当前位置:文档之家› 东部凹陷北部地区沙三段沉积物源体系分析

东部凹陷北部地区沙三段沉积物源体系分析

东部凹陷北部地区沙三段沉积物源体系分析
东部凹陷北部地区沙三段沉积物源体系分析

东部凹陷北部地区沙三段沉积物源体系分析

随着油气勘探的不断深入,岩性油气藏越来越受到重视。沉积物源分析作为岩性油气藏勘探的一项重要基础工作,对沉积储层砂体形成与分布的研究具有重要意义。通过盆地类型、重矿物组合、重矿物ZTR 指数特征、岩屑成分、砂体展布等地质资料,对沙三段沉积物源进行了详细的研究。结果表明:沿东西两侧发育短轴方向沉积物源,沿凹陷长轴方向发育北东走向沉积物源,具有近物源、多物源、物源交叉重叠等特征。

标签:东部凹陷沙三段沉积物源重矿物砂体展布

1区域地质概况

东部凹陷是一个东断西超的箕状凹陷,东侧以营口佟二堡断裂和东部凸起为界,西侧超覆于中央凸起。发育茨东、茨西、营口~佟二堡三条主干断层,三条断层的活动形成了该区中隆(中央隆起带)一洼(牛居青龙台洼陷带)一斜坡(大湾斜坡带)的基本构造格局,构造演化及沉积相带上具有明显的“东西分带、南北分块”的特征。

研究区从下而上发育了太古界、古生界、中生界、新生界地层。新生界古近系沙河街组沙三段是其最重要的勘探层系,既存在成熟烃源岩,又发育碎屑岩储层,岩性以砂岩和含砾砂岩为主要特征。

2物源分析

2.1根据盆地类型分析物源区

东部凹陷是一个北东向的狭长断陷型盆地,其北部为中央凸起,东部为东部凸起。沙河街组沙三段早期为盆地的深陷期,发育佟二堡、茨东和茨西三条主干断裂,断裂活动强烈,盆地大幅度下降成深水湖盆,沉积物补偿明显不足,陆源碎屑随阵发性重力流或辫状水流进入湖盆,形成以浊积岩、冲积扇为主体的沉积层。晚期裂陷活动减弱,水域缩小,局部地区甚至露出水面遭受剥蚀。

东部凹陷地形狭长,且受两侧主干断裂影响,两侧地势陡峭,季节性强的阵发性水流携带碎屑从两侧凸起直插入湖,水流快速消能。东西两侧的凸起均是湖盆地主要物源供给区,沉积物在本地区主要形成冲积扇和扇三角洲等沉积体。同时在北抬南降的构造背景下,北部长轴方向往往也可以成为沉积物源。由于岸线长,同一时期沿岸会有多条物源供给渠道。形成多物源,多沉积中心的特点。另外,由于两侧物源快速堆积,砂体多表现为沉积厚度大而延伸短的特点。

2.2重矿物组合分析

重矿物分析应用于物源研究是一种重要和应用广泛的技术。在同一沉积盆地

物源分析方法及进展

物源分析研究方法 物源分析在确定沉积物物源位置和性质及沉积物搬运路径,甚至整个盆地的沉积作用和构造演化等方面意义重要。近年来已发展成为多方法、多技术的一门综合研究领域。电子探针、质谱分析、阴极发光等先进技术在物源分析中应用日益广泛;同时,各种沉积、构造、地震、测井等地质方法与化学、物理、数学等学科的应用及相互结合,使物源判定更具说服力。它在原盆地恢复、古地理再造、限定造山带的侧向位移量,确定地壳的特征,验证断块或造山带演化模型,绘制沉积体系图,进行井下地层对比以及在评价储层的品质等方面,都可起到重要作用。 物源分析已经成为连接沉积盆地与造山带的纽带,为学者提供了一个研究盆山相互作用的有效切入点。其研究内容不仅包括物源区的方位、侵蚀区与母岩区的位置、母岩的性质及组合特征,还包括沉积物的搬运距离、搬运路径;而且,根据物源分析资料还可以进一步了解物源区的气候条件和大地构造背景,进行沉积体系分析,重建古地理面貌。因此进行物源研究既是沉积地质学、构造地质学、岩石学的重要研究内容,也是古海洋学、石油地质学的重要课题。 随着现代分析手段的提高,物源分析方法日趋增多,并不断的相互补充和完善。目前应用较多的为:重矿物法、碎屑岩类分析法、沉积法、裂变径迹法、地球化学法和同位素法等。主要研究岩石、矿物成分及其组合特征、地层的发育状况(包括接触关系和沉积界面等)、岩相的侧向变化和纵向迭置、地球化学特征及其组合变化等,其依据在于不同的物源在沉积物的搬运和沉积过程中就会有不同的岩性、岩相和地球化学特征响应。 一、重矿物分析法 由于电子探针技术的应用及其分析水平、精度的不断提高,重矿物分析法应用广泛。重矿物因其耐磨蚀、稳定性强,能够较多的保留其母岩的特征,其在物源分析中占有重要地位。它包括单矿物分析法和重矿物组合分析法。 1、单矿物分析法 用于重矿物分析的单矿物颗粒主要有:辉石、角闪石、绿帘石、十字石、石榴石、尖晶石、硬绿泥石、电气石、锆石、磷灰石、金红石、钛铁矿、橄榄石等。用电子探针可分析上述矿物的含量、化学组分及其类型、光学性质等,针对每个重矿物的特性及其特定元素含量,用其典型的化学组分判定图或指数来判定其物源。如Morton用辉石矿物对南Uplands 地区奥陶系Portpa2t rik组进行物源判断,依据Let terier提出的Ca2Ti2Cr2Na2Al 组分图解,用Ti2(Ca + Na)来判定其物源是拉斑玄武岩或碱性玄武岩,用( Ti + Cr)2a 图解区分辉石源区为造山带还是非造山带环境,指出该区辉石源自钙碱性火山岩。另外,单颗粒重矿物含量比值亦具有一定的源区意义。独居石/锆石比值( MZi)可显示深埋砂岩物源区的情况;石榴石/锆石比值(GZi)用来判断层序中石榴石是否稳定;磷灰石/电气石比值(ATi)指示层序是否受到酸性地下水循环的影响。单颗粒重矿物含量的平面变化可用来判定物源方向,如磁铁矿等。 2、重矿物组合法 矿物之间具有严格的共生关系,所以重矿物组合是物源变化的极为敏感的指示剂。在同一沉积盆地中,同时期的沉积物的碎屑组分一致,而不同时期的沉积物所含的碎屑物质不同,据此,利用不同时期水平方向上重矿物种类和含量变化图,可推测物质来源的方向〔5。重矿物组合分析法对物源区用处颇大,尤其是在矿物种类较复杂、受控因素较多的地区特别有用。具体组合形式、分析方法根据不同地区特点不同而有差异。目前,主要引用一些数学分析方法,如聚类分析(R型或Q 型) 、因子分析、趋势面分析等方法来研究矿物组合特征、相似性等指数,从而提取反映物源的信息。重矿物方法对母岩性质具有一定的要求,对火山岩和变质岩作为母岩时,其中的重矿物所经历的搬运、沉积次数较少,受后期的影响小,保

