当前位置:文档之家› 热风炉设计说明书(推荐文档)

热风炉设计说明书(推荐文档)

热风炉设计说明书(推荐文档)
热风炉设计说明书(推荐文档)

目录

第一章热风炉热工计算 (2)

1.1热风炉燃烧计算 (2)

1.2热风炉热平衡计算 (7)

1.3热风炉设计参数确定 (11)

第二章热风炉结构设计 (12)

2.1设计原则 (12)

2.2 工程设计内容及技术特点 (12)

2.2.1设计内容 (12)

2.2.2 技术特点 (13)

2.3结构性能参数确定 (13)

2.4蓄热室格子砖选择 (14)

2.5热风炉管道系统及烟囱 (16)

2.5.1顶燃式热风炉煤气主管包括: (16)

2.5.2顶燃式热风炉空气主管包括: (17)

2.5.3顶燃式热风炉烟气主管包括: (18)

2.5.4顶燃式热风炉冷风主管道包括: (18)

2.5.5顶燃式热风炉热风主管道包括: (19)

2.6 热风炉附属设备和设施 (19)

2.7热风炉基础设计 (22)

2.7.1 热风炉炉壳 (22)

2.7.2 热风炉区框架及平台(包括吊车梁) (23)

第三章热风炉用耐火材料的选择 (23)

3.1耐火材料的定义与性能 (23)

3.2热风炉耐火材料的选择 (23)

参考文献 (26)

第一章热风炉热工计算

1.1热风炉燃烧计算

燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤

气化验成分见表1.1。

表1.1 煤气成分表

项目 CH4 C2H4 H2O H2 CO CO2 N2 O2 ∑

含量% 1.7 0.4 4.2 12.7 30.3 2.3 48.2 0.2 100.00

热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干

法除尘。发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风

=1100℃,t冷风=120℃,η热=90%。

热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期

T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度

tg2=350℃,环境温度te=25℃。

煤气低发热量计算

查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分

热效应如下:

CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。则

煤气低发热量:

Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ

空气需要量和燃烧生成物量计算

(1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。燃烧计算见表2.13。

(2)燃烧1m3发生炉煤气的理论Lo为Lo=25.9/21=1.23 m3。

(3)实际空气需要量La=1.1×1.23=1.353 m3。

(4)燃烧1m3发生炉煤气的实际生成物量V产=2.1416 m3。

(5)助燃空气显热Q空=C空×t空×La

=1.319×300×1.353

=535.38 KJ/ m3。

式中C空-助燃空气t空时的平均热容,t空-助燃空气温度。

(6)煤气显热:Q煤=C煤×t煤×1=1.350×300×1=405 KJ/ m3。

(7)生成物的热量Q产=(Q空+Q煤+Q DW)/V产

=(535.38+405+6046.14)/2.1416

=3262.29 KJ/ m3。

表1.2煤气计算

煤气组成100 m3

干煤

气的

百分

含量

反应式需

生成物的体积/m3

O2C

O2

H

2O

N2合计

/m3

H2O 4.2 4.2 4.2 CH4 1.7 CH4+2O2→CO2

+2H2O

3.4 1.7 3.4 5.1

C2H40.4 C2H4+3O2→2CO2

+2H2O

1.2 0.8 0.8 1.6

O20.2 -0.

2

0 CO2 2.3 CO2→CO2 2.3 2.3

CO 30.3 CO+1/2O2→CO215.

15 30.

3

30.3

H212.7 H2+1/2O2→H2O 6.3

5 12.

7

12.7

N248.2 N2→N248.2 48.2 当b=1.0时,空气带入的25.

9

97.43 97.43

当b空=1.10时,过剩空气带入的2.5

9

2.5

9

9.74 12.33

生成物总量/ m3 2.5

9 35.

1

21.

1

155.37 152.0

3

物成分/ m% 1.216.9.872.54 100.0

1 4 5 0

4.理论燃烧温度计算

t理=(Q空+Q煤+QDW-Q分)/V产C产

Q分CO2=12600×V`CO2×Vn×f分CO2×10-4

Q分H2O=10800×V`H2O×Vn×f分H2O×10-4

Q分=Q分CO2 +Q分H2O

t理-理论燃烧温度,C产燃烧产物在t理时的热量。由于C产取决于t理。须利用已知的Q产用迭代法和内插法求得t理。

其过程如下:

猜理论燃烧温度在1900℃和2000℃之间,查表得C产(1900℃) =1.6807kJ/( m3. ℃) ,f分CO2(1900℃)=3.6, f分H2O(1900℃)=1.4;C产(2000℃) = 1.6906kJ/( m3. ℃), f分CO2(22000℃000℃) =6,f分H2O (2000℃)=2;

则取C产=1.6817 kJ/( m3. ℃), f分CO2=4.0, f分H2O=1.5,再代入上式,则有

Q分=12600×V`CO2×Vn×f分CO2×10-4+10800×V`H2O×Vn ×f分H2O×10-4

=122600×16.4×2.1416×4×10-4+10800×9.85×2.1416×1.5×10-4

=121.5

t理=(Q空+Q煤+QDW-Q分)/V产C产=(535.38+405+6046.14-121.5)/(2.1416×1.6817)

=1906 ℃。

热风炉实际燃烧煤气量和助燃空气量计算

η热=V风×(t热c热-t冷c冷)/[V煤×(Q空+Q煤+Q DW)]

0.9=3800×45×(1100×1.424-120×1.306)/[ V煤×1.4×(535.38+405+6046.14)]

则V煤=27383.26 m3/h取27383m3/h。

V空=V煤×La=27383×1.353=37049.2 m3/h。

1.2热风炉热平衡计算

1.热平衡基础参数确定

(1)周期时间和介质流量确定

T r =1.4h,ΔT=0.1h, T f=0.75h=45min。

烟气流量V m=53603 m3/h。冷风流量V f=3800 m3/min。

(2)热风炉漏风率L f,取3%。

2.热平衡计算

(1)热量收入项目

①燃料化学热量:Q1=V m T r Q DW=27383× 1.4×6046.14=231795999.7KJ/周期。

②燃料化学热量:Q2= V m T r(c m t m-Cme-te)

=27383×1.4×(300×1.35-25×1.332) =14249565.54 KJ/周期。

③助燃空气物理热量:Q3= V m T r La s(C K t K-C ke t e)

=27383×1.4×1.53×(300×1.319-25×1.300)

=21303273 KJ/周期。

④冷风带入的热量:Q4=V fβT f(1-L f)×(c f1t f1-c fe t e)

=3800×0.86×45×(1-0.03)×(1.31×120-1.30×25)

=17788230.54 KJ/周期。

⑤热收入总热:ΣQ=Q1+Q2+Q3+Q4

=231.80+14.25+21.30+17.79=285.14 GJ/周期。

(2)热量支出项目

①热风带出的热量:Q1′= V fβT f(1-L f)×(c f2t f2-c fe t e)

=3800×0.86×45×(1-0.03)×(1.424×1100-1.30×25)

=218808074 KJ/周期。

②烟气带走的热量:Q2′=V m T r V g b(c g2t g2-c ge t e)

=27383×1.4×2.28×1×(1.435×350-1.3933×25)

=40855344.54 KJ/周期。

③化学不完全燃烧损失热量:Q3′=0 KJ/周期。

④煤气中机械水吸收的热量:

Q4′=0 KJ/周期。

⑤冷却水吸收的热量:Q5′=2198513 KJ/周期。

⑥冷风管道散热量:Q6′=K(Δt f×Ai) T f=62.8×50.33×438.1×0.75

=107243.25 KJ/周期。

⑦炉体表面散热:Q7′=ΣK(Δtf×Ai) T=431385 KJ/周期。

⑧热风管道散热量:Q8′=3029374 KJ/周期。

⑨热平衡差值:ΔQ=ΣQ-( Q1′+Q2′+…+Q8′)

=285.14-(218.81+40.86+0+0+2.2+0.10+0.43+3.03)

=19.71 GJ/周期。

1.列热平衡表1.3。

表1.3 热平衡表

热收入热支出

项目

燃料化学热

燃料物理热

助燃空气物理热

冷风带入热量/GJ

231.81

14.25

21.30

17.79

%

81.30

5.00

7.47

6.24

项目

热风带出

的热

烟气带走

的热

化学不完

全燃烧损

热量/GJ

218.81

40.86

%

76.74

14.33

的热量

ΣQ 285.14 100.00

煤气中机

械水吸收

的热量

冷却水吸

收热量

冷风管道

散热

炉体表面

散热

热风管道

散热

热平衡差

ΣQ

2.2

0.10

0.43

3.03

19.71

285.14

077

0.04

0.15

1.06

6.91

100.00

4.热效率计算

(1)热风炉本体热效率:

