当前位置:文档之家› 第二节 太阳辐射

第二节 太阳辐射

第二节 太阳辐射
第二节 太阳辐射

第二节太阳辐射(solar radiation)

气象上所讨论的太阳辐射、地面辐射和大气辐射,其波长范围约在0.15-120μm之间。太阳辐射的主要波长范围在0.15-4μm;地面和大气辐射的主要波长范围是3-120μm。因此,将太阳辐射称为短波辐射,而把地面辐射和大气辐射称为长波辐射。

一、太阳辐射光谱

太阳辐射能随波长的分布称为太阳辐射光谱。

太阳辐射光谱分三个光谱区,紫外区(λ<0.39μm )、可见光区(λ为0.39-0.76μm)和红外区(λ>0.76μm)。其中可见光区占能量的50%,红外区占43%,紫外区占7%。可见光区又分为红、橙、黄、绿、青、蓝和紫七色光波段。红光(0.76-0.622μm)、橙光(0.622-0.597μm)、黄光(0.597-0.577μm)、绿光(0.577-0.492μm)、青光(0.492-0.480μm、蓝光(0.480-0.455μm)和紫光(0.455-0.390μm)。太阳辐射中可见光部分不仅辐射能量大,而且是辐射最强的部分,所以太阳光是可见的。

二、太阳常数(solar constant)

在日地平均距离的条件下,地球大气上界垂直于太阳光线的面上所接受到的太阳辐射通量密度,称为太阳常数。用S0表示。

世界气象组织(WMO)测得S0为1367.7w/m2。由于日地距离的变化,S0有7%的变化。1cal·cm2·min-1=697.8w/m2,所以,S0=1367.7/697.8=1.96cal·cm2·min-1。

三、太阳辐射在大气中的减弱

太阳常数是到达大气上界的太阳辐射通量密度。当它通过大气层时,被大气中的各种气体分子和云层选择性地吸收,一部分被气体分子和悬浮的微粒散射,一部分被它们反射,所以,到达地面的太阳辐射显著地减少了。

(一)吸收作用

大气中的臭氧、氧、水汽和二氧化碳都能直接吸收一部分太阳辐射。臭氧主要吸收波长小于0.3μm的紫外辐射。例如,当太阳高度为40°时,地面接受的辐射通量中,紫外辐射由大气外界当%减少至2—3%。氧、水汽和二氧化碳的主要吸收带在近红外光谱区内。在可见光谱区中,也有几个吸收带。云和雾也吸收太阳辐射,吸收率随云状而异。

根据估计,被大气中气体分子和云层吸收的太阳辐射能量占大气上界太阳辐射总能量的19%左右。

(二)散射作用

1、散射的概念

大气中各种气体分子和悬浮的尘埃等微小质点,能把入射的电磁波以相同波长向四面八方发射,这种现象称为散射。

散射过程中,能量并不损失,只是因为改变了一部分电磁波的方向,有部分能量返回宇宙空间,使到达地面的太阳辐射能量被减弱了。散射只改变辐射的方向,不改变辐射的性质。

2、散射的种类

(1)分子散射

又称为瑞利散射。空气分子的直径小于太阳辐射的波长,其散射能力与波长的四次方成反比,称为分子散射。

分子散射主要发生在可见光谱区,其中对蓝、紫光的散射能力最强,比对红光的散射能力大九被,所以,晴朗无云的天空呈淡蓝色。

(2)粗粒散射

又称为米散射,水滴和灰尘等微粒的直径大于太阳辐射的波长,它们对各种波长的辐射几乎具有同等的散射能力,称为粗粒散射。所以,当天空中尘粒杂质多或有云时,水平方向上呈乳白色。

根据估计,大气中的分子散射和粗粒散射,使6%的太阳辐射能返回宇宙空间。

(三)反射作用

大气中的云层和灰尘等微粒,都能反射太阳辐射,使一部分辐射通量返回宇宙空间。根据估计,云层等反射的辐射通量约占辐射通量的20%。

总之,太阳辐射经过深厚的大气层后,由于大气的吸收作用、散射作用和发射作用,使辐射通量大约减少一半。地面可能接受的太阳辐射通量只有大气圈外的一半左右。

四、太阳高度

到达地面的太阳辐射量与太阳高度和昼长有密切关系。

(一)太阳高度

1、太阳高度角的定义

太阳高度角的简称。是太阳光线和观测点地平线间的夹角,用h表示。

2、计算公式

sinh=sinφsinб+cosφcosбcosω (球面三角公式)

(1)φ为纬度(latitude)

对某一地区来说,φ为常数;

(2)б为赤纬(太阳倾角或日偏角)

以地球赤道作为基本平面的赤道坐标系中,太阳距离赤道的角距离。当太阳在赤道面以南时,б取正值,以南时取负值。б变化于±23.5°之间。春分日(3月21日)和秋分日(9月23日),б=0;夏至日(6月22日),太阳距离赤道最北,б=+23.5°;冬至日(12月22日),б=-23.5°,其余时间的б值可从日射常用观测表或天文年历表中查得。由于常用表是1925年按经度零度和时间是零点时计算的,所以求某地某时刻的б值,需经过三种订正,即年度订正、经度订正和时间订正。

(3)ω为时角

是真太阳时角的简称。太阳连续两次通过子午圈的时间间隔为一个真太阳日,把其作24等份,每一等份为真太阳时一小时,如以角度表示,一个真太阳时相当于时角15°。时角的计量以正午为0,顺时针方向为正,逆时针方向为负,也就是上午时角为负,下午时角为正。

①地方时

以某地经线正对太阳的时刻为正午,正背太阳的时刻作为该地的0点钟,这种划分称为地方时。在同一经度上,地方时都相同。

②标准时

根据经度差15°,时间差1小时的道理,把整个地球表面划分为24个时区,再把每一时区中央经线的地方时作为该时区的时间标准,称为标准时,或称区时。为了便于各时区时间的换算,把所有时区都按自西向东的顺序编号,以0°经线为中央经线叫0时区(7.5°W—7.5°E),以东再隔15°为中央经线叫1时区(7.5°E—22.54°E),依次类推,直至第23时区。于是,任何两个时区标准时的时差就相当于它们时区号码之差。例如,北京用第8时区的标准时,乌鲁木齐用第6时区的标准时,两者时区号码之差,即可求得两地标准时相差2小时。北京处于东8区,东经120°是东8区的中央经线,因此,北京时就是东经120°的地方时。

我国地域辽阔,东西宽达64个经度,横跨5个时区。如果完全按时区确定时间,也有所不

便。因此,除了特殊地区和部门外,全国一律以北京所在地区(中央经线120°E )的区时标准,称为北京时。

③世界时

国际上规定,以0时区标准时为世界统一时间,称为世界时。0时区的中央经线即是通过英国伦敦格林威治天文台的经线,所以世界时又叫格林威治标准时,各时区标准时的号码正好是与世界时的时差值。例如北京是第8时区,其与世界时的时差为8小时。 正午时的太阳高度角的计算公式:

正午时,ω=0,cosω=1

球面三角公式变为:sinh =sinφsinб+cosφcosб=sin[90°-(φ-б)] h =90°-φ+б

3、太阳高度角的变化规律 (1)太阳高度角的日变化规律

日出(sunrise )和日落(sunset )时为零,中午最大。 (2)太阳高度角的年变化规律

见教材第16页。 (二)昼长 1、昼长的定义

或一日的可照时间,当地面没有被障碍物、云、雾和烟尘遮蔽时,日面中心从出地平线(日出)至入地平线(日落)的时间间隔。以小时为单位。 2、计算公式

日出和日落时,h =0,sinh =sinφsinб+cosφcosбcosω,sinh =0 -sinφsinб=cosφcosбcosω cosω=-tgφtgб

日出和日落时的时角记为ω0,按反时针方向的ω0相当于日出,顺时针方向相当于日落,则昼长的计算公式为

昼长=2?

