当前位置:文档之家› 农药水悬浮剂加工中助剂的作用原理

农药水悬浮剂加工中助剂的作用原理

农药水悬浮剂加工中助剂的作用原理
农药水悬浮剂加工中助剂的作用原理

2009年中国农药制剂加工及专用助剂技术交流会报告

农药水悬浮剂加工中助剂的作用原理

路福绥庄占兴陈甜甜

(山东农业大学农业化学制品研究所)

报告提要:农药水悬浮剂为多相粗分散体系,热力学稳定性和动力学稳定性均很差,成为制约农药水悬浮剂研究开发的瓶颈。农药水悬浮剂的热力学稳定性与其加工过程中使用的润湿分散助剂有关,研究农药水悬浮剂加工中润湿分散助剂的作用原理,对润湿分散助剂的研发和选择及解决农药水悬浮剂的热力学稳定性具有重要意义。农药水悬浮剂的动力学稳定性可通过结构调节,建立适当的触变结构来解决。

农药水悬浮剂(Suspension Concentrate,SC)是指以水为分散介质,将不溶或微溶于水的固体原药、助剂经湿法加工制得的的多相分散体系。

一、农药水悬浮剂的特点及加工中存在的问题

农药水悬浮剂以水为基质,具有分散颗粒小,界面积大,生物活性高,加工、使用安全,与环境相容性好等优点[1],是21世纪农药新剂型发展方向之一。

农药水悬浮剂外观为不透明悬浮体,其分散相粒径一般为0.5~5μm,平均粒径2~3μm,属于多相粗分散体系,热力学稳定性和动力学稳定性均很差。农药水悬浮剂在贮存过程中,热力学自发变化的趋势是分散的药物颗粒聚结合并变大,分散稳定性变差;另一方面由于分散相与介质间的密度差,分散的药物颗粒在重力作用下沉降,导致产品轻则分层,重则沉淀结块而失去其悬浮稳定性,其有效成分难以从包装物倒出[2]。农药水悬浮剂的分散稳定性和悬浮稳定性已成为制约其研究开发的瓶颈。

二、农药水悬浮剂加工中润湿分散助剂的作用

提高农药水悬浮剂分散稳定性的主要措施便是在其加工过程中加入润湿分散助剂——润湿分散剂。目前,在农药水悬浮剂的研发中常用的润湿分散剂主要有以下几种类型[3]。

(1)阴离子润湿分散剂

在农药水悬浮剂的研究开发中常用的阴离子分散剂通常有烷基萘磺酸盐、烷基苯磺酸盐、芳基酚硫酸酯钠、萘磺酸钠甲醛缩合物、脂肪酰胺N—甲基牛磺酸盐,烷基丁二酸酯磺酸盐、有机磷酸酯、烷基酚聚氧乙烯醚甲醛缩合物硫酸盐、木质素磺酸盐等。

(2)非离子润湿分散剂

在农药水悬浮剂的研究开发中常用的非离子润湿分散剂有:烷基酚、芳基酚聚氧乙烯醚;脂肪醇聚氧乙烯醚,聚氧丙烯基环氧乙烷加成物、植物油环氧乙烷加成物及衍生物、脂肪酸聚氧乙烯醚等。

(3)超分散剂

超分散剂是一类高效的聚合物分散剂,一般具有“梳子”型结构,在很长的疏水主链上连着许多聚环氧乙烷支链,其结构如图1所示[4]:

图1.“梳子”型聚合物分散剂结构示意图。

例如:聚甲基丙烯酸酯为主链、聚氧乙烯为梳齿构成的聚合分散剂:

CO 2Me

CO 2(CH 2CH 2O)17Me

CO 2Me

CH

3

CH

2

CH

3

n

CH 2 C CH

2 C CH

2 C

这类聚合物表面活性剂的分子量一般大于20000,因其具有很长的疏水主链和很多亲水支链。超分散剂的结构特征在于以锚固基团及溶剂化链分别取代了表面活性剂的亲水基团与亲油基团[5]。超分散剂其锚固基团能通过离子键、共价键、氢键及范德华力等相互作用以单点或多点锚固的形式牢固吸附于固体颗粒表面,其溶剂化链则可以通过选用不同的聚合单体或改变共聚单体配比来调节它与分散介质的相溶性,同时还可以通过增加溶剂化链的分子量以保证它在固体表面形成足够的空间厚度。超分散剂具有特殊设计的分子结构,其分子构型有单端官能化聚合物、AB 嵌段型共聚物、锚固基团处于中央的BAB 嵌段共聚物以及以锚固基团为背、以溶剂化链为齿的梳形共聚物等。

润湿分散剂在农药水悬浮剂加工中所起的主要作用可归结为以下几个方面。

(1)改变药物界面的润湿性,降低药物颗粒界面间的吸引能

农药水悬浮剂加工中所使用的润湿分散剂多数为表面活性剂,表面活性剂具有特殊的分子结构,即由亲水基团和疏水基团两部分组成。在农药水悬浮剂加工中加入表面活性剂,表面活性剂分子的疏水部分在原药颗粒界面吸附,亲水部分朝向分散介质水,使药物界面由疏水变为亲水而易于在水中分散,如图2所示。同时,表面活性剂分子在药物界面的吸附还可降低分散的原药颗粒界面的吸引能,减少药物颗粒间合并的趋势,从而提高农药水悬浮剂的分散稳定性。

疏水基 亲水基

图2 表面活性剂在农药颗粒上的吸附

(2)静电排斥作用

离子型分散剂在药物界面吸附,可使药物界面上带有电荷,并在药物界面周围形成扩散双电层,产生电动电势。当两个带有相同电荷的药物粒子相互靠近时,由于扩散双电层重叠而产生的静电排斥迫使药物粒子相互分开,从而保持其分散稳定性。如图3所示。

图3 带电颗粒的静电排斥示意图

(3)空间稳定作用

某些大分子分散剂能通过空间稳定作用提高农药水悬浮剂的分散稳定性。其稳定机理一般认为是大分子分散剂在药物粒子界面上吸附并形成一个致密的吸附层。这种药物粒子界面的致密吸附层会对粒子间的进一步靠近产生空间位阻作用,从而保持水悬浮剂的分散稳定性,如图4所示。具有空间稳定作用的大分子分散剂需具备一定分子量(一般为5000—20000),以保证其吸附层具有一定的厚度。另外其大分子链上需具有两类基团,一类是能在分散的农药颗粒上强烈吸附的基团,以保证大分子表面活性剂能在农药颗粒上形成稳定的吸附,另一类是具有良好水化作用的基团,以保证伸入介质水中的大分子部分具有良好的柔性,只有如此,才能产生有效的“位阻”,保持农药水悬浮剂良好的分散稳定性。

图4 空间稳定作用示意图

三、润湿分散助剂在药物界面的吸附特性

综上所述,润湿分散剂在农药水悬浮剂加工中的作用与其在药物界面上的吸附有关,因此深入研究润湿分散助剂在药物界面的吸附特性对解释润湿分散剂在农药水悬浮剂加工中的作用原理具有重要意义。

近年来,我们实验室研究了不同分子量MOTAS分散剂(英国卜内门公司生产)和NNO(浙江省上虞市杜浦化工厂生产)分散剂在氟铃脲界面的吸附特性,其研究结果如下[5,6]:

A d s o r p t i o n a m o u n t /(m g .g -1

)

Equilibrium mass concentration/(mg.L -1

)

A d s o r p t i o n a m o u n t /(m g .g -1

)

Equilibrium mass concentration/(mg.L -1

)

图5 不同分子量MOT AS 分散剂和NNO 分散剂在氟铃脲界面的吸附等温线

吸附等温线接近Langmuir 型,采用Langmuir 等温吸附方程对图5中的数据进行拟合,求得吸附平衡常数k 和饱和吸附量Г∞,如表1所示。

表1 Langmuir 等温吸附方程的参数(

kc

kc +=

ΓΓ∞

1)

分散剂

k Г∞/mg.g R MOTAS

MOTAS(未分级)

0.00974 5.943 0.9935 <10000 0.00708 4.576 0.9968 10000-30000 0.00909 6.167 0.9708 >30000

0.01516 6.173 0.9791 NNO

NNO(未分级) 0.00446 4.623 0.9785 ≤10000 0.00321 4.266 0.9864 10000-30000 0.00629 4.629 0.9761 ≥30000