η 1 =[(Q1′-Q4+Q6′+Q8′)/(ΣQ-Q4)]×100%

=[(218.81-17.79+0.10+3.03)/(285.14-17.79)]×100% =76.36%

(2)热风炉系统热效率[(Q1′-Q4)/(ΣQ-Q4)]×100%

= (218.81-17.79)/(285.14-17.79)×100%

=75.19%

1.3热风炉设计参数确定

由以上计算确定热风炉的主要设计参数如表1.4。

表1.4 热风炉设计参数

项目参数

发生炉容积 /m3发生炉利用系数/t/m3

发生炉入炉风量/m3/min

冷风温度 /℃设计风温 /℃拱顶温度(最高) /℃废气温度 /℃空气预热温度 /℃煤气预热温度 /℃送风制度

燃料

1800

2.3

3800

120

1100

1300

350

300

300

两烧一送制发生炉煤气

第二章热风炉结构设计

2.1设计原则

(1)本着技术先进成熟、完善和节能的原则;

(2)热风炉工艺布置合理顺畅,充分考虑施工及生产过渡的可行性。

(3)因地制宜,充分利用现有地形,最大限度的减少占地面积。

(4)采用适用可靠的设备和材料,以确保稳定、安全生产的需要。

2.2 工程设计内容及技术特点

2.2.1设计内容

设计三座热风炉,三座热风炉送风时,可实现两烧一送制,

(1)设计三座热风炉,包括炉壳、基础(与原有基础的连接)、炉蓖子、燃烧器和耐火材料等;

(2)烟道、热风支管、煤气管道、助燃空气支管、新建三列框架;

(3)设计三座热风炉的阀门(每座共11台),及相应的液压控制和供电;

(4)相应设计三座热风炉的自动化检测设备和控制系统;

2.2.2 技术特点

·热风炉采用顶燃式热风炉;

·热风炉炉底采用弧形板;

·热风出口采用组合砖;

·炉篦子单独支撑在柱子上。

2.3结构性能参数确定

已知:发生炉有效容积为1800m3,每立方米发生炉有效容积应具有的蓄热面积为98m2/m3,选定三座热风炉。

热风炉全部蓄热面积为:98×1800=176400m2。

蓄热室有效断面积为:55.4m2。

每座热风炉的蓄热室受热面积为:58790 m2。

热风炉主要性能参数列表如表2.1。

表2.1热风炉主要技术特性

序号名称单位设计值备注

1 发生炉容积m31800

2 热风温度℃1100

3 入炉风量m3/min 3800

4 热风炉座数座 3 顶燃式

5 热风炉全高mm 45190

序号名称单位设计值备注

6 热风炉炉壳内径mm

?9430/

?7000/?11120

7 蓄热室断面积m255.4

8 发生炉煤气燃烧量Nm3/ h 27383

9 格子砖高度m 21.84

10 热风炉高径比H/D m/m 4.06

11 一座热风炉蓄热面积m258790

12 格子砖型式19孔?30mm

13 单位鼓风蓄热面积m2 /m344

14 单位发生炉容积蓄热

面积

m2 /m398

15 单位鼓风量格子砖重

t/m3 1.22

2.4蓄热室格子砖选择

20世纪50年代,我国热风炉用耐火材料主要是黏土砖,格子砖是片状平板砖,品种也比较单一。基本上满足了当时800~900℃风温要求。60年代,由于发生炉喷煤技术的发展,风温有了很大的提高,在热风炉的高温部开始用高铝砖砌筑,格子砖也由板状砖,发展到整体穿孔砖,基本上满足了风温1000~1100℃的要求。70年代,开始将焦炉用硅砖移植应用到热风炉,使热风炉的耐火材料又上升了

一个新台阶。80年代和90年代,我国进入改革开放时期,热风炉耐

火材料又有了新的长足的进步和发展。具体情况概述为:

1.低蠕变高铝砖的开发与研制。

2.在热风炉炉壳内侧喷涂一层约60mm的陶瓷喷涂料。热风炉投

产后在高温的作用下,喷涂料可与钢壳结成一体,有保护钢壳和绝热

的双重作用,热风炉的各不同部位采用不同的喷涂料。

3.热风炉砌体的开口部位,如人孔、热风出口、燃烧口等处是砌

体上应力集中的部位,这些部位广泛的使用组合砖,使各口都成为一

个坚固的整体。

4.广泛地开发了带有凹凸口的上下左右咬合的异型砖,达到了相

邻砖之间自锁互锁作用,增强了砌体的整体性和结构强度。

5.用耐火球代替格子砖的球式热风炉,在中小发生炉得到广泛的

应用。

为了适应高风温要求,本次设计中格子砖采用19孔型式,从顶

部至炉篦子表面分4段砌筑,各段材质如下(由上至下):硅砖、低

蠕变粘土砖、粘土砖、低蠕变粘土砖。蓄热室格子砖热工性能见表

2.2。

表2.2:19孔格子砖(d=30mm)参数

1 格子砖安装面积m20.052387608

2 格子砖安装体积m30.006286513

3 1M3格子砖加热面m2/m348.5743

4 活面积ψm2/m30.3643

5 填充系数(1-ψ)m3/m30.6357

6 流体直径d h mm 3

7 当量厚度s mm 2

8 1M3格子砖块数块 159

9 耐火材质RN-42低蠕变粘硅质

10 1M3格子砖重量t/m3 1.39 1.589 1.17

11单块格子砖的重量kg 8.79 9.99 7.39 2.5热风炉管道系统及烟囱

2.5.1顶燃式热风炉煤气主管包括:

发生炉煤气供应管道直径1220x6 mm;

煤气换热装置(HESG),用于将煤气预热到180 ℃。使用带中间

液态导热的换热器;连接每座热风炉的煤气支管,至分配阀处具有外

部保温。

每座热风炉的煤气管线应安装下列装置:

垂直段装有两个波纹补偿器,煤气切断阀和流量孔板。当煤气管

道内的温度增加时波纹补偿器用于进行补偿。

水平段设有煤气调节节流阀和一个波纹补偿器构成的“万向”补

偿器,带配重的煤气快速切断阀和三杆分配阀;

带调节螺丝的支架用于在更换分配阀时提升连接管线并将其保

持在预设的水平位置;

弹簧架用于承重垂直段煤气管线以及分配阀后的设备。同时在加

热热风炉炉壳时支架还可用于提升垂直段和上述设备且没有任何拉

伸应力;

从闸阀至预燃室的煤气管道连接件有两层(114mm和5mm)。

从接到停炉信号至关闭带配重的煤气快速切断阀所用时间应不超过3秒。在密封状态下,阀门的紧密度应保证完全没有煤气泄漏。

煤气切断阀,煤气分配阀和空气燃烧分配阀应在安装前测试密封度,在设备安装时也应对阀的密封度进行检测。

2.5.2顶燃式热风炉空气主管包括:

两台风机,每台输出量为160000m3/h(1台工作,1台备用);

热管道上的“烟-气”换热器(HESA)用于将煤气加热到180 ℃;

预热的助燃空气收集器;

每座热风炉的空气支管直径为1420x10mm,至分配阀处带有外部保温;

垂直管路段设有补偿器,类似于煤气补偿器,板阀和流量孔板;

水平管路段设有调节节流阀,“万向型”补偿器,助燃空气三杆分配阀;

带调节螺丝的支架用于更换分配阀时提升连接件并将其保持在预设的水平位置;

弹簧架用于承重垂直段煤气管线以及分配阀后的设备。同时在加热热风炉炉壳时支架还可用于提升垂直段和上述设备且没有任何拉伸应力;

从分配阀至预燃室,空气管道连接件有两层(114mm和5mm);

空气主管路分配阀的要求与煤气主管分配阀的要求相同。

两路内径为1600mm的水平烟气支管,与每座热风炉成轴向45o;

两个三杆烟气分配阀,直径1600mm;

两个波纹补偿器;

外部烟道,直径4520x10mm,带内外保温;

烟道至煤气和助燃空气换热器间的带烟气节流切断阀的支管,内径为2800mm,位于煤气换热器前,内径为2600mm,位于助燃空气换热器前;

内径为2600mm的煤气换热器和内径为2400mm的空气换热器之间的支管,换热器用于预热煤气和空气;

装配冷却烟道;

带烟气节流阀的旁路烟道,用于将烟道和烟囱隔开,节流阀直径为4000mm。

2.5.4顶燃式热风炉冷风主管道包括:

冷风主管,直径1220x6mm;

冷风支管,直径1220x6mm;

“万向”型补偿器;