15

0w

3、昼长的变化规律

表1说明,北半球的昼长时间,在春分和秋分,除北极以外均为12小时;夏至日昼长均在12小时以上,且随纬度增高而增长,在北极圈以内,终日为白昼,即为极昼或永昼;冬至日,昼长小于12小时,且纬度愈高,昼长愈短,到北极圈以内地区,昼长时间为零,终日为夜,出现极夜或永夜。

除赤道上昼长时间终年均为12小时外,北半球其余地区,下半年(春分至秋分)昼长时间在12小时以上,而以夏至日最长;冬半年(秋分至春分)昼长时间不到12小时,而以冬至日最短,冬半年和夏半年之间昼长的差异,纬度愈高愈明显。

表1 北半球各纬度二分二至时的昼长时间 (单位:时:分)

(1)日照时数

每日太阳实际照射地面的时数,以小时为单位。日照时数用日照计测定。 (2)日照百分率

实际日照时数与可照时数的百分比。

日照百分率=

可照时数

日照时数

?100%

五、太阳辐射在大气中减弱的一般规律

由于大气的吸收、散射作用以及云层的反射作用,太阳辐射通过大气层后被减弱了。太阳辐射在大气中减弱的一般规律遵循贝尔(Beer )定律。

S =S 0P m

其中,S 为到达地面的与太阳光垂直面上的太阳辐射通量密度,S 0为太阳常数,m 为大气光学质量,P 为大气透明系数。 (一)大气光学质量(m )

当太阳位于天顶时,以单位面积的太阳光束所穿过的大气柱的质量作为一个单位,称为一个大气质量或单位气质。把太阳斜穿时穿过的大气质量记作m ,可以证明m 与h 有下列关系式:

m =1/sinh 或m =secz ,

其中z 为天顶角(或天顶距),z =90°-h (二)大气透明系数(P ) 1、大气透明系数的定义

大气上界太阳辐射通量密度为S 0,在大气中传输时被减弱了。当大气透明系数为P 时,m =1,那么S =S 0P ,P =S/S 0,因此,到达地面与太阳光垂直面上的太阳辐射通量密度S 与大气上界的太阳常数S 0之比,即为大气透明系数。显然它是小于1的。 2、影响大气透明系数的因素 (1)大气中水汽和尘埃的含量

大气中易变成分是水汽和尘埃等固体微粒的含量,大气透明系数的变化决定于它们在大气中含量的变化。空气湿度大和固体微粒多时,大气透明系数减少,太阳辐射穿过大气层时被减弱的量多;反之,大气透明系数增大,太阳辐射被减弱的量少。 (2)波长

由于大气对不同波长辐射的吸收和散射作用是不同的,因此大气透明系数P 与波长有关。大气对各种光谱的透明系数见下表。由表看出,波长短的透明系数小于波长长的。

当太阳高度较低时,太阳辐射通过大气层的路程较长,太阳光谱中波长较短的蓝紫光散

射较多,余下的光谱是波长较长的红橙光,所以此时太阳呈现红色。下表中各种太阳高度下的光谱比例也说明上述现象。当h=1时,红光增加到84%。

表3 各种太阳高度时,太阳辐射中所含光谱的比例

太阳高度90°60°30°10°5°1°

红光黄光28

29

29

30

30

31

36

33

47

34

84

13

绿光22 22 23 20 14 3

蓝光13 12 11 7 4 0

紫光8 7 5 4 1 0

太阳辐射通过大气层时,不仅能量被减弱,而且其光谱成分也发生变化。下表是大气上界和地面上各光谱区太阳辐射通量的分配比例。到达地面的辐射通量中,红外区的比例增大,可见光和紫外区的能量相应减少。

表4 大气上界及地面上各光谱区能量占全光谱区能量的百分数

六、到达地面的太阳辐射能

到达地面的太阳辐射能,由太阳直接辐射和漫射辐射两部分组成。两者的和称为太阳总辐射,简称总辐射。

(一)直接辐射通量密度(S)

1、太阳直接辐射

太阳以平行光的方式投射射到与光线相垂直面上的辐射,称为太阳直接辐射。用S表示。

2、水平面上的太阳直接辐射通量密度(S b)

到达水平面上的太阳直接辐射通量密度S b=S0?sinh?P m(该公式的推导过程见教材P20)

3、太阳直接辐射通量密度的测定

用直接辐射表加以测定。

4、影响太阳直接辐射的因素

云和海拔高度是影响太阳辐射通量的两个重要因子。云是很好的反射体,厚的云层能把大部分太阳辐射反射回宇宙空间,使到达地面的直接辐射通量大大减少。

在高海拔地带,由于太阳辐射穿过大气的路程较短,辐射通量被减弱少,所以地面获得的太阳直接辐射比平原地区多。

(二)漫射辐射通量密度(S d)

1、太阳漫射辐射

来自整个天穹(天空)向下的散射辐射和反射的太阳辐射,称为太阳漫射辐射,又称为天空辐射。由于前者远远大于后者,所以一般把散射辐射通量视为漫射辐射通量。

日出前后,地面接受的太阳辐射主要是漫射辐射。高纬度地区,漫射辐射常常是太阳辐射的主要部分。漫射辐射通量受云的影响很大,它随云量增多而增加。漫射辐射的光效应就是漫射光。阴天时,只有漫射光。

2、太阳漫射辐射通量密度的测定

用天空辐射表加挡板直接测定漫射辐射通量密度(S d)。

(三)总辐射通量密度(S t)

1、太阳总辐射

太阳直接辐射和太阳漫射辐射之和,称为太阳总辐射。

2、太阳总辐射的计算公式

S t=S b+S d

到达地面的太阳总辐射,一部分被地面反射,余下的部分才被地面吸收。如果地面反射的太阳辐射通量密度为Sr,那么地面吸收的总辐射为S b+S d-S r。

反射辐射也可用反射率表示。反射率是某一表面上的反射辐射与投射到该表面的总辐射的百分比。如果地面对太阳辐射的短波反射率为r,那么地面吸收的太阳总辐射为S t(1-r)或(S b+S d)(1-r)。

3、太阳总辐射的变化规律

(1)太阳总辐射的日变化

太阳辐射日总量:一日内,到达地面单位面积的太阳辐射总量。日总量不仅和太阳高度角、大气透明系数有关,还和太阳照射时间(日照时数)有关。

太阳高度角在一天中随不同时间而变化,因而太阳辐射也产生了日变化。由日出到正午,随太阳高度角的增大,太阳辐射通量密度也不断增加,中午时达到最大值,午后太阳高度角逐渐降低,太阳辐射通量密度随之减弱。

