当前位置:文档之家› Buck电路闭环控制器设计仿真

Buck电路闭环控制器设计仿真

Buck电路闭环控制器设计仿真
Buck电路闭环控制器设计仿真

Buck 电路闭环控制器设计

15121501 曾洋斌

作业要求:

1、 建立Buck 电路的状态平均模型,设计系统闭环控制器;

2、 分析稳态误差产生原因,并提出改进措施,并进行仿真;

3、完成作业报告。

4、Buck 电路参数:输入电压为20V ,输出电压5V ,负载电阻4欧姆,电感1×10-3H ,电容5×10-4F ,开关频率20kHz 。

一、Buck 电路的状态平均模型

根据题目所给参数,容易计算得其占空比为25%,Buck 电路如图1所示:

S

V

o

V

图1:Buck 电路

根据状态空间平均法建模步骤如下: 1、列写状态方程、求平均变量

设状态方程各项如下:

[()()]T L o i t v t =x

()s u v t = ()VD y i t =

则有状态方程如下:

x

=Ax +Bu T y =C x

(1)列写[0,1S d T ]时间内的状态方程

如图2所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数

矩阵如下所示:

11011L C RC ??

-

?

=

? ?- ???A ,11[0]T L =B ,1[00]T =C

S

V

o

V

图2:开关VT 导通状态

(2)列写[1S d T ,S T ]时间内的状态方程

如图3所示,根据KCL 、KVL 以及电感电容的特性可以得到状态方程的系数

矩阵如下所示:

21011L C RC ??-

?

=

? ?- ???A ,2[00]T =B ,2[10]T =C S

V

o

V

图3:开关VT 关断状态

因此,在[0,1S d T ]和[1S d T ,S T ]两个时间段内分别有如下两种状态方程:

[0,1S d T ]: 11x

x u =+A B ,1T y x =C [1S d T ,S T ]: 22x

x u =+A B ,2T y x =C

根据平均状态向量:()

()1S

S

t T T t

S

x t x d T ττ+=

?

可得: ()()()()

()()()()()

112211S

S

S

S

S

S

S t dT t T T t

t dT S

t dT t T t

t dT S

x t x d x d T x u d x u d T ττττ

ττττττ

++++++=

+=+++?????????

?

?

?A B A B

又根据建模的低频假设和小纹波假设,可得到如下近似:

()()S

T x t x τ≈ ()

()

S

T u t u τ≈

将这两个近似式回代原方程得:

''11211121()[()()]()

[()()]()

S

S

S

T T T x

t d t d t x t d t d t u t =+++A A B B

同理可得:

'1121()[()()]()

S

S

T T T T y

t d t d t x t =+C C

因此有:

X

=AX +BU ,T Y =C X 其中

1112(1)d d =+-A A A ,1112(1)d d =+-ΒΒΒ,1112(1)T T T d d =+-C C C

2、求解稳态方程及动态方程 (1)求解稳态方程

根据电感伏秒平衡以及电容电荷平衡,稳态时有0X

= ,

令大写表示稳态值,即:

11,,,x X y Y d D u U ====

则有方程组

???T

AX +BU =0

Y =C X

解方程组得:

-1X =-A BU T -1Y =-C A BU

由前面求得的两个时间段状态方程系数矩阵得:

1011L C

RC ??

-

?

=

? ?- ???A ,1[0]T D L =B ,11

[10]T D =-C

以下令'111D D =-。

则稳态方程如下所示:

1

1101

10L s o D I L V L V C RC -??-?? ???

??=- ????? ???

- ???

??

1

1'

1

100110VD s D L I D V L C RC -?

?-?? ?????=- ????? ?- ???

??

(2)求解动态方程

若需要研究系统的动态过程,则可以在系统稳态工作点附近引入小信号扰动量,令瞬时值:

111

?d D d =+,?x X x =+,?u U u =+,?y Y y =+ 代入状态空间平均方程并分离稳态量,整理后得:

[]T T T T 1

1212121211

1T 12121????????()()()()??????+()()A u d U d ud d d +=++++-+-+-+-+=+-+-y X

x X BU Ax B A A X B B A A x B B Y CX C x C C X C C x

假定动态过程中的扰动信号比其稳态量小的多,非线性方程中的变量乘积项可被忽略,则线性化的小信号状态方程和输出方程如下所示:

[]T T 12121T

121

????()()???()u d U d =++-+-=+-y x Ax B A A X B B C x C C X

对小信号公式代入A 、B 、C 的值,可得如下:

11110????11??00L L s s o o D i i L v

v d L L v v C RC ?

?

-

?????? ?????????=++ ?????

???? ?????-

??????? []'1

1???010?L L VD o o I i i D d V v

??????=+-??????????

3、求解传递函数

上面得出的动态方程进行拉普拉斯变化后可得:

[]T

T

1212s s 1

T 121

????()()()()()()???()()()()s s s u s U d s y

s s d s =++-+-=+-x Ax B A A X B B C x C C X 求解得:

T T 111212s s 1T 1s T 1121212s 1

???()()()()[()+()]()??()()()? {()[()+()]()}()s s u s s U d s y

s s A u s s A U d s ----=-+---=-+---+-I A B I A A A B B C I B C I A A B B C C x X X X

所以传递函数如下:

1?s ()0?()()?()d s s s u

s -==-x

E A B

T 1?s ()0?()()?()d s y

s s u

s -==-C E A B

[]s 11212?()0?()()()()?()u

s s s U d

s -==--+-E x

A A A X

B B

[]T T s T 1121212?()0?()()()()()?()u

s y

s s U d

s -==--+-+-E C A A A X B B C C X

代入状态方程可得开环传递函数为:

21()1vd V G s L

D

s s LC

R

=

++

4、建立交流小信号等效电路模型 由B 中小信号状态方程可得:

111????s L o s D v i v v d L L L =-++ 11???o L o v i v C RC =-

由此可得Buck 电路的小信号模型:

?o v

+?g g V v

+

二、系统闭环控制器设计

根据题目给出的参数要求,可以推出以下相关式子,由参考电压为5V ,输出

电压为5V ,载波信号幅值为4V 得:

5

15

ref V H V

=

=

= 5

0.2520

D =

= 1c M V DV V ==

上述各值决定了系统的静态工作点。

控制-输出开环传递函数:

22

00

11()11(

)

vd d V G s G L

s s

D

s s LC

R

Q ωω=

=+++

+

其中:

020d V

G V D

=

=

0 1.414kHz ω=

=

0 2.8289.03Q dB ===

代入参数后的开环传递函数如下:

427

21

20

()1 2.5105101vd V G s L

D

s s s

s LC R

--=

=

+??+??++

可得如下Bode 图如图4所示:

图4:未补偿的Buck 电路Bode 图

从图中可以读到其相位裕度为5°,交越频率为6.48kHz ,相角裕度明显

不符合要求,因此设计补偿网络。已知开关频率为20kHz ,因此设计穿越频率为10kHz ,选择相角裕度为52°。由前面可知:05u M

HV

T DV =

= 则有:

(1029p kHz kHz ω==

(10 3.4z kHz kHz ω==

采用PD 控制器时,开环增益补偿为:

200(

) 1.35c c f G f == 10

10

10

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

M a g n i t u d e (d B )

00

2000

45427

3

427311

(1)(s)(1)(1(

))

(1 2.94110)

5 1.35(1 3.410)(1 2.510510)6.75 1.9853101 2.84510 5.0910 1.72510z

u c p

s

T T G s

s

s

Q s s s s s s s s ωωωω--------+

=+

+

++??=??+??+??+??+??=

+??+??+??

补偿后的开环传递函数的Bode 图如图5所示:

图5:补偿后的Buck 电路Bode 图

三、系统闭环MATLAB 仿真

图6:Buck 闭环系统仿真模型

利用搭建的Buck 闭环控制系统,反馈采用Transfer fcn 模块,输出的控制量

M a g n i t u d e (d B )10

10

10

10

10

P h a s e (d e g )

Bode Diagram

Frequency (rad/sec)

直接经过限幅后作为调制波与载波比较得到驱动脉冲,首先开始仿真采用的是PD 控制器,即单零单极补偿器,仿真的输出波形如图7所示:

图7:PD 控制器的闭环系统输出电压波形

图8:稳态后的输出电压放大波形

从图7中可知,0.002s 后系统输出稳定,稳定在 4.9675V 左右,纹波范围为4.9665V~4.9685V ,则波动大小为0.002V 。

四、稳态误差分析与解决

从上面的PD 控制器闭环系统的仿真波形可以看出系统存在稳态误差,即静

差,加上补偿器后的Bode 图从0dB 开始,系统为零阶系统,所以存在静差,要想消除静差可以提高系统的阶数,又要考虑相位裕度要求,因此选择增加一个零极点和一个小于共轭极点的零点,增加后的输出电压波形图如图9所示:

t/s

V o /V

V o /V

图9:双零双极补偿器闭环系统输出电压波形

图10:双零双极补偿器闭环系统输出电压放大波形

从图9中看出,稳定后输出电压稳定在5V 左右,放大后的纹波如图10所示,

纹波范围为4.9985~5.0005,波动大小为0.002,基本消除了稳态误差。

t/s

U /V

t/s

U /V

multisim buck电路仿真

第一章概述 1、1 直流―直流变换的分类 直流—直流变换器(DC-DC)就是一种将直流基础电源转变为其她电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换就是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1、2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6、2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商、2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

双闭环流量比值控制系统设计

目录 摘要 (1) 双闭环流量比值控制系统设计 (2) 1、双闭环比值控制系统的原理与结构组成 (2) 2、课程设计使用的设备 (3) 3、比值系数的计算 (4) 4、设备投运步骤以及实验曲线结果 (5) 5、总结 (16) 6、参考文献 (17)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

Buck电路的设计与仿真

uck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为 20V ,输出电压5V ,要求纹波电压为输出 电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的 电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 这个值是电感电流连续与否的临界值,L>L c 则电感电流连续,实际电感值 可选为1.1~1.2倍的临界电感,可选择为4 10?H ; D.根据纹波的要求和如下公式计算电容值 C=^^T s2 J =4.17 10 牛 8L^U 。 8 沃 4.5 沃 10 X0.0055 1 0000 (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B 输入20V ,输出5V ,可确定占空比 Dc=25% ; C.根据如下公式选择电感 . (1—DJR T (1 —0.25)汇10,. 1 L c (1 _DJR T 2 s (1-0.25)1° 亠 2 10000 = 3.75 10* H 5 (1-0.25) 0.75 10, H 50000 这个值是电感电流连续与否的临界值, L>Lc 则电感电流连续,实际电感值

L c T s 2

可选为1.2倍的临界电感,可选择为0.9 10" H ; D.根据纹波的要求和如下公式计算电容值 分析:在其他条件不变的情况下,若开关频率提高 n 倍,则电感值减小为 1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论 2、Buck 电路仿真: 利用sim power systems 中的模块建立所设计降压变换器的仿真电路。输 入电压为20V 的直流电压源,开关管选 MOSFET 模块(参数默认),用Pulse Gen erator 模块产生脉冲驱动开关管 建模: 分别做两种开关频率下的仿真 工作频率为10kHz 时 U o (1-D c ) 8L U o T s 2 5 (1-0.25) 1 8 0.9 10J 0.005 5 500002 = 0.833 10*F matlab20120510 ?