冷风阀,直径1100mm;

冷风混风管道,直径900mm;

混合节流阀,直径900mm;

混合切断阀,直径900mm。

每座热风炉热风连接管道;

砌衬热风闸阀,直径1500mm;

两个波纹补偿器通过调节装置连接,形成“万向”补偿器;

在热风闸阀和补偿器间应装有带螺丝的支架。用于在维修阀门时提升连接件并将其支撑在要求位置处;

从各热风炉至热风主管道的热风支管;

热风管道,标高26.600mm,内径1598mm;

补偿器间通过气流调节装置连接,形成“万向”型补偿器,以及“直抽烟囱”与垂直段间的连接段;

本次设计在热风管道间为每座热风炉安装“万向”补偿器,由于压力的经常变化会影响补偿器的寿命,进而导致周期性金属疲劳。从热风炉方面看,压力在每个切换周期均会改变。从主管道方面看,压力只有在发生炉停炉时发生改变,这种情况很少发生。因此,“万向”补偿器的使用寿命更长。

2.6 热风炉附属设备和设施

(1)热风炉主要阀门

热风炉在高温下长期运行,其辅助设备特别是热风炉各主要阀门必须与高风温相适应。尤其是隔热阀,热风炉的燃烧期与送风期的正常工作和切换,都要靠热风阀门的开闭来实现,热风阀在1000-1300℃的高温和约0.25Mpa的压力的恶劣条件下工作。采用具有耐火材料保

护的汽化冷却热阀门,其他阀门也要提高质量,特别是密封性。

根据热风炉周期性工作的特点,可将热风炉用的阀门分为控制燃烧系统阀门和控制鼓风系统阀门。控制燃烧系统阀门主要有燃烧阀、煤气调节阀、煤气切断阀、助燃空气调节阀、烟道阀等;控制鼓风系统的阀门有放风阀、混风阀、冷风阀、热风阀、废风阀等。送风通路时,热风炉除冷却阀门和热风阀门关闭外,其它阀门全部打开;休风时,热风炉全部阀门都关闭。

本次设计中热风炉阀门采用液压阀门,每座热风炉的各种阀门规格及数量见下表2-3。

表2.3热风炉阀门表

序号名称及规格数量(个) 耐温要求℃

1 热风阀DN1300 3 1300

2 倒流休风阀DN1100 1 1300

3 混风切断阀DN800 1 250

4 助燃空气切断阀DN1400 3 250

5 煤气切断阀DN1400 3 250

6 煤气燃烧阀DN1400 3 250

7 烟道阀DN1600 6 450

8 废气阀DN400 3 450

9 冷风阀DN1200 3 220

10 充压阀DN250 3 220

11 氮气阀DN100 3 50

热风炉操作说明书

山东寿光巨能特钢12503 M高炉热风炉操作说明书 莱芜钢铁集团电子有限公司 2011.04

1、系统概述 热风炉控制室设有PLC一套,PLC采用西门子S7-400系列CPU 和ET200M远程站及图尔克现场总线远程站,上位机与PLC间通过以太网进行通讯,CPU与远程站通过PROFIBUS DP进行通讯,完成对三座热风炉的所有参数检测、控制及事故诊断。 2、工艺介绍 本控制系统主要完成本系统上各种开关、模拟量的检测与控制;利用热风炉烟气,设置热风炉助燃空气和高炉煤气双预热系统,以节省能源。并设助燃风机两台,以及各种切断阀和调节阀,以实现热风炉焖炉及燃烧、送风的控制要求。本控制系统设有微机两台及各阀现场操作箱,正常状况下三座热风炉的操作都通过微机实现,微机操作有单机和联锁两种操作模式,现场操作箱主要用于现场调试。微机操作和操作箱操作受联锁关系限制。 热风炉的工作状态有燃烧、焖炉、送风三种状态,状态的转换靠控制各阀门的动作,热风炉各阀门按照:燃烧→焖炉→送风→焖炉循环的工作过程,自动或手动进行换炉切换工作。其受控阀门及三种状态对应的阀门状态如下图所示:受控阀门内容及状态表(K=开,G=关)

3、监控功能 根据生产实际情况和操作需要,在监控站制作多幅监控画面,全部采用中文界面,具有极强的可操作性。具体的监控画面包括:热风炉主工艺画面、助燃风机监控画面、煤气空气调节画面、历史趋势画面。 在画面上可显示热风炉各部分的温度、压力、流量分布状况,采集的数据,历史趋势、报警闪烁画面,完成各阀门、设备的开启及操作,完成煤气、助燃空气的调节阀的操作及调节,各系统的自动调节与软手动调节、硬手动调节的无扰自动切换,各调节阀的操作及调节和保持各数据的动态显示。 主要画面及其功能如下: 热风炉主工艺画面:可显示热风炉的整个工艺生产流程及相关的主要参数值,报警闪烁,切入其他画面的功能按钮,热风炉的单机/联锁切换,单机模式下实现对每个阀的单独开关控制,联锁模式下实现焖炉、燃烧、送风三个状态的自动转换。 分画面:各调节系统的画面,包括参数设定的功能键、控制流程图、报警纪录,相关信息;历史趋势,相关的PID参数设定等等。切

热风炉作用

热风炉———高炉高风温的重要载体 来源:中国钢铁新闻网作者:毛庆武张福明发布时间:2008.04.29 高风温是现代高炉的重要技术特征。提高风温是增加喷煤量、降低焦比、降低生产成本的主要技术措施。近几年,国内钢铁企业高炉的热风温度逐年升高,2007年重点企业热风温度比上年提高25℃。特别是新建设的一批大高炉(大于2000立方米)热风温度均超过1200℃,达到国际先进水平。如2002年后,首钢技术改造或新建高炉的热风温度均实现高于1200℃的目标。 热风炉是为高炉加热鼓风的设备,是现代高炉不可缺少的重要组成部分。提高风温可以通过提高煤气热值、优化热风炉及送风管道结构、预热煤气和助燃空气、改善热风炉操作等技术措施来实现。理论研究和生产实践表明,采用优化的热风炉结构、提高热风炉热效率、延长热风炉寿命是提高风温的有效途径。 高风温有赖热风炉的结构优化 20世纪50年代,我国高炉主要采用传统的内燃式热风炉。这种热风炉存在着诸多技术缺陷,且随着风温的提高而暴露得更加明显。为克服传统内燃式热风炉的技术缺陷,20世纪60年代,外燃式热风炉应运而生。该设备将燃烧室与蓄热室分开,显著地提高了风温,延长了热风炉寿命。20世纪70年代,荷兰霍戈文公司(现达涅利公司)对传统的内燃式热风炉进行优化和改进,开发了改造型内燃式热风炉,在欧美等地区得到应用并获得成功。与此同时,我国炼铁工作者开发成功了顶燃式热风炉,并于上世纪70年代末在首钢2号高炉(1327立方米)上成功应用。自上世纪90年代KALUGIN顶燃式热风炉(小拱顶)投入运行,迄今为止在世界上已有80多座KALUGIN(卡鲁金)顶燃式热风炉投入使用。 截至目前,顶燃式热风炉由于具有结构稳定性好、气流分布均匀、布置紧凑、占地面积小、投资省、热效率高、寿命长等优势,已在国内几十座高炉上应用。首钢第5代顶燃式热风炉自投产以来,已正常工作22年3个月,曾取得月平均风温≥1200℃的业绩。生产实践证实,顶燃式热风炉是一种长寿型的热风炉,完全可以满足两代高炉炉龄寿命的要求。然而,由于国内有的企业高炉煤气含水量高、煤气质量差,致使顶燃式热风炉燃烧口出现过早破损;而且采用的大功率短焰燃烧器在适应助燃空气高温预热(助燃空气预热温度≥600℃)方面还存在一些技术难题。因此,国内钢铁企业进行了技术改造,Corus(康力斯)高风温内燃式热风炉也因此得到应用。 合理的热风炉配置保持高炉稳定 根据实践,现代大型高炉配置3~4座热风炉比较合理。大型高炉如果配置4座热风炉,可以实现交错并联送风,能提高风温20℃~40℃,在炉役的中后期,还可以在1座热风炉检修的情况下,采用另外3座热风炉工作,使高炉生产不会出现过大的波动。目前,国内外许多大型高炉都配套建设了4座热风炉,但采用3座热风炉可以大幅度降低建设投资,减少占地面积,也同样具有非常大的吸引力。随着设计和安装大直径热风炉条件的改进,热风炉设计的日趋合理,热风炉使用的耐火材料质量也得到提高,设备更经久耐用,控制系统也日益成熟可靠,形成了多种多样的热风炉高风温和长寿技术,使得热风炉操作可以更加平稳可靠,从而保证了高炉稳定操作。以此为基础,现代热风炉的发展方向转变为减少热风炉座数、延长热风炉寿命、强化燃烧能力、缩短送风时间、减少蓄热面积、回收废气热量、提高总热效率上。另外,尽量缩短送风时间的操作方式也得到重视,基于新设计理念和完备的技术支撑,国内钢铁企业将热风炉数量由4座减少为3座,热风炉的操作模式改为“两烧一送”,风温的调节控制依靠混风实现,也同样达到了高风温的效果。 提高加热炉传热效率和寿命是可靠保证