一天中太阳辐射通量密度还随大气透明系数而变化,但是大气透明系数的日变化不如太阳高度角的日变化规则。在温暖的季节,正午时对流旺盛,大气的透明系数减少,如果它超过了太阳高度角的影响,正午时的太阳辐射通量密度也可能不出现最大值。

(2)太阳总辐射的年变化

太阳辐射年总量:一年中,到达地面单位面积的太阳辐射总量。年总量一般随纬度的增加而降低。

一般中、高纬度地区,夏季时太阳高度角大,日照时间长,太阳辐射通量密度大;冬季时太阳高度角小,日照时间短,太阳辐射通量密度小。

太阳直接辐射计算

太阳直接辐射计算导则 1 范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163—2014,定义] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射 direct normal radiation 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。

[GB/T 31163—2014,定义] 3.3 水平面直接辐射 direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义] 3.4 散射辐射 diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义] 3.5 [水平面]总辐射 global [horizontal] radiation 水平面从上方2π立体角(半球)范围内接收到的直接辐射和散射辐射之和。 注:改写GB/T 31163—2014,定义。 3.6 地外太阳辐射 extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163—2014,定义] 3.7 辐照度 irradiance 物体在单位时间、单位面积上接收到的辐射能。 注:单位为瓦每平方米(W/m2)。 [GB/T 31163—2014,定义] 3.8 辐照量 irradiation 曝辐量 radiance exposure 在给定时间段内辐照度的积分总量。 注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2:1 kWh/m2= MJ/m2;1MJ/m2≈ kWh/m2。

太阳能辐射量分类

太阳能资源分四类(最新): 我国太阳能资源分布是不均衡的,按辐射强度划分,大致可以划分为四类地区,其中: 一类地区大于6700MJ/m2,>159.5千卡/cm2 二类地区是5400-6700MJ/m2, 128.6-159.5千卡/cm2 三类地区4200-5400MJ/m2, 100-128.6千卡/cm2 四类地区小于4200MJ/ m2。 <100千卡/cm2 我国主要城市年平均日照时数,也可以划分成四类地区。 一类地区平均日照时数在2500小时以上,一类地区有乌鲁木齐、拉萨、西宁、银川、呼和浩特、沈阳等, 二类地区平均日照时数在2000-2500小时之间,二类地区有北京、天津、石家庄、济南、南昌、太原、长春、哈尔滨、兰州等, 三类地区平均日照时数在1000-2000小时,三类地区有上海、南京、杭州、合肥、福州、郑州、长沙、南宁、广州、昆明、海口, 四类地区平均日照时数1000小时以下,四类地区有重庆、成都、贵阳。 【我国太阳能资源】旧版本 在我国,西藏西部太阳能资源最丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 根据各地接受太阳总辐射量的多少,可将全国划分为五类地区。 一类地区 为我国太阳能资源最丰富的地区,年太阳辐射总量6680~8400 MJ/㎡,相当于日辐射量5.1~6.4KWh/㎡。这些地区包括宁夏北部、甘肃北部、新疆东部、青海西部和西藏西部等地。尤以西藏西部最为丰富,最高达2333 KWh/㎡(日辐射量6.4KWh/㎡),居世界第二位,仅次于撒哈拉大沙漠。 二类地区 为我国太阳能资源较丰富地区,年太阳辐射总量为5850-6680 MJ/m2,相当于日辐射量4.5~5.1KWh/㎡。这些地区包括河北西北部、山西北部、内蒙古南部、宁夏南部、甘肃中部、青海东部、西藏东南部和新疆南部等地。

全国太阳辐射量资料

具体分部情况见下图 资源带号名称指标 Ⅰ资源丰富带≥6700MJ/(m2·a) Ⅱ资源较富带5400~6700MJ/(m2·a)Ⅲ资源一般带4200~5400MJ/(m2·a)Ⅳ资源贫乏带<4200MJ/(m2·a)

附表1我国主要城市的辐射参数表 城市纬度Φ日辐射量 Ht 最佳倾角 Φop 斜面日 辐射量 修正系数 Kop 哈尔滨45.68 12703 Φ+3 15838 1.1400 长春43.90 13572 Φ+1 17127 1.1548 沈阳41.77 13793 Φ+1 16563 1.0671 北京39.80 15261 Φ+4 18035 1.0976 天津39.10 14356 Φ+5 16722 1.0692 呼和浩特40.78 16574 Φ+3 20075 1.1468 太原37.78 15061 Φ+5 17394 1.1005 乌鲁木齐43.78 14464 Φ+12 16594 1.0092 西宁36.75 16777 Φ+1 19617 1.1360 兰州36.05 14966 Φ+8 15842 0.9489 银川38.48 16553 Φ+2 19615 1.1559 西安34.30 12781 Φ+14 12952 0.9275 上海31.17 12760 Φ+3 13691 0.9900 南京32.00 13099 Φ+5 14207 1.0249 合肥31.85 12525 Φ+9 13299 0.9988 杭州30.23 11668 Φ+3 12372 0.9362 南昌28.67 13094 Φ+2 13714 0.8640 福州26.08 12001 Φ+4 12451 0.8978 济南36.68 14043 Φ+6 15994 1.0630 郑州34.72 13332 Φ+7 14558 1.0476 武汉30.63 13201 Φ+7 13707 0.9036 长沙28.20 11377 Φ+6 11589 0.8028 广州23.13 12110 Φ-7 12702 0.8850 海口20.03 13835 Φ+12 13510 0.8761 南宁22.82 12515 Φ+5 12734 0.8231 成都30.67 10392 Φ+2 10304 0.7553 贵阳26.58 10327 Φ+8 10235 0.8135 昆明25.02 14194 Φ-8 15333 0.9216 拉萨29.70 21301 Φ-8 24151 1.0964