三角洲沉积相分类

三角洲相分为:三角洲平原亚相、三角洲前缘亚相和前三角洲亚相 1、三角洲平原亚相 三角洲平原亚相是三角洲的陆上沉积部分,其范围包括从河流大量分叉处位置至海平面以上的广大河口地区。三角洲平原沉积的亚环境多种多样,以分流河道,分支河道)为格架,分流河道的两侧有天然堤、决口扇,而分流河道间地区常发育有沼泽、湖泊和分流间湾等。其中最主要的是分流河道砂沉积与沼泽的泥炭或(和)褐煤沉积,这是与一般河流的重要区别。 三角洲平原亚相可进一步分为分流河道、陆上天然堤、决口扇、沼泽、淡水湖泊等沉积微相。 (1)分流河道微相:是河流体系河床沉积向下延伸,是三角洲平原中的格架部分。具 有一般河道沉积的特征,即以砂质沉积为主,向上逐渐变细的层序特征。但它们较中、上游 河流沉积的粒度为细,分选变好。一般底部为中—细粒砂,常含泥砾、植物干茎等残留沉积 物,向上变为粉砂、泥质粉砂及粉砂质泥等。砂质层具有槽状或板状交错层理和波状交错层 理,而且其规模向上变小。其底界与下伏岩层常呈侵蚀冲刷接触。 由于分流河道位置较固定,而且较直,所以曲流沙坝一般不发育。分流河道砂体的形态

在平面上为长形砂体,有时分叉;在横剖面上呈对称的透镜状。砂体常沉陷于下伏的泥岩层 内,其中部最厚和最粗,而向两端变薄和变细。 (2)陆上天然堤微相:位于分流河道的两旁,向河道方向一侧较陡,向外一侧较缓。 这种天然堤系由洪水期携带泥沙的洪水漫出淤积而成。天然堤在三角洲平原的上部发育较 好,但向下游方向其高度、宽度、粒度和稳固性都逐渐变小。以粉砂和粉砂质粘土为主,而 且由河道向两侧变细和变薄。水平纹理和波状交错纹理发育。水流波痕、植屑、植茎、植根 和潜穴等较常见。有时见有雨痕和干裂等暴露成因的构造。 (3)决口扇微相:三角洲决口扇与河流的决口扇沉积亦很相似。但由于这种天然堤稳 定性较差,故它们较河流中下游更为发育,而且有的面积较大,可形成席状砂层。(4)沼泽微相:位于三角洲平原分流河道间的低洼地区,分布最广,约占三角洲平原 面积的90%。它们具有一般沼泽所具有的特征。这种沼泽的表面接近于平均高潮面,是一 个周期性被水淹没的低洼地区;其水体性质主要为淡水或半咸水。这种沼泽中植物繁茂,均

第四纪沉积物成因代号

1. ml--人工填土 2. pd--植物层 3. al--冲击层 4. pl--洪积层 5. dl--坡积层 6. el--残积层 7. eol--风积层 8. l--湖积层 9. h--沼泽沉积层 10. m--海相沉积层 11. mc--海陆交互相沉积层 12. gl--冰积层 13. fgl--冰水沉积层 14. b--火山堆积层 15. col--崩积层 16. del--滑坡堆积层 17. set--泥石流堆积层 18. o--生物堆积 19. ch--化学堆积物 20. pr--成因不明沉积 注:上述每类符号前加Q,并以上标符号的形式显示,表示完整的地层符号

由原岩风化产物经各种外力地质作用而成的沉积物,至今其沉积历史不长,所以只能形成未经胶结硬化的沉积物,也就是通常所说的“第四纪沉积物”或“土”。不同成因类型的第四纪沉积物,各具有一定的分布规律和工程地质特征,以下分别介绍其中主要的几种成因类型:残积物、坡积物和洪积物。 残积物(Qel) 残积物是由岩石风化后,未经搬运而残留于原地的土,而另一部分则被风和降水所带走。它处于岩石风化壳的上部,是风化壳中的剧风化带,向下则逐渐变为半风化的岩石。它的分布主要受地形的控制,在宽广的分水岭上,由雨水产生地表径流速度小,风化产物易于保留的地方,残积物就比较厚。在平缓的山坡上也常有残积物覆盖。在不同的气候条件下、不同的原岩,将产生不同矿物成份、不同物理力学性质的残积土。由于风化剥蚀产物是未经搬运的,颗粒不可能被磨圆或分选,没有层理构造。 残积物与基岩之间没有明显的界限,通常经过一个基岩风化层(带)而直接过渡到新鲜岩石。残积物有时与强风化层很难区分。一般说来,残积物是由于雨雪水流将细颗粒带走后残留的较粗颗粒的堆积物。风化层则虽受风化作用的影响,但它是未被剥蚀搬运的基岩风化产物。残积物中残留碎屑的矿物成分很大程度上与下卧基岩相一致,这是鉴定残积物的主要根据。例如砂岩风化剥蚀后生成的残积物多为砂岩碎块。根据这个道理可按地面残积物的成分推测下卧基岩的种类。反之,也可按基岩分布的规律推测其风化产物的特征。山区的残