冷库设计方案

冷库工程 设 计 方 案 编制单位:深圳市凯利达制冷设备工程有限公司编制时间:二零一三零年八月二十三日

目录 一.设备概况基本 (2) 二.设计规范及冷库冷负荷计算 (2) 三.冷库设计的特别要求技术规范 (5) 四. 装配式冷藏库技术要求 (7) 五. 工程实施要求 (17) 六. 技术文件和资料要求 (28) 七. 供应商及业绩情况介绍 (30)

一. 设备概况 序号名称规格数量制冷设备概况 库A 高温库100000mm*25000mm*6000mm 库温-3至5C° 1 1套BIZER螺杆水冷机组 型号:HSK8461-125*4 库B 恒温库62500mm*37500mm*6000mm 库温5至18C° 1 1套BIZER螺杆水冷机组 型号:HSK8461-125*3 库C 低温库62500mm*35500mm*6000mm 库温-18C° 1 2套BIZER螺杆水冷机组 型号:HSK8461-125*6 D 穿堂112500*12500*6000 温度10-18℃ 1 1套BIZER螺杆水冷机组 型号HSK6461-60*1 二.设计规范及冷库冷负荷计算 1 设计规范 1.1 室外环境 1、夏季通风室外计算干球温度:TWK=5℃~38℃ 2、夏季空气调节室外计算日平均干球温度:33℃ 3、夏季空气调节室外计算日平均湿球温度:TWS=28℃ 4、夏季室外计算相对湿度:30%~85% 5、年平均气压:1012 hPa 6、极端最高温度:42℃ 7、极端最低温度:5℃。 1.2 室内环境 1、室内温度:15℃~35℃,相对湿度:(70%冬季),(85%夏季) 2、室内最大相对湿度:日平均不大于90%(25℃时) 3、地震地面加速度:水平加速度不超过0.2G,垂直加速度不超过0.1G 4、电力供应:TN-S制,额定电压为380V/220V,电压波动率:±7%,额定频率为50Hz,频率波动率:±2%,接地电阻不大于1Ω。 1.3 气候条件的适应性 凯利达制冷设备厂所有设备能适应现场的上述条件,并针对项目所在地的具体情况,设有三防措施(防潮,防腐,防锈)并满足这些条件。 冷库为全年365天,连续运行。 1.4本项目的冷库制冷系统、库体工程是交钥匙工程,所提交的系统是通电即可使用的系统。凯利达将对冷库总体性,成套性负责。

概要设计说明书范例及模板

《XXXXXX》概要设计说明书 张三、李四、王五

1.引言 1.1编写目的 在本机票预定系统项目的前一阶段,也就是需求分析阶段中,已经将系统用户对本系统的需求做了详细的阐述,这些用户需求已经在上一阶段中对航空公司、各旅行社及机场的实地调研中获得,并在需求规格说明书中得到详尽得叙述及阐明。 本阶段已在系统的需求分析的基础上,对机票预定系统做概要设计。主要解决了实现该系统需求的程序模块设计问题。包括如何把该系统划分成若干个模块、决定各个模块之间的接口、模块之间传递的信息,以及数据结构、模块结构的设计等。在以下的概要设计报告中将对在本阶段中对系统所做的所有概要设计进行详细的说明。 在下一阶段的详细设计中,程序设计员可参考此概要设计报告,在概要设计对机票预定系统所做的模块结构设计的基础上,对系统进行详细设计。在以后的软件测试以及软件维护阶段也可参考此说明书,以便于了解在概要设计过程中所完成的各模块设计结构,或在修改时找出在本阶段设计的不足或错误。 1.2项目背景 机票预定系统将由两部分组成:置于个旅行社定票点的前台客户程序,以及置于航空公司的数据库服务器。本系统与其他系统的关系如下: 1.3定义 1.3.1 专门术语 SQL SERVER: 系统服务器所使用的数据库管理系统(DBMS)。 SQL: 一种用于访问查询数据库的语言 事务流:数据进入模块后可能有多种路径进行处理。 主键:数据库表中的关键域。值互不相同。 外部主键:数据库表中与其他表主键关联的域。 ROLLBACK: 数据库的错误恢复机制。 1.3.2 缩写

系统:若未特别指出,统指本机票预定系统。 SQL: Structured Query Language(结构化查询语言)。 ATM: Asynchronous Transfer Mode (异步传输模式)。 1.4参考资料 以下列出在概要设计过程中所使用到的有关资料: 1.机票预定系统项目计划任务书浙江航空公司1999/3 2.机票预定系统项目开发计划《**》软件开发小组1999/3 3.需求规格说明书《**》软件开发小组1999/3 4.用户操作手册(初稿)《**》软件开发小组1999/4 5.软件工程及其应用周苏、王文等天津科学技术出版社1992/1 6.软件工程张海藩清华大学出版社1990/11 7.Computer Network A.S.Tanenbaun Prentice Hall 1996/01 文档所采用的标准是参照《软件工程导论》沈美明著的“计算机软件开发文档编写指南”。 2.任务概述 2.1 目标 2.2 运行环境 系统将由两部分程序组成,安装在各旅行社客户机上的客户程序及航空公司内的数据服务器程序。 根据调研得知所有旅行社的计算机配置均在Pentium 133级别以上,客户程序应能够在Pentium 133级别以上, Win NT环境下运行。 2.3 需求概述 浙江航空公司为方便旅客,需开发一个机票预定系统。为便于旅客由旅行社代替航空公司负责为旅客定票,旅行社把预定机票的旅客信息,包括姓名、性别、工作单位、身份证号码、旅行时间、旅行目的地,输入机票预定系统的客户端程序,系统经过查询航空公司内的航班数据服务器后,为旅客安排航班,印出取票通知。旅客在飞机起飞前一天凭取票通知和帐单交款后取票,系统校对无误后即印出机票给旅客。 要求系统能有效、快速、安全、可靠和无误的完成上述操作。并要求客户机的界面要简单明了,易于操作,服务器程序利于维护。 2.4 条件与限制 3.总体设计 3.1 处理流程 下面将使用(结构化设计)面向数据流的方法对机票预定系统的处理流程进行分

热风炉设计说明书

目录 第一章热风炉热工计算 (1) 1.1热风炉燃烧计算 (1) 1.2热风炉热平衡计算 (6) 1.3热风炉设计参数确定 (9) 第二章热风炉结构设计 (10) 2.1设计原则 (10) 2.2 工程设计内容及技术特点 (11) 2.2.1设计内容 (11) 2.2.2 技术特点 (11) 2.3结构性能参数确定 (12) 2.4蓄热室格子砖选择 (13) 2.5热风炉管道系统及烟囱 (15) 2.5.1顶燃式热风炉煤气主管包括: (15) 2.5.2顶燃式热风炉空气主管包括: (16) 2.5.3顶燃式热风炉烟气主管包括: (16) 2.5.4顶燃式热风炉冷风主管道包括: (17) 2.5.5顶燃式热风炉热风主管道包括: (17) 2.6 热风炉附属设备和设施 (18) 2.7热风炉基础设计 (21) 2.7.1 热风炉炉壳 (21) 2.7.2 热风炉区框架及平台(包括吊车梁) (21) 第三章热风炉用耐火材料的选择 (22) 3.1耐火材料的定义与性能 (22) 3.2热风炉耐火材料的选择 (22) 参考文献 (25)

