当前位置:文档之家› 组合数学课后答案

组合数学课后答案

组合数学课后答案
组合数学课后答案

作业习题答案

习题二

2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。

证明:

假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。

假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。

2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。

证明:

方法一:

有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

方法二:

对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。

2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?

证明:

根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。

2.9将一个矩形分成(m+1)行

1

1

2

m

m

+

??

+

?

??

列的网格每个格子涂1种颜色,有m种颜色可以

选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。

证明:

(1)对每一列而言,有(m+1)行,m种颜色,有鸽巢原理,则必有两个单元格颜色相同。

(2)每列中两个单元格的不同位置组合有

1

2

m+

??

?

??

种,这样一列中两个同色单元格的位

置组合共有

1

2

m

m

+

??

?

??

种情况

(3)现在有112m m +??

+

???

列,根据鸽巢原理,必有两列相同。证明结论成立。 2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明:

将S 划分为{1,3,5},{7,9,11}……,{ 595,597,599}共100组,由鸽巢原理知任意选取101个数中必存在2个数来自同一组,即其差最多为4.

2.12证明:从1~200中任意选取70个数,总有两个数的差是4,5或9。 设从1~200中任意选取的70个数构成一组,即 第一组: 1270,,,a a a ;

第二组: 12704,4,,4a a a +++ ; 第三组:12709,9,,9a a a +++ ;

显然,这三组数均在1~209之间,且共有3*70=210个数,根据鸽巢原理一定有两个数相等,又因为任取的这70个数均不相同,所以这2个相等的数一定来自不同组,根据不同组的分布讨论如下:

1) 如果这两个数分别来自第一组和第二组,则有4j i a a =+; 2) 如果这两个数分别来自第一组和第三组,则有9j i a a =+; 3) 如果这两个数分别来自第二组和第三组,则有5j i a a =+;

得证。

习题三

3.8 确定多重集{3,4,5}M a b c =???的11-排列数?

11!11!11!

277203!4!4!3!3!5!2!4!5!

++=

3.9 求方程123420x x x x +++=,满足12342,0,5,1x x x x ≥≥≥≥-的整数解的个数。

14416803+-??= ???

3.10 架上有20卷百科全书,从中选出4卷使得任意两本的卷号都不相邻的选法有多少种?

解:n=20,r=4,1204117238044n r r -+-+??????=== ? ? ???????

3.17 一局乒乓球比赛中,运动员甲以11:7战胜运动员乙,若在比赛过程中甲从来没有落后

过,求有多少种可能的比分记录?

解:根据题意,相当于求从点(0,0)到点(11,7)且从下方不穿过y=x 的非降路径数,即为:

11711171(117)!(1171)

-13260 10 12(111)!7!+-+-????+-+=

= ? ?+????

3.21 1)会议室中有2n +1个座位,现摆成3排,要求任意两排的座位都占大多数,求有多少

种摆法? 解:

(1)

方法1:如果没有附加限制则相当于把2n+1个相同的小球放到3个不同的盒子里,有

213123 3-1 2n n ++-+????= ? ?????

种方案,而不符合题意的摆法是有一排至少有n+1个座位。这相当于将n+1个座位先放到3排中的某一排,再将剩下的2n+1-(n+1)=n 个座位任意分到3排中,这样的摆法共有21(1)31233 2 2n n n +-++-+????

?=? ? ?????

种方案,所以符合题意的摆

法有:

23213 2 2 2n n n +++??????

-?= ? ? ???????

方法2:设第一排座位有x 1个,第二排座位有x 2个,第三排座位有x 3个。x 1+x 2+x 3=2n+1,且x 1+x 2≥(2n+1)/2,x 1+x 3≥(2n+1)/2,x 2+x 3≥(2n+1)/2,即x 1+x 2≥n+1,x 1+x 3≥n+1,x 2+x 3≥n+1,令y 1= x 1+x 2-n-1,y 2= x 1+x 3-n-1,y 3= x 2+x 3-n-1,可知y 1+y 2+y 3=2(2n+1)-3(n+1)=n-1且y i ≥0,1≤i ≤3。显然,x 方程满足要求的解与y 方程非负整数解一一对应,有

1311312n n -+-+????= ? ?-????

种。

方法3:要求每行非空

如果没有附加限制则相当于把2n+1个相同的小球放到3个不同的盒子里,不允许为空,有2112 3-12n n +-????

=

? ?????

种方案,而不符合题意的摆法是有一排至少有n+1个座位。这相当

于将n 个座位先放到3排中的某一排,再将剩下的2n+1-n=n+1个座位任意分到3排中,每排不允许为空,这样的摆法共有21133 22n n n +--????

?=? ? ?????

种方案,所以符合题意的摆法

有:

21322 2n n n +??????

-?= ? ? ???????

(2)会议室中有2n 个座位,现摆成3排,要求任意两排的座位都占大多数,求有多少种摆法?

解:

(2)

方法1:如果没有附加限制则相当于把2n 个相同的小球放到3个不同的盒子里,有

23122 2 2n n +-+????= ? ?????

种方案,而不符合题意的摆法是有一排至少有n 个座位。这相当于将n 个座位先放到3排中的某一排,再将剩下的2n-n=n 个座位任意分到3排中,这样的摆法共有231233 2 2n n n -+-+????

?=?

? ?????

种方案。需要注意的是,三排中如果任意两排都是

n 个座位共有3种情况,这3种情况在23 2n +??

? ???

中被重复计算了2次,因此需要将重复减去的3次加上。所以符合题意的摆法有:

222133 2 2 2n n n ++-??????

-?+= ? ? ???????

方法2:设第一排座位有x 1个,第二排座位有x 2个,第三排座位有x 3个。x 1+x 2+x 3=2n ,且x 1+x 2≥n +1,x 1+x 3≥n +1,x 2+x 3≥n +1,令y 1=x 1+x 2-n-1,y 2=x 1+x 3-n-1,y 3=x 2+x 3-n-1,可知y 1+y 2+y 3=2(2n)-3n-3=n-3且y i ≥0,1≤i ≤3。显然,x 方程满足要求的解与y 方程非负整数解一一对应,有

3311312n n -+--????= ? ?-????

种。 方法3:要求每行非空

如果没有附加限制则相当于把2n 个相同的小球放到3个不同的盒子里,不允许为空,

有21212 2n n --????= ? ?????

种方案,而不符合题意的摆法是有一排至少有n 个座位。这相当于将

n-1个座位先放到3排中的某一排,再将剩下的2n-(n-1)=n+1个座位任意分到3排中,每排不允许为空,这样的摆法共有2(1)13322n n n ---????

?=? ? ?????

种方案,所以符合题意的摆法

有:

2113 222n n n --??????

-?= ? ? ???????

3.24 n (n ≥2)个不同的球分给甲、乙、丙3人,使得甲至少分得两个球,有多少种不同的分法? 解:1

2322

2n

n

n

n n i

i n n i --=??--= ???

∑ 3.25 24个相同的球分堆,使得每堆的球不少于5,有多少种不同的分堆方法?