三角洲类型及沉积特征

三角洲类型及其沉积特征总结 【摘要】三角洲类型的分类有很多不同的方案,其具体的沉积特征也是各不相同。本文在结合教材和其他文章的基础下一定系统性的分别总结了三角洲类型和三角洲的具体沉积特征及对比。列出了三角洲的几种典型分类并从两个方向总结了几种典型三角洲分类中具体的沉积特征。 【关键词】三角洲沉积类型沉积特征 三角洲概念是地质学中最古老的概念之一。三角洲是河流与海洋(湖泊)相互作用的结果,巴雷尔(1912)的现代三角洲定义中提出三角洲是河流在一个稳定的水体中或紧靠水体处形成的,部分出露水面的一种沉积物。由于河流和海洋(湖泊)作用强度不同以及沉积物粗细的差异,因而形成了不同类型的三角洲。三角洲沉积作用的自然因素十分复杂,因此三角洲的分类方案也各不相同。 一. 三角洲的类型 1.建设性与破坏性三角洲 斯考特和费希尔等(1969)根据河流,潮汐,波浪作用强弱将三角洲分为建设性和破坏性两种类型,提出了上述概念。建设性三角洲的形成过程主要受河流作用的控制,海洋作用很次要。支流河水不断地把沉积物带入海中,使海岸线向海方向推进,三角洲平原随之向前扩展。破坏三角洲的形成过程主要受海洋作用控制,沉积物注入量相对于蓄水体能力来说比较适中,因而河流在携带入海的沉积物同时又被海水作用所改造,于是波浪作用和潮汐作用控制了沙体分布的几何形态。 2.河控,浪控及潮控三角洲 盖洛韦(1976)根据河流,波浪,潮汐作用的相对关系,提出了三角洲的三段元分类。这三个段元分别为河控三角洲,浪控三角洲和潮控三角洲。河控三角洲(River-dominated delta):以河流作用为主,长形,分支流河道、河口坝与沼泽较发育,如密西西比(Mississippi delta of U S A )三角洲。浪控三角洲(Wave-dominated delta):尖形与弓形沙脊取代了河控三角洲的分之流河道,沙滩、沙丘和泻湖较发育,如圣弗郎西斯三角洲(San Francisco delta of Brazil)。潮控三角洲(Tide-dominated delta):以发育与岸线垂直的线状沙脊为特征,受潮汐作用影响的分支流河道和泽较发育,如Makaham delta of Indonesia.其中前者属建设性三角洲,后两者属破坏性三角洲。如图一。

南海海底沉积物的类型及工程特征

南海海底沉积物的类型及工程特征 江飞 一、区域地质背景 南海海盆面积约350 x 104km 2,由于它位于欧亚板块、太平洋板块、印度洋板块交汇处,因此它的形成和发展,既受控于NE 向的太平洋板块的俯冲作用,同时它也受控于NW 和EW 向的古特提斯海的封闭作用的影响。所以,南海构造和海底地形地貌十分复杂,既有水深较浅的平坦的南海北部陆架区,也有海底地形、地貌复杂的南海陆坡区和平坦的深海平原区。在不同的地形地貌背景上,它又沉积了厚度不一,各种不同类型的现代(Q 4)海洋沉积物。由于海洋细粒土是一种分布较广,具有其固有特性而且对海底工程建设和海洋开发有重要影响的一种软弱地基土。因此,对它的研究具有明显的实际意义和理论意义。 二、南海北部陆架浅海相淤泥质细粒土 (一)基本特点 南海北部陆架浅海相淤泥质细粒土,主要分布在水深小于30m 的内陆架现代沉积区,水深大于30m 的中陆架混合残留沉积区的部分地段也有分布。它们主要是华南大陆水系将陆源物质搬运入海沉积而成,主要由淤泥质粘土质粉砂、粉砂质粘土、砂质粘土等类型构成。沉积物颗粒较细,中值粒径介于0.1-0.005mm ,分选差,沉积韵律明显,一般多呈深灰色,含有机质、铁质高,频率曲线都呈双峰或多峰状。碎屑矿物、重矿物含量远比南海陆坡半深海相细粒土为高。它们和一般淤泥质细粒土相似,其工程特性具含水量高于液限、孔隙比大于1,压缩性大、强度小、处于汗流状态的特点。据C 14、Pb 210测年,其沉积速率大,一般为0.1-0.25cm/a 。 (二)物质组成 1.颗粒成分与团粒成分 根据风干土样颗粒成分(加分散剂)及团粒成分(不加分散剂)分析结果,该土主要由粘土颗粒、粉砂颗粒、细砂颗粒组成。天然状态下,大部分粘粒呈0.01-0.005mm 的微集聚体形式存在(表1)。

物源分析方法及研究进展

① 国家重点基础研究发展规划(G1998040808)项目资助 收稿日期:2002-04-18 文章编号:1000-0550(2003)03-0409-07 物源分析方法及研究进展 ① 赵红格 刘池洋 (西北大学地质学系 西安710069) 摘 要 物源分析是盆地和造山带研究的一项重要内容,它对分析沉积盆地与造山带的相对位置、演化过程及相互作用等方面意义重大。物源分析方法众多,文中主要讨论了重矿物法、碎屑岩类法、裂变径迹法、沉积方法、地球化学和同位素法等的方法、原理及其应用条件和局限性,并指出地球化学方法和同位素方法具有广阔的应用前景。同时,也应该考虑构造抬升、剥蚀作用和化学风化等构造和沉积作用对物源区判定的影响。物源分析时应注意将多种方法相结合,扬长补短,才能得出合理的结论。 关键词 物源分析 重矿物 裂变径迹 碎屑岩 沉积 地球化学 同位素第一作者简介 赵红格 女 1975年出生 博士研究生 盆地分析中图分类号 P512.2 TE121.3 文献标识码 A 1 前言 物源分析在确定沉积物物源位置和性质及沉积物搬运路径,甚至整个盆地的沉积作用和构造演化等方面意义重要。近年来已发展成为多方法、多技术的一门综合研究领域。电子探针、质谱分析、阴极发光等先 进技术在物源分析中应用日益广泛;同时,各种沉积、构造、地震、测井等地质方法与化学、物理、数学等学科的应用及相互结合,使物源判定更具说服力。它在原盆地恢复、古地理再造、限定造山带的侧向位移量,确定地壳的特征,验证断块或造山带演化模型,绘制沉积体系图,进行井下地层对比以及在评价储层的品质等方面,都可起到重要作用 〔1~4〕 。 2 方法及原理 随着现代分析手段的提高,物源分析方法日趋增多,并不断的相互补充和完善。目前应用较多的为:重矿物法、碎屑岩类分析法、沉积法、裂变径迹法、地球化学法和同位素法等。主要研究岩石、矿物成分及其组合特征、地层的发育状况(包括接触关系和沉积界面等)、岩相的侧向变化和纵向迭置、地球化学特征及其组合变化等,其依据在于不同的物源在沉积物的搬运和沉积过程中就会有不同的岩性、岩相和地球化学特征响应。 2.1 重矿物分析法 由于电子探针技术的应用及其分析水平、精度的不断提高,重矿物分析法应用广泛 〔5~11〕 。重矿物因其 耐磨蚀、稳定性强,能够较多的保留其母岩的特征,其在物源分析中占有重要地位。它包括单矿物分析法和重矿物组合分析法。2.1.1 单矿物分析法 用于重矿物分析的单矿物颗粒主要有:辉石、角闪 石、绿帘石、十字石、石榴石、尖晶石、硬绿泥石、电气 石、锆石、磷灰石、金红石、钛铁矿、橄榄石等。用电子 探针可分析上述矿物的含量、化学组分及其类型、光学性质等,针对每个重矿物的特性及其特定元素含量,用其典型的化学组分判定图或指数来判定其物源。如Mo rton 用辉石矿物对南Uplands 地区奥陶系Portpa -trik 组进行物源判断,依据Letterier 提出的Ca -Ti -Cr -Na -Al 组分图解,用Ti -(Ca +Na )来判定其物源是拉斑玄武岩或碱性玄武岩,用(Ti +Cr )-a 图解区分辉石源区为造山带还是非造山带环境,指出该区辉石源自钙碱性火山岩〔1〕。另外,单颗粒重矿物含量比值亦具有一定的源区意义。独居石/锆石比值(M Zi )可显示深埋砂岩物源区的情况;石榴石/锆石比值(G Zi )用来判断层序中石榴石是否稳定;磷灰石/电气石比值(A Ti )指示层序是否受到酸性地下水循环的影响〔11〕。单颗粒重矿物含量的平面变化可用来判定物源方向,如磁铁矿等〔9〕。 2.1.2 重矿物组合法 矿物之间具有严格的共生关系,所以重矿物组合是物源变化的极为敏感的指示剂。在同一沉积盆地中,同时期的沉积物的碎屑组分一致,而不同时期的沉积物所含的碎屑物质不同,据此,利用不同时期水平方 第21卷 第3期2003年9月 沉积学报ACT A SEDI M EN T O LOGICA SIN ICA Vo l .21N o .3 Sep .2003 DOI :10.14027/j .cn ki .cjxb .2003.03.007