直流电机双闭环控制系统分析报告与设计

基于MATLAB 的直流电机 双闭环调速系统的设计与仿真 设计任务书: 1. 设置该大作业的目的 在转速闭环直流调速系统中,只有电流截止负反馈环节对电枢电流加以保护,缺少对电枢电流的精确控制,也就无法充分发挥直流伺服电动机的过载能力,因而也就达不到调速系统的快速起动和制动的效果。通过在转速闭环直流调速系统的基础上增加电流闭环,即按照快速起动和制动的要求,实现对电枢电流的精确控制,实质上是在起动或制动过程的主要阶段,实现一种以电动机最大电磁力矩输出能力进行启动或制动的过程。此外,通过完成本大作业题目,让学生体会反馈校正方法所具有的独特优点:改造受控对象的固有特性,使其满足更高的动态品质指标。 2. 大作业具体容 设一转速、电流双闭环直流调速系统,采用双极式H 桥PWM 方式驱动,已知电动机参数为: 额定功率200W ; 额定电压48V ; 额定电流4A ; 额定转速=500r/min ; 电枢回路总电阻8=R Ω; 允许电流过载倍数λ=2; 电势系数=e C 0.04Vmin/r ; 电磁时间常数=L T 0.008s ; 机电时间常数=m T 0.5s ; 电流反馈滤波时间常数=oi T 0.2ms ; 转速反馈滤波时间常数=on T 1ms ; 要求转速调节器和电流调节器的最大输入电压==* *im nm U U 10V ; 两调节器的输出限幅电压为10V ;

f10kHz; PWM功率变换器的开关频率= K 4.8。 放大倍数= s 试对该系统进行动态参数设计,设计指标: 稳态无静差; σ5%; 电流超调量≤ i 空载起动到额定转速时的转速超调量σ≤ 25%; t0.5 s。 过渡过程时间= s 3. 具体要求 (1) 计算电流和转速反馈系数; (2) 按工程设计法,详细写出电流环的动态校正过程和设计结果; (3) 编制Matlab程序,绘制经过小参数环节合并近似后的电流环开环频率特性曲线和单位阶跃响应曲线; (4) 编制Matlab程序,绘制未经过小参数环节合并近似处理的电流环开环频率特性曲线和单位阶跃响应曲线; (5) 按工程设计法,详细写出转速环的动态校正过程和设计结果; (6) 编制Matlab程序,绘制经过小参数环节合并近似后的转速环开环频率特性曲线和单位阶跃响应曲线; (7) 编制Matlab程序,绘制未经过小参数环节合并近似处理的转速环开环频率特性曲线和单位阶跃响应曲线; (8) 建立转速电流双闭环直流调速系统的Simulink仿真模型,对上述分析设计结果进行仿真; (9) 给出阶跃信号速度输入条件下的转速、电流、转速调节器输出、电流调节器输出过渡过程曲线,分析设计结果与要求指标的符合性;

双闭环控制系统(行业二类)

课程设计报告 课程课程设计 课题双闭环控制系统设计 班级 姓名 学号

目录 第1章双闭环系统分析 (1) 1.1系统介绍 (1) 1.2系统原理 (1) 1.3双闭环的优点 (1) 第2章系统参数设计 (2) 2.1电流调节器的设计 (2) 2.1.1时间参数选择 (2) 2.1.2计算电流调节参数 (2) 2.1.3校验近似条件 (3) 2.2转速调节器的设计 (4) 2.2.1电流环等效时间常数: (4) 2.2.2转速环截止频率为 (5) 2.2.3计算控制器的电阻电容值 (5) 第3章仿真模块 (6) 3.1电流环模块 (6) 3.2转速环模块 (6) 第4章仿真结果 (7) 4.1电流环仿真结果 (7) 4.2转速环仿真结果 (7) 4.4稳定性指标的分析 (8) 4.4.1电流环的稳定性 (8) 4.4.2转速环的稳定性 (8) 结论 (9) 参考文献 (10)

第1章双闭环系统分析 1.1系统介绍 整流电路可从很多角度进行分类,主要分类方法是:按组成的器件可分为不可控,半控和全控三种;按电路结构可分为桥式电路和零式电路;按交流输入相数分可分为单相、双相、三相和多相电路;按控制方法又可分为相控整流和斩波控制整流电路。 本系统采用的是三相全控桥式晶闸管相控整流电路。这是因为电机容量相对较大,并且要求直流脉动小、容易滤波。其交流侧由三相电网直接供电,直流侧输出脉动很小的直流电。在分析时把直流电机当成阻感性加反电势负载。因为电机电流连续所以分析方法与阻感性负载相同,各参量计算公式亦相同。 1.2系统原理 ASR(速度调节器)根据速度指令Un*和速度反馈Un的偏差进行调节,其输出是电流指令的给定信号Ui*(对于直流电动机来说,控制电枢电流就是控制电磁转矩,相应的可以调速)。 ACR(电流调节器)根据Ui*和电流反馈Ui的偏差进行调节,其输出是UPE(功率变换器件的)的控制信号Uc。进而调节UPE的输出,即电机的电枢电压,由于转速不能突变,电枢电压改变后,电枢电流跟着发生变化,相应的电磁转矩也跟着变化,由Te-TL=Jdn/dt,只要Te与TL不相等转速会相应的变化。整个过程到电枢电流产生的转矩与负载转矩达到平衡,转速不变后,达到稳定。 1.3双闭环的优点 双闭环调速系统属于多环控制系统,每一环都有调节器,构成一个完整的闭环系统。工程设计方法遵循先内环后外环的原则。步骤为:先设计电流环(内环),对其进行必要的变换和近似处理,然后依照电流环的控制要求确定把它校正成哪一种典型系统,再根据控制对象确定其调节器的类型,最后根据动态性能指标的要求来确定其调节器的有关参数。电流环设计完成以后,把电流环看成转速环(外环)中的一个环节,再用同样的方法设计转速环。 在电流检测信号中常有交流分量,为了不让它影响调节器的输入,加入了低通滤波器,然而滤波环节可以使反馈信号延迟,为了消除此延迟在给定位置加一个相同时间常数的惯性环节。同理,由测速发电机得到的转速反馈电压常含有换向纹波,因此也在给定和反馈环节加入滤波环节。