方法1:

24

5

24i

i i k

=?=∑

55266224242243(1())(1())(1()())

x x x x x x x ++++++++++ 5624

1

(1)(1)(1)

x x x =

--- 每堆去掉4个球,剩余球分堆的方法数

5

1

(244,)(20,1)(16,2)(12,3)(8,4)(4,5)18125026

i B i i B B B B B =-=++++=++++=∑

其中

(12,3)(9,1)(9,2)(9,3)

14(6,1)(6,2)(6,3)

1413(3,1)(3,2)(3,3)

141311112

B B B B B B B B B B =++=++++=++++++=++++++=

(8,4)(4,1)(4,2)(4,3)(4,4)12115B B B B B =+++=+++=

习题四

4.3 一项对于A,B,C 三个频道的收视调查表明,有20%的用户收看A ,16%的用户收看B ,

14%的用户收看C ,8%的用户收看A 和B ,5%的用户收看A 和C ,4%的用户收看B 和C ,2%的用户都看。求不收看A,B,C 任何频道的用户百分比?

解:设性质P 1是收看A 频道的用户百分比;P 2是收看B 频道的用户百分比;P 3是收看C 频道的用户百分比;Ai={x|x ∈S ∧x 具有性质P i },i=1,2,3。S 是受调查的所有用户的集合。

||1S =;

123||20%,||16%,||14%A A A ===

121323||8%,||5%,||4%A A A A A A ?=?=?= 123||2%A A A ??=

根据定理4.1.1,有

123123121323123||||(||||||)(||||||)||1(20%16%14%)(8%5%4%)2%65%

A A A S A A A A A A A A A A A A ??=-+++?+?+?-??=-+++++-=

4.4 某杂志对100名大学新生的爱好进行调查,结果发现他们喜欢看球赛和电影、戏剧。其

中58人喜欢看球赛,38人喜欢看戏剧,52人喜欢看电影,既喜欢看球赛又喜欢看戏剧的有18人,既喜欢看电影又喜欢看戏剧的有16人,三种都喜欢看的有12人,求有多少人只喜欢看电影? 解: 方法1:

设性质P 1喜欢看球赛;P 2喜欢看戏剧;P 3喜欢看电影。Ai={x|x ∈S ∧x 具有性质P i },i=1,2,3。

S 是100名大学新生的集合。

||100S =

123||58,||38,||52A A A ===

121323||18,||?,||16A A A A A A ?=?=?= 123||12A A A ??=

由题意可得,这100名大学生中每人至少有三种兴趣中的一种,

12312312132312313||||(||||||)(||||||)||100(583852)(18||16)120

A A A S A A A A A A A A A A A A A A ??=-+++?+?+?-??=-++++?+-=

所以可得既喜欢看球赛有喜欢看电影的人有

13||(583852)100(1816)1226A A ?=++--++=

因此只喜欢看电影的人有

12331323123||||||||||A A A A A A A A A A A ??=-?-?+??

=52-(26+16)+12=22人 方法2:

1231212||||||||||100(5838)1822A A A S A A A A ??=--+?=-++=

A

C

B

65

方法3:

设只喜欢看球赛的人数为x ;设只喜欢看电影的人数为y ;喜欢看球赛和电影但不喜欢看戏

剧的人数为z ,则

1003858185216x y z x z y z ++=-??

+=-??+=-?

解得y=22,所以22人只喜欢看电影。

4.5 某人有六位朋友,他跟这些朋友每一个都一起吃过晚餐12次,跟他们中任二位一起吃

过6次晚餐,和任意三位一起吃过4次晚餐,和任意四位一起吃过3次晚餐,任意五位一起吃过2次晚餐,跟六位朋友全部一起吃过一次晚餐,另外,他自己在外吃过8次晚餐而没碰见任何一位朋友,问他共在外面吃过几次晚餐? 解:设n 为在外面共吃过晚餐的次数,性质Pi(1≤i ≤6)表示他和第i 位朋友吃过晚餐,Ai(1≤i ≤6)

表示他和第i 位朋友吃过晚餐的次数。显然满足对称筛公式,其中

(1)12,(2)6,(3)4,(4)3,(5)2,(6)1,N N N N N N ======

由题可得方程:

123456

123456666666||12643218

A A A A A A n C C C C C C ?????=-?+?-?+?-?+?=解得吃饭次数为123456

6666661264321836C C C C C C ?-?+?-?+?-?+=

4.13 计算棋盘多项式

解:

2)+(1+x)*R(

)

球赛

戏剧

电影

= x3+3x2+x+(1+x)[xR()+R()]

= x3+3x2+x+(1+x)[x(1+x)+(1+4x+2x2)]

= 5x3+12x2+7x+1

4.14 A,B,C,D,E五种型号的轿车,用红、白、蓝、绿、黑五种颜色进行涂装。要求A型车不能涂成黑色;B型车不能涂成红色和白色;C型车不能涂成白色和绿色;D型车不能涂绿色和蓝色;E型号车不能涂成蓝色,求有多少种涂装方案?

解:

绿

绿

绿

1.若未规定不同车型必须涂不同颜色,则:

????=

涂装方案43334432

2.若不同车型必须涂不同颜色,则:

禁区的棋盘多项式为:

=R()R()=(1+x)(xR()+R())

=(1+x)(xR()R()R())

=(1+x)(x(1+2x) 2+(1+3x+x2)2)

=1+8x+22x2+25x3+11x4+x5

所以:

N =5!-r1×4!+r2×3!–r3×2!+r4×1!- r5×0! =5!-8*4!+22*3!-25*2!+11*1!-1=20

习题五

5.1 求如下数列的生成函数。

(1))1()1( k a k k ;(2)k k k k a 2)1(-=; (3)6+=k a k ; (4))2(+=k k a k ; (5)?

??

? ??+=k

k n a k ; (6)3k k a ??

= ???; 解:

12

00

1

(1)()(1)(1)[(1)]'[]'1(1)k

k

k k k k x A x k x x x x ∞

+===-+=-==++∑∑ 2

2(2)()(1)2(2)(12)k

k

k

k k k k x

A x k x k x x ∞∞

==-=-=-=

+∑∑

222

66665(3)()(6)6(1)1(1)(1)

k

k

k k k k x x x x

A x k x kx x x x x x ∞∞∞

===+--=+=+=

+==----∑∑∑ 1

2

323

1(4)()(2)(1)[]''[]'

1123(1)(1)(1)k

k k k k k x A x k k x x k k x

kx x x x x x x x x

x x x ∞∞

-====+=++=+---=

+=

---∑∑∑

1

01

(5)()(1)k k n k n k A x x k x ∞

-=+??== ?-??

∑ 323200

00023432

2332334

4

32111(6)()36623141(1)16(1)2(1)3(1)4332426(1)(1)k k k k k

k k k k k k k k k A x x x k x k x kx

x x x x x x x x x x x x x x x x x x x x ∞

∞∞∞∞=====??-+===-+ ???+++=-+---++-++-+==--∑∑∑∑∑

3

303333340(6)()33333(1)k k k k k k k k k k k k k k A x x x x x x

k k k x x x k x ∞

∞∞∞

-====∞

=????????==== ? ? ? ?--????????