南黄海表层沉积物中粘土矿物分布及物源分析_宋召军

南黄海表层沉积物中粘土矿物分布及物源分析 宋召军1,张志珣2,余继峰1,刘新波2 (1.山东科技大学地质科学与工程学院,山东青岛266510;2.青岛海洋地质研究所,山东青岛266071) 摘 要:以南黄海表层沉积物中粘土矿物的测试数据为基础,分析了研究区内4种粘土矿物(伊利石、高岭石、蒙皂石、绿泥石)的分布特征。研究表明:本区伊利石含量最高,蒙皂石或高岭石次之,绿泥石含量最低;粘土矿物的组合类型以伊利石-蒙皂石-高岭石-绿泥石型为主,伊利石-高岭石-蒙皂石-绿泥石型次之;南黄海粘土矿物主要是陆源成因,物质主要来源于黄河和长江的供给。 关键词:粘土矿物;南黄海;分布特征;物质来源 中图分类号:P736.21 文献标志码:A 文章编号:1672-3767(2008)03-0001-04 Study on Distribution and Material Sources of Clay Minerals in S urface Sediments of the Southern Yellow S ea SONG Zhao-jun1,ZHANG Zhi-x un2,YU Ji-feng1,LIU Xin-bo2 (1.College o f G eo-science&Eng.,SU ST,Qing dao,Shandong266510,China; 2.Institute o f M arine G eolo gy,Q ing dao,Shandong266071,China) A bstract:Based on the previously av ailable data o f clay minerals in the surface sediments o f the Southe rn Yellow Sea,this paper mainly deals with the distribution of4types o f the clay minerals(illite,kao linite,smectite and chlo-rite).T he r esear ch results show that the content of the illite in this a rea is the highest,the smectite o r kao linite a re the second and chlo rite is the low est;the illite-smec tite-kao linete-chlo rite-ty pe rock is the main ty pe of the clay min-er als assemblage in the area,and the second one is illite-kao linete-smec tite-chlorite-ty pe;the material source of clay mine ral is mainly f rom the Y ellow Rive r and theYang tze River. Key words:clay miner al;the Southern Y ellow Sea;distributio n characteristic;material so urce 粘土矿物是海洋沉积物的重要组成部分,广泛分布于各种类型的沉积物中。由于粘土矿物具有独特的物理化学性质,它对地质作用和地质环境的变化反映敏感,因而粘土矿物的组分、组合、形态、结构等特征可用于阐明海洋沉积作用、物质来源、沉积环境、古气候以及进行地层划分[1-3]。 南黄海是半封闭的陆架海,现代泥质沉积广泛发育,粘土矿物构成了区内沉积物的重要组分,其类型多样,分布广泛,是各种地质作用信息的重要载体。近年来许多学者对南黄海海区的粘土矿物进行了较为深入的研究,取得了许多重要成果[4-6]。本文在前人研究的基础上,利用国土资源部青岛海洋地质研究所2001年所取得的62个表层沉积物样品(取样站点主要分布于32°~36°N;121°~124°E)和分析数据,对南黄海表层沉积物中粘土矿物的分布特征及物质来源进行了分析。 1 样品的处理与分析 粘土矿物的处理方法是参照国家标准(GB/T13909—1992)《海洋调查规范—海洋地质地球物理调查》的方法,将约40~70g的柱状和表层沉积物样品,根据其中泥质组分的多寡,放入2000mL的烧杯中,加入 收稿日期:2007-08-27 基金项目:国家自然科学基金项目(40706027,40176021) 作者简介:宋召军(1976—),男,黑龙江木兰人,副教授,博士,主要从事海洋地质学、沉积学方面的研究.

第四纪沉积物

第四纪沉积物 一、第四纪的时间范围 最初,人们把地壳的发展历史分为第一纪(原始纪)、第二纪和第三纪3个大阶段。1829年,法国学者J.德努瓦耶在研究巴黎盆地的地层时,把第三系上部的松散沉积物划分出来命名为第四系,其时代为第四纪。随着地质科学的发展,第一纪和第二纪因细分成若干个纪被废弃了,仅保留下第三纪和第四纪的名称,这两个时代合称为新生代。第四纪是地球发展史的最新阶段,时间范围从上新世末(距今 248万年)直到现在。第四纪分为更新世和全新世两个阶段。第四纪一词是J.德努瓦耶于1829年提出的。第四纪形成的地层称第四系,再分为更新统和全新统。更新世是1839年提出的,他把巴黎盆地含软体动物化石70%为现生种的地层称为更新世地层。全新世和近代为同义词。近代(Recent)一词是1833年由莱伊尔引进地质学中,含义是从此地球被人类所居住。全新世是1850年P.热尔韦提出的,1885年正式通过。 第四系下界的确定是一个重大的基本理论问题,至今仍有不同意见。1948年第18届国际地质大会确定,以真马、真牛、真象的出现作为划分更新世的标志。陆相地层以意大利北部维拉弗朗层,海相以意大利南部的卡拉布里层的底界作为更新世的开始。中国相当于维拉弗朗层的泥河湾层作为早更新世的标准地层。其后,应用测定了法国和非洲相当于维拉弗朗层的地层底界年龄,约为180万年。因此,许多学者认为第四纪下限应为距今180万年。1977年,国际第四纪会议建议,以意大利的弗利卡 (Vrica)剖面作为上新世与更新世的分界,其地质年龄为170万年左右。对中国黄土的研究表明,大约距今248万年黄土开始沉积,反映了气候和环境的明显变化。还有部分学者认为,第四纪下限应定在距今350~330万年。总之,第四纪下限尚未最后确定,本文暂以距今248万年作为第四纪的开始。 二、第四纪沉积物成因及工程性质 第四纪沉积物的是沉积在陆地或水盆地中的松散的矿物质颗粒或有机物质,如砾石、砂、粘土、灰泥、生物残骸等。多来源于母岩风化产物、火山喷发物、有机物、宇宙物质等。第四系的划分,普遍采用1932年第二届国际第四纪会议上提出的四分原则,即分为下更新统、中更新统、上更新统和全新统。相应的地质时代为早更新世、中更新世、晚更新世和全新世。划分第四纪地层主要依据沉积物的岩石性质和地质年龄,测定第四纪地层年龄的方法主要有放射性碳法、热释光法、钾- 氩稀释法、裂变径迹法、氨基酸法等。此外,第四纪地层中所含的哺乳动物化石、孢粉化石、微体动物化石以及沉积物的古地磁特性、氧同位素特征、古土壤标志、天文学标志等都可用于划分第四纪地层。根据这些标志,许多国家建立了本地区的第四系典型剖面。 第四纪沉积物记录了第四纪发展历史和自然环境变化,分布极广,除岩石裸露的陡峻山坡外,全球几乎到处被第四纪沉积物所覆盖。第四纪沉积物形成时间晚,大多未胶结,保存比较完整。厚度一般数十米至数百米,个别地区可超过1000米。第四纪沉积物成因类型复杂,相变剧烈。根据所造成沉积物的主要动力条件,主要有: 单一成因:一种动力,如冲积物(al); 复合成因:两种以上动力,如洪冲积物(dlp)、冲洪积物(alp); 成因不明:pr。