我国太阳辐射分布详解

我国太阳辐射分布详解 我国西部太阳能的年总辐射约为140-200 Kcal/cm2·year,高于东部的80-160Kcal/cm2·year;我国东部、北部地区的年总辐射约为120-160 Kcal/cm2·year,高于南部地区的80-120 Kcal/cm2·year;我国三分之二以上的地区的年日照时数达2000小时,年总辐射大于140 Kcal/cm2?year,应用太阳能空调的前景很好。 特点:1。太阳能资源最好的地区和最差的地区,都分布在北纬22°~35°区域内。尤其是青藏高原,是我国太阳能资源最理想的地区,年辐射量达180~200Kcal/cm2·year。而四川盆地由于处在南北两股暖冷气流交汇处,云雨天气多,形成太阳能资源的低值中心。 2。在北纬30°~40°之间,太阳能资源随纬度增加而增加。 3。北纬40°以上,太阳能资源自东向西逐渐增加。 4。新疆地区太阳能资源分布由东南向西北逐渐减少。 5。台湾地区太阳能资源由东北向西南逐渐增加,海南岛太阳能资源和台湾基本相当。 太阳能利用潜力巨大太阳能资源按日照时间和太阳能辐射量的大小,大致上可分为五类。甘肃省大部分地区属于一、二类地区,太阳辐射比较丰富,平均年日照时间在2300—2700小时。有专家测试,在相同水量和温度的前提下,兰州市夏季每天每平方米所接受的太阳热量相当于4千瓦时电转化的热量,冬季则大约相当于2千瓦时到3千瓦时电。 其实这个太阳能的能源分布是有表格的.国内最好的是西藏,青海,最差的是四川,贵州一部 太阳辐射能量不仅具大,对于我们的生产和生活有着非常重要的影响,目前被人类利用的能量几乎都是直接或者间接来自太阳辐射的能量。所以了解和认识我国太阳辐射能分布规律对于充分利用太阳能和指导工农业生产有着重要意义。太阳辐射能分布是影响农业生产光照热量条件的重要因素,也是考试重要的知识点,因此在知识上我们既要了解太阳辐射的分布规律又要会分析太阳辐射分布不同的原因。 一、我国太阳辐射能时空分布规律 1、就时间而言,我国大部分地区们于北半球的中纬度,夏季太阳高度角大光照时间长,各个地区的太阳辐射能夏半年多于冬半年。 2、就空间而言,我国太阳辐射能分布大体上东南向西北递增。 大体上的界线,从大兴安岭向西南,,经北京西侧,兰州,昆明再折向北到西藏南部,这一条线以西、以北广大地区,太阳辐射特别丰富。 二、影响太阳辐射差异的原因分析 影响太阳辐射的因素主要包括纬度高低、地形地势、气候气象条件等方面。我们结合中国太阳年辐射总量的分布图来仔细分析贫乏区、可利用区、较丰富区、丰富区的差异的原因。整体上来看,在我国西部地区由南向北,由青藏高原丰富区向北到新疆中北部地区较丰富区过渡,体现了由于太阳高度的大小关系,太阳年辐射总量由低纬向较高纬度递减规律;东部地区从沿海地区向内陆地区,太阳年辐射总量由可利用区向较丰富区和丰富区过渡,这种和经度地带类似的变化过程,由于距海远近降水多少或者说气候气象条件影响的结果;而几乎在同一纬度地带的青藏高原由于地势较高,空气稀薄形成了丰富区,四川盆地由于盆地地形影响,形成了贫乏区。 具体到太阳年辐射总量高值和低值中心来看,高值和低值中心都处在北纬22º-35º之间,高值的中心在青藏高原,低值的中心在四川盆地。青藏高原能成

太阳直接辐射计算

太阳直接辐射计算导则 1范围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用范围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698 —2017 太阳能资源测量直接辐射 GB/T 34325 —2017 太阳能资源数据准确性评判方法 3术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射direct radiati on 从日面及其周围一小立体角内发出的辐射。 [GB/T 31163 —2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5。的仪器测定的,而日面本身的视场角仅约为0.5 °,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct no rmal radiati on 与太阳光线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳岀射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163 —2014,定义5.12] 3.3 水平面直接辐射direct horizo ntal radiation 水平面上接收到的直接辐射。 [GB/T 31163 —2014,定义5.13] 3.4 散射辐射diffuse radiati on ;scatteri ng radiati on

太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163 —2014,定义5.14] 3.5 [ 水平面] 总辐射global [horizontal] radiation 水平面从上方2 n立体角(半球)范围内接收到的直接辐射和散射辐射之和。注:改写GB/T 31163 —2014,定义 5.15 。 3.6 地外太阳辐射extraterrestrial solar radiation 地球大气层外的太阳辐射。 [GB/T 31163 —2014,定义5.3] 3.7 辐照度irradiance 物体在单位时间、单位面积上接收到的辐射能。注:单位为瓦每平方米(W/m2)。 [GB/T 31163 —2014,定义6.3] 3.8 辐照量irradiation 曝辐量radiance exposure 在给定时间段内辐照度的积分总量。注1:单位为兆焦每平方米(MJ/m2)或千瓦时每平方米(kWh/m2)。 注2: 1 kWh/m2=3.6 MJ/m 2; 1MJ/ni ?0.28 kWh/m2。注3:改写GB/T 31163—2014,定义 6.5 。 3.9 法向直接辐照度direct normal irradiance 与太阳光线垂直的平面上单位时间、单位面积上接收到的直接辐射能。注:单位为瓦每平方米(W/m2)。 3.10 法向直接辐照量direct normal irradiation 在给定时间段内法向直接辐照度的积分总量。 注:单位为兆焦每平方米(Mj/m)或千瓦时每平方米(kwh/m)。 3.11 水平面直接辐照度direct horizontal irradiance 水平面上单位时间、单位面积上接收到的直接辐射能。 注:单位为瓦每平方米(W/m2)。 3.12 水平面直接辐照量direct horizontal irradiation 在给定时间段内水平面直接辐照度的积分总量。

(完整版)影响太阳辐射强弱的因素分析分析

影响太阳辐射强弱的因素分析 JGSLJZ 【知识归纳】 太阳辐射强度是指到达地面的太阳辐射的强弱。大气对太阳辐射的吸收、反射、散射作用,大大削弱了到达地面的太阳辐射。但尚有诸多因素影响太阳辐射的强弱,使到达不同地区的太阳辐射的多少不同。影响太阳辐射强弱的因素主要有以下四个因素。 1.纬度位置 纬度低则正午太阳高度角大,太阳辐射经过大气的路程短,被大气削弱得少,到达地面的太阳辐射就多;反之,则少。这是太阳辐射从低纬向高纬递减的主要原因。 2.天气状况 晴朗的天气,由于云层少且薄,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射就强;阴雨的天气,由于云层厚且多,大气对太阳辐射的削弱作用强,到达地面的太阳辐射就弱。如赤道地区被赤道低压带控制,多对流雨,而副热带地区被副高控制,多晴朗天气,所以赤道地区的太阳辐射要弱于副热带地区。 3.海拔高低 海拔高,空气稀薄,大气对太阳辐射的削弱作用弱,到达地面的太阳辐射就强;反之,则弱。如青藏高原成为我国太阳辐射最强的地区,主要就是这个原因。如青藏高原成为我国太阳辐射最强的地区,主要就是这个原因。 4.日照长短 日照时间长,获得太阳辐射强;日照时间短,获得太阳辐射弱。如我国夏季南北普遍高温,温差不大,是因为纬度越高的地区,白昼时间长,弥补了因太阳高度角低损失的能量。 【典例精析】 1.读“太阳辐射光谱示意图”,下列因素中与A区(大气上界太阳辐射与地球表面太阳辐射差值)多少无关的是() A.云层的厚薄B.大气污染程度C.大气密度D.气温 【解析】云层的厚薄、大气污染程度以及大气密度都会影响大气透明度进而影响到达地面的太阳辐射的多少。 【答案】D 2.辐射差额是指在某一段时间内物体能量收支的差值。读“不同纬度辐射差额的变化示意图”,若只考虑纬度因素,则a、b、c三地纬度由高到低的排列顺序为()