+??== ?

-??

∑∑∑∑∑

5.3 已知数列{}k a 的生成函数是x

x x x A 31932)(2

--+=,求k a .

20

2392()32331313k k k x x A x x x x x x ∞

=+-==+=?+--∑

9

1

23

1

k n

n a n =?=??≠? 5.15 知数列{k a }的指数生成函数是2()5x x G x x e =+,求k a 。

22

0()5252!!

k x

x k x x G x x e k ∞==+=+∑

72

52k k a k =?=?

≠?

6.5 平面上有n 条直线,它们两两相交且沿有三线交于一点,设这n 条直线把平面分成()f n 个区域,求()f n 的递推关系并求解.

解:设n-1条直线把平面分成(-1)f n 个区域,则第n 条直线与前n-1条直线都有一个交点,即在第n 条直线上有n-1个交点,并将其分成n 段,这n 段又把其所在的区域一分为二。

0101#11()(1),(2) (1)2 10 1 *()()12

(1)()2

1(1) ()12

f n f n n n f x x f n b b n n b b n n

f n c c n n f n =-+≥?∴?

=?-===+==+=+

=+∴=+

齐次特征方程:特征根:非齐次特解:代入递推关系得:,

代入递推关系得:

6.6 一个1n ?的方格图形用红、蓝两色涂色每个方格,如果每个方格只能涂一种颜色,且不允许两个红格相邻,设()f n 有种涂色方案,求()f n 的递推关系并求解.

解:

设f (n )为n ?1的方格图形的涂色方案。

当n=1时,f (1)=2,即一个方格有红、蓝两种涂色方案。 当n=2时,f (2)=3,即两个方格有(红、蓝),(蓝、红)、(蓝、蓝)三种涂色方案。由于不允许两个红格相邻,所以不存在(红、红)的情况。

当n>2时,如果第一个格子涂为蓝色,则剩余n-1个格子的涂色方案数为f (n -1);如果第一个格子涂为红色,由于不允许两个红格相邻,所以第二个格子必为蓝色,则剩余n-2个格子的涂色方案数为f (n -2)。于是,当n>2时涂色方案数为f (n )= f (n -1)+ f (n -2)。

(1)2;(2)3;

() (-1) (-2).

f f f n f n f n ==??

=+? 先求解这个递推关系的通解,它的特征方程为

,012=--x x

解这个方程,得

.2

5

1,25121-=+=

x x

所以,通解为

.251251)(21n

n c c n f ???

? ??-+???? ??+= 代入初值来确定1c 和2c ,得

12122,3 3.

22

=??+=?? 求解这个方程组,得

21,c =

?

?2

2.c =??

所以,原递推关系的解为

3

3

11()22n n f n ++???

=-????

( ,2,1,0=n ).

6.7 核反应堆中有α和β两种粒子,每秒钟内1个α粒子可反应产生出3个β粒子,而1个β粒子又可反应产生出1个α粒子和2个β粒子.若在t =0s 时刻反应堆中只有1个α粒子,求t =100s 时刻反应堆里将有多少个α粒子和β粒子.

解:

设t 时刻反应堆中α粒子数为()f t ,β粒子数为()g t

212#1212()(1),(2)()3(1)2(1)(0)1,(0)0()3(2)2(1),(2)(0)0,(1)3 230 3,1

()3(1)3344

3 ()34t t

f t

g t n g t f t g t f g g t g t g t n g g x x x x g t c c c c g t =-≥??

=-+-??==?

=-+-≥??

==?--===-=?+?-==-

∴=?齐次特征方程:特征根:齐次通解:代入递推关系得:

,t 11

3

(1)43333 ()3(1)(1)4444

t t

t t t f t ---?-∴=?-?-=+?-

6.8 求下列n 阶行列式的值n d

21000

121000

1

2

000012

n d =?

解:当n=1时,122d == 当n=2时,221

312

d =

= 当n>2时,-1-22n n n d d d =-

先求解这个递推关系的通解,它的特征方程为

2210,x x -+=

解这个方程,得

121.x x ==

所以,通解为

12()1 1.

n n f n c c n =+?

代入初值来确定1c 和2c ,得 12122,

2 3.

c c c c +=??

+=?

求解这个方程组,得 11,c =21.c = 所以,原递推关系的解为

()1f n n =+ ( ,2,1,0=n ).

6.9设h(n)表示n+2条边的凸多边形为它的对角线划分所得的区域数,其中假定没有二条对角线在凸多边形内有一公共点。定义h(0)=0,对n=l ,2,…,证明

1()(1)3n h n h n n +??

=-++ ???

证明:

如图所示,在凸n+2边形中,划出以任意两相邻边为边的三角形,例如△ABC 。则余下的是n+1个顶点的凸多边形,它的对角线划分所得的区域数为h(n-1)。由A 点引出的对角线共有n-1条,分△ABC 为n 块。下面我们计算一下由A 点引出的对角线对n+1条边的凸多边形划分所增加的区域数。

在n+1个顶点中仟取三个,不妨设为D ,F ,H ,其中必有一个顶点(这里是F)使得对角线AF 把D 和H 分在两边。所以对角线DH 必与对角线AF 相交。又由题意知,这个交点不会有其它对角线通过。这说明每新增加一个交点必与n+1个顶点中的三个顶点相对应。故新增加的交点数为C(n+1,3)个。

另外,从A 引出的每一条对角线上的交点数正好与这条对角线在凸n+1边形内截成的线段数相同,而每一线段恰好把n+1边形内某一区域分为两个,故新增加区域数为C(n+1,3)个。所以有

1()(1)3n h n h n n +??

=-++ ???

这是一个线性常系数非齐次递推关系,可以求得

2(1)()42n n n h n +??

+=

+ ???

《组合数学》试题

《组合数学》试题 姓名 学号 评分 一、填空题(每小题3分,共18分) 1、 红、黄、蓝、白4个球在桌上排种排法。成一圈,有 2、设P 、Q 为集合,则|P ∪Q| |P| + |Q|. 3、0max i n n i ≤≤????=?? ????? 。 4. 366个人中必有 个人生日相同。 5.的系数为的展开式中,342326 41x x x x i i ?? ? ??∑= 。 6.解常系数线性齐次递推关系的常用方法称为 法 。 二、单项选择题(每小题2分,共12分) 1、数值函数f = (1,1,1,...)的生成函数F(x) =( ) A 、(1+x)n B 、1-x C 、(1-x)-1 D 、(1+x)-n 2、递推关系f(n) = 4f(n -1)-4f(n -2)的特征方程有重根2,则( )是它的一般解 。 A 、C 12n -1+C 22n B 、( C 1+C 2n)2n C 、C(1+n)2n D 、C 12n +C 22n . 3、由6颗不同颜色的珠子可以做成 ( )种手链。 A 、720 B 、120 C 、60 D 、6

