯。 关键字:聚丙烯共混改性、聚丙烯改性研究、改性制品八大应用 聚丙烯共混改性 PP/EVA共混体系 : 物理共混改性的方法分别制备出乙烯—醋酸乙烯含量为0~20wt%的聚丙烯(PP)/乙烯—醋酸乙烯(EVA)共混切片,以PP为皮层、PP/EVA共混物为芯层,采用熔融纺丝工艺制备出皮芯复合中空纤维。文中通过研究原材料的组成、EVA含量、复合比例、纺丝温度和挤出速率/卷绕速率匹配对熔融纺丝稳定性的影响,确定了最佳熔融纺丝工艺,同时对复合纤维的力学性能进行了测试。采用差示扫描量热分析仪(DSC)、声速仪、宽角X-射线衍射仪(WXRD)和扫描电子显微镜(SEM)等分析与检测手段对PP/EVA共混物及共混纤维进行相关性能测试,并经过浸泡,研究皮芯复合中空纤维对有机小分子物质的吸附性能。结果表明:1、当EVA含量为0~20wt%时,可以顺利的进行共混造粒。PP/EVA共混物的熔融指数随着EVA质量百分含量的增加而明显降低;随着温度的升高,共混物熔融指数在230℃后急剧升高,流动性明显改善;PP/EVA共混体系为热力学不相容体系。2、具有可纺性的PP/EVA共混物,经严格控制纺丝条件,可以纺制成一定直径且粗细均匀的皮芯复合中空纤维。最佳纺丝工艺条件为:EVA含量10wt%,皮芯复合比6/4,纺丝温度230℃,挤出速率39.69g/min,卷绕速率500m/min。3、随EVA含量的增加和拉伸倍数的增大,纤维的纤度和断裂强度单调减小。当EVA含量为10wt%,实际拉伸倍数为3.7时,纤维的纤度为9dtex,断裂强度和断裂伸长分别为3.0cN/dtex、39%。4、皮芯复合中空纤维通过纤维内部EVA中的极性基团吸附有机小分子物质,吸附量主要取决于纤维中EVA的含量。5、乙烯—醋酸乙烯与有机小分子物质的溶解度参数差异决定吸附量,两者的溶解度参数差异越小,吸附量越大,因此皮芯复合中空纤维对丙烯酸甲酯的吸附性能很好,对苯乙烯吸附性较好,对乙酸乙酯和柏树精油的吸附性相对较差。 6、拉伸倍数在0~4倍时,随着拉伸倍数的增加,纤维对有机小分子物质的吸附量降低;随着温度 的升高,纤维对有机小分子物质的吸附量在50℃时出现最大值. PP/TPEE共混体系:聚丙烯(PP)纤维是由等规聚丙烯经纺丝加工制得的纤维,具有质轻、强力高、 弹性好、化学稳定性好、制造成本低、再循环加工简便等特点,被广泛用于无纺布、卫生用品、绳 索等。但由于聚丙烯纤维大分子内不含任何极性基团,结构规整,结晶度高,疏水性强,分子内不 含能与染料发生作用的染座,所以丙纶的染色性能较差,严重影响了其在服用纺织品上的应用。因 此,对聚丙烯进行可染改性,是广大研究工作者一直关注的热点。其中在聚丙烯基体中通过加入含 染座的改性剂进行共混改性,是聚丙烯纤维可染改性的主要方法。但改性剂的添加,会对聚丙烯的 纺丝性能和纤维力学性能带来较大的影响,因此,选择适宜的改性添加剂及如何改善聚丙烯与改性 添加剂的相容性,是共混改性的难点。本文采用共混改性的方法,选用与PP溶解度参数较接近的聚 对苯二甲酸丁二醇酯(PBT)与聚四亚甲基醚二醇(PTMG)的嵌段共聚物(TPEE)作为改性添加剂,分别 以乙烯-辛烯共聚物接枝甲基丙烯酸缩水甘油酯(POE-g-GMA)、聚丙烯接枝甲基丙烯酸缩水甘油酯 (PP-g-GMA)、乙烯-醋酸乙烯共聚物(EVA)为相容剂,在双螺杆挤出机中按一定共混比例制得共混样 品;利用扫描电镜(SEM)、旋转流变仪、差示扫描量热仪(DSC)、X-射线衍射仪(XRD)、热重分析仪(TG)