题目Buck电路的设计与仿真

题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 解:(1)工作频率为10kHz 时, A.主开关管可使用MOSFET ,开关频率为10kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.310000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>c L 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4105.4-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2410000 15005.0105.48)25.01(5?????-?-=F 41017.4-? (2)工作频率为50kHz 时, A.主开关管可使用MOSFET ,开关频率为50kHz ; B.输入20V ,输出5V ,可确定占空比Dc=25%; C.根据如下公式选择电感 H T R D L s c c 41075.050000 1210)25.01(2)1(-?=??-=-= 这个值是电感电流连续与否的临界值,L>Lc 则电感电流连续,实际电感值可选为1.2倍的临界电感,可选择为H 4109.0-?; D.根据纹波的要求和如下公式计算电容值 =?-=2008)1(s c T U L D U C 2450000 15005.0109.08)25.01(5?????-?-=F 410833.0-? 分析: 在其他条件不变的情况下,若开关频率提高n 倍,则电感值减小为1/n ,电容值也减小到1/n 。从上面推导中也得出这个结论。 2、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (一)开关频率为10Hz 时; (1)使用理论计算的占空比,记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 由第一步理论计算得占空比Dc=25%; 实验仿真模型如下所示(稳态直流电压值为4.299V ):

基于-单片机的烘箱温度控制器设计

基于单片机的烘箱温度控制器设计 目录 1.项目概述 (1) 1.1.该设计的目的及意义 (1) 1.2.该设计的技术指标 (2) 2.系统设计 (3) 2.1.设计思想 (3) 2.2.方案可行性分析 (4) 2.3.总体方案 (5) 3.硬件设计 (6) 3.1.硬件电路的工作原理 (6) 3.2.参数计算 (7) 4.软件设计 (8) 4.1.软件设计思想 (8) 4.2.程序流程图 (9) 4.3.程序清单 (10) 5.系统仿真与调试 (11) 5.1.实际调试或仿真数据分析 (11) 5.2.分析结果 (13) 6.结论 (12) 7.参考文献 (13) 8.附录 (14)

1.项目概述: 1.1.该设计的目的及意义 温度的测量及控制,随着社会的发展,已经变得越来越重要。而温度是生产过程和科学实验中普遍而且重要的物理参数,准确测量和有效控制温度是优质,高产,低耗和安全生产的重要条件。在工业的研制和生产中,为了保证生产过程的稳定运行并提高控制精度,采用微电子技术是重要的途径。它的作用主要是改善劳动条件,节约能源,防止生产和设备事故,以获得好的技术指标和经济效益。 而本设计正是为了保证生产过程的稳定运行并提高控制精度,采用以51系列单片机为控制核心,对温度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标。 通过本设计的实践,将以往学习的知识进行综合应用,是对知识的一次复习与升华,让以往的那些抽象的知识点在具体的实践中体现出来,更是对自己自身的挑战。 1.2.该设计的技术指标 设计并制作一个基于单片机的温度控制系统,能够对炉温进行控制。炉温可以在一定围由人工设定,并能在炉温变化时实现自动控制。若测量值高于温度设定围,由单片机发出控制信号,经过驱动电路使加热器停止工作。当温度低于设定值时,单片机发出一个控制信号,启动加热器。通过继电器的反复开启和关闭,使炉温保持在设定的温度围。 (1) 1KW 电炉加热(电阻丝),最度温度为120℃(软件实现) (2)恒温箱温度可设定,温度控制误差≦±2℃(软件实现PID) (3)实时显示温度和设置温度,显示精度为1℃(LED)。 (4)温度超过设置温度±5℃,发出超限报警,升温和降温过程不作要求。 (5)升温过程采用PID算法,控制器输出方式为PWM输出方式,降温采用自然冷却。 (6)功率电路220 VAC供电,强弱电气电隔离 2.系统设计 2.1.设计思想 以87C51单片机为整个温度控制系统的核心,为解决系统出现一时的死机的问题,需构建复位电路,来重新启动整个系统。要想控制温度,首席必须能够测量温度,就需要一温度传感器,将测量得到的温度传给单片机,经单片机处理后,去控制继电器等器件实现电炉的断与通来达到温度期望值,当温度超过设定上下限值时,可以通过中断信号,控制指示灯的亮灭,来提醒温