4、=??? ??-∑=n k k k n 0 )1(( )。 A 、2n B 、0 C 、n2n -1 D 、1 5、设F(x),G(x)分别是f 和g 的生成函数,则以下不成立的是( ) 。 A 、F(x)+G(x) 是f+g 的生成函数 B 、F(x)G(x) 是fg 的生成函数 C 、x r F(x) 是S r (f)的生成函数 D 、F(x)-xF(x) 是?f 的生成函数. 6、在无柄茶杯的四周画上四种不同的图案,共有( )种画法。 A 、24 B 、12 C 、6 D 、3 三、 解答题(每小题10分,共70分) 1. 有4个相同的红球,5个相同的白球,那么这9个球有多少种不同的排列方 式? 2. 公司有5台电视机,4台洗衣机,7台冰箱,现要把其中3台电视机,2台洗 衣机,4台冰箱选送到展销会,试问有多少种选法? 3. 设S = {1, 3?2, 3?3, 2?4, 5}是一个多重集,那么由集合S 的元素能组成多少个 不同的四位数。 4.试求在1到300之间那些不能被3, 5和7中任何一个整除的整数个数。 5. 解非齐次递推关系 1201 693,20,1n n n a a a n a a --++=≥??==? 6. 将字母a,b,c,d,e,f,g 排成一行,使得模式beg 和cad 都不出现的排列总数是多少? 7. 某次会议有10个代表参加,每一位代表至少认识其余9位中的一位,则10位代表中至少有两位代表认识的人数相等。

(完整word版)组合数学课后答案

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学试题集

组合数学试题集 一.简单题目 可以根据需要改成选择题或者填空题 1.在1到9999之间,有多少个每位上数字全不相同而且由奇数构成的整数?(参见课本21页) 解:该题相当于从“1,3,5,7,9”五个数字中分别选出1,2,3,4作排列的方案数; (1)选1个,即构成1位数,共有15P 个; (2)选2个,即构成两位数,共有25P 个; (3)选3个,即构成3位数,共有35P 个; (4)选4个,即构成4位数,共有4 5P 个; 由加法法则可知,所求的整数共有:12345555205P P P P +++=个。 2.一教室有两排,每排8个座位,今有14名学生,问按下列不同的方式入座,各有多少种做法?(参见课本21页) (1)规定某5人总坐在前排,某4人总坐在后排,但每人具体座位不指定; (2)要求前排至少坐5人,后排至少坐4人。 解:(1)因为就坐是有次序的,所有是排列问题。 5人坐前排,其坐法数为(8,5)P ,4人坐后排,其坐法数为(8,4)P , 剩下的5个人在其余座位的就坐方式有(7,5)P 种, 根据乘法原理,就座方式总共有: (8,5)(8,4)(7,5)28449792000P P P =(种) (2)因前排至少需坐6人,最多坐8人,后排也是如此。 可分成三种情况分别讨论: ① 前排恰好坐6人,入座方式有(14,6)(8,6)(8,8)C P P ; ② 前排恰好坐7人,入座方式有(14,7)(8,7)(8,7)C P P ; ③ 前排恰好坐8人,入座方式有(14,8)(8,8)(8,6)C P P ;

各类入座方式互相不同,由加法法则,总的入座方式总数为: (14,6)(8,6)(8,8)(14,7)(8,7)(8,7)(14,8)(8,8)(8,6)10461394944000 C P P C P P C P P ++= 3.一位学者要在一周安排50个小时的工作时间,而且每天至少工作5小时,问共有多少种安排方案?(参见课本21页) 解:用i x 表示第i 天的工作时间,1,2,,7i =,则问题转化为求不定方程 123456750x x x x x x x ++++++=的整数解的组数,且5i x ≥,于是又可以转化为求不定方程123456715y y y y y y y ++++++=的整数解的组数。 该问题等价于:将15个没有区别的球,放入7个不同的盒子中,每盒球数不限,即相异元素允许重复的组合问题。 故安排方案共有:(,15)(1571,15)54264RC C ∞=+-= (种) ? 另解: 因为允许0i y =,所以问题转化为长度为1的15条线段中间有14个空,再加上前后两个空,共16个空,在这16个空中放入6个“+”号,每个空放置的“+”号数不限,未放“+”号的线段合成一条线段,求放法的总数。从而不定方程的整数解共有: 212019181716(,6)(1661,6)54264654321 RC C ?????∞=+-= =?????(组) 即共有54 264种安排方案。 4.求下列函数的母函数: {(1)}n n -;(参见课本51页) 母函数为: 2 323000222()(1)(1)2(1)(1)(1)n n n n n n x x x G x n n x n n x nx x x x ∞∞∞====-=+-=-=---∑∑∑; ? 方法二: ()()()()()220 22220 02222023 ()(1)00121121n n n n n n n n n n G x n n x x n n x x n n x x x x x x x x x x ∞∞-==∞∞ +==∞+==-=++-"=++=""????== ? ?-???? =-∑∑∑∑∑

组合数学课后答案

作业习题答案 习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n 个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。 证明: 方法一: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为 奇数+奇数 = 偶数 ; 偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。 方法二: 对于平面上的任意整数坐标的点而言,其坐标值对2取模后的可能取值只有4种情况,即:(0,0) ,(0,1) ,(1,0), (1,1),根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的,那么这两点的连线中点也必为整数。 2.4一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.9将一个矩形分成(m +1)行112m m +?? + ??? 列的网格每个格子涂1种颜色,有m 种颜色可以选择,证明:无论怎么涂色,其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。 证明: (1)对每一列而言,有(m+1)行,m 种颜色,有鸽巢原理,则必有两个单元格颜色相同。 (2)每列中两个单元格的不同位置组合有12m +?? ??? 种,这样一列中两个同色单元格的位置组合共有 12m m +?? ??? 种情况 (3)现在有112m m +?? + ??? 列,根据鸽巢原理,必有两列相同。证明结论成立。 2.11证明:从S={1,3,5,…,599}这300个奇数中任意选取101个数,在所选出的数中一定存在2个数,它们之间最多差4。 证明:

组合数学试题

《组合数学》期末试题(A )姓名班级学号成绩 一,把m 个负号和n 个正号排在一条直线上,使得没有两个负 号相邻,问有多少种不同的排法。 二,在1和100之间既不是某个整数的平方,也不是某个整数的 立方的数有多少个? 三,边长为1的等边三角形内任意放10个点,证明一定存在两 个点,其距离不大于1/3。 四,凸10边形的任意三条对角线不共点,试求(1)这凸10边形的 对角线交于多少个点?(2)又把所有对角线分割成多少段?五,求和=?? ???∑k-(-)k+1111n k n k 六,求解递推关系--++=??==?12016930,1 n n n a a a a a 七,用红白蓝三种颜色对1×n 的方格涂色,每个方格只能涂一种颜色,如果要求偶数个方格涂成红色,问有多少种方法? 八,用红、蓝二种颜色对1×n 的方格涂色,每个方格只能涂一种颜色,如果要求涂成红色的两个方格不能相邻,问有多少种方法?注,1-4、6题各15分,第5题10分,第7题8分,第八题7分。