第一章热风炉热工计算 1.1热风炉燃烧计算 燃烧计算采用发生炉煤气做热风炉燃料,并为完全燃烧。已知煤气化验成分见表1.1。 表1.1 煤气成分表

热风炉前煤气预热后温度为300℃,空气预热温度为300℃,干法除尘。发生炉利用系数为 2.3t/m3d,风量为3800m3/min,t热风=1100℃,t冷风=120℃,η热=90%。 热风炉工作制度为两烧一送制,一个工作周期T=2.25h,送风期T f=0.75h,燃烧期Tr=1.4h,换炉时间ΔT=0.1h,出炉烟气温度tg2=350℃,环境温度te=25℃。 煤气低发热量计算 查表煤气中可燃成分的热效应已知。0.01m3气体燃料中可燃成分热效应如下: CO:126.36KJ , H2:107.85KJ, CH4:358.81KJ, C2H4:594.4KJ。则煤气低发热量: Q DW=126.36×30.3+107.85×12.7+258.81×1.7+594.4×0.4=6046.14 KJ 空气需要量和燃烧生成物量计算 (1)空气利用系数b空=La/Lo计算中取烧发生炉煤气b空=1.1。燃烧计算见表2.13。 (2)燃烧1m3发生炉煤气的理论Lo为Lo=25.9/21=1.23 m3。 (3)实际空气需要量La=1.1×1.23=1.353 m3。

讲课内容,国内高炉热风炉现状,高炉热风炉设计思路

我们能不能干得比外国人更好一些 ——中冶京城吴启常大师于2015年4月,做客于山东慧敏科技公司,讲授热风炉的相关知识,同时对目前钢铁行业热风炉的情况进行讲解,受益匪浅,仅此上传吴大师的讲授资料,大家共同学习,向吴大师致敬! 1. 格子砖热工特性: 对于没有影响热交换过程横向凸台和水平通道的格子砖,都可以通过两个基本参数——格子砖的水力学直径d Э和相应的活面积f ——来表述,即: 单位加热面积(m 2/m 3) 4f H d = 1m 3格子砖中砖的容积(m 3/m 3) k 1V =-f 烟气辐射的厚度(cm ) 3.41004 d S =ЭЭФ 砖的半当量厚度(mm ) (1)4f d R f -=ЭЭ 格孔间最小壁厚(mm ) m i n 1d f ?=-??? Эδ 2.高炉风温有没有上限? 上一世纪70年代,西方国家的高炉设计纷纷高喊要使用1350℃以上的高风温,试图获得提高风温给高炉带来的最大好处。但实际的结果是热风炉拱顶钢壳 出现了大量裂纹,给高炉生产带 来了极大的困难。欧洲人深入研 究了此问题之后认为:这是高炉 采用高风温高压操作之后,燃烧 产物中出现了大量的NO X 和SO X 造成钢壳出现晶间应力腐蚀的缘 故。 尤其是炉壳在高应力状态下 工作时,晶粒之间的腐蚀更为严重。此外,NO X 和SO X 对于环境污染也是极大的

挑战。它们是PM2.5指标的重要组成部分。 NO X 生成量与拱顶温度之间关系 欧洲人从防止热风炉炉壳出现晶间应力腐蚀以及保护大气环境的角度出发,他们以热风炉的拱顶温度水平来对热风炉进行分类(详见图2)。按欧洲人的观念,拱顶温度范围:>1420℃属超高风温热风炉;1350~1420℃属高温热风炉;1250~1350℃属中温热风炉;1100~1250℃属低温热风炉。 晶间应力腐蚀是怎么回事? 晶间应力腐蚀的定义:在腐蚀介质和应力的双重作用下,没有产生变形而出现沿晶间方向的开裂,最终导致材料的破坏。热风炉出现晶间应力腐蚀开裂破坏的主要部位在拱顶的焊缝附近,并且工地焊缝比工厂焊缝出现开裂的频率要高。可见焊接产生的残余应力对于腐蚀开裂有很大的影响。 晶间应力腐蚀产生的原因:在高温条件下,N 2和O 2分解成单体的N 和O 并生成NO x 。NO x 产生的化学反应式如下: N 2 + xO 2 = 2NO x x 22111N O +O =N O x 2x x 如果热风炉炉壳没有特殊的隔热层,炉壳的温度会低于100℃,其内表面会形成冷凝水。氧化氮与这些冷凝水接触便会生成硝酸根离子水溶液,这样,腐蚀介质就形成了。其反应式如下: 2NO 2 + H 2O = HNO 2 + HNO 3 2NO 2 + H 2O + 0.5O 2 = 2HNO 3 硝酸对钢板产生化学侵蚀破坏,反应式如下: 2Fe + 6HNO 3 =Fe 2O 3 + 3N 2O 4 + 3H 2O 研究还表明,在有SO 2介质的存在条件下,应力腐蚀的速度将加快。 为了防止热风炉高温区炉壳出现晶间应力腐蚀,人们曾经采用过一些技术措施: 1)拱顶温度控制在1420℃的水平上; 2)拱顶外壳内表面喷砂除锈后涂刷耐酸高温漆并喷涂耐酸耐火材料; 3)适当加厚拱顶外壳钢板,采用‘低应力设计’,并选用细晶粒耐龟裂钢板作为炉壳材料;

冷库设计方案

养菌库、栽培库采购安装项目 技 术 方 案

目录 一、工程概况…………………………………………………………………. 二、设计依据和设计参数…………………………………………………… 三、冷负荷计算说明………………………………………………………… 四、冷库冷量计算及设备选型……………………………………………… 五、主要设备与配置说明…………………………………………………… 六、库体部分……………………………………………………………. … 七、新风、排风系统…………………………………………………………. 八、施工组织方案……………………………………………………………. 九、关于售后服务能力的承诺……………………………. ………………..

一、工程概况 ◆项目名称: ◆开工地点: ◆冷库面积:详见设计参数表 ◆净高:详见设计参数表 ◆施工单位: ◆设计单位: ◆主要工作内容:工程包括库体板材、库门、制冷设备、控制系统设备的采购、安装施工及维修。 ◆开工日期:工程指定开工日期 ◆安装完工日期:工程指定竣工日期 ◆质量目标:优良

二、设计方案和设备参数 1、设计依据 1)现行国家、行业及地方施工技术规范及有关规定。 《冷库设计规范》GB50072-2001 《冷藏库建筑工程施工及验收规范》SBJ11-2000 J42-2000 《工业金属管道工程质量检验评定标准》GB50184-93 《制冷设备、空气分离设备安装施工及验收规范》GB50274-98 《现场设备、工业管道焊接工程施工及验收规范》GBJ93-86 《电气装置安装工程施工及验收规范》GB50254-96~~50259-96 《建筑工程施工质量验收统一标准》GB50300-2001 2)以往我们类似工程的经验。 2、该工程地处江苏省常熟市,北纬31°31′~31°51′,东径120°32′~121°03′。属于亚热带 气候,年平均气温15.5℃,最冷月一月份平均气温为2.7℃,极端最低气温为-11.3℃。 3、设计参数

软件著作权设计说明书范本资料

软件著作权-说明书范本(二) 设计说明书 中国版权保护中心接收登记的文档包含两种:操作说明书或设计说明书。 设计说明书适合没有界面的嵌入式软件,插件软件,后台运行软件以及游戏软件。一般包含结构图,软件流程图,函数说明,模块说明,数据接口,出错设计等。 操作说明书适合管理类软件,有操作界面,一般应包含登录界面,主界面,功能界面截图,截图之间有相应的文字说明,能全面展示软件的主要功能。 格式要求:一、说明书应提交前、后各连续30页,不足60页的,应当全部提交。 二、说明书页眉应标注软件的名称和版本号,应当与申请表中名称完 全一致,页眉右上应标注页码,说明书每页不少于30行,有图除 外,另外截图应该清晰完整。 范例如下: 设计说明书

一、引言 目的 编写详细设计说明书是软件开发过程必不可少的部分,其目的是为了使开发人员在完成概要设计说明书的基础上完成概要设计规定的各项模块的具体实现的设计工作。 二、软件总体设计 2.1软件需求概括 本软件采用传统的软件开发生命周期的方法,采用自顶向下,逐步求精的结构化的软件设计方法。 本软件主要有以下几方面的功能 (1)连接设备 (2)提取数据 (3)保存数据 (4)删除仪器数据 (5)查看历史数据 定义 本项目定义为一个典型的多点互动探伤软件。它将实现多点设备和系统程序的无缝对接,以实现多点互动功能。 2.2需求概述 1.要求利用PQLib硬件商提供的SDK开发出对应的触摸屏系统。 2.系统要显示图片,并实现图片相关所有的多点操作,包括放大,缩小,旋转,平移的功能。 3.要提供美观的图片菜单,在菜单中要提供必要的图片简介信息。 4.系统图片的维护更新要方便。 2.3条件与限制 系统开发的条件是普通PC以及相对应的系统,本次开发所用的系统是WINDOW SERVER2003以及ADOBE FlashCS4。由于硬件开发商提供的开发文档不是很详尽,这对系统开发产生了一定限制影响。 总体设计 2.4总体结构和模块接口设计 系统整体结构框架如图

