当前位置:文档之家› 泥水盾构机泥水循环系统操作技术探讨

泥水盾构机泥水循环系统操作技术探讨

泥水盾构机泥水循环系统操作技术探讨
泥水盾构机泥水循环系统操作技术探讨

泥水盾构操作规程

盾构机掘进基本操作指导书 (包括刀盘转速、掘进速度、油缸推力、方向姿态等控制) 1、安全操作规程 1.1.基本注意事项 (1).遵守岗位内安全规程 ●盾构机操作、维修人员必须是受过专业训练的,必须具备相应的操作资格。 ●进行机械操作或维修时,请遵守相关的技术资料和项目部下发的文件中所 有安全规则、注意事项及顺序。 ●身体不适、服用药物(催眠药)时及酒后不要操作, 因为发生危机时,容易造成判断失误。 ●多人共同作业时,一定要设指挥员,根据制定的方案操作。 (2).设臵安全联锁装臵 ●请确认所有的防护装臵、防护罩是否装在正常位臵。如果破损,请马上修理。 ●请认真了解盾构联锁、溢流阀等安全装臵。 ●请勿随便调节盾构联锁装臵、溢流阀。 解除盾构联锁装臵请参照盾构联锁装臵的使用说明。 ●一旦误用安全装臵,将会造成重大人身事故。 (3).电气、液压的设定,不要随便变更 ●为防止电气火灾,请勿变更热继电器等设定值。 ●为防止盾构机损伤,请勿变更溢流阀压力等液压设定值。 (4).正确穿戴工作服和安全保护用品 过肥的服装、饰品等有可能被机械部件上的物品钩住,有油的工作服因易 燃,也不得穿用。 ●请勿忘记根据工作内容穿戴保 护眼镜、安全帽、口罩、手套等。 特别是用锤子打击销子等金属片、 异物时可能飞散,必须使用保护眼 镜、安全帽、手套等保护用具。

1.2.盾构掘进过程中的注意事项 (1).掘进中必须特别注意的事项 ●掘进中,机器有时会突然侧滚。所以进入掘进机内时,请充分注意因突然侧滚造 成的跌倒、滚落。 特别是在高处时,必须要用安全带。 ●因传送带或土沙压送泵运转中的振动,造成后续台车的翻到,伤及 作业者的危险性是存在的,请切实装好防翻部件,并认真确认。(2).注意电机的散热 ●电机散热装臵周围闭塞时,就不能散热,有损伤内部、发生火灾的可能, 因此,请保持电机散热装臵的正常运转,不要挡住电机前后风路。(3).推进油缸靴撑和管片间的注意事项 ●推进油缸靴撑和管片间有夹住手脚的危险。注意不要把手脚臵于其间。(4).注意异常声音、异常情况等 ●如果对器具的异音、异常不加以注意,零部件将可能破损而飞散,并有因部件 飞散而造成人员伤害的危险。 机器发生异音、异常时,请立即中止掘进,进行点检、维修。