太阳辐射的特性

太阳辐射的特性 昼夜是由于地球自转而产生的,而季节是由于地球的自转轴与地球围绕太阳公转的轨道的转轴呈23°27′的夹角而产生的。地球每天绕着通过它本身南极和北极的“地轴” 自西向东自转一周。每转一周为一昼夜,所以地球每小时自转15°。地球除自转外还循偏心率很小的椭圆轨道每年绕太阳运行一周。地球自转轴与公转轨道面的法线始终成23.5°。地球公转时自转轴的方向不变,总是指向地球的北极。因此地球处于运行轨道的不同位置时,太阳光投射到地球上的方向也就不同,于是形成了地球上的四季变化(见下图)。每天中午时分,太阳的高度总是最高。在热带低纬度地区(即在赤道南北纬度23°27′之间的地区),一年中太阳有两次垂直入射,在较高纬度地区,太阳总是靠近赤道方向。在北极和南极地区(在南北半球大于90°~23°27′),冬季太阳低于地平线的时间长,而夏季则高于地平线的时间 长。 由于地球以椭圆形轨道绕太阳运行,因此太阳与地球之间的距离不是一个常数,而且一年里每天的日地距离也不一样。众所周知,某一点的辐射强度与距辐射源的距离的平方成反比,这意味着地球大气上方的太阳辐射强度会随日地间距离不同而异。然而,由于日地间距离太大(平均距离为1.5 x 108km),所以地球大气层外的太阳辐射强度几乎是一个常数。因此人们就采用所谓“太阳常数”来描述地球大气层上方的太阳辐射强度。它是指平均日地距离时,在地球大气层上界垂直于太阳辐射的单位表面积上所接受的太阳辐射能。近年来通过各种先进手段测得的太阳常数的标准值为1353w/m2。一年中由于日地距离的变化所引起太阳辐射强度的变化不超过上3.4%。 2.2 到达地面的太阳辐射 太阳照射到地平面上的辐射或称“日射”由两部分组成——直达日射和漫射日射。太阳辐射穿过大气层而到达地面时,由于大气中空气分子、水蒸气和尘埃等对太阳辐射的吸收、反射和散射,不仅使辐射强度减弱,还会改变辐射的方向和辐射的光谱分布。因此实际到达地面的太阳辐射通常是由直射和漫射两部分组成。直射是指直接来自太阳其辐射方向不发生改变的辐射;漫射则是被大气反射和散射后方向发生了改变的太阳辐射,它由三部分组成:太阳周围的散射(太阳表面周围的天空亮光),地平圈散射(地平圈周围的天空亮光或暗光),及其他的天空散射辐射。另外,非水平面也接收来自地面的反射辐射。直达日射、漫射日射和反射日射的总和即为总日射或环球日射。可以依靠透镜或反射器来聚焦直达日射。如果聚光率很高,就可获得高能量密度,但却损耗了漫射日射。如果聚光率较低,也可以对部分太阳周围的漫射日射进行聚光。漫射日射的变化范围很大,当天空晴朗无云时,漫射日射为总日射的10%。但当天空乌云密布见不到太阳时,总日射则等于漫射日射。因此聚式收集器采集的能量通常要比非聚式收集器采集的能量少得多。反射日射一般都很弱,但当地面有冰雪覆盖时,垂直面上的反射日射可达总日射的40%。 到达地面的太阳辐射主要受大气层厚度的影响。大气层越厚,对太阳辐射的吸收、反射和散射就越严重,到达地面的太阳辐射就越少。此外大气的状况和大气的质量对到达地面的太阳辐射也有影响。显然太阳辐射穿过大气层的路径长短与太阳辐射的方向有关。参看下图,A为地球海平面上的一点,当太阳在天顶位置S时,太阳辐射穿过大气层到达A点的路径为OA。城阳位于S点时,其穿过大气层到达A 点的路径则为0A。 O,A与 OA之比就称之为“大气质量”。它表示太阳辐射穿过地球大气的路径与太阳在天顶方向垂直入射时的路径之比,通常以符号m表示,并设定标准大气压和O℃时海平面上太阳垂

太阳辐射

太阳辐射 一、太阳辐射光谱和太阳常数 太阳辐射光谱 太阳辐射中辐射能按波长的分布,称为太阳辐射光谱,见图2.4。从图中可看出,大气上界太阳光谱能量分布曲线,与用普朗克黑体辐射公式计算出的6000K的黑体光谱能量分布曲线非常相似。因此可以把太阳辐射看作黑体辐射。太阳是一个炽热的气体球,其表面温度约为6000K,内部温度更高。根据维恩位移定律可以计算出太阳辐射峰值的波长λmax为0.475μm,这个波长在可见光的青光部分。太阳辐射主要集中在可见光部分(0.4~0.76μm),波长大于可见光的红外线(>0.76μm)和小于可见光的紫外线(<0.4μm)的部分少。在全部辐射能中,波长在0.15~4μm之间的占99%以上,且主要分布在可见光区和红外区,前者占太阳辐射总能量的约50%,后者占约43%,紫外区的太阳辐射能很少,只占总量的约7%。 太阳常数 太阳辐射通过星际空间到达地球表面。当日地距离为平均值,在被照亮的半个地球的大气上界,垂直于太阳光线,每秒每平方米的面积上,获得的太阳辐射能量称为太阳常数,用Rsc (Solar constant)

表示,单位为(W/m2)。太阳常数是一个非常重要的常数,一切有关研究太阳辐射的问题,都要以它为参数。关于太阳常数的研究已有很长历史了,早在20世纪初,人们就已经通过各种观测手段估计它的取值,认为大约应在1350~1400W/m2之间。太阳常数虽然经多年观测,由于观测设备、技术以及理论校正方法的不同,其数值常不一致。据研究,太阳常数的变化具有周期性,这可能与太阳黑子的活动周期有关。在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。近年来,气候学家指出,只要地球的长期气候发生1%的变化,就会引起太阳常数的变化。目前已有许多无人或有人操作的空间实验对太阳辐射进行直接观测,并在宇宙空间实验站设计了名为“地球辐射平衡”的课题,其中一个重要项目就是对太阳辐射进行长期监视。这些观测数据将对进一步了解大气物理过程及全球气候变迁的原因有很大帮助。1981年世界气象组织推荐的太阳常数值Rsc=1367±7(W/m2),通常采用1367W/m2。 二、太阳辐射在大气中的衰减 太阳辐射通过大气层后到达地球表面。由于大气对太阳辐射有一定的吸收、散射和反射作用,使投射到大气上界的辐射不能完全到达地表面。图2.4最下面的实曲线表示太阳辐射通过大气层被吸收、散射、反射后到达地表的太阳辐射光谱。

我国太阳辐射分布详解.

我国太阳辐射分布详解 发布时间: 2009-05-31 15:49:03 文章来源:光电新闻网 导读:太阳能利用潜力巨大太阳能资源按日照时间和太阳能辐射量的大小,大致上可分为五类。甘肃省大部分地区属于一、二类地区,太阳辐射比较丰富,平均年日照时间在2300—2700小时。 太阳能辐射资源 我国西部太阳能的年总辐射约为140-200 Kcal/cm2·year,高于东部的80- 160Kcal/cm2·year;我国东部、北部地区的年总辐射约为120-160 Kcal/cm2·year,高于南部地区的80-120 Kcal/cm2·year;我国三分之二以上的地区的年日照时数达2000小时,年总辐射大于140 Kcal/cm2?year,应用太阳能空调的前景很好。 特点: 1。太阳能资源最好的地区和最差的地区,都分布在北纬22°~35°区域内。尤其是青藏高原,是我国太阳能资源最理想的地区,年辐射量达180~200Kcal/cm2·year。而四川盆地由于处在南北两股暖冷气流交汇处,云雨天气多,形成太阳能资源的低值中心。 2。在北纬30°~40°之间,太阳能资源随纬度增加而增加。 3。北纬40°以上,太阳能资源自东向西逐渐增加。 4。新疆地区太阳能资源分布由东南向西北逐渐减少。 5。台湾地区太阳能资源由东北向西南逐渐增加,海南岛太阳能资源和台湾基本相当。 太阳能利用潜力巨大太阳能资源按日照时间和太阳能辐射量的大小,大致上可分为五类。甘肃省大部分地区属于一、二类地区,太阳辐射比较丰富,平均年日照时间在2300—2700小时。有专家测试,在相同水量和温度的前提下,兰州市夏季每天每平方米所接受的太阳热量相当于4千瓦时电转化的热量,冬季则大约相当于2千瓦时到3千瓦时电。