燃气热风炉安装使用说明书-直燃式资料

燃气热风炉 使用说明书河南省四通锅炉有限公司

目录 一、概述 二、主要技术参数 三、工作原理 四、安装调试 五、使用操作 六、常见故障及处理方法 七、安全操作规程 八、维护保养及部件润滑方式

一、概述 燃气热风炉技术性能与特点如下: 1.燃料适用范围广:天然气、液化石油气、焦炉煤气、发生炉煤气、高炉煤气以及混合煤气等多种煤气。 2.燃烧器的选配灵活,以热风温度为目标,程序点火,也可选配简易烧嘴,人工进行辅助操作控制,经济适用,热效率高。本产品结构简单、布置灵活,内衬耐火层,施工周期短,设备基础简易,可移动使用,结构紧凑,体积小,占地面积小,金属消耗量低。以快装型式出厂,便于安装;可以节省大量的基建投资。 3.供热稳定,供热能力可调节性大,本体上装有调风门,供热风温可调。冷风经炉壳内外夹层通道进入本体内,对炉体起到一定的冷却作用,可提高炉胆寿命,减少散热损失,并能让低热值煤气的燃烧更加稳定。 4.热风以负压流供热,可调调风门补风,炉膛内存留可燃气体极少,确保点火安全,运行可靠。 6.热工及动力控制有远程控制、现场干预和现场控制、中央控制显示两种方式供用户选择,能很好满足多种工况需要,广泛用于水泥、化工、冶金等行业烘干、焙烧、冶炼等。 7.烟气排放符合GB13271-2014《锅炉大气污染物排放标准》。

二、主要技术参数 三、工作原理: 燃气热风炉结构简单、布置灵活、体积小巧,自动化程度高,操作简单,性能可靠。 燃气热风炉由炉体、引风机、调风门、出烟管、燃烧器、燃烧控制系统等部件组成。 炉体部分主要由外壳、内炉胆、支撑板等制作成两个腔室,内腔为燃烧炉

制冷课程设计设计

制冷课程设计说明书瘦鱼生产冷库设计 专业:建筑环境与设备工程 姓名: 学号: 指导教师:李芃 2014年6月14日

目录 1.工程概述 1.1建库地点:西安,纬度:34o18’; 1.2此冷库属鱼类生产性冷库,其生产能力如下: 1)冻结能力:按每昼夜二次计,30吨/日; 2)冷藏库容量:冻结物冷藏间为250吨; 1.3制冷剂工质:氨 1.4冷库概况 本冷库采用的是氨制冷系统,设有冻结间、冻结物冷藏间、制冰间、冰库和穿堂及制冷压缩机房、变配电间等,主要功能室对鱼类的冻结加工与储藏; 2.设计依据 储存食品:鱼类(瘦鱼) .设计参数 1)室外设计参数 根据需要,查《民用建筑供暖通风与空气调节设计规范》, 2)邻室计算温度 若对两个库房之间或库房与其它建筑物之间进行传热计算时,则应以邻室计算温度代替室外温度。若邻间是冷藏间时,则按其设计库温来计算;若邻间为冷却间或冻结间时,则应该取该冷间空库保温的温度,即:冷却间按10℃,冻结间按-10℃计算;若该冷间地坪下设有通风加热装置时,其外侧温度按1℃~2℃计算。对于两用间的计算温度可这样确定,进行本房间热量计算时,室内温度取低库温值;作为其他库房的邻室时,则取高库温值。 3)冷间设计温度 =-23℃ 冻结间:t n =-18℃ 冻结物冷藏间:t n

常温穿堂:t = 30℃ c 4)进货温度与出货温度 计算货物耗冷量时需确定进货温度。进货温度按下列规则选取: a)未经冷却的鲜肉温度按35℃,经冷却的按4℃计算。 b)冻肉:从库外调入的为-8℃~-10℃;非外库调入的按该冷库冻结间终止降温 时货物的温度(肉体中心温度按15℃)计算。 c)新鲜鱼虾按整理鱼虾用水的水温计算;冰鲜鱼虾整理后的温度按15℃计算。货物的出货温度根据冷库的规模、产品品种以及产品冷加工工艺要求等来确定,无具体要求时下列数据可参考:肉类从冷却间出库时温度可按+4℃计,肉类鱼类从冻结间出库时的温度可按15℃计,冷却物冷藏间出库温度可按0℃计,冻结物冷藏间出库温度可按-18℃计。 3.制冷系统方案的设计 制冷剂的选择:氨 有以下优点:氨价格低廉且易于取得,对臭氧层无破坏作用,单位制冷量大,比较适用于大中型冷藏库制冷系统。 3.2供液方式的确定 表制冷供液方案对比

热风炉技术方案

山西安龙重工有限公司热风炉系统设备 技 术 方 案 湖北神雾热能技术有限公司 2009.12.02

一、前言 该项目是遵循山西安龙重工有限公司所提技术要求设计,所采用的技术核心主要是目前国内外先进的燃气半预混双旋流燃烧技术等。 二、设计基础 1、原始参数及现场条件 1).处理原料 待定 2).处理能力:待定 2 热风炉工况参数 1).最大热负荷:2000×104Kcal/h 2).热风炉出口热风温度:50~300℃ 3).热风炉出口热风流量:187000 Nm3/h(在300℃工况下) 4).燃料参数 煤气(具体种类待定):热值约1000 Kcal/Nm3 压力:6~8 kPa 5).液化气或其它高热值燃气(启炉和长明火燃料) 热值:20000 kcal/Nm3 压力:10kPa 6).煤气吹扫气参数 氮气:压力:~0.2 MPa 三、方案内容

2、耐火材料选型参数 低水泥高铝浇注料:用于炉膛耐火内衬 容重~2.3kg/m3 烧后抗压强度110℃×24h ≥15MPa 1000℃×3h ≥25MPa 烧后线变化率1000℃×2h 0~-0.2% 耐火度>1700℃ 3、热风炉设备特点综述 热风炉是根据终端设备对温度的要求,输出适合温度和一定流量热烟气的设备,在满足此基本要求的基础之上,我们重点考虑了如下方面: a)热风炉在运行过程中对炉内温度实现检测,满足终端设备所 需要风温及风量。燃烧器调节范围大,火焰长度、扩散角均 能和炉子合理匹配,且配有自动点火和火检,保证安全稳定 运行; b)炉子采用合理的钢结构来支撑本体;选用性能良好的耐火材 料砌筑,采用二次风冷却的方式,确保炉体表面温度符合技 术要求; c)合理配置炉子检修口、观察孔,结构设计做到开启灵活,关 闭严密,减少炉气外溢和冷风吸入的现象; d)配备完善的热工控制系统设备,自动化程度高。确保严格的 空燃比和合理的炉压等控制,使热损失减少到最小; e)满足低耗、节能的工艺要求; f)在环保方面,烟气中有害成分游离碳和NO X通过强化燃料

HY-F 系列热风炉说明书

操作前请仔细阅读使用说明书

前言 HY-F 热风炉是保定市恒宇机械电器制造有限公司开发研制,主要用于棉花等物料烘干的专用供热设备。该炉以煤为燃料,采用机械化给煤燃烧方式,使燃煤得以充分燃烧,是一种新型的高效、节能、低污染的供热设备。可替代现行的燃油、燃气及电加热设备。产品投放市场以来深受广大用户的欢迎,在国内成为广大棉花加工厂的首选产品,部分产品出口到非洲一些国家和地区。 一、结构说明 HY-F系列热风炉分四部分构成,分别为换热器、高效燃烧系统、除尘系统和电气系统。其中高效燃烧系统由炉排总成、燃烧室、上煤机三部分组成。 换热器为列管式换热器,合理的分布辐射和对流换热面;炉体两侧设有清理换热通道灰尘的清灰门及清灰通道。在换热器上部有检修门。 除尘系统采用的是水膜除尘,锅炉燃烧产生的烟气,先经过一次水膜除尘,去掉火星和烟尘,最后将不会产生火灾隐患的烟气排入大气中。 燃烧室内腔由耐火材料预制而成,分引燃区、燃烧区和燃尽区。炉排采用链条式炉排。炉排总成设有分风室、调风门和调风杆,用来调节各风室的供风量;炉体侧面设有点火门、看火门,炉排采用的是除渣机自动除渣。煤仓内有闸板,通过调节煤闸板的高度来控制煤层厚度,用来控制热温度。 上煤机由煤斗车、导轨架、支撑平台、提升电机和减速箱等构成(见图1),位于主机前方。燃煤由此机构提升送至煤仓,为燃烧用煤储备燃料。 二、工作原理 通过上煤机由煤斗车将煤送至煤仓,煤随炉排的缓慢运动经煤闸板刮成一定厚度的煤层进入燃烧室引燃区,迅速起火燃烧。燃烧所需的空气由炉排离心通风机提供,通过炉排分风室分配到燃烧室各区。燃烧后所形成的灰渣通过炉排的循环运动落至尾部的除渣机中。 利用锅炉离心引风机,将烟气均匀的引入换热器外表面,使鼓入换热器内