北京邮电大学2005 ——2006 学年第1 学期 《组合数学》期末试题答案 一, (15) 解: 由于正负号不能相连,故先将正号排好,产生n+1个空档。 --------5分 则负号只能排在两个正号之间,这相当于从n+1个数中取m 个数的组合,故有---------10分 1n m +????? ?种方式。----15 备注:若写出m>n+1时为0,m=n+1时为1,给5分 二, (19分) 解:设A 表示是1-100内某个数的平方的集合,则 |A|=10, -----4分 设B 表示是1-100内某个数的立方的集合,则|B|=4, --8分 |A ∩B|=2, -----12分 由容斥原理得 100|||||| 100104288A B A B A ∩=??+∩=??+=B --------19分 三, (15分) 证明:将此三角形剖分成9个小的边长为1/3的等边三角形。 - ------5分 由鸽巢原理,必有两点在某一个小三角形内,----12分 此时,这两点的距离不超过小三角形边长1/3。从而得证。 -------15分 四, (15分) 解:(1)由于没有三条对角线共点,所以这凸多边形任取4点,组成的多边形内唯一的一个四边形,确定唯一一个交点,--5分 从而总的交点数为C(10,4)=210-------------10分 (2)如图,不妨取顶点1,考察由1出发的对角线被其他对角线 剖分的总数。不妨设顶点标号按顺时针排列,取定对角线1 i

清华组合数学()习题答案

?1.证:对n 用归纳法。先证可表示性: 当n=0,1时,命题成立。 假设对小于n 的非负整数,命题成立。对于n,设k!≤n <(k+1)!,即0≤n-k!<k·k!由假设对n-k!,命题成立, 设n-k!=∑a i ·i!,其中a k ≤k-1,n=∑a i ·i!+k!,命题成立。i=1 k i=1 k 再证表示的唯一性: 设n=∑a i ·i!=∑b i ·i!, 不妨设a j >b j ,令j=max{i|a i ≠b i }a j ·j!+a j-1·(j-1)!+…+a 1·1! =b j ·j!+b j-1·(j-1)!+…+b 1·1!,(a j -b j )·j!=∑(b i -a i )·i!≥j!>∑i·i!≥∑|b i -a i |·i!≥∑(b i -a i )·i! 另一种证法:令j=min{i|a i ≠b i }∑a i ·i!=∑b i ·i!,两边被(j+1)!除,得余数a j ·j!=b j ·j!,矛盾. i=1 k i=1k i=1 j-1i=1 j-1 i=1j-1i=1 j-1 i ≥j i ≥j ?2.证: 组合意义: 等式左边:n 个不同的球,先任取出1个,再从余下的n-1个中取r 个; 等式右边:n 个不同球中任意取出r+1个,并指定其中任意一个为第一个。显然两种方案数相同。 nC(n-1,r) = n ————= ——————— (n-1)! (r+1)·n! r!·(n-r-1)! (r+1)·r!·(n-r-1)! = ——————= (r+1)C(n,r+1).(r+1)·n! (r+1)!·(n-r-1)! ?3.证: 设有n 个不同的小球,A 、B 两个盒子,A 盒中恰好放1个球,B 盒中可放任意个球。有两种方法放球: ①先从n 个球中取k 个球(k ≥1),再从中挑 一个放入A 盒,方案数共为∑kC(n,k),其余球放入B 盒。 ②先从n 个球中任取一球放入A 盒,剩下n-1个球每个有两种可能,要么放入B 盒, 要么不放,故方案数为n2 . 显然两种方法方案数应该一样。 k=1n n-1 ?4.解:设取的第一组数有a 个,第二组有b 个,而 要求第一组数中最小数大于第二组中最大的,即只要取出一组m 个数(设m=a+b),从大到小取a 个作为第一组,剩余的为第二组。此时方案数为C(n,m)。从m 个数中取第一组数共有m-1中取法。总的方案数为∑(m-1)C(n,m)=n ·2 +1. ?5.解:第1步从特定引擎对面的3个中取1个有 C(3,1)种取法,第2步从特定引擎一边的2个中 取1个有C(2,1)种取法,第3步从特定引擎对面的2个中取1个有C(2,1)中取法,剩下的每边1个取法固定。 所以共有C(3,1)·C(2,1)·C(2,1)=12种方案。 m=2 n n-1 ?6.解:首先所有数都用6位表示,从000000到 999999中在每位上0出现了10 次,所以0共出现 了6·10 次,0出现在最前面的次数应该从中去掉, 000000到999999中最左1位的0出现了10 次, 000000到099999中左数第2位的0出现了10 次, 000000到009999左数第3位的0出现了10 次, 000000到000999左数第4位的0出现了10 次, 000000到000099左数第5位的0出现了10 次, 000000到000009左数第6位的0出现了10 次。另外1000000的6个0应该被加上。所以0共出现了 6·10 –10 –10 –10 –10 –10 –10 +6 = 488895次。 5 5 5 4 3 2 1 5543210 ?7.解:把n 个男、n 个女分别进行全排列,然后 按乘法法则放到一起,而男女分别在前面,应该 再乘2,即方案数为2·(n!) 个. 围成一个圆桌坐下, 根据圆排列法则,方案数为2 ·(n!) /(2n)个. ?8.证:每个盒子不空,即每个盒子里至少放一 个球,因为球完全一样,问题转化为将n-r 个小球放入r 个不同的盒子,每个盒子可以放任意个球,可以有空盒,根据可重组合定理可得共有C(n-r+r-1,n-r) = C(n-1,n-r)中方案。根据C(n,r)=C(n,n-r),可得 C(n-1,n-r)=C(n-1,n-1-(n-r))=C(n-1,r-1)个方案。证毕。 2 2 ?9.解:每个能整除尽数n 的正整数都可以选取每个素数p i 从0到a i 次,即每个素数有a i +1种选择,所以能整除n 的正整数数目为(a 1+1)·(a 2+1)·…·(a l +1)个。 ?10.解:相当于把n 个小球放入6个不同的盒子里,为可重组合,即共有C(n+6-1,n)中方案,即C(n+5,n)中方案。 ?11.解:根据题意,每4个点可得到两条对角线,1个对角线交点,从10个顶点任取4个的方案有C(10,4)中,即交于210个点。

组合数学课后标准答案

组合数学课后标准答案

————————————————————————————————作者:————————————————————————————————日期:

习题二证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

任取11个整数,求证其中至少有两个数的差是10的整数倍。证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。证明:平面上任取5个坐标为整数的点,则其中至少有两个点,由它们所连线段的中点的坐标也是整数。2.3证明:有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

一次选秀活动,每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果?证明:根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学题目及标准答案