multisimbuck电路仿真设计

第一章概述 1.1 直流―直流变换的分类 直流—直流变换器(DC-DC)是一种将直流基础电源转变为其他电压种类的直流变换装置。目前通信设备的直流基础电源电压规定为?48V,由于在通信系统中仍存在?24V(通信设备)及+12V、+5V(集成电路)的工作电源,因此,有必要将?48V基础电源通过直流—直流变换器变换到相应电压种类的直流电源,以供实际使用。D C/DC变换是将固定的直流电压变换成可变的直流电压,也称为直流斩波。主要有 (1)Buck电路——降压斩波,其输出平均电压小于输入电压,极性相同。 (2)Boost电路——升压斩波,其输出平均电压大于输入电压,极性相同。 (3)Buck-Boost电路——降压―升压斩波,其输出平均电压大于或小于输入电压,极性相反,电感传输。 (4)Cuk电路——降压或升压斩波,其输出平均电压大于或小于输入电压,极性相反,电容传输。 此外还有Sepic、Zeta电路。 1.2 直流—直流变换器的发展 当今软开关技术的发展使得DC/DC发生了质的飞跃,美国VICOR公司(美国怀格公司,国际知名的电源模块生产厂家)设计制造的多种ECI软开关DC/DC变换器,其最大输出功率有300W、600W、800W等,相应的功率密度为(6.2、10、17)W/cm3,效率为(80~90)%。日本NEMIC—LAMBDA(联美兰达,日本的开关电源厂商.2012年兰达被TDK收购,名称也改为TDK-LAMBDA)公司最新推出的一种采用软开关技术的高频开关电源模块RM系列,其开关频率为(200~300)kHz,功率密度已达到27W/cm3,采用同步整流器(MOSFET代替肖特基二极管),使整个电路效率提高到90%。

基于单片机得温度控制器毕业设计说明书

引言 (1) 第一章系统方案论证 (2) 1.1 方案设计 (2) 1.2方案的对比论证 (2) 第二章系统硬件电路的设计 (4) 2.1电路总体原理框图 (4) 2.2单片机的选择 (5) 2.3单片机得管脚说明 (6) 2.4单片机的时钟电路 (8) 2.5复位电路及其复位状态 (9) 2.5.1 复位电路 (9) 2.5.2 复位状态 (10) 2.6.温度采集电路的设计 (11) 2.6.1 DS18B20特点介绍 (12) 2.7键盘接口电路的设计 (13) 2.8显示接口和报警电路的设计 (15) 2.9通信接口电路设计 (18) 2.9.1 max232原理 (18) 2.9.2 MAX232与单片机的接口电路 (18) 第三章软件系统的设计 (18) 3.1 主程序模块 (19) 3.2温度报警模块 (19) 3.3参考程序 (36) 3.4设计方案分析 (38) 3.4.1优点 (38) 3.4.2缺点 (38) 第四章硬、软件抗干扰技术 (39) 4.1 硬件抗干扰技术 (39) 4.1.1接地技术 (39) 4.1.2屏蔽系统 (40) 4.1.3隔离技术 (41) 4.1.4滤波技术 (41) 4.1.5 抑制反电势干扰技术 (41) 4.2 软件抗干扰技术 (42) 4.2.1 消除数据采集的干扰 (42) 4.2.2保持正常控制状态 (42) 第五章结论与前景分析 (46) 参考文献 (47) 致谢 (48) 附录 (49)

随着生产生活的需要,自动化控制越来越起到至关重要的作用。温度控制是工业生产过程中很普遍的过程控制,人们需要对各种加热炉,热处理炉,反应炉等锅炉中温度进行测量与控制。特别是冶金,化工、建材、食品、机械、石油等工业中,具有举足轻重的作用,其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常有价值的,工业生产中温度控制具有单向性、时滞性、大惯性和时变性的特征,同时要实现温度控制的快速性和准确性,对于对于提高产品质量具有很重要的意义。 对于不同的场所、不同的工艺、不同的产品所需要的温度范围不同、精度也不同,则采用的温度测量元件以及温度测量方法和控制方法都有所不同;产品工艺不同、温度控制的精度不同、时效不同,则对数据采集的精度和采用的控制算法也不同。因此对温度的控制方法要多种多样。随着电子技术和微型计算的迅速发展,微机测量和控制技术也得到了迅速的发展和广泛的应用。利用微机对温度进行测控的技术也随之而产生。现有的温度传感器大多为(热电偶)体积大,应用复杂,多为模拟信号,已经不在适合现代工业的灵活性要求了。 本设计是基于单片机的温度控制系统,为闭环系统,工作的可靠性高、精度高。本设计主要围绕单片机进行设计,从实际应用出发,选取了体积小、精度相对较高的数字式温度传感器件DS18B20作为温度采集装置,以单片机89S51作为主控芯片,1602作为显示输出,实现了对温度的实时测量,当温度超出设定范围系统将会自动调节加热或者降温系统,从而实现了实时恒温控制。

Buck电路设计与MATLAB仿真

Buck电路设计与仿真 姓名:朱龙胜 班级:电气1102 学号:11291065 日期:2014年5月10日 指导老师:郭希铮 北京交通大学

计算机仿真技术作业四 题目:Buck 电路的设计与仿真 1、Buck 电路设计: 设计一降压变换器,输入电压为20V ,输出电压5V ,要求纹波电压为输出电压的0.5%,负载电阻10欧姆,求工作频率分别为10kHz 和50kHz 时所需的电感、电容。比较说明不同开关频率下,无源器件的选择。 2、Buck 电路理论计算: 由以下公式计算: 20.252.0.5A (1) 3.5% 8() 4.2o d o o o s o s d o LB OB V D V V I R V T D V LC DT V V I I L = == =?-==-== 1.占空比: 负载电流: 纹波电压: 电流连续条件: 得到下列计算结果 3、Buck 电路仿真: 利用simpowersystems 中的模块建立所设计降压变换器的仿真电路。输入电压为20V 的直流电压源,开关管选MOSFET 模块(参数默认),用Pulse Generator 模块产生脉冲驱动开关管。分别做两种开关频率下的仿真。 (1)使用理论计算的占空比(D=0.25),记录直流电压波形,计算稳态直流电压值,计算稳态直流纹波电压,并与理论公式比较,验证设计指标。 4、仿真过程:: A .建立模型: 建立仿真模型如下如所示 :