0.00630

4.935

0.9768

由表1可见,随着分散剂分子量的增大,其在氟铃脲界面的饱和吸附量和

平衡常数k 增大,表明分散剂随着分子量的增加在氟铃脲表面的吸附能力增强。MOTAS 在氟铃脲界面的饱和吸附量和平衡常数k 均大于NNO ,表明MOTAS 分散剂在氟铃脲表面的吸附能力强于NNO 。

根据饱和吸附量与其相对分子质量 间的关系(a kM =Γ∞),求得分散剂在药物颗粒界面的吸附状态参数α(α=1为垂直状态吸附;α=0为水平状态吸附;0<α<1为弯曲状态吸附)。

图6 分散剂在固体表面的吸附状态

MOTAS 分散剂和NNO 分散剂在氟铃脲颗粒界面的吸附状态参数α值分别为0.3948、0.1318,说明MOTAS 分散剂和NNO 分散剂在氟铃脲表面的吸附状态介于

垂直(α=1)与水平(α=0)之间,且小于0.5,应该属于弯曲状的多点吸附,其中NNO 分散剂在氟铃脲颗粒表面更接近水平状态。

我们采用X 光电子能谱法测定了MOTAS 、NNO 分散剂在氟铃脲颗粒界面的吸附层厚度,结果如表2所示:

表2 分散剂MOT AS 、NNO 在氟铃脲表面的吸附层厚度 分子量 (Mw ) 吸附层厚度 /(nm)

MOTAS NNO 未分级 8.00 5.97 10000 3.09 1.65 10000-30000 8.78 6.14 30000

9.24

6.77

由表2见,MOTAS 分散剂和NNO 分散剂在氟铃脲颗粒界面的吸附层厚度均随着分子量增大而增大,说明分子量增大较大的分散剂具有较好的“空间位阻”效果; MOTAS 分散剂在氟铃脲颗粒界面的吸附层厚度明显大于NNO , 这是MOTAS 分散剂对氟铃脲水悬浮剂分散稳定效果较好的原因之一。

我们还测定了不同分子量的MOTAS 分散剂和NNO 分散剂在氟铃脲颗粒界面的吸附对其ζ电位的影响,其结果如图7所示:

P o t e n t i a l ζ (m v )

Additive concentratin (mg.L -2

)

P o t e n t i a l ζ (m v )

Additive concentratin (mg.L -2

)

表3 不同分子量分散剂对氟铃脲表面ζ电位的影响

由表3可见:随着分散剂MOTAS 、NNO 质量分数的增加,其ζ电位增大,达

到一定值后,都有下降的趋势。这可能是由于当分散剂在颗粒表面的吸附达到饱和时,吸附层的分子数不再变化,再增加分散剂的质量分数, 其反号离子进入扩散层,压缩双电层,使颗粒表面的ζ电位下降。

研究结果表明:MOTAS 分散剂和NNO 分散剂在氟铃脲界面的吸附均为单分子层吸附,且符合Langmuir 吸附等温式,其饱和吸附量、吸附平衡常数k 和吸附层厚度均随分散剂相对分子质量增加而增大。MOTAS 分散剂和NNO 分散剂在氟铃脲表面的吸附状态属于弯曲状的多点吸附,其中NNO 分散剂在氟铃脲颗粒表面更接近水平状态。MOTAS 分散剂和NNO 分散剂在氟铃脲界面吸附后其ζ电位增大,且其吸附层厚度随着其相对分子质量的增加而增大,说明MOTAS 分散剂和NNO 分散剂吸附后能在氟铃脲颗粒界面形成一定厚度的保护膜,具有静电排斥

和空间位阻双重作用,从而维持氟铃脲水悬浮剂的分散稳定性,相对分子质量较大的分散剂在氟铃脲界面形成的保护膜较厚,对氟铃脲水悬浮剂的稳定分散效果较好。

四、农药水悬浮剂触变结构的构建及其流变特性

农药水悬浮剂属于粗分散体系。由于分散的药物颗粒与介质间存在密度差,在重力作用下易沉降,为悬浮不稳定体系。

我们曾对国内生产的悬浮剂产品与国外生产的悬浮剂产品的流变特性及悬浮稳定性进行了对比研究,其结果如表3[7,8]所示。

研究结果表明,农药水悬浮剂悬浮稳定性与其屈服值有关。一般当屈服值维持在4~10Pa时,农药水悬浮剂具有较好的悬浮稳定性。

一定的屈服值表示悬浮稳定性好的农药水悬浮剂具有一定强度的触变结构。在静止时,这种结构能承托药物颗粒阻碍其沉降,使农药水悬浮剂在贮藏过程中不沉降,不分层,保持其悬浮稳定性;在一定外力(如摇动)作用下,其结构被破坏,可恢复其流动性而易于倒出。

农药水悬浮剂的这种触变结构强度必须适当,结构太弱不能达到承托药物颗粒阻碍其沉降的目的;结构太强,经摇动不能破坏时,则难以从包装物中倒出。农药水悬浮剂的这种结构强度可通过其流变特性的测定来研究。

为了使农药水悬浮剂能形成一定的触变结构,需加入一定的结构调节剂。常用的结构调节剂有水合性强的无机物,如硅酸铝镁等;某些亲水性好的高分子聚合物如聚乙烯醇、羧甲基纤维素钠、黄原酸胶、聚炳烯酸钠、可溶性淀粉等在介质水中形成一定结构,可有效地阻碍药物颗粒的沉降,使其保持较好的悬浮稳定性。

近年来,我们根据农药水悬浮剂悬浮稳定性的研究结果调制出一种结构调节剂,使悬浮剂产品可形成一定的触变性结构,较好地解决了某些农药水悬浮剂悬浮稳定性差的问题。

五、展望

农药水悬浮剂的研究开发是一项复杂而艰巨的工作,涉及诸多学科,需要助剂研发合成、农药剂型加工、农药生物活性测定多方面人员合作。通过研究农药水悬浮剂加工中助剂的作用原理,对助剂的研发和选择及解决农药水悬浮剂的稳

定性具有重要意义。为加速开展水基化新剂型农药的研究开发,我们真诚期望与新剂型农药专用助剂研发单位和生产企业密切合作,共同研制开发水基化新剂型农药专用高效助剂,为我国的农药剂型加工和农药专用高效助剂的研发生产作出贡献

主要参考文献

[1]周本新等,农药新剂型,化学工业出版社,北京,1994年8月

[2]路福绥,农药悬浮剂的物理稳定性,农药,V ol.39,2000(10),8—10

[3]王早骧,农药助剂,化学工业出版社,1997

[4]阮朗编译,农药制剂用表面活性剂的动向,农药译丛,1996(5),39-42。

[5]庄占兴,路福绥,陈甜甜,等. 苯乙烯丙烯酸共聚物分散剂在氟铃脲颗粒界面的吸附性能[J].

高等学校化学学报,2009,30(2): 332-336.

[6]庄占兴,路福绥,刘月,等. 萘磺酸甲醛缩合物分散剂在氟铃脲颗粒表面的吸附性能研究

[J]. 农药学学报,2008, 10 (4): 477-482.

[7]路福绥等,50%多菌灵悬浮剂的流变特性研究,农药,V ol.38,1999(12),11—12

[8]路福绥等,铜高尚悬浮剂的流变特性研究,农药,V ol.39,2000(6),19—20

农药悬浮剂加工工艺

农药悬浮剂加工工艺 发布时间:2008-9-6 11:00:15 浏览次数:90 1.确定有效成分 固体有效成分的确定需满足以下三个条件:(1)在水中的溶解度一般不得大于70mg/L,最好不溶,否则在制剂贮存时易产生结晶。但也有在液相中的溶解度超过100mg/L的原药制得稳定性好的胶悬剂的例子,如谷硫磷、吡虫啉、灭害威等。通过调整润湿分散剂和增稠剂使之达到稳定化,其制剂的质量保证期甚至达到3年。(2)在水中的化学稳定性好,对某些稳定性不太好的有效成分通常使用缓冲剂、抗氧化剂来改善其化学稳定性。(3)熔点一般在60℃以上,以免在研磨时熔化,引起粒子凝聚,影响制剂的稳定性。(4)对于复配制剂来说,还要考虑以两原药增效不增毒、兼容稳定性好为原则确定其的最佳配比和最佳浓度。 2.选择润湿分散剂 农药悬浮剂的润湿分散剂,具有润湿和分散双重作用,多选用阴离子表面活性剂。润湿分散剂的用量一般不超过10%,但要保证其能溶在所选用的分散介质中或与分散介质稳定的结合。 3.选择防冻剂 农药悬浮剂在低温环境中能稳定贮存,就需要加入一定量的防冻剂。如用乙二醇做防冻剂,一般加入5%左右,最多不超过10%。选用的防冻剂一般要求防冻性能好、挥发性低、对有效成分不溶解。 如果加工的农药悬浮剂在气温高于0℃的地区贮存和使用,则在配方中可不加防冻剂;否则就必须加入防冻剂以保持制剂的稳定。 4.选择增稠剂 增稠剂是农药悬浮剂不可缺少的主要成分之一。选择增稠剂一般选择用量少、增稠作用强又不影响制剂稀释稳定性的材料。一般用量为0.1%-0.5%,最多不超过3%。 5.选择消泡剂 农药悬浮剂在加工过程中容易产生大量气泡,影响制剂的加工、计量、包装和使用。如果配方中的其他助剂不控制气泡量时,就要考虑加入消泡剂。一般选用酯类物质,用量也很少。在生产过程中也可用超声波、真空脱泡等消泡方法。 6.选择pH调整剂 这是保证制剂中有效成分化学稳定性的重要手段。绝大多数原药在中性介质条件下稳定,而少数原药则需要酸性或碱性介质条件,因此,必须通过加入pH调整剂调节介质,以适