一个常温冷库设计讲解

冷库课程设计题目广州某水产品冷库设计 学院 专业制冷与冷藏技术 学号 姓名 指导老师 日期 2005年12月24日

第一章:绪论 一.毕业设计的任务及意义 现代制冷冷藏技术要求相关工程技术人员不仅应是一名工艺师,还应当具备按工艺要求进行生产设备的选型配套,生产线的相关工程设计能力。可见,制冷与冷藏专业的学生有必要进行工程设计能力的培养和训练。 冷库课程设计(以下简称课程设计)是在学完《制冷原理》和《冷库技术与设备》后的一个阶段性、实践性教学环节。通过完成某一工程设计任务,培养学生综合运用《制冷原理》及相关先修课程的基础知识和解决实际问题的工作能力。课程设计要求学生按设计任务书的要求,在规定的时间内完成某一小型冷库的设计任务。应予指出,课程设计不象平时做的练习题有一个共同的答案。设计本意上应含有创作的思维成分,设计结果以优劣予以评价。课程设计任务书不象习题题目那样给出充分的条件和数据。设计计算中的很多数据往往需要设计者查阅相关手册和资料,进行系统的收集、分析比较和选用,任何一个数据的选定均要说明理由,这就需要综合运用所学的各类知识,经过全面、细致地分析和思考方能确定。课程设计不是一个单纯的解题过程,而应是一个含有创作成分的实践过程。课程设计中不仅要通过调查研究,确定工艺流程及设计方案,所确定的流程和方案应能保证日后的设计、施工和投入运行都能得到完全地实施,即工程的可行性。还要对工艺设备进行选型配套设计计算,编制设计计算说明书,并用工程图将设计结果表达出来,以便指导工程施工。在课程设计中着重以下几种能力的训练和培养: 1. 培养正确、系统的设计思想,全盘考虑工程设计任务,兼顾技术上的先进性、可行性和经济合理性,以人为本,注意操作者安全及劳动条件的改善和环境的保护,并用这种设计思想去分析和解决实际问题。 2. 培养从生产现场和文献资料中进行调查研究的能力。通过现场调查,参考和分析已建工程的经验和教训,结合本设计的客观实际,确定设计方案。通过查阅资料,选用公式,收集数据,进行具体设计计算。 3. 培养用简洁的文字、规范清晰的图表来表达自己设计思想和结果的能力。

概要设计说明书范例及模板

《XXXXXX》 概要设计说明书 张三、李四、王五 1.引言 1.1编写目的 在本机票预定系统项目的前一阶段,也就是需求分析阶段中,已经将系统用户对本系统的需求做了详细的阐述,这些用户需求已经在上一阶段中对航空公司、各旅行社及机场的实地调研中获得,并在需求规格说明书中得到详尽得叙述及阐明。 本阶段已在系统的需求分析的基础上,对机票预定系统做概要设计。主要解决了实现该系统需求的程序模块设计问题。包括如何把该系统划分成若干个模块、决定各个模块之间的接口、模块之间传递的信息,以及数据结构、模块结构的设计等。在以下的概要设计报告中将对在本阶段中对系统所做的所有概要设计进行详细的说明。 在下一阶段的详细设计中,程序设计员可参考此概要设计报告,在概要设计对机票预定系统所做的模块结构设计的基础上,对系统进行详细设计。在以后的软件测试以及软件维护阶段也可参考此说明书,以便于了解在概要设计过程中所完成的各模块设计结构,或在修改时找出在本阶段设计的不足或错误。 1.2项目背景 机票预定系统将由两部分组成:置于个旅行社定票点的前台客户程序,以及置于 1.3 1.3.1 专门术语 SQL SERVER: 系统服务器所使用的数据库管理系统(DBMS)。 SQL: 一种用于访问查询数据库的语言 事务流:数据进入模块后可能有多种路径进行处理。 主键:数据库表中的关键域。值互不相同。 外部主键:数据库表中与其他表主键关联的域。 ROLLBACK: 数据库的错误恢复机制。 1.3.2 缩写

系统:若未特别指出,统指本机票预定系统。 SQL: Structured Query Language(结构化查询语言)。 ATM: Asynchronous Transfer Mode (异步传输模式)。 1.4参考资料 以下列出在概要设计过程中所使用到的有关资料: 1.机票预定系统项目计划任务书浙江航空公司 1999/3 2.机票预定系统项目开发计划《**》软件开发小组 1999/3 3.需求规格说明书《**》软件开发小组 1999/3 4.用户操作手册(初稿)《**》软件开发小组 1999/4 5.软件工程及其应用周苏、王文等天津科学技术出版社 1992/1 6.软件工程张海藩清华大学出版社 1990/11 7.Computer Network A.S.Tanenbaun Prentice Hall 1996/01 文档所采用的标准是参照《软件工程导论》沈美明著的“计算机软件开发文档编写指南”。 2.任务概述 2.1 目标 2.2 运行环境 系统将由两部分程序组成,安装在各旅行社客户机上的客户程序及航空公司内的数据服务器程序。 根据调研得知所有旅行社的计算机配置均在Pentium 133级别以上,客户程序应能够在Pentium 133级别以上, Win NT环境下运行。 2.3 需求概述 浙江航空公司为方便旅客,需开发一个机票预定系统。为便于旅客由旅行社代替航空公司负责为旅客定票,旅行社把预定机票的旅客信息,包括姓名、性别、工作单位、身份证号码、旅行时间、旅行目的地,输入机票预定系统的客户端程序,系统经过查询航空公司内的航班数据服务器后,为旅客安排航班,印出取票通知。旅客在飞机起飞前一天凭取票通知和帐单交款后取票,系统校对无误后即印出机票给旅客。 要求系统能有效、快速、安全、可靠和无误的完成上述操作。并要求客户机的界面要简单明了,易于操作,服务器程序利于维护。 2.4 条件与限制 3.总体设计 3.1 处理流程 下面将使用(结构化设计)面向数据流的方法对机票预定系统的处理流程进行分析。系统可分为两大部分:一、客户机上的程序,二、服务器上的程序。以下将分别对系统的这两大部分进行流程分析:

热风炉燃烧温度控制系统的设计

工号:JG-0054889 酒钢炼铁保障作业区 论文设计 题目热风炉燃烧温度控制系统设计 厂区炼铁厂 作业区保障作业区 班组维护班 姓名陈现伟 2011 年05 月08 日

论文设计任务书 职工姓名:陈现伟工种:维护电工 题目: 热风炉燃烧温度控制系统的设计 初始条件:炼铁高炉采用内燃式热风炉,燃烧所采用的燃料为高炉煤气和转炉 煤气。两种燃料混合后进入热风炉燃烧室,再与助燃空气一起燃烧,要求向高炉送风温度达到1350℃,则炉顶温度必须达到1400℃±10℃。 要求完成的主要任务: 1、了解内燃式热风炉工艺设备 2、绘制内燃式热风炉温度控制系统方案图 3、确定系统所需检测元件、执行元件、调节仪表技术参数 4、撰写系统调节原理及调节过程说明书 时间安排 4月29-30日选题、理解设计任务,工艺要求。 5月1-3日方案设计 5月4-7日参数计算撰写说明书 5月8日整理修改 主管领导签字:年月日

目录 摘要.............................................................. I 1内燃式热风炉工艺概述. (1) 2热风炉温度串级控制总体方案 (2) 2.1内燃式热风炉送风温度控制方案选择... (2) 2.2内燃式热风炉温度串级控制系统框图 (4) 3系统元器件选择 (4) 3.1温度变送器 (5) 3.2温度传感器 (5) 3.3控制器及调节阀 (6) 3.3.1调节阀的选择 (6) 3.3.2控制器即调节器的选择 (6) 4参数整定及调节过程说明 (7) 4.1参数整定 (7) 4.2调节过程说明 (8) 学习心得及体会 (10) 参考文献 (11)

热风炉说明书

目录 一、公司简介 二、用途 三、设备主要技术参数 四、设备结构简介 五、安装 六、使用和安全 七、维护及保养 八、常见故障排除 九、安全注意事项 十、成套供应范围