B. 记录数据: 仿真算法选择ode23tb,最大步长为0.1s ,占空比D=0.25进行仿真,记录数据如下表所 C .仿真过程: 当f s =10KHz,L=0.375mH C=500μF, 占空比D=0.25,电流连续的临界状态时,记录稳态直流电压值V o =4.736V ,稳态直流电压理论值5V 计算稳态直流纹波电压的理论值 2(1D)0.025V 8s o o T V V CL -?==,通过图中得到直流纹波电压为0.0267V 当fs=10KHz,L=0.375mH, C=500μF,占空比D=0.25,电流连续的临界状态时, 由(1)o S L V D T I L -?= ,得电感电流波动理论值是1A ,由图像得到电感电流波动值是 1A ,与理论计算相符合

双闭环流量比值控制系统设计

目录 摘要 0 双闭环流量比值控制系统设计 (1) 1、双闭环比值控制系统的原理与结构组成 (1) 2、课程设计使用的设备 (1) 3、比值系数的计算 (2) 4、设备投运步骤以及实验曲线结果 (2) 5、总结 (6) 6、参考文献 (6)

摘要 在许多生产过程中,工艺上常常要求两种或者两种以上的物料保持一定的比例关系。一旦比例失调,会影响生产的正常进行,造成产量下降,质量降低,能源浪费,环境污染,甚至造成安全事故。 这种自动保持两个或多个参数间比例关系的控制系统就是比值控制所要完成的任务。因此比值控制系统就是用于实现两个或两个以上物料保持一定比例关系的控制系统。需要保持一定比例关系的两种物料中,总有一种起主导作用的物料,称这种物料为主物料,另一种物料在控制过程中跟随主物料的变化而成比例的变化,这种无物料成为从物料。由于主,从物料均为流量参数,又分别成为主物料流量和从物料流量,通常,主物料流量用Q1表示,从物料流量用Q2表示,工艺上要求两物料的比值为K,即K=Q2/Q1.在比值控制精度要求较高而主物料Q1又允许控制的场合,很自然就想到对主物料也进行定值控制,这就形成了双闭环比值系统。在双闭环比值系统中,当主物料Q1受到干扰发生波动时,主物料回路对其进行定值控制,使从物料始终稳定在设定值附近,因此主物料回路是一个定值控制系统,而从物料回路是一个随动控制系统,主物料发生变化时,通过比值器的输出,使从物料回路控制器的设定值也发生变化,从而使从物料随着主物料的变化而成比例的变化。当从物料Q2受到干扰时,和单闭环控制系统一样,经过从物料回路的调节,使从物料稳定在比值器输出值上。双闭环比值控制系统由于实现了主物料Q1的定值控制,克服了干扰的影响,使主物料Q1变化平稳。当然与之成比例的从物料Q2变化也将比较平稳。根据双闭环比值控制系统的优点,它常用在主物料干扰比较频繁的场合,工艺上经常需要升降负荷的场合以及工艺上不允许负荷有较大波动的场合。本实验通过了解双闭环比值控制系统的原理与结构组成,进行双闭环流量比值控制系统设计(包括仪表选型)以及进行比值系数的计算,最后基于WinCC进行监控界面设计,给出不同参数下的响应曲线,根据扰动作用时,记录系统输出的响应曲线。

BUCK电路闭环控制系统的MATLAB仿真

BUCK 电路闭环PID 控制系统 的MATLAB 仿真 一、课题简介 BUCK 电路是一种降压斩波器,降压变换器输出电压平均值Uo 总是小于输入电压U i 。通常电感中的电流是否连续,取决于开关频率、滤波电感L 和电容C 的数值。 简单的BUCK 电路输出的电压不稳定,会受到负载和外部的干扰,当加入PID 控制器,实现闭环控制。可通过采样环节得到PWM 调制波,再与基准电压进行比较,通过PID 控制器得到反馈信号,与三角波进行比较,得到调制后的开关波形,将其作为开关信号,从而实现BUCK 电路闭环PID 控制系统。 二、BUCK 变换器主电路参数设计 2.1设计及内容及要求 1、 输入直流电压(VIN):15V 2、 输出电压(VO):5V 3、 输出电流(IN):10A 4、 输出电压纹波峰-峰值 Vpp ≤50mV 5、 锯齿波幅值Um=1.5V 6、开关频率(fs):100kHz 7、采样网络传函H(s)=0.3 8、BUCK 主电路二极管的通态压降VD=0.5V ,电感中的电阻压降 VL=0.1V ,开关管导通压降 VON=0.5V,滤波电容C 与电解电容 RC 的乘积为 F *Ωμ75

2.2主电路设计 根据以上的对课题的分析设计主电路如下: 图2-1 主电路图 1、滤波电容的设计 因为输出纹波电压只与电容的容量以及ESR 有关, rr rr C L N 0.2V V R i I == ? (1) 电解电容生产厂商很少给出ESR ,但C 与R C 的乘积趋于常数,约为50~80μ*ΩF [3]。在本课题中取为75μΩ*F ,由式(1)可得R C =25mΩ,C =3000μF 。 2、滤波电感设计 开关管闭合与导通状态的基尔霍夫电压方程分别如式(2)、(3)所示: IN O L ON L ON /V V V V L i T ---=?(2) O L D L OFF /V V V L i T ++=? (3) off 1/on s T T f += (4) 由上得: L in o L D on V V V V L T i ---=? (5) 假设二极管的通态压降V D =0.5V ,电感中的电阻压降V L =0.1V ,开关管导通压降V ON =0.5V 。利用ON OFF S 1T T f +=,可得T ON =3.73μS ,将此值回代式(5),可得L =17.5μH

直流电动机双闭环控制系统设计与分析[设计+开题+综述]