催化燃烧原理及催化剂

催化燃烧的基本原理 催化燃烧是典型的气-固相催化反应,其实质是活性氧参与的深度氧化作用。在催化燃烧过程中,催化剂的作用是降低活化能,同时催化剂表面具有吸附作用,使反应物分子富集于表面提高了反应速率,加快了反应的进行。借助催化剂可使有机废气在较低的起燃温度条件下,发生无焰燃烧,并氧化分解为CO2和H20, 同时放出大量热能,其反应过程为: 2 催化燃烧的特点及经济性 2.1催化燃烧的特点 2.1.1起燃温度低,节省能源 有机废气催化燃烧与直接燃烧相比,具有起燃温度低,能耗也小的显著特点。在某些情况下,达到起燃温度后便无需外界供热。 二、催化剂及燃烧动力学 2.1催化剂的主要性能指标 在空速较高,温度较低的条件下,有机废气的燃烧反应转化率接近100%,表明该催化剂的活性较高[9]。催化剂的活性分诱导活化、稳定、衰老失活3 个阶段,有一定的使用限期,工业上实用催化剂的寿命一般在2年以上。使用期的长短与最佳活性结构的稳定性有关,而稳定性取决于耐热、抗毒的能力。对催化燃烧所用催化剂则要求具有较高的耐热和抗毒的性能。有机废气的催化燃烧一般不会在很严格的操作条件下进行,这是由于废气的浓度、流量、成分等往往不稳定,因此要求催化剂具有较宽的操作条件适应性。催化燃烧工艺的操作空速较大,气流对催化剂的冲击力较强,同时由于床层温度会升降,造成热胀冷缩,易使催化剂载体破裂,因而催化剂要具有较大的机械强度和良好的抗热胀冷缩性能。 2.2催化剂种类 目前催化剂的种类已相当多,按活性成分大体可分3 类。2.2.1贵金属催化剂 铂、钯、钌等贵金属对烃类及其衍生物的氧化都具有很高的催化活性,且使用寿命长,适用范围广,易于回收,因而是最常用的废气燃烧催化剂。如我国最早采用的Pt-Al203 催化剂就属于此类催化剂。但由于其资源稀少,价格昂贵,耐中毒性差,人们一直努力寻找替代品或尽量减少其用量。2.2.2过渡金属氢化物催化剂 作为取代贵金属催化剂,采用氧化性较强的过渡金属氧化物,对甲烷等烃类和一氧化碳亦具有较高的活性,同时降低了催化剂的成本,常见的有Mn0x、CoOx和CuOx等催化剂。大连理工大学研制的含Mn02催化剂,在130C及空速13000h-1 的条件下能消除甲醇蒸气,对乙醛、丙酮、苯蒸气的清除也很有效果。

农药DF干悬浮剂设备与工艺控制调整

农药DF干悬浮剂设备与工艺控制调整 DF农药干悬浮剂设备投资大,且要求产品的生产规模较大,而难以推广开来。与传统挤压法制粒相比较,DF要求批产量吨位较大,也是限制因素之一,但是DF与传统挤压法的WDG相比较DF产品性能优异,助剂成本较低(不含设备投入、能耗),且配方较WDG简单更为实用。目前已建立大规模DF装置的也有几家农药企业,有石家庄龙汇(甲维盐DF),河北双吉(代森锰锌DF),江苏快达(苯噻草胺·苄嘧磺隆DF、吡嘧磺隆DF以及二氯喹啉酸DF干悬浮剂),石家庄兴柏(甲维盐DF),江苏天容(啶虫脒DF、溴氰菊酯DF)等几家企业,还有部分专业加工企业。不过目前国内企业的装置,自动化程度,产能和国外跨国

企业还是有很大的差距,笔者在德国BASF参观到其DF设备。很大的装置,自动化程度也很高。年产都是几千吨的装置。 DF核心工艺与设备就是干燥塔,工作原理是空气通过过滤器和加热器,进入干燥塔顶部的空气分配器,然后呈螺旋状均匀地进入干燥室。料液由料液槽经过滤器由泵送至干燥塔顶的离心雾化器,使料液喷成极小的雾状液滴,料液与热空气并流接触,水份迅速蒸发,在极短的时间内干燥为成品。成品由干燥塔底部和旋风分离器排出,废气由风机排出。 1特点: 1.1干燥速度快。料液经离心喷雾后,表面积大大增加,在高温气流中,瞬间就可蒸发95%-98%的水份,完成干燥时间仅需数秒钟。 1.2采用并流型喷雾干燥形式能使液滴与热风同方向流动,虽然

热风的温度较高,但由于热风进入干燥室内立即与喷雾液滴接触,室内温度急降,而物料的湿球温度基本不变,因此也适宜于热敏性物料干燥。 1.3使用范围广。根据物料的特性,可以用于热风干燥、离心造粒和冷风造粒,大多特性差异很大的产品都能用此机生产。 1.4由于干燥过程是在瞬间完成的,产成品的颗粒基本上能保持液滴近似的球状,产品具有良好的分散性,流动性和崩解性。 1.5生产过程简化,操作控制方便。喷雾干燥通常用于固含量60%以下的溶液,干燥后,不需要再进行粉碎和筛选,减少了生产工序,简化了生产工艺。对于产品的粒径、松密度、水份,在一定范围内,

微囊悬浮剂及发展方向浅谈

农药微胶囊悬浮剂及发展方向浅谈 一、微胶囊悬浮剂农药的定义和外观特征 微胶囊农药悬浮剂是指利用合成或者天然的高分子材料形成核—壳结构微小容器,将农药包覆其中,并悬浮在水中的农药剂型。它包括囊壳和囊芯两部分,囊芯是农药有效成分及溶剂,囊壳是成膜的高分子材料。这个剂型分为连续相和非连续相,连续相为水和助剂,非连续相是被包覆的农药微小胶囊。 微胶囊悬浮剂外观是一个粘稠状流动液体,跟水乳剂及水悬浮剂相似。 微胶囊其外形呈球形、橄榄球形、谷粒或其他形状(的悬浮液体)。 微胶囊直径一般在1-30微米。(用400倍显微镜观察大约相当于小米粒和绿豆粒大小。) 400倍显微镜照片 二、微胶囊悬浮剂制造方法 界面法生产工艺——以辛硫磷为例 1、是界面聚合法,界面聚合法是囊壁成膜反应发生在互不相溶的油水两相界面上,反应在常温下便可进行。该方法的基本过程是,先将成膜反应所用的油溶性高分子单体,溶解在农药原油中构成所谓的有机相(如果农药不是油状液体而是固体,则应先将它溶解在与水不互溶的有机溶剂中)。然后,将此有机相加入乳化剂、水在高速剪切条件下,形成水包油乳状液。再向此乳状液中,添加水溶性的高分子单体。于是,在一定条件便可在乳状液粒子的油-水界面处发生聚合反应,高分子膜将农药成分与水隔离。反应完毕,再加入适当适量的助剂调制后,即可制得最终制剂。 原位法生产工艺——以阿维菌素为例