陆源沉积的分析方法资料

沉积物物源分析研究进展 摘要物源分析是盆地和造山带研究的一项重要内容,它对分析沉积盆地与造山带的相对位置、演化过程及相互作用等方面意义重大。物源分析方法众多,文中主要讨论了重矿物法碎屑岩类法、裂变径迹法、沉积方法、地球化学和同位素法等的方法、原理及其应用条件和局限性,并指出地球化学方法和同位素方法具 有广阔的应用前景。同时,也应该考虑构造抬升、剥蚀作用和化学风化等构造和沉积作用对物源区判定的影响。物源分析时应注意将多种方法相结合,扬长补短,才能得出合理的结论。 关键词物源分析重矿物裂变径迹碎屑岩沉积地球化学同位素 1前言 物源分析在确定沉积物物源位置和性质及沉积物搬运路径,甚至整个盆地的 沉积作用和构造演化等方面意义重要。近年来已发展成为多方法、多技术的一门综合研究领域。电子探针、质谱分析、阴极发光等先进技术在物源分析中应用日 益广泛;同时,各种沉积、构造、地震、测井等地质方法与化学、物理、数学等 学科的应用及相互结合,使物源判定更具说服力。它在原盆地恢复、古地理再造、限定造山带的侧向位移量,确定地壳的特征,验证断块或造山带演化模型,绘制沉积体系图,进行井下地层对比以及在评价储层的品质等方面,都可起到重要作用。 2 物源分析方法早期研究概述 早期的物源研究主要根据碎屑物质的成分、结构、构造以及所处的自然地形 来判断母岩的岩石类型和所处的位置。而现代物源分析则把沉积岩的成分、结构、构造与所处的大地构造背景联系在一起。现代物源分析起源于Dickinson等利用砂岩碎屑组分判别沉积物源区构造背景的研究。他们总结了世界上典型地区的砂 岩碎屑组分,将砂岩的碎屑组分做了详细的划分和定量统计,编绘出用于物源判断的模式图———迪金森三角图解(图1)。该方法主要通过常规岩石薄片的显微 镜下成分统计,包括石英、长石、岩屑、单晶石英、多晶石英、硅质岩屑等,然 后利用模式图来了解物源区的特征及所处的大地构造背景。该方法简便易行,至今仍然被广泛利用。但是,该方法在应用过程中也曾出与实际情况不符的情况, 其原因主要是未考虑混和物源以及风化、搬运和成岩作用等次生作用的影响。Schwab总结了阿巴拉契亚、西怀俄明、西阿尔卑斯等前陆盆地的陆源碎屑组合

沉积物取样方法

沉积物取样技术 人类对深海沉积物与古海洋历史的认识,是随着适当船舶的使用和相应取样设备的研制而发展起来的。深海钻探和库伦堡活塞取样管的研制就说明了这个问题。 19世纪60年代,对深海沉积物的性质实际上并不了解。“Challenger”号的考察(1872~1876)标志着对深海沉积物系统研究的开始。沉积物制图主要由John Murray(Murray和Renard,1891)承担。尽管Murray及其同事们的工作为后来所有海洋地质研究打下了基础,但由于当时缺乏取芯设备而无法研究深海沉积物的地质记录。在以后半个世纪中,这项研究仍然无法进行。 最早的取芯和对深海沉积物记录的研究,是20世纪20年代后期和30年代由荷兰“Sne-lius”号和德国“Meteor”号船的考察开始的。是Schott (1935)第一个证明了浮游有孔虫组合的变化记录了第四纪的冰川相。这些成就,后来又被瑞典深海考察队队员大大向前推进了一步。Kullenhery (1947)发明的活塞取样管提供了更长的第四纪层序,从而开辟了第四纪古气候学、沉积学和火山史的研究。采用活塞取芯器的更广泛的调查是随着调查人员的不断增加从20世纪50年代开始的。例如,在拉蒙特,M·Ewing、B·Heezen、D·Ericson和G·Wollin 对晚第四纪的古气候和沉积记录进行了重要的研究;与此同时,C·Emiliani(迈阿密大学)开创了应用氧同位素于第四纪古气候史的研究。这些工作为70年代第四纪沉积记录的更全面的研究打下了坚实的基础。后者主要基于几个研究所在60和70年代所收集的大量活塞岩芯资料,其中包括“Eltanin”号船环南极考察采集的岩芯。这些调查主要限于第四纪记录的研究,原因是取芯器的穿透深度很少超过20 m。因此只有通过钻探才能获取据信存在于深海盆的长的地球史记录。莫霍钻探计划的试验性钻探是获取这种记录的初次尝试,虽然以彻底失败而告终,但却第一次在下加利福尼亚外海获得了一个有用的钻孔剖面。“Submarex”号考察在加勒比海也获得了一个钻孔层序。虽然从今天的标准来看,这些考察得到的材料是很少的,但是,对证明深海钻探的可能性和常规石油工业技术的应用是很重要的,也为后来深海钻探的发展奠定了基础。 1968年7月28日,当新建的“Glomar Challenger”号钻探船驶离得克萨斯奥兰治港进行首次深海钻探考察时,这种可能性已成为现实。这项计划开创了海洋地质的新时代,提高了我们对地球及其生物群演化的认识。它的出现适逢60年代中期海底扩张和板块构造学说的发现,这两个学说为地球的定量研究和预测研究提供了科学的依据。除少数顽固派以外,深海钻探计划本身的早期钻探成果(Peterson等人,1970;Maxwe11等人,1970)确实说服了所有的人接受了大洋扩张和大陆漂移与碰撞的思想。莫霍钻探计划的失败,为制定以国家和国际性合作为基础的计划创造了有利的环境。这种合作确实是成功的。深海钻探计划最初八年的经费完全由美国国家科学基金会提供,但后来则由国际海洋钻探计划(IODP)所属的、包括美国在内的一个六国国际组织提供。斯克里普斯海洋研究所在几个国际顾问委员会(地球深层取样联合海洋机构)的指导下一直负责该项计划的实施。计划的最初几个阶段主要是勘察性的,钻探的目的主要是各种海底地形的大范围年代测定,后来又转向回答各种海洋学问题。已建立的几个主要咨询委员会可以反映出所要回答的问题。它们是:洋壳委员会,被动边缘委员会,主动边缘委员会和古环境委员会等。IODP使我们对大徉历史的认识发生了根本性的变化。该计划所得到的大部分资料已在深海钻探计划初步报告中,发表(华盛顿特区,