开题报告 电气工程与自动化 直流电动机双闭环控制系统设计与分析 一、选题的背景与意义 随着现代工业的快速发展,在调速领域中,双闭环的控制理念已经得到了越来越广泛的认同。由于其动态响应快,静态性能良好,抗干扰能力强,因而在工程设计中被广泛地采用[1]。现在直流调速理论发展得比较成熟,但要真正设计好一个双闭环调速系统并应用于工程设计却有一定的难度[2]。 PID(即:比例-积分-微分)控制器是最早发展起来的控制理论之一,由于它具有算法结构简单、鲁棒性好、可靠性高等优点,在工业控制中90%是采用PID控制系统 [3]。然而,在越来越复杂的工业过程中,常常难以确定其精确数学模型,无法从理论上准确设计PID 控制器的相应参数。此外,在实际的生产现场过程中,由于受到现场环境及运行工况的变化等因素的困扰,常规的PID设计方法往往整定欠佳,性能不良,对运行工况的适应性较差,很难满足对生产过程的控制性能和产品质量的要求。 群体智能算法(Swarm Intelligence Algorithm) [4]是近十几年发展起来的智能仿生算法,其基本思想是模拟自然界生物的群体行为来构造随机优化算法。其中由美国学者Kennedy 和Eberha提出的粒子群优化算法(particle swarill optimization,PSO) 计算快速收敛,不易陷入局部最优,而且所需参数少且易于实现。因此,粒子群及改进的粒子群优化算法在PID参数整定中的应用近几年也得到了极大关注和重视。 二、研究的基本内容与拟解决的主要问题: 1、基本内容 本课题主要研究直流电动机双闭环控制系统设计与分析,并通过粒子群优化算法(PSO)用于双闭环PID调节控制的方法对系统进行设计和仿真。 双闭环PID控制系统设置了转速调节器(ASR)和电流调节器(ACR), 分别调节转速和电流, 两者实行串级连接, 且都带有输出限幅电路。由于调速系统的主要被控量是转速, 故把转速环作为外环, 以抑制电网电压扰动对于转速的影响, 把由电流环作为内环, 以实现在最大 电流约束下的转速过渡过程最快最优控制。直流电动机双闭环控制系统原理见图1所示。 III

温度控制器的设计汇总

2013 ~ 2014学年第2学期 《数字式温度控制器的设计》 课程设计报告 题目数字式温度控制器的设计 ____________ 专业: 11 电气工程及其自动化_______________________ 班级: ____________ 2 _________________________ 姓名: ____________________________________________ 指导教师: _________________________________________ 电气工程学院 2014年6月2日

数字式温度控制仪 摘要 温度是工业生产和科学实验中的重要参数之一。在化工、冶金、医药、航空等领域里,对温度的控制效果直接影响到许多产品的质量及使用寿命,因此,温度控制成为各个领域中的一项关键技术。温度控制的关键在于测温和控温两方面,温度测量是温度控制的基础。在温度测量方面,技术己经比较成熟,由于控制对象越来越复杂,而在温度控制方面,还存在着许多问题,人们还在寻找着更好的控制方法以提高控制性能,满足不同的控制要求。 随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,本文将介绍一种基于单片机控制的恒温锅炉烧水控制系统。 本系统以AT89C51单片机为控制核心,采用闭环控制装置,可自动控制要求环境下的温度,使被控对象温度保持在恒定的范围内。本系统温度信号由数字温度传感器DS18B2C采集,送AT89C51单片机进行处理,并通过数码管显示。当温度低于或者高于设定值后,单片机将发出控制信号控制温度控制系统的通断电状态,以实现将温度稳定在目标温度至附近的要求。 关键词:单片机;闭环控制QS18B20;温度;数码管

buck电路设计

Buck变换器设计——作业 一.Buck主电路设计 1.占空比D计算 2.电感L计算 3.电容C计算 4.开关元件Q的选取 二. Buck变换器开环分析 三. Buck闭环控制设计 1.闭环控制原理 2.补偿环节Gc(s)的设计——K因子法 3.PSIM仿真 4. 补偿环节Gc(s)的修正——应用sisotool 5.修正后的PSIM仿真 四.标称值电路PSIM仿真 五.设计体会 Buck变换器性能指标: 输入电压:标准直流电压48V,变化范围:43V~53V

输出电压:直流电压24V ,5A 输出电压纹波:100mv 电流纹波:0.25A 开关频率:fs=250kHz 相位裕度:60 幅值裕度:10dB 一. Buck 主电路设计: 1.占空比D 计算 根据Buck 变换器输入输出电压之间的关系求出占空比D 的变化范围。 .50V 48V 24U U D .4530V 53V 24U U D 0.558 V 43V 24U U D innom o nom max in o min min in o max ========= 2.电感L 计算 uH 105f i 2)D U -(U i 2)T U -(U L s L min o inmax L on(min) o inmax =?=?= 3.电容C 计算 uF 25.1250000 *1.0*825 .0vf 8i C s L ==??= 电容耐压值:由于最大输出电压为24.1V ,则电容耐压值应大于24.1V 。 考虑到能量储存以及伏在变化的影响,要留有一定的裕度,故电容选取120uf/50V 电容。 4.开关元件Q 的选取

温度控制器的课程设计

黑龙江科技大学 专业:电气工程及其自动化 班级:电气10-4 姓名:李波 学号:2010021396 指导老师:焦文良 完成日期:2013.12.20-----2013.12.25