高水压下泥水盾构掘进技术

高水压下泥水盾构掘进技术 黄学军 (中铁隧道集团二处联合掘进机二公司北京东燕郊 101601) 摘要:介绍在高水压下隧道泥水盾构施工存在的问题和解决方案 关键词:泥水盾构高水压隧道掘进技术 1.概述 盾构法隧道在穿越江河或海底时,隧道的静水压力通常很大。首先盾构自身的密封系统性能良好是隧道安全施工的重要保证,同时,由于盾构在高水压下施工,给施工增添了许多难度。选择合适的泥水压力和掘进参数、制定可行的隧道防水方案、选择合适的注浆方案和浆液配比,防止盾构在掘进过程中出现顶部及周围土体坍塌、隧道上浮等,保证盾构隧道的安全施工。当盾构穿越的土体为砂层,更应该根据具体的土层性质及地下水压力的大小选择合适的掘进参数并制定针对性的措施防止掌子面前方土体在高水压作用下发生的土体坍塌甚至流砂等一系列工程事故。 2.高水压下盾构法施工难点 (1)掌子面的稳定 盾构在掘进过程中,掌子面一直处于平衡状态,但由于盾构所处于高水压下,地下水的涌出及泥砂等被带出,会造成掌子面坍塌、地表陷降或下沉。因此,盾构在超高水压下掘进,必须采取措施来维持掌子面,它是泥水盾构在超高水压下砂层中掘进的一个难点。 (2)防止隧道周围土体坍塌 盾构在超高水压下掘进,当穿过的岩层为砂性土层时,由于盾构施工的扰动、纠偏力度过大或者盾构隧道背填注浆的不密实,同时受到高水头压力作用,隧道周围土体易发生土体坍塌,造成地表沉降。通过对地层情况的勘察分析,制定可行的方案,防止盾构穿越地段隧道周围土体发生坍塌。 (3)防止隧道上浮 盾构在超高水压区掘进时,由于隧道受地下高压水及泥浆的包裹,所以隧道较长时间内处于悬浮状态。同时,由于同步注浆浆液的初凝时间较长,注浆压力控制不当,浆液随地下水窜入建筑物外围地层中,造成隧道上浮。 (4)泥浆的泄露和喷出 为保证掌子面前土体的稳定,泥浆压力必须与切口水(土)压力保持平衡,当泥浆压力过大,同样也会造成泥浆向隧道后方流窜,甚至通过盾尾泄露至隧道内或通过隧道顶部岩层窜出地表。防止此类现象的发生是保证盾构安全施工的一个重要因素。 (5)盾尾密封及铰接密封等部位的抗高水压 盾构法施工区别与矿山法施工,优点就在于其施工的安全性。由于盾构的密封性能好,所以将盾构外部的泥土及地下水全部封堵在盾壳外部。因此,保证盾构良好的密封性能是盾构法施工成败的关键,在高水压下施工又提高了对盾构密封材料的要求。 (6)管片接缝防水 盾构隧道是通过拼装的管片实现隧道的一次成型。在高水压下,保证隧道的防水及抗渗等级是衡量工程质量的一项重要的标准。而管片接缝部位是盾构隧道防水的薄弱部位,加强管片接缝防水工作,提高隧道防水能力。 3.盾构在高水压下掘进技术 3.1稳定掌子面控制措施 为保证盾构能顺利通过,在对该地段进行详细探测后,拟采取以下处理措施:选择合适的推

海瑞克盾构机液压系统说明(附电路图)

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

c.液控单向阀 注:x口接压力油时,阀芯将a与b口堵死,当x口接油箱时,若Pa大于Pb,则从a口进油,打开阀芯,流向b口,若Pb大于Pa时,则油液从b 口流向a口,

盾构机液压系统原理(海瑞克)

盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的

转弯调向及 纠偏功能。铰接系统的主要作用是减小盾构机转弯或纠偏时的曲率半径上的直线段,从而减少盾尾与管片、盾体与围岩间的摩擦阻力。 (2)推进系统液压泵站: 推进系统的液压泵站是由一恒压变量泵(1P001)和一定量泵(1P002)组成的双联泵,功率为75KW,恒压变量泵为盾构的前进提供恒定的动力。恒压泵的压力可通过油泵上的电液比例溢流阀(A300)调整,流量在0-q ma x范围内变化时,调整后的泵供油压力保持恒定。恒压式变量泵常用于阀控系统的恒压油源以避免溢流损失。