一:公司简介 新乡市鼎升炉机科技有限公司(中国国防科工委定点企业)1972年成立于新乡胙城工业区,是一个开发设计制造综合公司。 我公司位于河南北部,与S307,S308,;新济高速,京深高速,京广铁路紧连,交通便利,运输方便。 我公司综合实力强,技术力量雄厚,专业工种齐全,工作经验丰富,技术装备先进,公司组建以来共完成580项大中型整体工程设计和总承包工程,项目遍及20多个省,市,自治区,自1995年以来 连年被新乡市授予“重合同守信用单位”称号,多次被新乡市工商局评为“消费者信得过单位”,并取得了中国工商行AAA企业信誉等级证书,2001年通过ISO9001:2000质量管理体系认证。树立了良好的形象。 我公司近十年来经营状况非常良好,在同行业中也处于领先地位,公司拥有厂房4180平方米,职工268人,工程技术人员26人,高级工程师7人,具有丰富的理论知识和实践经验,依靠雄厚的技术实力,运行新颖实用的设计理念,公司研发了一系列“高效、先进、可靠、环保、节能”的热处理自动生产线。并取得多项国家专利。在大型工业炉项目投标中,我公司取得了骄人的成绩。主要涉及的行业有军工,航空,机械,冶金,航海,铁路行业等。 近年来,企业本着“科技兴厂”的指导方针,公司积极与国内知名院校及专业科研机构广泛合作,使公司的创新能力有了一个质的飞跃。公司相继设计开发出各种高、中、低温箱式、台车式、井式、网带式、连续推杆式、盐浴式、滚筒式电阻炉等炉型,满足了气、固体渗碳、渗氮、

向1500m3高炉送风的热风炉设计说明书

目录 1 热风炉本体结构设计 (1) 1.1炉基的设计 (2) 1.2炉壳的设计 (2) 1.3炉墙的设计 (3) 1.4拱顶的设计 (3) 1.5蓄热室的设计 (5) 1.6燃烧室的设计 (5) 1.7炉箅子与支柱的设计 (6) 2 燃烧器选择与设计 (7) 2.1金属燃烧器 (7) 2.2陶瓷燃烧器 (7) 3 格子砖的选择 (10) 4 管道与阀门的选择设计 (15) 4.1管道 (15) 4.2.阀门 (16) 5 热风炉用耐火材料 (18) 5.1 硅砖 (18) 5.2 高铝砖 (18) 5.3 粘土砖 (18) 5.4 隔热砖 (18) 5.5 不定形材料 (18) 6 热风炉的热工计算 (22) 6.1 燃烧计算 (22) 6.2简易计算 (26) 6.3砖量计算 (28) 7 参考文献 (30)

1 热风炉本体结构设计 热风炉的原理是借助煤气燃烧将热风炉格子砖烧热,然后再将冷风通入格子砖。冷风被加热并通过热风管道送往高炉。 目前蓄热式热风炉有三种基本结构形式,即内燃式热风炉、外燃式热风炉、顶燃式热风炉。 传统内燃式热风炉(如图1-1所示)包括燃烧室和蓄热室两大部分,并由炉基、炉底、炉衬、炉箅子、支柱等构成。热风炉主要尺寸(全高和外径)决定于高炉有效容积、冶炼强度要求的风温。 图1-1 内燃式热风炉 我国实际的热风炉尺寸见表1-1。

表1-1我国设计的热风炉尺寸表 1.1炉基的设计 由于整个热风炉重量很大又经常震动,且荷重将随高炉炉容的扩大和风温的提高而增加,故对炉基要求严格。地基的耐压力不小于2.0~2.5kg/2cm ,为防止热风炉产生不均匀下沉而是管道变形或撕裂,将三座热风炉基础做成一个整体,高出地面200~400mm ,以防水浸基础由3A F 或16Mn 钢筋和325号水泥浇灌成钢筋混泥土结构。土壤承载力不足时,需打桩加固。 生产实践表明,不均匀下沉未超过允许值时,可将热风炉基础又做成单体分离形式,如武钢、鞍钢两座大型高炉,克节省大量钢材。 1.2炉壳的设计 热风炉的炉壳由8~20mm 厚的钢板焊成。对一般部位可取:δ=1.4D (mm )。开孔多的部位可取:δ=1.7D (mm ), δ为钢板厚度(mm ),D 为炉壳内径(m ),钢板厚度主要根据炉壳直径、内压、外壳温度、外部负荷而定。炉壳下部是圆柱体,顶部为半球体。为确保密封炉壳连同封板焊成一个不漏气的整体。由于炉内风压较高,加上炉壳耐火砖的膨胀,使热风炉底部承受到很大的压力,为防止底板向上抬起,热风炉炉壳用地脚螺栓固定在基础上,同时炉底封板与基础之间进行压力灌浆,保证板下密实,也可以把地脚螺栓改成锚固板,并在底封板上灌上混泥土。将炉壳固定使其不变形,或把平底封板加工成蝶形底,使热风炉成为一个手内压的气罐,减弱操作应力的影响。在施工过程中对焊接必须进行X 光探伤检验,要求炉壳椭圆度不大于直径的千分之二,整个中心线的倾斜(炉顶中心与炉底中心差)不大于30mm 。为了保证炉壳和炉内砌砖的密封性,在砌砖前后要试漏、试压,检查砌砖前试验压力为0.3~1.5kg/2cm ,砌砖后工作压力的1.5倍试压,每小时压力降<=1.5%.蓄热室、燃烧室的拱顶和连接管处采用(韧性耐龟 v 有效 100 250 620 1036 1200 1513 1800 2050 2516 4063 H 21068 28840 33500 37000 42000 44450 44470 54000 49660 54050 D 上 4346 5400 7300 8000 8500 9000 9330 99600 9000 10100 下 5200 6780 9000 9500 H/D 4.80 5.57 4.80 4.70 4.95 4.93 4.93 5.70 5.57 5.35

冷库设计说明

1 设计总说明 1.1 概述 本工程名称:九合冷冻、农副产品批发交易市场。建设单位:**新联友食品冷藏股份有限公司。本案地处**省**县九合镇。总地块为不规则的多边形,东西最长约415米,南北最长约203米,总用地66120平方米,99亩。场地四周交通便利,市政设施齐全。 本工程共8栋楼,分为四个功能区,办公、公寓、商品交易、库房。办公区在整个场地的东面,其中1#三层以上为办公和2#三层以上为信息中心。公寓区在办公区的西南边,其中3、4#楼三层以上为公寓,5、6#三层以上为公寓。商品交易区在整个场地的中间,西边和南边为库房,东边为办公区,由各个楼的一三层裙房组成。库房区位于整个场地的西北边,由7#七层冷库和8#七层清真库组成。建筑主体最高高度65.40米。总建筑面积212559.06平方米;其中办公建筑面积18726.75平方米,信息中心建筑面积9990.27平方米,公寓建筑面积39253.70平方米,商品交易32622.09平方米,库房87103.42平方米,地下建筑面积24862.83平方米;其中地上建筑面积187696.23平方米,地下建筑面积24862.83平方米。容积率2.84,建筑密度36.24%,绿地率30%,停车位580个,公寓户数364户。 1.2 工程设计的主要依据 1.2.1 建设单位提供的设计委托书 1.2.2 建设单位提供的1:500地形图及环境资料 1.2.3 国家颁布的各种规范、规程及强制性条文; 《城市居住区规划设计规范》GB50180-93(2002年版); 《城市用地竖向规划规范》CJJ83-99; 《湿陷性黄土地区建筑规范》GB50025-2004; 《工程建设标准强制性条文·房屋建筑部分》(2009年版); 《工程建设标准强制性条文·城乡规划部分》GB50268-97(2000年版) 《全国民用建筑工程设计技术措施/规划·建筑》(2009年版); 《高层民用建筑设计防火规范》GB50045-95(2005年版); 《建筑设计防火规范》GB50016-2006; 《民用建筑设计通则》GB50352-2005; 《无障碍设计规范》GB50763-2012; 《办公建筑设计规范》JGJ67-2006; 《商店建筑设计规范》JGJ48-88; 《住宅设计规范》JB50096-2011 《住宅建筑规范》GB50368-2005 《汽车库、修车库、停车场设计防火规范》GB50067-97(2009年版); 《汽车库建筑设计规范》JGJ100-98; 《公共建筑节能设计标准》GB50189-2005; 《建筑工程设计文件编制深度规定》(2008年版); 《安全防范工程技术规范》GB50348-2012; 《民用建筑外保温系统及外墙装饰防火暂行规定》(公通字 [2009]46号) 《民用建筑工程室内环境污染控制规范》GB50325-2010; 《屋面工程技术规范》GB50345-2012; 《地下工程防水技术规范》GB50108-2008; 1.2.5 建设地区市政工程设施资料; 1.2.6 设计合同书;

相关主题
文本预览
相关文档 最新文档