太阳直接辐射计算

太阳直接辐射计算导则 1 围 本标准给出了太阳直接辐射计算的基本原则,不同条件下的计算方法和适用围,以及对计算结果的检验要求。 本标准适用于水平面直接辐射和法向直接辐射的计算。 2 规性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB/T 33698—2017 太阳能资源测量直接辐射 GB/T 34325—2017 太阳能资源数据准确性评判方法 3 术语和定义 下列术语和定义适用于本文件。 3.1 直接辐射 direct radiation 从日面及其周围一小立体角发出的辐射。 [GB/T 31163—2014,定义5.11] 注:一般来说,直接辐射是由视场角约为5°的仪器测定的,而日面本身的视场角仅约为0.5°,因此,它包括日面周围的部分散射辐射,即环日辐射。 3.2 法向直接辐射direct normal radiation 与太线垂直的平面上接收到的直接辐射。 注:从数值上而言,直接辐射与法向直接辐射是相同的;两者的区别在于,直接辐射是从太阳出射的角度而定义,法向直接辐射则是从地表入射的角度而定义。 [GB/T 31163—2014,定义5.12] 3.3 水平面直接辐射direct horizontal radiation 水平面上接收到的直接辐射。 [GB/T 31163—2014,定义5.13] 3.4 散射辐射diffuse radiation;scattering radiation 太阳辐射被空气分子、云和空气中的各种微粒分散成无方向性的、但不改变其单色组成的辐射。 [GB/T 31163—2014,定义5.14] 3.5 [水平面]总辐射global [horizontal] radiation

全国各地太阳能总辐射量与年平均日照当量

全国各地太阳能总辐射量与年平均日照当量 地区类别地区 太阳能年辐射量 年日照时数 标准光照下 年平均日照 时间(时)MJ/m2·年kWh/m2·年 一宁夏北部、甘肃北部、 新疆南部、青海西部、 西藏西部 6680-8400 1855-2333 3200-3300 5.08-6.3 二河北西北部、山西北 部、内蒙古南部、宁 夏南部、甘肃中部、 青海东部、西藏东南 部、新疆南部 5852-6680 1625-1855 3000-3200 4.45-5.08 三山东、河南、河北 东南部、山西南部、 新疆北部、吉林、辽 宁、云南、陕西北部、 甘肃东南部、广东南 部、福建南部、江苏 北部、安徽北部、台 湾西南部 5016-5852 1393-1625 2200-3000 3.8-4.45 四湖南、湖北、广西、 江西、浙江、福建北 部、广东北部、陕西 南部、江苏南部、安 徽南部、黑龙江、台 湾东北部 4190-5016 1163-1393 1400-2200 3.1-3.8 五四川、贵州3344-4190 928-1163 1000-1400 2.5-3.1

附录B 江苏省部分地区的?、δ、ω、αs、γs值 城市名地理纬度 ?(o) 太阳赤纬 δ(o) 太阳时角 ω(o) 太阳高度 角 αs(o) 太阳方位 角 γs(o) 南京市南京32.04 -23.43 0 34.53 0 江宁31.95 -23.43 0 34.62 0 六合32.36 -23.43 0 34.21 0 江浦32.07 -23.43 0 34.5 0 溧水31.65 -23.43 0 34.92 0 高淳31.32 -23.43 0 35.25 0 苏州市 苏州31.32 -23.43 0 35.25 0 张家港31.86 -23.43 0 34.71 0 常熟31.64 -23.43 0 34.93 0 太仓31.45 -23.43 0 35.12 0 昆山31.39 -23.43 0 35.18 0 吴县31.32 -23.43 0 35.25 0 吴江31.16 -23.43 0 35.41 0 无锡市无锡31.59 -23.43 0 34.98 0 江阴31.91 -23.43 0 34.66 0 宜兴31.36 -23.43 0 35.21 0 常州市常州31.79 -23.43 0 34.78 0 武进31.78 -23.43 0 34.79 0 金坛31.74 -23.43 0 34.83 0 溧阳31.43 -23.43 0 35.14 0 镇江市镇江32.2 -23.43 0 34.37 0 丹徒32.2 -23.43 0 34.37 0 扬中32.24 -23.43 0 34.33 0 丹阳32 -23.43 0 34.57 0 句容31.95 -23.43 0 34.62 0 扬州市扬州32.39 -23.43 0 34.18 0 江都32.43 -23.43 0 34.14 0 刑江32.39 -23.43 0 34.18 0 仪征32.27 -23.43 0 34.3 0 高邮32.78 -23.43 0 33.79 0 宝应33.23 -23.43 0 33.34 0 泰州市泰州32.49 -23.43 0 34.08 0 晋江32.03 -23.43 0 34.54 0 泰兴32.16 -23.43 0 34.41 0 姜堰32.51 -23.43 0 34.06 0 兴32.93 -23.43 0 33.64 0

太阳能辐射计算公式

一、中国太阳能直接辐射的计算方法 ()1bS a Q S +='(1) () 211111S c S b a Q S ++='(2)⊙ ()n c S b a Q S 2122++='(3) S ′为直接辐射平均月(年)总量;Q 为计算直接辐射的起始数据,可采用天文总辐射S 0,理想大气总辐射,Q i ,晴天总辐射Q 0来表示。a ,b ,a 1,b 1,c 1,a 2,b 2,c 2为系数。n 为云量。S 1为日照百分率。 相关系数的计算公式: ()() ()() ()()∑∑∑∑∑∑∑∑∑=========?? ? ??-?? ? ??--= ----= n i n i i i n i n i i i n i n i n i i i i i n i i i n i i i y y n x x n y x y x n y y x x y y x x r 12 12 12 121 1 1 1 2 21 考虑到大气透明度,则有 ()()n c S b a P P P Q n c S b a P P P Q S i m i 2122cos cos sin sin 1 2122++=++='+海 年海 年δ ?δ?(4) 其中m 为大气质量: δ ?δ?cos cos sin sin 1 sinh 1+== Θm 其中,φ为测站的纬度;δ为赤纬角,取每月15日的赤纬值作为月平均值;时角ω统一取中午12时,则ω=0,cosω=1;年P 为测站的年平均气压,P 海为海平面气压,P 海=1013.25mp ,海年P P 为对大气质量进行的高度订正。 对于a 2的计算: 当测站的海拔H≥3000m 时,a 2=0.456; 当H≤3000m 是,若年平均绝对湿度E ≤10.0mb ,则 F a ?-=00284.0688.02 否则F a ?-=01826.07023.02,其中F 为测站沙尘暴日数与浮尘日数之和。 对于(4)式中,系数之间的关系式为 { 011.1039.02222=+-=+b a c a

太阳辐射.