目录 绪论 ............................................................................................. - 3 - 第一章系统工作原理 ............................................................ - 4 - 1.1 工作原理 ......................................................................... - 4 - 1.2系统的总体结构图 .......................................................... - 5 - 第二章温度器的检测部分 .................................................. - 5 - 2.1 温控器接线图及原理...................................................... - 5 - 2.2 什么叫热电偶 ................................................................. - 6 - 第四章温度控制器的显示部分 ............................................ - 14 - 4.1 七段数码显示管 ........................................................... - 14 - 4.2 七段数码管的结构与工作原理.................................... - 15 - 4.3 七段数码管驱动方法.................................................. - 16 - 第五章温度控制器的反馈部分 ............................................ - 19 - 5.1 报警蜂鸣器的连接电路............................................... - 19 - 5.2 HK4001继电器S3-5工作原理 ................................... - 20 - 5.3上下限温度调节按钮电路............................................. - 21 - 第六章程序调试部分 ............................................................ - 22 - 6.1 单片机程序 ................................................................... - 22 - 附录 ........................................................................................... - 30 - 总结 ........................................................................................... - 32 -

单片机的模糊温度控制器的设计方案

基于单片机的模糊温度控制器的设计 1 引言本文研究的被控对象为某生产过程中用到的恒温箱,按工艺要求需保持箱温100℃恒定不变。我们知道温度控制对象大多具有非线性、时变性、大滞后等特性, 采用常规的PID 控制很难做到参数间的优化组合, 以至使控制响应不能得到良好的动态效果。而模糊控制通过把专家的经验或手动操作人员长期积累的经验总结成的若干条规则,采用简便、快捷、灵活的手段来完成那些用经典和现代控制理论难以完成的自动化和智能化的目标, 但它也有一些需要进一步改进和提高的地方。模糊控制器本身消除系统稳态误差的性能比较差, 难以达到较高的控制精度, 尤其是在离散有限论域设计时更为明显, 并且对于那些时变的、非线性的复杂系统采用模糊控制时, 为了获得良好的控制效果, 必须要求模糊控制器具有较完善的控制规则。这些控制规则是人们对受控过程认识的模糊信息的归纳和操作经验的总结。然而, 由于被控过程的非线性、高阶次、时变性以及随机干扰等因素的影响, 造成模糊控制规则或者粗糙或者不够完善, 都会不同程度的影响控制效果。为了弥补其不足, 本文提出用自适应模糊控制技术,达到模糊控制规则在控制过程中自动调整和完善, 从而使系统的性能不断完善, 以达到预期的效果。 2 自调整模糊控制器的结构及仿真 (1> 控制对象 一般温度可近似用一阶惯性纯滞后环节来表示, 其传递函数为: 式中: K———对象的静态增益。 Tc———对象的时间常数。 τ———对象的纯滞后时间常数。 本文针对某干燥箱的温度控制, 用Cohn-Coon 公式计算各参数得: K=0.181。 Tc=60。τ=20。 ( 2> 自调整模糊控制器的结构 自调整模糊控制器的结构如图1 所示。 图1 带自调整因子的模糊控制器 图中α为调整因子, 又称加权因子。通过调整α值,可以改变偏差E 和偏差变化EC 对控制输出量U 的加权程度, 从而调整了控制规则。但是, 若α值一旦选定, 在整个控制过程中就不再改变, 即在控制规则中对偏差、偏差变化的加权固定不变。然而, 在实际控制中, 模糊控制系统在不同的状态下, 对控制规则中偏差E 与偏差变化EC的加权程度会有不同的要求。为了适应被控对象的结构和参数的变化, 并模拟人工控制中的学习过程可以构造一个如图1 所示的带自调整因子的模糊控制器, 其实质是一个二级模糊控制系统。 具体方法是: 将调整因子α看作是一个模糊集, 其论域为( 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,

BUCK电路的Saber仿真

功率变换器计算机仿真与设计题目BUCK变换器电路设计 学生姓名 学号 学院 专业电气工程及自动化 班级 指导教师 2013年 10月 20日

一、设计要求 1.1 设计指标: 设计一个BUCK直流变换器,主电路拓扑如图1.1(参数需重新设置),使得其满足以下性能要求: 高压侧蓄电池输入电压V in:30-60V(额定电压48V) 低压侧直流母线输出电压V out:24V 输出电压纹波V out(p-p):25mV 输出电流I out:2A 开关频率f s:200kHz 电感电流临界连续时I G:0.1A 12 图1.1

二、开环参数计算及仿真 2.1 主电路参数计算: (1)高压侧输入电压V in 变化范围为30-60V ,低压侧输出电压V out 为24V ,则占空比: 8.030 24 min max === in out V V D 4.06024 max min === in out V V D 5.048 24 === innom out nom V V D (2)由于输出电流I out 为2A ,故负载电阻:12out out V R I = =Ω (3)根据电感电流临界连续时I G :0.1A ,可由下式计算得滤波电感感值: H T I U L U T I L OFF o o CCM o μμ3605)4.01(2 .024 2max min )min(=?-?--==?=?? (4)根据输出电压纹波V out (p-p )为25mV ,可由下式计算得滤波电容容值: uF f V I C I T C idt C V p p out ripple o p p out T 510 200102582 .082211133)(0) (2=????==?==---? 取F C f μ10=,其中开关频率f 为200KHZ 。 在实际器件中,电容存在寄生电阻,因此实际器件仿真时,电容的选取如下: Ω ====???=??=?-m 125ESR ,600C ,u 520C 25,10652.0min max pp 6 uF F mV V C ESR I V 取而 2.2 开关管及二极管应力计算: (1)开关管的选取 功率管承受的最大电压为60V ,流过开关管电流最大值为2A ,开关管电压电流降额系数均为0.5,则开关管电压要大于或等于120V ,电流最大值要大于4A 。粗略以最大占空比计算电流的有效值为3.2A ,则最大功率为384W ,取400W 。根据仿真,可选irf460作为开关管。 (2)二极管的选取

相关主题
文本预览
相关文档 最新文档