2、是原位聚合法,原位聚合法是先把原药、溶剂、乳化剂及水混合后,用剪切机剪切成为水包油乳液,然后将水溶性成膜剂加入到乳液状农药中,搅拌均匀,升温、加入催化剂后开始包覆成膜。反应完毕,再加入适当适量的助剂调制后,即可制得最终产品——微囊悬浮剂。 本方法一般以脲醛胶为壁材 三、微胶囊悬浮剂农药的特点: 优点: 1、持效期长,施药后农药成分缓慢释放,地下施药可维持80-120天。 2、接触毒性和异味大大降低,大大减轻了对作业者的危害; 3、降低药害,用于拌种或灌根时可以避免药剂对种、苗危害; 4、有效成分与水及碱性农药隔离,与碱性农药同时使用,其稳定性不受影响; 5、有机溶剂用量减少30-100%,大大减少了有害芳烃对环境污染,有利于环境保护。 6、果树花期用药对蜜蜂等有益生物危害降低,起到保护天敌作用。 7、减少用药次数和用药量,有利于省工、节约资源。 8、芽前除草剂可以减少淋溶,使有效成分吸附在土壤表面(吸附是相互的),有利于形成药土膜,从而提高农药利用率和减轻药害、避免作物阴性减产现象发生。 缺点:速效性降低,不适应于要求击倒速度快的防治对象。 四、微胶囊农药悬浮剂适应的使用场所: 1、地下害虫和地下线虫:花生蛴螬、蝼蛄、地老虎、根结线虫;蔬菜根结线虫;甘薯茎线虫;姜、牛蒡、山药茎线虫;韭菜、大葱地蛆等。适合的有效成分有毒死蜱、辛硫磷、阿维菌素、丙线磷、苯线磷、丁硫克百威等。 2、生长期长,难于防治的苹果绵蚜、梨树木虱、柑橘介壳虫。适应的有效成分有毒死蜱、硫丹、阿维菌素、杀扑磷等。 3、果树干枝期和套袋前用的杀虫剂、杀螨剂、杀菌剂:适应的有效成分有毒死蜱、马拉硫磷、二嗪磷、杀扑磷、哒螨灵、阿维菌素、氟硅唑、丙环唑、腈菌唑、苯醚甲环唑、三唑酮等。 4、树木害虫:如天牛、美国白蛾等,适应的有效成分有高效氯氰菊酯、高效氯氟氰菊酯、阿维菌素、毒死蜱等。 5、需要延长残效和降低药害的芽前除草剂,如乙草胺、甲草胺、丁草胺、异丙甲草胺、二甲戊灵、异恶草松、仲丁灵,氟乐灵、乙氧氟草醚等。 6、拌种剂:如毒死蜱、辛硫磷、二嗪磷、腈菌唑、苯醚甲环唑、三唑酮等。 7、环境卫生害虫防治:如菊酯类的高效氯氰菊酯、高效氯氟氰菊酯、毒死蜱、二嗪磷、嘧啶氧磷等。 8、粮食储存害虫防治,如二嗪磷、嘧啶氧磷等。 五、相关技术说明 (一)能做成微胶囊悬浮剂的农药品种:根据微胶囊悬浮剂加工的技术特点,凡是油溶性有效成分都可以作成微胶囊悬浮剂。 如毒死蜱、辛硫磷、二嗪磷、三唑磷、丙线磷、丙溴磷、苯胺磷、嘧啶氧磷、马拉硫磷、硫丹、杀扑磷、阿维菌素、哒螨灵、所有拟除虫菊酯类、三唑酮、腈菌唑、丙环唑、苯醚甲环唑、氟硅唑、甲草胺、乙草胺、异丙甲草胺、丁草胺、乙氧氟草醚、二甲戊灵、仲丁灵、氟乐灵、异恶草松等………….。 (二)释放机理: 释放机理多种说法,主要有如下两种: 1、扩散释放:制剂中的微胶囊由于在大量表面活性剂体系中,囊内压力跟囊外压力相

农药干悬浮剂

一、农药干悬浮剂 1、干悬浮剂法义:干悬浮剂是农药剂型之一,它是由水悬浮剂脱水而成,顾名思义--干悬浮剂(英文代码DF)。近年来农业部农药检定所将干悬浮剂跟水分散性粒剂合为一起,统称为水分散性粒剂(英文代码WDG)。其实也就是加工方法差别,DF是湿法粉碎、造粒,WDG是干法粉碎、造粒。 2、干悬浮剂的制造工艺:原药+助剂+填料+水---配料---均质---粗磨--细磨---压力喷雾干燥---检测---包装。就是将原药、助剂、填料、水加入到配料槽中,搅匀,然后用高速剪切机进行粗粉碎,再进入两级砂磨机细磨,磨细后加入成粒助剂后进入压力喷雾干燥塔干燥、造粒,检测喷雾干燥塔底部出的成品,合格后进入储存槽,待包装后可以出厂销售。 3、干悬浮剂的特点: 优点:A、稀释后自然微粒细度可达1-5微米,明显好于干法的10-40微米。细度的明显提高,将表现在悬浮率、分散性和药效的提高。 B、生产车间环境大大改善,湿法粉碎、干燥、造粒基本没有粉尘危害,从根本上改变了干法粉碎、造粒、干燥工艺“产品好看,车间没法看”的局面。 C、由于湿法工艺物料在管道中输送,可以实现连续生产,进而可达到自动鞚制,装备水平可以大大提高。 D、干燥过程由于是喷雾干燥,不经过挤压,水分在很短时间迅速蒸发,颗粒蓬松,因而对助剂的加入数量和质量要求升高,可以节约助剂成本。 缺点: A、设备投资相对偏高; B、湿法工艺需要脱出的水量明显大于干法工艺,因储柢耗偏高。 二、农药干悬浮剂 在经常使用的农药剂型中以乳油、可湿性粉、胶悬剂、水剂等较为常见,这些剂型在特定的环境、条件下,能发挥较好的作用。但随着人类对环保的日益重视,对使用农药也有了更高的要求,因而这些剂型又有其相应的局限性。为此,专家们在不断追求探索更高效、更安全、更环保的农药新剂型,而干悬浮剂(DF)便是较成功的一种。目前在一些西方发达国家,干悬浮剂已发展得较为成熟,总的来说,它具有以下特点: (1)在水中能快速崩解,分散性和悬浮性好。如德国巴斯夫公司生产的品润70DF、翠贝50DF和成标80DF,遇水立即崩解,6秒钟即分散开来,稍加搅拌即形成稳定的悬浮液,不沉淀,不结块,不堵塞喷头。 (2)药液颗粒极细微,能均匀附着在作物表面,形成致密的保护膜,辅以良好的粘附展着剂,可增强粘附性能,耐雨水冲刷。一般杀菌剂持效期在5-7天,但像农利灵50DF对付灰霉病时,这样的干悬浮剂持效期就可长达10-14天,品润70DF作为霜霉病和炭疽病的预防性药剂,其持效期也长达10天以上。 (3)药液颗粒大小比例分配合理,既能保证药剂的速效性和持效性,又能保证药剂与作物表面能充分完全接触,提高药效。以德国巴斯夫公司的成标80D为例,药剂在水中崩解后,成标80DF的颗粒在水中会崩解成直径在1-10μ间的小微粒,崩解后颗粒直径大小比例如下:(1)50%:<2μ,作用迅速,所以成标80DF即使在低温下对白粉病也非常有效;(2)40%:2μ-5μ,有效成分均匀一致地发挥作用,叶片每处用药能更均匀。(3)10%:5μ-8μ,保证更长的持效期。 (4)安全性好,不会像有些可湿性粉剂那样,颗粒较大会形成作物表面的局部高浓度。像农利灵50DF这样的干悬浮剂不易产生药害,即使在花期也可使用,而灰霉病往往在花期最易侵染,所以农利灵50DF在灰霉病上就显示出它的优势;再比如成标80DF,其有效成分为硫磺,但正是由于它这种先进的剂型,在安全性和药效上的优势,所以它比硫悬浮剂和硫