项目名称高分子复合材料增强增韧机理及表征完成单位

项目名称:高分子复合材料增强增韧机理及表征 完成单位:华南理工大学 推荐单位:华南理工大学 项目简介: 增强增韧是当今材料科学研究的热点和重点之一。无机粒子填充是常用的聚合物改性方法。以往有关高分子复合材料增强增韧机理的研究尚不深入,一些关键性的进展未见诸报道,如界面粘合状态与拉伸强度的关系(尤其是非球形无机粒子填充高分子复合体系)、断口形貌与冲击韧性的关系、冲击韧性与界面形态的相关性、以及脆-韧转变的定量描述等。项目完成人就此展开历时10多年的系统研究,取得如下创新性成果。 揭示高分子复合材料增强机理。引入界面粘合状态参数,建立预测球形和非球形无机粒子填充高分子复合材料拉伸模量数学模型。创造性地提出界面粘合角的概念,建立描述拉伸过程中界面脱粘的物理模型,进而导出球形和非球形无机粒子填充高分子复合材料拉伸强度公式。 揭示高分子复合材料增韧机理。考虑无机粒子在树脂基体中存在的积聚现象,构建描述复合材料脆-韧转变的物理模型,进而建立新的临界应力球体积分数的数学模型,可较好地描述复合体系发生脆-韧转变时的逾渗现象。 揭示试样断口形貌与材料冲击韧性之间的相关性。应用分形理论,构建了复合材料断口形貌与冲击韧性的定量关系。填料与基体之间界面层厚度与复合体系的力学性能密切相关。推导出估算无机粒子与树脂基体之间界面层厚度公式。提出了复合材料冲击韧性与其结晶特性相关性的新见解。 阐明无机粒子在树脂基体中分散状态与复合材料增强增韧效果及其他性能之间的相关性。基于热分析原理和分形理论,分别建立了描述无机粒子在树脂基体中分散的物理模型,进而提出评估无机粒子在树脂基体中宏观分散的简便方法。

上述数学模型中所含的参数易于确定,便于高分子复合材料的实验研究及其研发中应用。应用实验测量数据对相关数学模型进行了验证。结果表明,理论计算值与实测值有良好的一致性。 研究成果含130篇学术论文及2部学术专著,其中论文被SCI收录79篇,EI收录11篇。论著受到国内外同行广泛关注,获引用或正面评价1798次。其中,SCI他引1043次,单篇论文最高SCI他引为203次。8篇代表作他引145次,SCI他引114次。成果丰富和发展了高分子基复合材料科学理论,对促进材料加工学科的发展具有积极的意义。成果可用于指导聚合物/无机粒子复合材料设计与制备,以及材料性能及形态的表征。 完成人情况 梁基照,教授,博士生导师。工作单位和完成单位均为华南理工大学。项目完成人。全面深入地考察了聚合物复合材料增强增韧机理及其主要影响因素,并应用扫描电镜观察试样断面形貌以及填料与基体之间的界面形态,提出新见解和定量表征。8篇代表作和2部学术专著均为单独作者,其余论文的单独作者、第一作者或通讯作者。 8篇代表作 1Liang J.Z.Reinforcement and quantitative description of inorganic particulate-filled polymer https://www.doczj.com/doc/965541899.html,posites Part B.2013,51:224-232. 2Liang J.Z.Predictions of tensile strength of short inorganic fibre reinforced polymer composites.Polymer Testing,2011,30(7):749–752. 3Liang J.Z.Estimation of tensile strength of inorganic plate-like particulate reinforced polymer composites.Polym.Eng.Sci.,2013,53(9):1823-1827. 4Liang J.Z.Predictions of Young's modulus of short inorganic fiber reinforced polymer https://www.doczj.com/doc/965541899.html,posites Part B.,2012,43:1763-1766. 5Liang J.Z.Quantitative description of interfacial strength in polypropylene/inorganic particle composites.Polymer Composites,2011, 32(5):821-828.. 6Liang JZ.Mechanical properties of PPS/PC/GF/Nano-CaCO3hybrid composites. Polym.Plast.Technol.Eng.2009,48(3):292-296.. 7Liang J.Z.Impact fracture toughness of hollow glass bead-filled polypropylene composites.J.Mater.Sci.,2007,42(3):841-846. 8Liang JZ.Evaluation of dispersion of nano-CaCO3particles in polypropylene matrix based on fractal method,Composites A,2007,38:1502-1506.

相关主题
文本预览
相关文档 最新文档