组合数学 例1: 将8个“车”放在8×8的国际象棋棋盘上,如果它们两两均不能互吃,那么称8个“车”处于一个安全状态。问共有多少种不同的安全状态? 解:8个“车”处于安全状态当且仅当它们处于不同的8行和8列上。 用一个排列a1,a2,…,a8 ,对应于一个安全状态,使ai 表示第i 行的ai 列上放置一个“车”。这种对应显然是一对一的。因此,安全状态的总数等于这8个数的全排列总数8!=40320。 例4:n 位客人在晚会上每人与他人握手d 次,d 是奇数。证明n 偶数。 证:由于每一次握手均使握手的两人各增加 一次与他人握手的次数,因此n 位客人与他人握手 次数的总和 nd 是偶数 — 握手次数的2倍。根据奇偶 性质,已知d 是奇数,那么n 必定是偶数。 例4 从1到2n 的正整数中任取n +1个,则这n +1个数中,至少有一对数,其中一个是另一个的倍数。 证 设n +1个数是a 1, a 2, ···, an +1。每个数去掉一切2的因子,直至剩下一个奇数为止。组成序列r 1, r 2,, ···, rn +1。这n +1个数仍在[1 , 2n ]中,且都是奇数。而[1, 2n ]中只有n 个奇数,故必有ri =rj = r , 则ai = 2αi r , aj = 2αj r 。若ai >aj ,则ai 是aj 的倍数。 例5 设a 1, a 2, ···, am 是正整数,则至少存在一对k 和l , 0≤k h ,使得 ah+1+…+ ak= 39 证 令Sj= ,j =1 , 2 , …,100。显然 ∑=j i i a 1 ∑=h i i a 1

排列组合测试题(含答案)

排例组合专题训练 1. 将3个不同的小球放入4个盒子中,则不同放法种数有A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113 23233A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5.在8 2 x ? ?的展开式中的常数项是A.7 B .7- C .28 D .28- 6.5 (12)(2)x x -+的展开式中3 x 的项的系数是A.120 B .120- C .100 D .100- 7.22n x ???展开式中只有第六项二项式系数最大,则展开式中的常数项是 A .180 B .90 C .45 D .360 8.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 9.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 10.n N ∈且55n <,则乘积(55)(56) (69)n n n ---等于 A .5569n n A -- B .15 69n A - C .15 55n A - D .14 69n A - 11.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 12.把10 )x -把二项式定理展开,展开式的第8项的系数是 A .135 B .135- C .- D . 13.2122n x x ??+ ?? ?的展开式中,2 x 的系数是224,则2 1x 的系数是A.14 B .28C .56 D .112 14.不共面的四个定点到面α的距离都相等,这样的面α共有几个A .3 B .4 C .6 D .7

李凡长版-组合数学课后习题答案-习题3

李凡长版-组合数学课后习题答案-习题3

第三章递推关系 1.在平面上画n条无限直线,每对直线都在不同的点相交,它们构成的无限 区域数记为f(n),求f(n)满足的递推关系. 解: f(n)=f(n-1)+2 f(1)=2,f(2)=4 解得f(n)=2n. 2.n位三进制数中,没有1出现在任何2的右边的序列的数目记为f(n),求 f(n)满足的递推关系. 解:设a n-1a n-2 …a 1 是满足条件的n-1位三进制数序列,则它的个数可以用f(n-1) 表示。 a n 可以有两种情况: 1)不管上述序列中是否有2,因为a n 的位置在最左边,因此0 和1均可选; 2)当上述序列中没有1时,2可选; 故满足条件的序列数为 f(n)=2f(n-1)+2n-1 n 1, f(1)=3 解得f(n)=2n-1(2+n). 3.n位四进制数中,2和3出现偶数次的序列的数目记为f(n),求f(n)满足 的递推关系. 解:设h(n)表示2出现偶数次的序列的数目,g(n)表示有偶数个2奇数个3的序列的数目,由对称性它同时还可以表示奇数个2偶数个3的序列的数目。 则有 h(n)=3h(n-1)+4n-1-h(n-1),h(1)=3 (1) f(n)=h(n)-g(n),f(n)=2f(n-1)+2g(n-1) (2) 将(1)得到的h(n)=(2n+4n)/2代入(2),可得 n+4n)/2-2f(n), 4.求满足相邻位不同为0的n位二进制序列中0的个数f(n). 解:这种序列有两种情况: 1)最后一位为0,这种情况有f(n-3)个; 2)最后一位为1,这种情况有2f(n-2)个; 所以 f(1)=2,f(2)=3,f(3)=5. 5.求n位0,1序列中“00”只在最后两位才出现的序列数f(n). 解:最后两位是“00”的序列共有2n-2个。 f(n)包含了在最后两位第一次出现“00”的序列数,同时排除了在n-1位第一次出现“00”的可能; f(n-1)表示在第n-1位第一次出现“00”的序列数,同时同时排除了在n-2位第一次出现“00”的可能; 依此类推,有 17

组合数学考试试题

第一部分:填空题。 题目1:求n 元布尔函数f (x1,x2,…,xn )的数目,其中布尔函数是指含有与(∧)、或(∨)、非(-)等基本布尔运算的函数。 解答:设有n 个布尔变元x 1,x 2,…,x n ,其中x i ∈{0,1},i =1,2,…,n ,根据乘法原理(x 1,x 2,…,x n )共有2n 种不同指派,对每个指派,布尔函数取值为{0,1},故不同的布尔函数的数目为:22n 。 (考试中会给定n 的具体数值,带入公式直接计算即可。) 题目2:n 对夫妻围一圆桌而坐,求每对夫妻相邻而坐的方案数。 解答:夫妻相邻而坐,可以将一对夫妻看成一个整体,其圆排列数为(n -1)!,由于每对夫妻可以交换位置,故所求方案数为(n -1)!×2n 。 题目3:求多重集合M = {∞·a 1, ∞·a 2, …, ∞·a n }的r 排列数。 解答:在构造的M 的一个r 排列时,第一项有n 种选择,第二项有n 种选择,……, 第r 项有n 种选择,故M 的r 排列数为n r 。 (一般地,n 元多重集合表示为:M = {k 1·a 1, k 2·a 2, …, k n ·a n }其中:a i (i = 1, 2, …, n )表示元素的种类,k i (i = 1, 2, …, n )表示元素a i 的个数。) 题目4:求多重集合M = { k 1·a 1, k 2·a 2, …, k n ·a n }的全排列数。 解答:先把M 中的所有的k 1 + k 2 + … + k n 个元素看成是互不相同的,则它的全排列数为(k 1 + k 2 + … + k n )!。但是这里k i !个a i 是相同的,所以k i !个a i 的位置相同并且同其他元素排列也相同的排列是同一个,故M 的全排列数为: ! !!)! (2121n n k k k k k k +++。 题目5:确定1054321)(x x x x x ++++的展开式中x 13 x 2 x 34 x 52的系数。 解答:??? ? ??=???? ?????? ?????? ?????? ??2,4,1,310224617310 ! 2!4!1!3!10! 0!2!2! 2!4!6! 6!1! 7!7!3! 10= ? ? ? = (? ?? ? ??r n 表示从n 中取r 个的组合,与r n C 的意义完全相同。试题中可能会改变具体的数值,例如求15 54321)(x x x x x ++++的展开式中x 15x 24 x 34 x 52的系数,只需按上述过程计算即可。) 题目6: 求正整数n 的有序k 分拆的个数,要求第i 个分部量大于等于p i 。 解答:分拆的个数为:?? ? ? ? ??---+∑=111k p k n k i i ,其中(1≤i ≤k )。 例如:9的有序3分拆,要求所有分部量都大于等于2,其个数为:

组合数学及其图论试题库

组合数学及其图论 1、一个图G 是指一个有序三元组(V (G ),E (G ),G ?),其中G ?是:________________. 关联函数 2、 是有40个点的简单图且 中任两个点之间有且只有1条路,则 。 39 3、只有一个顶点所构成的图称为:________________ 平凡图 4、如果H 是G 的子图,其中V (H )=V (G )和E (G )=E (H )至少有一个不成立,就称H 是G 的:_____________. 真子图 5、设G 是p 阶简单图,则__________________等号成立当且仅当G 是完全图。 q(G)≤p(p-1)/2 6、如果一条途径的_________与___________相同,就称这条途径为闭途径。 起点 终点 7、如果对图G=(V ,E )的任何两个顶点u 与v ,G 中存在一条(u-v )路,则称G 是___________否则称为是______________ 连通图、 非连通图 8、设G 是P 阶连通图,则__________________. q(G)≥p-1 9、若二分图 有Hamilton 回路,则 与 满足 。 10、若G 是2-边连通图,则G 有强连通的________________. 定向图 11、边数最少的连通图是 。

树 12、没有回路的连通图称为_______________. 树 13、的图是图或图。 平凡图,不连通图 14、树T的每一个非悬挂点都是T的 __________. 割点 15、二分图中若与满足,则必有完美对集。 16、给定一个图G,如果图G的一个生成子图T是一棵树,则称T是G的一个_______________. 生成树 17、设G是无环图,e是G的一条边,则 τ(G)=___________________________. τ (G-e)+τ (G·e) 18、是阶简单图,则,等号成立当且仅当是图。 ,完全图 2、 19、___________________________的生成树称为最优生成树。 连通赋权图中具有最小权 20、的一个对集是最大对集的充要条件是。 中无可扩路 21、一个有向图D,如果略去每条弧的方向时所得无向图是一棵树,就称D为_____________________. 有向树 22、经过G的每条边的迹称为G的Euler迹,如果这条迹是闭的,则称这条闭迹为G的 ________________. Euler环游 23、是简单图且,则。

排列组合测试题 含答案

排列组合 一、选择题: 1. 将3个不同的小球放入4个盒子中,则不同放法种数有 A .81 B .64 C .12 D .14 2.5个人排成一排,其中甲、乙两人至少有一人在两端的排法种数有 A .33A B .334A C .523533A A A - D .23113232 33A A A A A + 3.,,,,a b c d e 共5个人,从中选1名组长1名副组长,但a 不能当副组长,不同的 选法总数是 A.20 B .16 C .10 D .6 4.现有男、女学生共8人,从男生中选2人,从女生中选1人分别参加数学、物理、化学三科竞赛,共有90种不同方案,那么男、女生人数分别是 A .男生2人女生6人 B .男生3人女生5人 C .男生5人女生3人 D .男生6人女生2人. 5. 6. A .180 B .90 C .45 D .360 6.由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有 A .60个 B .48个 C .36个 D . 24个 7.3张不同的电影票全部分给10个人,每人至多一张,则有不同分法的种数是 A .1260 B .120 C .240 D .720 8.n N ∈且55n <,则乘积(55)(56)(69)n n n ---L 等于 A .5569n n A -- B .1569n A - C .1555n A - D .1469n A -

9.从不同号码的5双鞋中任取4只,其中恰好有1双的取法种数为 A .120 B .240 C .280 D .60 10.不共面的四个定点到面α的距离都相等,这样的面α共有几个 A .3 B .4 C .6 D .7 11.设含有10个元素的集合的全部子集数为S ,其中由3个元素组成的子集数为T ,则T S 的值为 A. 20128 B .15128 C .16128 D .21 128 15.4名男生,4名女生排成一排,女生不排两端,则有 种不同排法. (8640 ) 17.在1,2,3,...,9的九个数字里,任取四个数字排成一个首末两个数字是奇数的四位数,这样的四位数有_________________个. (840) 18.用1,4,5,x 四个不同数字组成四位数,所有这些四位数中的数字的总和为288,则x = . (2) 5.若2222345363,n C C C C ++++=L 则自然数n =_____.(13) 19.n 个人参加某项资格考试,能否通过,有 种可能的结果?( 2n ) 20.已知集合{}1,0,1S =-,{}1,2,3,4P =,从集合S ,P 中各取一个元素作为点的坐标,可作出不同的点共有_____个. (23) 22.{}1,2,3,4,5,6,7,8,9A =,则含有五个元素,且其中至少有两个偶数的子集个数为_____.105 23.8张椅子排成,有4个人就座,每人1个座位,恰有3个连续空位的坐法共有多少种?_______ 480 25.7个人排成一排,在下列情况下,各有多少种不同排法?

李凡长版 组合数学课后习题答案 习题1

1 第一章 排列组合 1、 在小于2000的数中,有多少个正整数含有数字2? 解:千位数为1或0,百位数为2的正整数个数为:2*1*10*10; 千位数为1或0,百位数不为2,十位数为2的正整数个数为:2*9*1*10; 千位数为1或0,百位数和十位数皆不为2,个位数为2的正整数个数为:2*9*9*1; 故满足题意的整数个数为:2*1*10*10+2*9*1*10+2*9*9*1=542。 2、 在所有7位01串中,同时含有“101”串和“11”串的有多少个? 解:(1) 串中有6个1:1个0有5个位置可以插入:5种。 (2) 串中有5个1,除去0111110,个数为()6 2 -1=14。 (或: ()()41 42 *2+=14) (3)串中有4个1:分两种情况:①3个0单独插入,出去1010101,共()53 -1 种;②其中两个0一组,另外一个单独,则有 ()()2*)2,2(41 52 -P 种。 (4)串中有3个1:串只能为**1101**或**1011**,故共4*2种。 所以满足条件的串共48个。 3、一学生在搜索2004年1月份某领域的论文时,共找到中文的10篇,英文的12篇,德文的5篇,法文的6篇,且所有的都不相同。如果他只需要2篇,但必须是不同语言的,那么他共有多少种选择? 解:10*12+10*5+10*6+12*5+12*6+5*6 4、设由1,2,3,4,5,6组成的各位数字互异的4位偶数共有n 个,其和为m 。求n 和m 。 解:由1,2,3,4,5,6组成的各位数字互异,且个位数字为2,4,6的偶数均有P(5,3)=60个,于是:n = 60*3 = 180。 以a 1,a 2,a 3,a 4分别表示这180个偶数的个位、十位、百位、千位数字之和,则 m = a 1+10a 2+100a 3+1000a 4。 因为个位数字为2,4,6的偶数各有60个,故 a 1 = (2+4+6)*60=720。 因为千(百,十)位数字为1,3,5的偶数各有3*P(4,2) = 36个,为2,4,6的偶数各有2*P(4,2) = 24个,故 a 2 = a 3 = a 4 = (1+3+5)*36 + (2+4+6)*24 = 612。 因此, m = 720 + 612*(10 + 100 + 1000) = 680040。 5、 从{1,2,…,7}中选出不同的5个数字组成的5位数中,1与2不相邻的数 字有多少个? 解:1与2相邻:())4,4(253P ??。故有1和 2 但它们不相邻的方案数: ()())4,4(2)5,5(53 5 3 P P ??-? 只有1或2:())5,5(254P ?? 没有1和2:P(5,5)