悬浮剂制药工艺

.确定有效成分 固体有效成分的确定需满足以下三个条件:(1)在水中的溶解度一般不得大于70mg/L,最好不溶,否则在制剂贮存时易产生结晶。但也有在液相中的溶解度超过100mg/L的原药制得稳定性好的胶悬剂的例子,如谷硫磷、吡虫啉、灭害威等。通过调整润湿分散剂和增稠剂使之达到稳定化,其制剂的质量保证期甚至达到3年。(2)在水中的化学稳定性好,对某些稳定性不太好的有效成分通常使用缓冲剂、抗氧化剂来改善其化学稳定性。(3)熔点一般在60℃以上,以免在研磨时熔化,引起粒子凝聚,影响制剂的稳定性。(4)对于复配制剂来说,还要考虑以两原药增效不增毒、兼容稳定性好为原则确定其的最佳配比和最佳浓度。 2.选择润湿分散剂 农药悬浮剂的润湿分散剂,具有润湿和分散双重作用,多选用阴离子表面活性剂。润湿分散剂的用量一般不超过10%,但要保证其能溶在所选用的分散介质中或与分散介质稳定的结合。 3.选择防冻剂 农药悬浮剂在低温环境中能稳定贮存,就需要加入一定量的防冻剂。如用乙二醇做防冻剂,一般加入5%左右,最多不超过10%。选用的防冻剂一般要求防冻性能好、挥发性低、对有效成分不溶解。 如果加工的农药悬浮剂在气温高于0℃的地区贮存和使用,则在配方中可不加防冻剂;否则就必须加入防冻剂以保持制剂的稳定。 4.选择增稠剂 增稠剂是农药悬浮剂不可缺少的主要成分之一。选择增稠剂一般选择用量少、增稠作用强又不影响制剂稀释稳定性的材料。一般用量为0.1%-0.5%,最多不超过3%。 5.选择消泡剂 农药悬浮剂在加工过程中容易产生大量气泡,影响制剂的加工、计量、包装和使用。如果配方中的其他助剂不控制气泡量时,就要考虑加入消泡剂。一般选用酯类物质,用量也很少。在生产过程中也可用超声波、真空脱泡等消泡方法。 6.选择pH调整剂 这是保证制剂中有效成分化学稳定性的重要手段。绝大多数原药在中性介质条件下稳定,而少数原药则需要酸性或碱性介质条件,因此,必须通过加入pH调整剂调节介质,以适合原药对介质pH值的需要。一般用硫酸或有机酸调节酸性;而用有机胺调整介质的碱性。用量都很少。 三、悬浮剂加工设备和工艺 农药悬浮剂加工的设备和工艺非常重要,常常影响到产品的质量。 悬浮剂加工工艺研究的主要内容就是: ● 根据选好的农药有效成分的性质确定一种加工方法,即确定工艺路线; ● 选定合适的加工设备; ● 确定各组分的加料顺序。 农药悬浮剂加工方法主要有两种。一种是超微粉碎法(亦称湿磨法),另一种是凝聚法(亦称热熔—分散法)。而农药水悬浮剂的加工基本都采用超微粉碎法。 1.悬浮剂加工设备 超微粉碎法的主要加工设备有三种:一是预粉碎设备:球磨机或胶体磨;二是超微粉碎设备:砂磨机,以立式开放式砂磨机最常用;三是高速混合机(1000~15000r/min)和均质器

一种呋虫胺水悬浮剂及其制备方法

SooPAT 一种呋虫胺水悬浮剂及其制备方 法 申请号:201110195078.X 申请日:2011-07-13 申请(专利权)人南京扬子鸿利源化学品有限责任公司 地址210047 江苏省南京市六合区长芦镇利民西路28号 发明(设计)人吴进张晶波张建荣王先彬 主分类号A01N25/04(2006.01)I 分类号A01N25/04(2006.01)I A01N51/00(2006.01)I A01P7/04(2006.01)I 公开(公告)号102239829A 公开(公告)日2011-11-16 专利代理机构江苏圣典律师事务所 32237 代理人贺翔

(10)申请公布号 CN 102239829 A (43)申请公布日 2011.11.16C N 102239829 A *CN102239829A* (21)申请号 201110195078.X (22)申请日 2011.07.13 A01N 25/04(2006.01) A01N 51/00(2006.01) A01P 7/04(2006.01) (71)申请人南京扬子鸿利源化学品有限责任公 司 地址210047 江苏省南京市六合区长芦镇利 民西路28号 (72)发明人吴进 张晶波 张建荣 王先彬 (74)专利代理机构江苏圣典律师事务所 32237 代理人 贺翔 (54)发明名称 一种呋虫胺水悬浮剂及其制备方法 (57)摘要 本发明公开了一种呋虫胺水悬浮剂,以重量 百分比计,包括以下各组分:呋虫胺原药5~40%, 助悬浮剂0~6%,表面活性剂2~20%,增稠剂0~1%, 消泡剂0~1%,防腐剂0~1%,防冻剂0.5~5%,水补足 至100%;所述的助悬浮剂为白炭黑、膨润土、硅酸 铝镁或高岭土;所述表面活性剂为NP 、500#、聚羧 酸盐、TWEEN 、600P ,壬基酚聚氧乙烯醚磷酸酯盐中 的1~5种的任意混合;所述增稠剂为黄原胶,羧甲 基纤维素、聚丙烯酰胺或聚乙烯醇;所述消泡剂 为有机硅消泡剂、磷酸三丁酯或丁醇;所述防腐 剂为甲醛、苯甲酸、卡松或乌洛托品;所述防冻剂 为乙二醇、甘油、尿素、异丙醇或丙二醇。该制剂符 合高含量和环保的剂型加工趋势,属于无公害农 药,具有广阔的应用前景。(51)Int.Cl. (19)中华人民共和国国家知识产权局(12)发明专利申请 权利要求书 1 页 说明书 4 页 附图 1 页

农药悬浮剂SC加工工艺与流程

一、悬浮剂概述 农药悬浮剂是20世纪70年代发展的剂型,现已成为基本加工剂型之一。悬浮剂(Suspensionconcentrates,简称SC)又称水悬浮剂、胶悬剂、浓缩悬浮剂,是在表面活性剂和其他助剂作用下,将不溶于或难溶于水的原药分散到水中,形成均匀稳定的粗悬浮体系。由于其分散介质是水,所以悬浮剂具有成本低,生产、贮运和使用安全等特点,而且容易与水混合,使用方便。与以有机溶剂为介质的农药剂型相比,具有对环境影响小和药害轻等优点。 悬浮剂的制剂技术涉及到农药化学、农药制剂学、物理化学、化工机械等多个学科,研究和制造技术比较复杂。尽管早在20世纪70年代,悬浮剂就已经出现,但由于受到研磨机械、表面活性剂等技术发展的影响,其推广规模仍难与乳油、可湿性粉剂等大宗剂型相比。目前开发的品种,尤其是国内生产的多数悬浮剂产品物理稳定性较差,贮存中易发生分层、沉淀,农药有效成份难以均匀分散,甚至结块不能从包装物中倒出,严重影响了悬浮剂这一农药新剂型在农业生产中的推广和使用。 悬浮剂的组成和配方筛选 悬浮剂(SC)主要由农药原药、润湿剂、分散剂、增稠剂、防冻剂、pH调整剂、消泡剂和水等组成。但不同品种、不同规格的制剂配方各有不同,筛选合理的制剂配方是悬浮剂开发的重要工作。 水悬浮剂的基本配方组成如下: 有效成分:40%-50%(也有更低一些的) 防冻剂:5%左右(最低气温高于0℃的地区可不加) 润湿分散剂:3%-7% 增稠剂:0.1%-0.5% 水加至100% pH调整剂和消泡剂一般不加。 配方的最后确定,主要是凭经验完成的。经验积累得越多,越丰富,就能从中总结出规律,形成一定的模式。因而,也就少失误,少走弯路,事半功倍。在这里笔者也难以给出悬浮剂配方筛选的公式,只能就选择各成分的原则加以叙述。 1.确定有效成分 固体有效成分的确定需满足以下三个条件:(1)在水中的溶解度一般不得大于70mg/L,最好不溶,否则在制剂贮存时易产生结晶。但也有在液相中的溶解度超过100mg/L的原药制得稳定性好的胶悬剂的例子,如谷硫磷、吡虫啉、灭害威等。通过调整润湿分散剂和增稠剂使之达到稳定化,其制剂的质量保证期甚至达到3年。(2)在水中的化学稳定性好,对某些稳定性不太好的有效成分通常使用缓冲剂、抗氧化剂来改善其化学稳定性。(3)熔点一般在60℃以上,以免在研磨时熔化,引起粒子凝聚,影响制剂的稳定性。(4)对于复配制剂来