太阳辐射.

太阳辐射 一、太阳辐射光谱和太阳常数 太阳辐射光谱 太阳辐射中辐射能按波长的分布,称为太阳辐射光谱,见图2.4。从图中可看出,大气上界太阳光谱能量分布曲线,与用普朗克黑体辐射公式计算出的6000K的黑体光谱能量分布曲线非常相似。因此可以把太阳辐射看作黑体辐射。太阳是一个炽热的气体球,其表面温度约为6000K,内部温度更高。根据维恩位移定律可以计算出太阳辐射峰值的波长λmax为0.475μm,这个波长在可见光的青光部分。太阳辐射主要集中在可见光部分(0.4~0.76μm),波长大于可见光的红外线(>0.76μm)和小于可见光的紫外线(<0.4μm)的部分少。在全部辐射能中,波长在0.15~4μm之间的占99%以上,且主要分布在可见光区和红外区,前者占太阳辐射总能量的约50%,后者占约43%,紫外区的太阳辐射能很少,只占总量的约7%。

太阳常数 太阳辐射通过星际空间到达地球表面。当日地距离为平均值,在被照亮的半个地球的大气上界,垂直于太阳光线,每秒每平方米的面积上,获得的太阳辐射能量称为太阳常数,用Rsc (Solar constant)表示,单位为(W/m2)。太阳常数是一个非常重要的常数,一切有关研究太阳辐射的问题,都要以它为参数。关于太阳常数的研究已有很长历史了,早在20世纪初,人们就已经通过各种观测手段估计它的取值,认为大约应在1350~1400W/m2之间。太阳常数虽然经多年观测,由于观测设备、技术以及理论校正方法的不同,其数值常不一致。据研究,太阳常数的变化具有周期性,这可能与太阳黑子的活动周期有关。在太阳黑子最多的年份,紫外线部分某些波长的辐射强度可为太阳黑子最少年份的20倍。近年来,气候学家指出,只要地球的长期气候发生1%的变化,就会引起太阳常数的变化。目前已有许多无人或有人操作的空间实验对太阳辐射进行直接观测,并在宇宙空间实验站设计

(整理)太阳辐射的基本定律

二.太阳能光伏电源系统的原理及组成 太阳能电池发电系统是利用以光生伏打效应原理制成的太阳能电池将太阳辐射能直接转换成电能的发电系统。它由太阳能电池方阵、控制器、蓄电池组、直流/交流逆变器等部分组成,其系统组成如图1-1所示。 图1-1 太阳能电池发电系统示意图 1.太阳能电池方阵: 太阳能电池单体是光电转换的最小单元,尺寸一般为4cm2到100cm2不等。太阳能电池单体的工作电压约为0.5V, 工作电流约为20-25mA/cm2, 一般不能单独作为电源使用。将太阳能电池单体进行串并联封装后,就成为太阳能电池组件,其功率一般为

几瓦至几十瓦,是可以单独作为电源使用的最小单元。太阳能电池组件再经过串并联组合安装在支架上,就构成了太阳能电池方阵,可以满足负载所要求的输出功率(见图1-2)。 (1)硅太阳能电池单体 常用的太阳能电池主要是硅太阳能电池。晶体硅太阳能电池由一个晶体硅片组成,在晶体硅片的上表面紧密排列着金属栅线,下表面是金属层。硅片本身是P型硅,表面扩散层是N区,在这两个区的连接处就是所谓的PN结。PN结形成一个电场。太阳能电池的顶部被一层抗反射膜所覆盖,以便减少太阳能的反射损失。 太阳能电池的工作原理如下: 光是由光子组成,而光子是包含有一定能量的微粒,能量的大小由光的波长 决定,光被晶体硅吸收后,在PN结中产生一对对正负电荷,由于在PN结 区域的正负电荷被分离,因而可以产生一个外电流场,电流从晶体硅片电池

的底端经过负载流至电池的顶端。这就是“光生伏打效应”。 图1-2 太阳能电池单体、组件和方阵 将一个负载连接在太阳能电池的上下两表面间时,将有电流流过该负载,于是太阳能电池就产生了电流;太阳能电池吸收的光子越多,产生的电流也就越大。光子的能量由波长决定,低于基能能量的光子不能产生自由电子,一个高于基能能量的光子将仅产生一个自由电子,多余的能量将使电池发热,伴随电能损失的影响将使太阳能电池的效率下降。 (2)硅太阳能电池种类 目前世界上有3 种已经商品化的硅太阳单体组件 方阵

一种基于统计的逐时太阳辐射数据计算方法

一种基于统计的逐时太阳辐射数据计算方法 摘要:逐时气象参数是建筑物全年能耗计算机模拟的必要输入参数之一,其中的太阳辐射数据通常难以得到。本文提出了一种基于统计的逐时太阳辐射数据计算方法,在计算出大气层外水平面逐时太阳辐射数据的基础上,利用典型气象年逐时气象参数中的太阳辐射数据,拟合出水平面逐时太阳总辐射量与大气层外水平面逐时太阳总辐射量之间的关系,以及法线方向太阳直射辐射量与水平面太阳总辐射量之间的关系,再结合实际气象年的相关气象数据,从而可以计算得到实际气象年的逐时太阳辐射数据。关键词:气象参数太阳辐射统计 0 前言当前,采用计算机模拟的方法对建筑物的全年能耗进行分析越来越普遍,这种方法既可以在设计阶段,对新建建筑的能耗进行预测,从而指导建筑物能源系统的设计,使之符合国家相关的节能标准。同时,也可以用于已建建筑,对建筑物的能耗进行评价和预测,并为对其进行节能改造的可能性及其效果进行预估。目前,常用于建筑物全年能耗模拟的计算机软件有DOE-2(包括VisualDOE)、EnergyPlus、

eQUEST和DeST等。由于空调系统在整个建筑物的全年能耗中占有相当大的比例,因此,在对建筑物的全年能耗进行计算机模拟的时候,不可避免地要计算空调系统的全年能耗,而空调系统的能耗,与当地的气象条件,特别是温度、湿度和太阳辐射强度紧密相关。通常,在设计阶段进行建筑物能耗预测时,一般采用典型气象年数据;而在对已建建筑进行全年能耗分析的时候,由于已经可以取得建筑物运行的实际能耗数据,通常需要根据实际能耗数据和实际气象年逐时数据对计算机模型进行校准(calibration),以保证模型具有足够的精度,然后再采用标准气象年数据进行计算,并根据计算结果进行评价和比较。这种建模→模型校准→计算及结果评价的方法也是IPMVP 2002 (International Performance and Measurement Verification Protocol)中所推荐的方法。1 基本计算方法根据DOE-2程序的要求,计算空调负荷用的逐时气象参数有湿球温度、干球温度、大气压力、云量、雪、雨、风向、空气绝对含湿量、空气密度、空气焓值、水平面太阳总辐射量、法线方向太阳直射辐射量、云的类型与风速等14项。除了与太阳辐射有关的两项参数外,都可以由当地气象台站公布的逐时气象参数直接取得,或者通过一定的计算和量化取得。与此不同的是,有关太阳辐射的两项参数的取得则比较困难。由于我国的气象台站均不公布逐时太阳辐射数据,因此有些学者采用半正弦模型进行插值,有些采用混合