三角洲沉积环境、沉积特征及与油气关系

三角洲就是河流入海或入湖以后在河口地区形成的扇形或舌形的沉积体,为什么河流入海就会形成三角洲呢?因为当河流入海入湖,随着河流能量的降低,会在河口地区卸载一些带不动的沉积物,渐渐的就会形成水下的浅滩,水下浅滩逐渐迂回增高以后就会形成河口砂坝,受河口砂坝的阻挡会使得原来的单河道分叉,形成分流河道,然后分流河道中又会形成次级的河口砂坝,河道又会继续分叉形成二次河道分支,这样就形成了三角洲的雏形。 三角洲雏形形成后会按照以下三步进行发育(1)当洪流冲决天然堤,沉积物淤积而呈决口扇滩,三角洲会扩大。(2)河水冲决天然堤,会取道新河床入海,旧河道会淤塞,泥砂供应断绝,同时受海浪改造和侵蚀,旧三角洲废弃,新三角洲开始发育。(3)三角洲废弃和发育相互转化,交替出现,各三角洲彼此连接且部分叠合,形成三角洲复合体。像密西西比河三角洲平原和黄河口现代三角洲都是由多期三角洲叠置形成,有机会应该去地质考察。 下面再来看看三角洲区域内的水流形式,由于蓄水密度与河水密度的差异,不同密度流交汇都会有三种水流扩散方式。 (1)河水密度大于蓄水密度。这种情况属于高密度流动,这种流动会形成底部面状射流也就是前面说到的浊流,会形成湖(海)底扇。也就是说河水携带较多的碎屑物质,这些碎屑物质会在河底形成高密度流体,进入湖盆后沿湖盆底部搬运沉积,个人认为这应该是近物源沉积会有的表现形式。 (2)河水密度与蓄水密度相当。这种情况属于等密度流动,这种流动会形

成辐射状扩散(喷射状),这种情况一般是湖泊三角洲。

(3)河水密度小于蓄水密度。这种情况属于低密度流动,这种流动扩散表现为表面面状流动属于平面喷流,这也是大部分海洋三角洲的形式。 下面来看三角洲的主要类型,按河流和海洋作用强弱程度可以分为建设性三角洲和破坏性三角洲。建设性三角洲受河流作用为主,泥砂在河口地区堆积速度大于波浪的改造速度,因此特点就是三角洲增长快,沉积厚度大,面积大,常形象的被称为鸟足或朵页状。破坏性的三角洲主要受波浪和潮汐改造作用形成,反映出海洋作用超过河流作用,波浪、潮汐、海流能量等于或大于河流输入泥砂能量,河口区泥砂堆积被海洋水动力改造、加工和破坏,因此特点就是河流作用时间短,三角洲面积小,常呈现出鸟嘴状的形态。可以按照下图对号入座。 除了按河流和海洋作用强弱程度来划分,还可以按河流、波浪、潮汐的相对强度来划分。可分为河控三角洲、浪控三角洲和潮控三角洲。 河控三角洲,河流输入泥砂量大,波浪、潮汐作用微弱,河流的建设作用远远超过波浪潮汐和潮汐的破坏作用的条件下形成。最典型的高建设性三角洲就是鸟足状三角洲了,河流输入泥砂量大,天然堤发育,分支河道比较固定,向海推进快,延伸原,前三角洲泥沉积巨厚,像密西西比河三角洲。另一种建设性三

河控三角洲的沉积模式平面和垂向

河控三角洲的沉积模式平面和垂向)与各亚相的沉积特征 一、河控三角洲沉积模式 三角洲分为河控三角洲、浪控三角洲及潮控三角洲。以下介绍河控三角洲的沉积特征。 三角洲可以划分为三种亚环境: 三角洲平原 三角洲前缘 前三角洲 1.三角洲平原 是三角洲的陆上部分,它与河流的分界是从河流大量分叉处开始。包括分支流河道、天然堤、决口扇、沼泽、湖泊和分支间湾等。其中最主要的是分支流河道砂沉积与沼泽的泥炭或褐煤沉积。二者的共生是三角洲平原沉积的典型特征。 A.分支流河道沉积: 是三角洲平原的主体,大量泥砂都是通过分支流河道搬运至三角洲前缘的河口处沉积下来的。分支流河道本身的沉积具有一般河道沉积的特征,即以砂质沉积为主,向上逐渐变细,槽状、板状、波状交错层理,底界与下伏岩层常呈侵蚀接触。 B.天然堤沉积:

位于分支流河道的两旁。由洪水期携带泥砂漫出淤积而成。以粉砂和粉砂质粘土为主。水平层理和波状交错层理。 C.决口扇沉积: 洪水和河流冲破天然堤,在外侧更为发育。交错层理砂岩,呈透镜状沙体夹在分支间湾细粒粉砂质、泥质和沼泽沉积物之间。 D.沼泽沉积: 占三角洲平原的90%。表面接近于平均高潮面,是一个周期性被水淹没的低洼地区,水体为淡水或半咸水,弱还原或还原环境。沼泽中植物繁茂,多为芦苇等草本植物。岩性为暗色有机质泥岩、泥炭或褐煤沉积。块状层理和水平层理。 E.分支间湾沉积: 分支流河道之间较低洼地区,常与海域连通(外侧)。泥岩为主,夹粉砂岩、细砂岩。水平层理,生物扰动构造,偶见海相化石。当三角洲向海方推进时,在分支流间湾地区可形成泥岩楔(比沼泽的地貌低,靠海一侧)。 2.三角洲前缘 是三角洲的水下为主的部分,位于分支流河道的前端(河口部位)。是三角洲最活跃的沉积中心,是三角洲的主体。从河流带来的砂、泥沉积物在河口与海洋结合部位迅速地沉积。由于受到河流、波浪和潮汐的反复作用,砂泥经冲刷、簸扬和再分布,形