农药水悬浮剂加工中助剂的作用原理

2009年中国农药制剂加工及专用助剂技术交流会报告 农药水悬浮剂加工中助剂的作用原理 路福绥庄占兴陈甜甜 (山东农业大学农业化学制品研究所) 报告提要:农药水悬浮剂为多相粗分散体系,热力学稳定性和动力学稳定性均很差,成为制约农药水悬浮剂研究开发的瓶颈。农药水悬浮剂的热力学稳定性与其加工过程中使用的润湿分散助剂有关,研究农药水悬浮剂加工中润湿分散助剂的作用原理,对润湿分散助剂的研发和选择及解决农药水悬浮剂的热力学稳定性具有重要意义。农药水悬浮剂的动力学稳定性可通过结构调节,建立适当的触变结构来解决。 农药水悬浮剂(Suspension Concentrate,SC)是指以水为分散介质,将不溶或微溶于水的固体原药、助剂经湿法加工制得的的多相分散体系。 一、农药水悬浮剂的特点及加工中存在的问题 农药水悬浮剂以水为基质,具有分散颗粒小,界面积大,生物活性高,加工、使用安全,与环境相容性好等优点[1],是21世纪农药新剂型发展方向之一。 农药水悬浮剂外观为不透明悬浮体,其分散相粒径一般为0.5~5μm,平均粒径2~3μm,属于多相粗分散体系,热力学稳定性和动力学稳定性均很差。农药水悬浮剂在贮存过程中,热力学自发变化的趋势是分散的药物颗粒聚结合并变大,分散稳定性变差;另一方面由于分散相与介质间的密度差,分散的药物颗粒在重力作用下沉降,导致产品轻则分层,重则沉淀结块而失去其悬浮稳定性,其有效成分难以从包装物倒出[2]。农药水悬浮剂的分散稳定性和悬浮稳定性已成为制约其研究开发的瓶颈。 二、农药水悬浮剂加工中润湿分散助剂的作用 提高农药水悬浮剂分散稳定性的主要措施便是在其加工过程中加入润湿分散助剂——润湿分散剂。目前,在农药水悬浮剂的研发中常用的润湿分散剂主要有以下几种类型[3]。 (1)阴离子润湿分散剂 在农药水悬浮剂的研究开发中常用的阴离子分散剂通常有烷基萘磺酸盐、烷基苯磺酸盐、芳基酚硫酸酯钠、萘磺酸钠甲醛缩合物、脂肪酰胺N—甲基牛磺酸盐,烷基丁二酸酯磺酸盐、有机磷酸酯、烷基酚聚氧乙烯醚甲醛缩合物硫酸盐、木质素磺酸盐等。 (2)非离子润湿分散剂 在农药水悬浮剂的研究开发中常用的非离子润湿分散剂有:烷基酚、芳基酚聚氧乙烯醚;脂肪醇聚氧乙烯醚,聚氧丙烯基环氧乙烷加成物、植物油环氧乙烷加成物及衍生物、脂肪酸聚氧乙烯醚等。 (3)超分散剂 超分散剂是一类高效的聚合物分散剂,一般具有“梳子”型结构,在很长的疏水主链上连着许多聚环氧乙烷支链,其结构如图1所示[4]:

悬浮剂

悬浮剂 农药悬浮剂是指将固体农药原药以4微米以下的微粒均匀分散于水中的制剂,国际代号为SC。由于SC没有像可湿粉(WP)那样的粉尘飞扬问题,不易燃易爆,粒径小,生物活性高,比重较大,包装体积较小,相对其他农药剂型安全环保,因此,SC已成为水基化农药新剂型中吨位较大的农药品种。 简介 悬浮剂又称浓悬浊剂,流动剂,水悬剂,胶悬剂。难溶于水的固体农药与助剂经过研磨、分散在水介质中的悬浊液。悬浮剂是农药原药和载体及分散剂混合,利用湿法进行超微粉碎而成的粘稠可流动的悬浮体。是由不溶或微溶于水的固体原药借助某些助剂,通过超微粉碎比较均匀地分散于水中,形成一种颗粒细小的高悬浮、能流动的稳定的液固态体系。悬浮剂通常是由有效成份、分散剂、增稠剂、抗沉淀剂、消泡剂、防冻剂和水等组成。有效成份的含量一般为 5%~50%。平均粒径一般为3微米左右。是农药加工的一种新剂型。 特点 1、粒度细,悬浮率高,药剂比可湿性粉剂要好; 2、不用有机溶剂毒性低,挥发性好,对人、动物安全性好; 3、不易燃易爆,贮运安全,适用飞机喷药; 用途 1、分解去除各类落漆之粘着性 2、将漆渣凝聚悬浮; 3、控制循环水生物活性,维护水质。 4、在运输和存储悬浮剂时,为防止产品分解、沉淀、结块、冻结等,需加稳定剂、防冻剂等 优点 悬浮剂有以下优点:①无粉尘危害,对操作者和环境安全;②以水为分散介质,没有由有机溶剂产生的易燃和药害问题;③与可湿性粉剂相比,允许选用不同粒径的原药,以便使制剂的生物效果和物理稳定性达到最佳;④液体悬浮剂在水中扩散良好,可直接制成喷雾液使用;⑤比重大,包装体积小。⑥悬浮剂的分散性和展着性都比较好,悬浮率高,粘附在植物体表面的能力比较强,耐雨水冲刷,

络合催化剂及其催化作用机理

络合催化剂及其催化作用机理 1 基本知识 络合催化剂,是指催化剂在反应过程中对反应物起络合作用,并且使之在配位空间进行催化的过程。 催化剂可以是溶解状态,也可以是固态;可以是普通化合物,也可以是络合物,包括均相络合催化和非均相络合催化。 络合催化的一个重要特征,是在反应过程中催化剂活性中心与反应体系,始终保持着化学结合(配位络合)。能够通过在配位空间内的空间效应和电子因素以及其他因素对其过程、速率和产物分布等,起选择性调变作用。故络合催化又称为配位催化。 络合催化已广泛地用于工业生产。有名的实例有: ①Wacker工艺过程: C2H4 + O2 CH3?CHO C2H4 + O2 + CH3?COOH CH3?COO C2H4 + H2O R?CH? (CHO) ?CH3R?CH2?CH2?CH② 0X0 工艺过程: R?CH=CH2 + CO/H2 催化剂:HCo(CO)4 , 150 °C, 250X 105Pa;RhCI(CO)(PPh3)2 , 100 C, 15X 105Pa ③Monsanto甲醇羰化工艺过程: CH3OH + CO CH3?COOH 催化剂:RhCI(CO)(PPh3)2/CH3I 从以上的几例可以清楚地看到,络合催化反应条件较温和,反应温度一般在100~200 C左右,反应压 力为常压到20X105Pa上下。反应分子体系都涉及一些小分子的活化,如CO、H2、O2、C2H4、C3H6等,便于研究反应机理。主要的缺点是均相催化剂回收不易,因此均相催化剂的固相化,是催化科学领域较重要的课题之一。 2 过渡金属离子的化学键合 (1 )络合催化中重要的过渡金属离子与络合物 过渡金属元素(T.M.)的价电子层有5个(n - 1)d,1个ns和3个np,共有9个能量相近的原子轨道,容易组成d、s、p 杂化轨道。这些杂化轨道可以与配体以配键的方式结合而形成络合物。凡是含有两个或两个以上的孤对电子或n键的分子或离子都可以作配体。过渡金属有很强的络合能力,能生成多种类型的络合物,其催化活性都与过渡金属原子或离子的化学特性有关,也就是和过渡金属原子(或离子)的电子结构、成键结构有关。同一类催化剂,有时既可在溶液中起均相催化作用,也可以使之成为固体催化剂在多相催化中起作用。 空的(n - 1)d轨道,可以与配体L(CO、C2H4…等)形成配键(M?:L),可以与H、R-①-基形成M-H、M-C型b键,具有这种键的中间物的生成与分解对络合催化十分重要。由于(n - 1)d轨道或nd外轨道参与 成键,故T.M.可以有不同的配位数和价态,且容易改变,这对络合催化的循环十分重要。 大体趋势是:①可溶性的Rh、lr、Ru、Co的络合物对单烯烃的加氢特别重要;②可溶性的Rh、Co 的络合物对低分子烯烃的羰基合成最重要;③Ni络合物对于共轭烯烃的齐聚较重要;④ Ti、V、Cr络合物 催化剂适合于a烯烃的齐聚和聚合;⑤第VHI族T.M.元素的络合催化剂适合于烯烃的齐聚。这些可作为研 究开发工作的参考。 (2)配位键合与络合活化各种不同的配体与T.M.相互作用时,根据各自的电子结构特征形成不同的配位键合,配位体本身得到活化, 具有孤对电子的中性分子与金属相互作用时,利用自身的孤对电子与金属形成给予型配位键,记之为L- M,如:NH3、H2就是。给予电子对的L:称为L碱,接受电子对的M称为L酸。M要求具有空的d或p空轨道。 H?, R?等自由基配体,与T.M.相互作用,形成电子配对型b键,记以L-M。金属利用半填充的d、p轨道电 子,转移到L 并与L 键合,自身得到氧化。 带负电荷的离子配位体,如C-、Br- OH -等,具有一对以上的非键电子对,可以分别与T.M.的2个 空d或p轨道作用,形成一个b键和一个n键。这类配位体称为n-给予配位体,形成o- n键合。具有重键的配位