太阳辐射计算

南京信息工程大学 实习报告 实习名称 某地理论日太阳辐射计算 实习科目 气象气候学 指导老师 陈华 日期 12.15 姓名 王一舟 学院 遥感 专业 地理信息系统 班级 07地信(1) 学号 20071316004 一、 实习名称:某地理论日太阳辐射量计算 二、 实习内容 1. (1)计算(135°E,35°N )的全年日太阳辐射(计算积日,1 月1日记为1,1 月2 日记为2,依次累加,每隔30天计算一日的太阳辐射) (2)计算海口(20°N ),南京(32.13°),北京(40°)在6月22日的日理论太阳辐射。(6月22日换算积日为173) 日太阳辐射计算公式 ) sin cos cos sin sin (2)cos cos cos sin (sin 2002 200 ωδ?δ?ωρπω ωδ?δ?ρπωω+=+=?+-I T Q d I T Q s s 。 为当地当日的太阳赤纬地纬度,为当为日地相对距离,,本文亦采用该值,用在近代气候计算中多采为太阳常数, 为当日日落时角,,为日理论太阳辐射量,其中,δ?ρωπ 00001370I I 4.4852T Q =s 2. 计算工具 :MA TLAB 3. 计算过程(程序) %计算某地理论日太阳辐射总量,要求输入当地纬度、正午太阳高度、积日数 function [d,chiwei,shijiao,s]=sun(fai,h,dn) %fai 为当地纬度,h 为当地 某日正午太阳高度,dn 为积日数(1月1日为1,1月2日记为2,依次累加) d=1+0.033*cos(2*pi*dn/365) ; %当地某日实际日地距离 chiwei=fai*pi/180-acos(sin(pi*h/180)) ; %某日太阳赤纬 shijiao=acos(-tan(fai*pi/180)*tan(chiwei)) ; %当地某日日落时角

太阳总辐射表原理和使用方法

太阳总辐射表原理和使用方法 太阳能总辐射表是测量太阳能水平辐射量的方法。太阳总辐射表为热电效应原理,感应元件采用绕线电镀式多接点热电堆,其表面涂有高吸收率的黑色涂层。热接点在感应面上,而冷结点则位于机体内,冷热接点产生温差电势。在线性范围内,输出信号与太阳辐照度成正比。为减小温度的影响则配有温度补偿线路,为了防止环境对其性能的影响,则用两层石英玻璃罩,罩是经过精密的光学冷加工磨制而成的。 该表用来测量光谱范围为0.3-3μm 的太阳总辐射,也可用来测量入射到斜面上的太阳辐射,如感应面向下可测量反射辐射,如加遮光环可测量散射辐射。因此,它可广泛应用于太阳能利用、气象、农业、建筑材料老化及大气污染等部门做太阳辐射能量的测量。 该表应安装在四周空旷,感应面以上没有任何障碍物的地方。然后将辐射表电缆插头正对北方,调整好水平位置,将其牢牢固定,再将总辐射表输出电缆与记录器相连接,即可观测。最好将电缆牢固地固定在安装架上,以减少断裂或在有风天发生间歇中断现象。下图为RHD-29太阳总辐射表的技术参数。 图2-8 太阳能总辐射表 表2-7 RHD-29太阳总辐射表的技术参数 注意事项: 1.玻璃罩应保持清洁,要经常用软布或毛皮擦试。

2.玻璃罩不可拆卸或松动,以免影响测量精度。 3.应定期更换干燥剂,以防罩内结水。 二、利用太阳能光测系统获取水平面太阳辐射量测量 太阳辐射观测:总辐射;直接辐射;散射辐射(总表+装置);净全辐射;反射辐射;分光谱辐射(5块);辐射表专用电缆;辐射观测台架;太阳辐射电流表;辐射数据采集系统(含软件)组成。实现对太阳辐射的能量动态检测以及太阳光谱的分布,各光谱的能量的动态检测,认识和了解太阳能各要素相互关系。 图2-9 太阳能观测系统

太阳辐射和太阳能资源

太阳辐射和太阳能资源 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

第1章太阳辐射能和我国太阳能资源太阳辐射特性 太阳电磁辐射 太阳是一颗中等恒星,为太阳系中唯一的强辐射源。它不断地向空间发射出功率为×1023kW的电磁辐射,而地球所接受到的功率仅为它的22亿分之一,即×1014kW,经过大气层的衰减到达地球表面的约占47%,即×1013kW,而地球表面的陆地面积仅占21%,所以最终到达陆地上的太阳辐射功率约为×1013kW,大约为地球大气层上界太阳辐射功率的10%。尽管如此,到达陆地的这些功率已是目前全球发电功率的3800倍。 太阳的电磁辐射都具有波动性,以电磁波的形式传播,它们在真空中传播的速度都具有同样的数值,称为真空中的光速,其值为c=×108m/s。光在真空中的波长λ和频率f有如下关系: λ=c/f(1-1) 太阳的电磁辐射还具有量子性,以光量子的形式存在,即可以把每个波长的电磁辐射看成为一个光子,它具有的能量为 E=f=c/λ(1-2) 式中,=×10-34J·s是普朗克(Planck)常数。光子的能量还常用电子伏特(eV)来表示,1eV=×10-19J。 太阳的电磁辐射包含了从波长小于10-14m的γ射线到Χ射线、紫外线、可见光、红外线、微波、再到波长大于104m的长波无线电波,其波长λ(m)与能量E(eV)之间的关系如图1-1所示。

图1-1太阳各种电磁辐射的波长与能量 太阳除了辐射电磁波外,还辐射各种粒子,包括低能粒子流(太阳风)和太阳宇宙线(高能电子、质子和重核离子等)。太阳光伏和光热效应的地面利用,主要是涉及太阳的电磁辐射,只有在航天技术和地面宇宙线观测中,才还会考虑太阳粒子辐射的影响。因此,除特别说明外,这里所说的太阳辐射是指太阳电磁辐射。 太阳辐射能谱 太阳的电磁辐射能谱主要集中在波长为~4μm范围。以光谱辐照度为纵坐标,波长为横坐标所绘制的太阳辐射能谱如图1-2所示,大气质量为AM0时的太阳辐射能谱是美国国家航空航天局(NASA)和美国材料与试验学会(ASTM)1977年在地球大气层上界测定的,同时示出了大气质量为和假定太阳是6000K 黑体时太阳的辐射能谱。其中光谱辐照度单位为kW/(m2·μm),是表示以λ为中心波长的单位窄带宽内的太阳辐照度。 图1-2地球大气层上界太阳辐射能谱图 图中波长在~μm范围的辐射为可见光,只占其中很窄的波段,波长范围~μm为紫外光,波长范围~1000μm为红外光。在可见光范围内,不同波长的辐射有不同的颜色,~μm波段是紫光,~μm波段是蓝光,~μm波段是绿光,~μm波段是黄光,~μm波段是橙光,~μm波段是红光,光谱辐照度最大值所对应的波长为μm,属于蓝光。紫外光还可以分近紫外(~μm)、中紫外(~μm)和远紫外(~μm)。红外光还可以分近红外(~3μm)、中红外(3~6μm)、远红外(6~15μm)和超远红外(15~1000μm)。

相关主题
文本预览
相关文档 最新文档