组合数学 课后答案

习题二 2.1证明:在一个至少有2人的小组中,总存在两个人,他们在组内所认识的人数相同。 证明: 假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1],由鸽巢原理知,n个人认识的人数有n-1种,那么至少有2个人认识的人数相同。 假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2],由鸽巢原理知,n-1个人认识的人数有n-2种,那么至少有2个人认识的人数相同。 假设至少有两人谁都不认识,则认识的人数为0的至少有两人。

2.2任取11个整数,求证其中至少有两个数的差是10的整 数倍。 证明:对于任意的一个整数,它除以10的余数只能有10种情况:0,1,…,9。现在有11个整数,由鸽巢原理知,至少有2个整数的余数相同,则这两个整数的差必是10的整数倍。 2.3证明:平面上任取5个坐标为整数的点,则其中至少有 两个点,由它们所连线段的中点的坐标也是整数。 2.3证明: 有5个坐标,每个坐标只有4种可能的情况:(奇数,偶数);(奇数,奇数);(偶数,偶数);(偶数,奇数)。由鸽巢原理知,至少有2个坐标的情况相同。又要想使中点的坐标也是整数,则其两点连线的坐标之和为偶数。因为奇数+奇数= 偶数;偶数+偶数=偶数。因此只需找以上2个情况相同的点。而已证明:存在至少2个坐标的情况相同。证明成立。

2.4一次选秀活动,每个人表演后可能得到的结果分别为“通 过”、“淘汰”和“待定”,至少有多少人参加才能保证必有100个人得到相同的结果? 证明: 根据推论2.2.1,若将3*(100-1)+1=298个人得到3种结果,必有100人得到相同结果。 2.5一个袋子里装了100个苹果、100个香蕉、100个橘子和100个梨。那么至少取出多少水果后能够保证已经拿出20个相同种类的水果? 证明: 根据推论2.2.1,若将4*(20-1)+ 1 = 77个水果取出,必有20个相同种类的水果。

组合数学 试题及答案09

组合数学试题 共 5 页 ,第 1 页 电子科技大学研究生试卷 (考试时间: 至 ,共 2 小时) 课程名称 组合数学 教师 学时 40 学分 2 教学方式 讲授 考核日期 2009 年 12 月 日 成绩 考核方式: (学生填写) 一、(14分) 现安排从星期一至星期五对5个项目A, B, C, D, E 进行评审,每个项目安排一天,每天安排一个项目。但要求项目A 不安排在星期二评审,项目B 不安排在星期三和星期五评审,项目C 不安排在星期四评审,项目D 不安排在星期一评审,项目E 不安排在星期三和星期四评审。问有多少种不同的评审安排方案? 解 原问题可模型化为一个5元有禁位的排列. 其禁区棋盘C 如下图的阴影部分。 -----------------4分 由图,可得C 的棋盘多项式为 R(C)= = 1+7x+17x 2+18x 3+8x 4+x 5 -----------------5分 所以安排方案数为 5! - 7·4! + 17·3! - 18·2! + 8-1 -----------------4分 = 25 即共有25种。 -----------------1分 二、(10分)用2种颜色对下图的小圆点着色,证明必存在两列,其着色完全相同。 证明:因每个小圆点有2种颜色可选,故每列恰有8 种着色方案, -------------5分 学 号 姓 名 学 院 …… … …… …… …密 …… …… … 封 … … … … … 线 … … … … … 以 … … … … … 内 … … … … … 答 … …… … … 题 … …… … … 无 … … … … … 效… … … …… …… … A B C D E 1 2 3 4 5

组合数学期末试题

期末试卷 2012—2013学年第二学期 课程:组合数学 专业:数学与应用数学 年级:2010 本试卷共2页 满分:100分 考试时间:120分钟 考试方式:闭卷 一、填空题(本大题共8小题,每小题2分,共16分) 1、将5个苹果分给3个小孩,有_______种不同的分法. 2、多项式()4012324x x x x +++中项22012x x x ??的系数是 . 3、22件产品中有2件次品,任取3件,恰有一件次品方式数为________. 4、Fibbonacci 数F(9)= . 5、6()x y +所有项的系数和是________. 6、含3个变元,,x y z 的一个对称多项式包含9个项,其中4项包含x ,2项包含xyz ,1项包含常数项,求包含xy 的项有 个. 7、在{1,2,3,4,5,6}全排列中,使得只有偶数在原来位置的排列方式数为 . 8、把某英语兴趣班分成两个小组,甲组有2名男同学,5名女同学;乙组有3名男同学,6名女同学,从甲乙两组均选出3名同学来比赛,则选出的6人中恰有1名男同学的方式数 . 二、单项选择题(本大题共8小题,每小题3分,共24分) 9、在一次聚会上有15位男士和20位女士,则形成15对男女一共有多少种方式数( ) A 、20!5! B 、20!15! C 、2015 D 、1520 10、某年级的课外学科小组分为数学、语文二个小组,参加数学小组的有23人,参加语文小组的有27人;同时参加数学、语文两个小组的有7人。这个年级参加课外学科小组人数( )。 A 、50 B 、57 C 、43 D 、11 11、组合式???? ??50120与下列哪个式子相等?( ) A 、???? ??60120 B 、???? ??50119+???? ??49119 C 、512???? ??49120 D 、???? ??49119 12、从1至1000的整数中,有多少个整数能被5整除但不能被6整除?( ) A 、167 B 、200 C 、166 D 、33 13、商店有六种饮料供选择,若小明每天至少和一种饮料(喝过的不再选择),5天里 把全部饮料都喝过,则有多少种不同的安排?( ) A 、9 B 、16 C 、90 D 、1800 14、...0110p q p q p q r r r ????????????+++= ??? ??? ???-???????? ????( ) min{,}r p q ≤。 A 、1p q r +?? ?-?? B 、p q r +?? ??? C 、1p q r +?? ?+?? D 、 1p q r ++?? ??? 15、有100只小鸟飞进6个笼子,则必有一个笼子至少有( )只小鸟。 A 、15 B 、16 C 、17 D 、18 16、()n a b c d +++的展开式在合并同类项后一共有( )项。 A 、n B 、3n n +?? ??? C 、4n ?? ??? D 、!n

相关主题
文本预览
相关文档 最新文档