30%噻虫嗪水悬浮剂的研制

30%噻虫嗪水悬浮剂的研制 武步华 (海利尔药业集团股份有限公司) 近年来,随着人们安全意识和环保意识的不断增强,农药水基性制剂受到高度重视,其研制技术也成为当前的热点。农药水悬浮剂系指固体原药以一定分散度(粒径0. 5~5μm ,平均粒径2~3μm) 分散在介质(一般为水) 中形成的多相分散体系。具有不用有机溶剂、环境相容性好、相对安全、成本较低等优点,已经越来越受到人们的青睐。 噻虫嗪是一种全新结构的第二代烟碱类高效低毒杀虫剂,对害虫具有胃毒、触杀及内吸活性,用于叶面喷雾及土壤灌根处理。其施药后迅速被内吸,并传导到植株各部位,对刺吸式害虫如蚜虫、飞虱、叶蝉、粉虱等有良好的防效。悬浮剂加工方便,成本较低,且药效较高,加工成悬浮剂更加环保,利于农民的使用,故本课题把噻虫嗪加工成悬浮剂这一绿色环保的剂型。本文首先对30%噻虫嗪水悬浮剂的稳定剂进行了选择,在此基础上对润湿分散剂、结构调节剂、消泡剂、防腐剂、防冻剂进行了系统的研究,确定了30%噻虫嗪水悬浮剂的最适配方,并对各项理化性质进行了检测,各项指标合格。 1 实验材料与方法 1.1 实验原料 噻虫嗪原药:含量≥95%;稳定剂:STA-1、STA-2、STA-3;润湿分散剂:苯乙基酚聚氧乙烯醚类(农乳601、602)、脂肪醇聚氧乙烯醚(WF )、苯乙烯基酚聚氧乙烯聚氧丙烯醚(农乳1601)、烷基酚聚氧乙烯醚甲醛缩合物硫酸盐(sopa-270)、木质素磺酸钙(木钙)、亚甲基双萘磺酸盐(NPF)、亚甲基双甲基萘磺酸钠(TDF)、聚苯乙烯丙烯酸羧酸盐共聚物 (DF );结构调节剂:硅酸镁铝、白炭黑、黄原胶、淀粉、羧甲基纤维素钠;防腐剂:AQ ;防冻剂:乙二醇。 1.2 主要仪器设备 0.1L 立式砂磨机(沈阳化工研究院),Mastersizer 2000激光粒度仪(英国马尔文),A201 型旋转式粘度计(美国博力飞),1120安捷伦液相色谱仪(美国安捷伦)。 1.3 试验方法 1.3.1 稳定剂的筛选 加入同一分散剂将噻虫嗪加工成悬浮剂,热贮后测定噻虫嗪的分解率。 1.3.2 流点法 首先将噻虫嗪原药粉碎至5um 左右,贮存于广口瓶中密封备用。将各种分散剂分别配成5%的水溶液,充分振荡使之溶解,放入容量瓶中备用,将50ml 小烧杯置于电子天平上称重,加入5.0g (精确至0.0001g )粉碎好的原药,然后用滴管慢慢滴加配制好的5%分散剂的水溶液,边滴加边用小玻璃棒仔细研磨搅拌,直至呈浆状物,可以从玻璃棒上自由滴下为止,记录滴加水溶液的质量(精确至0.0001g ),重复4次,用如下公式计算分散剂对供试原药流点: 供试原药的质量 分散剂水溶液质量 滴加分散剂对原药的流点= %5 1.3.3 粒径的测定 将噻虫嗪、水和润湿分散剂(噻虫嗪30%、分散剂固定用量2%、余量为水)按照一定比例配好,与物料按照体积比1∶1.2加入玻璃珠,于立式砂磨机中砂磨2小时,采用激光粒

催化作用原理课论文

各类催化剂的特点及应用 姓名 xxx 学号 201400xx 院系化学工程学院 专业化学工程与技术 年级研究生1班 科目催化作用原理

1.前言 催化剂的主要作用是降低化学反应的活化能,加快反应速度,因此被广泛应用于炼油、化工、制药、环保等行业。催化剂的技术进展是推动这些行业发展的最有效的动力之一。一种新型催化材料或新型催化工艺的问世,往往会引发革命性的工业变革,并伴随产生巨大的社会和经济效益。1913年,铁基催化剂的问世实现了氨的合成,从此化肥工业在世界范围迅速发展;20世纪50年代末,Ziegler-Natta催化剂开创了合成材料工业;20世纪50年代初,分子筛凭借其特殊的结构和性能引发了催化领域的一场变革;20世纪70年代,汽车尾气净化催化剂在美国实现工业化,并在世界范围内引起了普遍重视;20世纪80年代,金属茂催化剂使得聚烯烃工业出现新的发展机遇。 目前,人类正面临着诸多重大挑战,如:资源的日益减少,需要人们合理开发、综合利用资源,建立和发展资源节约型农业、工业、交通运输以及生活体系;经济发展使环境污染蔓延、自然生态恶化,要求建立和发展物质全循环利用的生态产业,实现生产到应用的清洁化。这些重大问题的解决无不与催化剂和催化技术息息相关。因此,许多国家尤其是发达国家,非常重视新催化剂的研制和催化技术的发展,均将催化剂技术作为新世纪优先发展的重点。 催化剂和催化作用:催化剂能加速化学反应而本身不被消耗的物质。催化作用是一种化学作用,是靠少量催化剂来加速化学反应的现象。 催化剂的基本特性:加快反应速度,但只能加速热力学上可能进行的化学反应;不能改变化学平衡的位置,故对正反应有效的催化剂对逆反应也有效;对反应有选择性。 催化剂的分类:目前工业上用的催化剂有2000多种,有不同的分类方法,按工艺与工程特点分为多相固体催化剂、均相配合物催化剂和酶催化剂三类。2. 均相催化 催化剂和反应物同处于一相,没有相界存在而进行的反应,称为均相催化作用,能起均相催化作用的催化剂为均相催化剂。均相催化剂包括液体酸、碱催化剂和色可赛思固体酸和碱性催化剂。溶性过渡金属化合物(盐类和络合物)等。均相催化剂以分子或离子独立起作用,活性中心均一,具有高活性和高选择性。