冲积扇的形成条件、沉积物类型之综述

冲积扇的形成条件、沉积物类型之综述 摘要:冲积扇是河流出口处的扇状地貌堆积体,作为流水地貌的重要组成部分,与人类的经济发展有着实际意义,但在不同气候条件下其特征差异较大。本文从不同条件下的冲积扇沉积物类型,沉积相组成及垂向序列方面做一简要探讨,以期对冲积扇有个更深刻的认识。 关键词:冲积扇沉积物类型沉积相垂向序列 引言 冲积扇是河流从山地进入盆地时在山前形成的一种扇状地貌堆积体,是流水地貌的一个重要组成部分(图1)。在不同气候状况下形成的冲积扇在地貌上和物质组成上有较大的差异。前人尤其是国外学者对此作了较多的研究[1-2],并提出了干旱气候条件下和湿润气候条件下的沉积模式以及“干旱扇”和“湿地扇”的概念。总体来说,冲积扇通常发育在那些地势高差起伏较大而沉积物补给充分的区域,那些地区降水量可能很少,但很猛烈。所以侵蚀作用进行的相当迅速。在垂向上一般发育于沉积旋回的下部,同时往往分布于湖区或盆缘的最外缘。 通常冲积扇发育在干旱、半干旱地区,几乎都是由暴发性洪流形成,在一些山间盆地区更为突出,通常被认为是荒漠地形的特征。冲积扇有几种重要的类似物。例如河流三角洲,不同之处是后者形成于河流入海处或其他水体处的水下;再如深水海底扇,形成于洋底,由通过海底峡谷搬运的沉积物堆积而成。研究现代冲积扇的特征,可以辨认古冲积扇,从而为研究地质历史提供线索。冲积扇对人类有实际经济意义,尤其在干旱与半干旱区,它是用于农业灌溉和维持生命的主要地下水水源。有些城市,例如洛杉矶,整座城市都建在冲积扇上。 1冲积扇沉积物类型 按照冲积扇沉积物的成因,一般有以下两种沉积物分类: (1)泥石流沉积物:主要由泥流沉积或泥石流而成; (2)阵发性水流沉积物:包括片流、水道、筛析三种沉积。 1.1泥石流沉积物 在植被覆盖稀少、突发性洪水和坡度较大以及充足碎屑物供应的前提条件下,由于重力作用,泥石流开始流动,含有大量的泥基,流体的强度大,可以搬运巨大的砾石。一旦流速减慢,迅速将大小不一的负载堆积下来,就形成分选性较差的砾、砂、泥混合沉积物。这种沉积特点表现出颗粒大小混杂,粒度相差悬殊。砾石很少呈平行或叠瓦状排列;泥石流混杂砾石层与上下岩层一般呈突变接触关系。

东部凹陷北部地区沙三段沉积物源体系分析

东部凹陷北部地区沙三段沉积物源体系分析 随着油气勘探的不断深入,岩性油气藏越来越受到重视。沉积物源分析作为岩性油气藏勘探的一项重要基础工作,对沉积储层砂体形成与分布的研究具有重要意义。通过盆地类型、重矿物组合、重矿物ZTR 指数特征、岩屑成分、砂体展布等地质资料,对沙三段沉积物源进行了详细的研究。结果表明:沿东西两侧发育短轴方向沉积物源,沿凹陷长轴方向发育北东走向沉积物源,具有近物源、多物源、物源交叉重叠等特征。 标签:东部凹陷沙三段沉积物源重矿物砂体展布 1区域地质概况 东部凹陷是一个东断西超的箕状凹陷,东侧以营口佟二堡断裂和东部凸起为界,西侧超覆于中央凸起。发育茨东、茨西、营口~佟二堡三条主干断层,三条断层的活动形成了该区中隆(中央隆起带)一洼(牛居青龙台洼陷带)一斜坡(大湾斜坡带)的基本构造格局,构造演化及沉积相带上具有明显的“东西分带、南北分块”的特征。 研究区从下而上发育了太古界、古生界、中生界、新生界地层。新生界古近系沙河街组沙三段是其最重要的勘探层系,既存在成熟烃源岩,又发育碎屑岩储层,岩性以砂岩和含砾砂岩为主要特征。 2物源分析 2.1根据盆地类型分析物源区 东部凹陷是一个北东向的狭长断陷型盆地,其北部为中央凸起,东部为东部凸起。沙河街组沙三段早期为盆地的深陷期,发育佟二堡、茨东和茨西三条主干断裂,断裂活动强烈,盆地大幅度下降成深水湖盆,沉积物补偿明显不足,陆源碎屑随阵发性重力流或辫状水流进入湖盆,形成以浊积岩、冲积扇为主体的沉积层。晚期裂陷活动减弱,水域缩小,局部地区甚至露出水面遭受剥蚀。 东部凹陷地形狭长,且受两侧主干断裂影响,两侧地势陡峭,季节性强的阵发性水流携带碎屑从两侧凸起直插入湖,水流快速消能。东西两侧的凸起均是湖盆地主要物源供给区,沉积物在本地区主要形成冲积扇和扇三角洲等沉积体。同时在北抬南降的构造背景下,北部长轴方向往往也可以成为沉积物源。由于岸线长,同一时期沿岸会有多条物源供给渠道。形成多物源,多沉积中心的特点。另外,由于两侧物源快速堆积,砂体多表现为沉积厚度大而延伸短的特点。 2.2重矿物组合分析 重矿物分析应用于物源研究是一种重要和应用广泛的技术。在同一沉积盆地

三角洲分类及沉积模式

岩相古地理读书报告 ——三角洲分类及沉积模式 三角洲分类及沉积模式 1、三角洲概述 三角洲是一类非常重要的沉积相,中国很多油田,如大庆油田、胜利油田、长庆油气田、新疆油田等,三角洲砂体都是主力产层,可见三角洲是油气聚集的重要场所。此外三角洲也是许多煤层的产出层位,对于找煤也可起到指导预测作用[1,2]。三角洲有很多类型,不同类型的三角洲,其砂体发育特征和展布规律不同。准确可靠的三角洲沉积模式,对指导油气的勘探和开发都有重要意义。 “三角洲”一词最初由古希腊历史学家荷罗多特斯(Herodotus)提出,他观察到尼罗河河口冲积平原的形态与希腊字母的Δ相似,因此称之为三角洲(Delta)。关于三角洲的定义,教科书中引用了Barrell(1912)的定义,即“三角洲是河流在一个稳定的水体中或紧靠水体处形成的、部分露出水面的一种沉积物”,但是这一定义并不严谨,金振奎将三角洲定义为“河流等水流汇入蓄水盆地时,所搬运的碎屑物质在入口附近堆积形成的、总体呈朵状的沉积体”[3]。 2、三角洲沉积动力学几沉积作用 2.1建设作用 2.1.1河口作用 Bates(1953)对三角洲进行了研究。将三角洲河口比拟为水力学上的喷嘴。依据河水和蓄水体混合的类型,可形成两种自由喷流类型:

轴状喷流:是河水与蓄水体的混合作用发生在三度空间(立体的),其混合作用较快,致使水流速度迅速降低。 平面喷流:是河水与蓄水体的混合作用发生在二度空间(平面的),其混合作用较慢,故向盆地方向较远的地方仍保持较高的流速。 如果没有波浪和潮汐的较大影响,其流动类型取决于两种水之间的密度差异。 a、河水(地表径流)密度=蓄水体密度:为等密度流动,属轴状喷流,这种情况通常出现在湖泊三角洲中,但沉积范围一般较小。 b、河流密度>蓄水体密度:为高密度流动,沿水底呈平面喷流形式。这种情况经常发生在大陆坡上,为骨界的海底沉积物因受重力或其他外力作用二发生滑塌或滑动,可形成浊流。这种浊流侵蚀海底峡谷,并沿海地峡谷流动,在峡谷口附近形成近岸水下扇等。 c、河水密度<蓄水体密度:为低密度流动,在咸水面上向海水流动,属严格的平面喷流类型,形成以河流作用为主的海成三角洲。 2.1.2决口改道作用 沿三角洲分流体系形成的决口扇在三角洲平原的发育中是非常重要的。同在河流体系中一样,决口扇是在洪水期间水和沉积物通过天然堤上的缺口涌出时形成的。然而,许多三角洲分流决口扇的形成比河流更复杂。实际上,决口扇可以变为进积到边缘三角洲间海湾的子三角洲[4]。 2.2破坏作用 三角洲的破坏作用是各种对建设性河流作用所沉积的沉积物进行改造、改变、再分布或迁徙的过程,包括波浪能通量,潮能通量、侵入的恒定盆地流、季节性的风力流,以及由盆地边缘与盆地之间的高度差产生的重力势能。 2.2.1波浪和流水的再分布 在几乎所有的蓄水体中均存在波浪能,,在三角州河口坝或决口分流中的推移质沉积物的沉积作用,使它处于波浪和潮汐改造的最佳位置。河口坝上的破浪会加强混合作用,产生紊流,使啥子沿沿岸流的方向进行重新堆积。沉积在河口的沙就这样在侧向上重新分布,如果没有多少沙被重新移动,由河道进积作用产

第四系沉积物成因代号

第四纪沉积物成因代号 1. ml--人工填土 2. pd--植物层 3. al--冲击层 4. pl--洪积层 5. dl--坡积层 6. el--残积层 7. eol--风积层 8. l--湖积层 9. h--沼泽沉积层 10. m--海相沉积层 11. mc--海陆交互相沉积层 12. gl--冰积层 13. fgl--冰水沉积层 14. b--火山堆积层 15. col--崩积层 16. del--滑坡堆积层 17. set--泥石流堆积层 18. o--生物堆积 19. ch--化学堆积物 20. pr--成因不明沉积

注:上述每类符号前加第四纪符号Q,并以上标符号的形式显示,表示完整的地层符号。 由原岩风化产物经各种外力地质作用而成的沉积物,至今其沉积历史不长,所以只能形成未经胶结硬化的沉积物,也就是通常所说的“第四纪沉积物”或“土”。不同成因类型的第四纪沉积物,各具有一定的分布规律和工程地质特征,以下分别介绍其中主要的几种成因类型:残积物、坡积物和洪积物。 残积物(Qel)(Qel为第四纪地层的成因类型符号) 残积物是由岩石风化后,未经搬运而残留于原地的土,而另一部分则被风和降水所带走。它处于岩石风化壳的上部,是风化壳中的剧风化带,向下则逐渐变为半风化的岩石。它的分布主要受地形的控制,在宽广的分水岭上,由雨水产生地表径流速度小,风化产物易于保留的地方,残积物就比较厚。在平缓的山坡上也常有残积物覆盖。 在不同的气候条件下、不同的原岩,将产生不同矿物成份、不同物理力学性质的残积土。 由于风化剥蚀产物是未经搬运的,颗粒不可能被磨圆或分选,没有层理构造。 残积物与基岩之间没有明显的界限,通常经过一个基岩风化层(带)而直接过渡到新鲜岩石。残积物有时与强风化层很难区分。一般说来,残积物是由于雨雪水流将细颗粒带走后残留的较粗颗粒的堆积物。风化层则虽受风化作用的影响,但它是未被剥蚀搬运的基岩风化产物。残积物中残留碎屑的矿物成分很大程度上与下卧基岩相一致,这是鉴定残积物的主要根据。例如砂岩风化剥蚀后生成的残积物多为砂岩碎块。根据这个道理可按地面残积物的成分推测下卧基岩的种类。反之,也可按基岩分布的规律推测其风化产物的特征。山区的残积物因原始地形变化很大且岩层风化程度不一,所以其厚度在小范围内变化极大。由于残积物没有层理构造,均质性很差,因而土的物理力学性质很不一致,同时多为棱角状的粗颗粒土,其孔隙度较大,作为建筑物地基容易引起不均匀沉降。 不同岩类具有不同的风化特征,如块状构造的花岗岩,多以沿节理裂隙风化,风化厚度大,且以球状风化为主。当岩石在大气,水、生物等外力地质作用下发生风化,使其结构、矿物成分、物理、力学、化学性质等产生不同程度的变异,则称为风化岩。岩石已达到完全风化而未经搬运的碎屑物称为残积土。我国南方花岗岩分布较广,如深圳地区约占60%的面积,花岗岩残积土的厚度在15—40m 之间,是该区城市建筑物基础的主要持力层。 花岗岩残积土是在化学风化作用下淋滤形成的产物,其矿物成分与原岩虽有本质的改变,但多保留在原位并具有它的原始形状,其中不易风化的石英颗粒更是如此。所以花岗岩残积土一般仍保持其原岩粒状结构,具有相当高的结构强度,外表看起来很象岩石。对其采用一般的室内土工试验方法测得的物理力学性质分析,其工程性质是较差的,表现在高孔隙比、高压缩性等方面。但从原位测试分析,它表现为承载力较高、压缩性较低。 坡积物(Qdl)

相关主题
文本预览
相关文档 最新文档