农药悬浮剂的加工技术与质量评价

农药悬浮剂的加工技术与质量评价 近年来, 随着人们安全意识和环保意识的不断增强, 农药水基性制剂受到高度重视。 其研制 技术和质量评价也成为当前的热点。农药水基性制剂是以水作为介质或稀释剂的农药剂型, 这类制剂具有节约有机溶剂、保护环境、 相对安全、 成本较低的特点。这类制剂主要包括悬 浮剂、悬乳剂、 水乳剂、微胶囊悬浮剂和水剂等,本文主要讨论悬浮剂的加工技术和质量评 价问题。 一、悬浮剂概述 农药悬浮剂是 20 世纪 70 年代发展的剂型,现已成为基本加工剂型之一。悬浮剂 (Suspensionconcentrates,简称SC )又称水悬浮剂、胶悬剂、浓缩悬浮剂,是在表面活性剂 和其他助剂作用下,将不溶于或难溶于水的原药分散到水中,形成均匀稳定的粗悬浮体系。 由于其分散介质是水,所以悬浮剂具有成本低,生产、贮运和使用安全等特点,而且容易与 水混合, 使用方便。 与以有机溶剂为介质的农药剂型相比, 点。根 据物理性状,悬浮剂可以分为两类:一是浓缩悬浮剂( 分散在水中制成,是最常见的悬浮剂品种;二是悬乳剂( 类为先以有机溶剂溶解并乳化了的原油或不溶于水的固体原药, 有机溶剂溶解) 的固体原药,共同分散在水中,制成具有油相、固相和连续水相的多悬浮体 系。此外, 近年来发展起来的微胶囊悬浮剂和水基悬浮种衣剂等, 虽然名称不同, 但从其分 散原理看, 也属于悬浮剂的范畴, 只是前者分散相为微胶囊, 后者是在悬浮剂的基础上因引 入了成膜剂而具有在种子表面成膜的功能。 上个世纪六十年代,英国 ICI 公司首先开发出农药悬浮剂这一新剂型,以后的几十年间,悬 浮剂得到迅速发展。至上世纪末,在英国悬浮剂农药产品已经占到农药制剂市场的 20% 以 上,而在美国也占到 10%以上。我国自上世纪八十年代开始研究生产农药悬浮剂产品,二 十多年来,这一剂型的产品增长速度也很快,至 2007年 6 月份,我国登记的农药悬浮剂产 品占登记的农药产品总数的 5.07%,比 2006年 6月的 4.92%略有上升。但是,与欧美国家 相比,我们在这一剂型的生产技术上还是落后的,其品种、数量、品质上都还有一定差距。 悬浮剂的制剂技术涉及到农药化学、 农药制剂学、 物理化学、 化工机械等多个学科,研究和 制造技术比较复杂。尽管早在 20世纪 70年代,悬浮剂就已经出现,但由于受到研磨机械、 表面活性剂等技术发展的影响, 其推广规模仍难与乳油、 可湿性粉剂等大宗剂型相比。 目前 开发的品种, 尤其是国内生产的多数悬浮剂产品物理稳定性较差, 贮存中易发生分层、 沉淀, 农药有效成份难以均匀分散, 甚至结块不能从包装物中倒出, 严重影响了悬浮剂这一农药新 剂型在农业生产中的推广和使用。 因此, 进一步研究农药悬浮剂的加工技术, 建立完善的农 药悬浮剂质量评价体系是十分重要的。 二、悬浮剂的组成和配方筛选 悬浮剂(SC )主要由农药原药、润湿剂、分散剂、增稠剂、防冻剂、 pH 调整剂、消泡剂和 水等组成。 但不同品种、 不同规格的制剂配方各有不同, 筛选合理的制剂配方是悬浮剂开发 的重要工作。 水悬浮剂的基本配方组成如下: 有效成分: 40%- 50%(也有更低一些的) 防冻剂: 5%左右(最低气温高于 0C 的地区可不加) 润湿分散剂: 3%- 7% 增稠剂: 0.1%-0.5% 具有对环境影响小和药害轻等优 SC ),由不溶于水的固体原药 SE ),分散相由两类原药组成, 另一类为可直接悬浮 (不需

农药油悬浮剂简介

农药油悬浮剂简介 农药油悬浮剂 油悬浮剂是指一种或一种以上农药有效成分(其中至少有一种为固体原药)在非 水系分散介质中形成高分散、稳定的悬浮体系。油悬浮剂英文名为Oil miscible flowable concentrate,简写为OF。中文简称油悬剂。 油悬剂的研制始于20世纪70年代后期,到80年代得到了迅速发展,其原因是: 第一,某些油对一些亲油性很强的农药,特别是在油中不溶性的除草剂,制成油悬剂,可起到增效作用。1992年《Weed Control Manual》刊载了4种作物油、19种浓缩作物油、11种浓缩蔬菜油等商品,可作为除草剂增效剂使用。因此,这些农药用上述油作为分散介质,制成油悬剂使用,有助于提高药效。 第二,在亲脂性物中完全不溶的农药,如内吸性杀菌剂多菌灵、苯菌灵、甲基硫菌灵等,它们很难透过作物表皮而进入植株内部,因而难于发挥它们的内吸作用,提高这类药剂的渗透性,也可以加入一定量的渗透剂到制剂中来实现,这就要增加成本,而制成油悬剂,则可提高有效成分的渗透性和内吸性。 第三,在缺水的干旱地区或飞机施药,愈来愈希望施用农药不用或少用水稀释,可直接用油喷雾更为经济方便。这时油载体可加也可不加助剂,能适用于各种喷雾技术。 第四,当两种有效成分,一种是在水和油相均不溶解的固体原粉,另一种是液体原油,需要将它们制成混合制剂时,如制成水悬浮乳剂时,则其中一种或两种有效成分易水解而分解损失严重,很难选择出适宜的、廉价的稳定剂,而制成油悬剂则可解决这一难题。今后随着混合制剂发展的需要,这类油悬剂将会得到发展油悬浮剂一般用水稀释后供喷雾用,也可不经稀释,作超低容量(ULV)喷雾用。制剂的配方中除了有效成分外,还必须有适宜的溶剂、助溶剂、分散剂、乳化剂、湿润剂、悬浮稳定剂、消泡剂、粘度调节剂等。助剂中除了溶剂比较特殊外,其他可参照水悬浮剂选择。油悬浮剂常用的溶剂有植物油(如大豆油、菜籽油、棉籽油、蓖麻仁油、松节油、浓缩蔬菜油、向日葵油等)、矿物油(石蜡系油的Essobayol、Kawasol、甲基萘高级脂肪烃油等)及其混合溶剂。另外,有机溶剂中邻苯二甲酸与醇、脂肪醇、脂环醇的液体酯类,如邻苯二甲酸二甲酯、二丁酯、二异丁酯、二异辛酯、二月桂醇酯、二环己酯和二环辛酯、苄基乙酸酯、乙酸乙酯、壬酸乙酯、苯甲酸甲酯或乙酯等适合作某些农药(如多菌灵、苯菌灵等内吸杀菌剂)的油悬剂溶剂。油悬浮剂的加工工艺和产品质量检测也可参照水悬浮剂进行。

农药水悬浮剂的开发

农药水悬浮剂的开发 摘要:农药水悬浮剂作为水基性农药剂型的代表,减少了有机溶剂用量,使用和贮运安全方便,环境相容性好,具有很广阔的发展前景,成为国内外农药剂型研究的热点。本文对农药水悬浮剂的定义,稳定性机理,配方组成,加工工艺以及质量控制等进行了简单综述,对农药水悬浮剂的开发研究具有一定的启发意义。 关键词:水悬浮剂,配方组成,加工工艺,质量控制。 1农药水悬浮剂概述 长期以来化学农药为农业增产和农民增收作出了突出贡献,但是由于人类对化学农药的不合理使用,使农产品中农药残留量增加,环境污染严重,同时危及人类健康和生命。进入21世纪,随着人们环保意识和安全知识的不断增强,研究和开发“水性、粒状、缓释、多功能,省力化和精细化”的农药剂型已成为国内外的热点。环境相容性好的水基性农药制剂越来越受到人们的关注,这类制剂主要包括水悬浮剂(Suspension concentrate,SC)、微囊水悬浮剂(Capsule suspension,CS)、水乳剂(Emulsion,EW)、微乳剂(Micro emulsion,ME)以及水剂(Aqueous solution,AS)等[4],具有节约有机溶剂,减少环境污染,对人畜相对安全,成本较低等优点。农药水悬浮剂由于其良好的环境相容性、药效高、成本低和加工使用安全,在水基性制剂中脱颖而出,具有很大的发展潜力。 农药悬浮剂是农药制剂中发展历史短,并处在开发完善中的一种新剂型,现在已经成为基本加工剂型之一。悬浮剂(Suspension concentrate,简称SC)又称水悬浮剂,浓悬浮剂,胶悬浮剂,是在助剂(润湿分散剂增稠剂、结构调节剂和消泡剂等)作用下,将不溶于水或难溶于水的原药分散到水中形均匀稳定的分散体系。该剂型可与水任意比例均匀混合分散,几乎不受水质和水温的影响,使用方便。根据物理性状,悬浮剂又可分为两类[3]:一是浓缩悬浮剂(SC)由不溶于水的固体原药分散在水中制成,是最常见的悬浮剂品种;二是悬乳剂(SE),分散相由两类原药组成,一类为先以有机溶剂溶解并乳化了的原油或不溶于水的固体原药,另一类为可直接悬浮(不需有机溶剂溶解)的固体原药,共同分散在水中,制成具有油相、固相和连续水相的多悬浮体系。 水悬浮剂外观不透明,粒径范围1~5μm,属于热力学不稳定多分散体系,在实际加工和贮存过程中要想获得高度分散,性能良好的水悬浮剂必须解决水悬浮多分散相体系的稳定性问题。路福绥[1]等从物理化学角度出发,研究发现农药水悬浮剂的贮存稳定性主要包括抗聚结稳定性和悬浮稳定性两个方面。 (一)抗聚结稳定性 农药水悬浮体系界于胶体分散体系和粗分散体系之间,粒子表面积大,表面自由能也大,由

相关主题
文本预览
相关文档 最新文档