复杂条件下的大直径泥水盾构掘进参数控制

万方数据

万方数据

构转向困难,应该更换边滚刀和周边刮刀。隧道最小转弯半径550nl,如通过以上步骤还不能转向,就需要使用仿型刀,设定开挖角度范围,增大开挖面直径辅助盾构转向。 图1掘进方向控制 Fig.1Excavationdirectioncontrol 2.3同步注浆量及压力的控制 在掘进过程中,控制好同步注浆量及注浆压力,及时填充掘进留下的空隙,保证管片的稳定性,提高隧道的防水性能,是控制地面沉降的必要手段。盾构机同步注浆系统有6根注浆管,圆周方向分布在盾构机尾盾上,注浆量根据开挖直径、管片外径计算出理论注入量。实际则需根据地层特点、盾构姿态等来控制,基本原则是注入量不小于理论注入量,确保顶部两根管路的注入量。注浆压力通常大于同等水平位置开挖舱泥水压力0.02~0.03MPa,压力低则注入量不够,过高会损坏盾尾密封刷或通过地层空隙进入开挖仓。因砂浆凝固会导致注浆管路堵塞,因此每掘进1环,在掘进的最后20cm就停止注浆。在盾构机完成掘进拼装管片时,每隔45—75rain注一次,每次每根管注入0.01一O.02m3。盾构掘进时也应留意注浆量,如遇到松散砂卵石地层或有地下空洞等导致注入量增加时应放慢掘进速度以保证填充密实。因盾构自重,砂浆会向下流,一般盾构上部注浆量要占到总注入量的一半以上,只有保证顶部注入量,才能最大限度地减少地表沉降。 2.4盾尾密封油脂系统 盾尾密封有3道,前、中、后,每一道的压力设定非常重要,假如设定压力过小,油脂注入量少,盾尾密封刷易损坏出现漏浆涌水现象。压力过大,油脂消耗量增大,造成经济损失。3道密封的压力设定以开挖仓土压力及注浆压力为依据,最外层压力应比开挖仓底部压力高约0.1MPa,中层取开挖仓底部压力或等于外层设定压力,内层则比中间层压力减少0.1MPa或与之相同,压力设定完毕后还应统计油脂消耗,并适当调整注脂泵的压力。经计算,每掘进1环,盾尾油脂理论消耗量在100~110kg(视掘进时间而定),可以依据该值调整注脂泵压力保证注入量即可…。 2.5泥水循环系统的控制 根据目前掘进距离统计,盾构机停止掘进80%的原因来自泥水循环系统,包括泵站停机、管路破损、泵及管路堵塞、泥水处理设备故障等(见图2)。 图2泥水循环控制系统 Fig.2Controlsystemofslurrycycle 2010年第12卷第12期67万方数据

泥水盾构机安全操作规程汇总

目录 盾构 盾构主机安全操作规程 (3) 土压仓作业安全操作规程 (7) 刀具更换安全操作规程 (9) 人仓作业安全操作规程 (10) 后备套系统管线延伸安全操作规程 (14) 注浆泵安全操作规程 (16) 管片安装机安全操作规程 (17) 油脂泵安全操作规程 (18) 常规 门吊安全操作规程 (20) 门吊钢丝绳使用规范 (21) 机车安全操作规程 (22) 装载机安全操作规程 (24) 挖掘机安全操作规程 (25) 空压机机安全操作规程 (26) 移动空压机安全操作规程 (27) 电动空压机安全操作规程 (29) 通风机安全操作规程 (30) 6M3砂浆车安全操作规程 (30) 18M3矿车安全操作规程 (31)

注浆机安全操作规程 (31) CO2气体保护焊机安全操作规程 (31) 电焊机安全操作规程 (34) 对焊机安全操作规程 (34) 卷扬机安全操作规程 (35) 切割机安全操作规程 (36) 套丝切管机安全操作规程 (37) 折弯机安全操作规程 (37) 充电机安全操作规程 (38) 电气设备安全操作规程 (40) 手持电动工具安全操作规程 (41) 水泵安全操作规程 (43) 厢式变电站安全操作规程 (44) 千斤顶及泵站安全操作规程 (45) 搅拌站安全操作规程 (46)

盾构主机安全操作规程 1、盾构操作人员必须身体健康,能够适应较长时间的洞内工作,无色盲\无视觉及听觉障碍,能吃苦耐劳并具有较强的责任心; 2、盾构操作人员必须具有一定的专业基础并经过专门的专业培训,具有一定的机械、电气及土木工程知识,对盾构机机械结构、电气配置、基本工作原理及盾构施工过程有一定的了解; 3、盾构操作人员必须经过专门的安全知识培训,并且熟悉盾构及地下工程施工的相关安全知识,掌握必备的防护技能。

泥水平衡盾构机施工总结

泥水平衡盾构机施工总结 本工程是我单位常规直径地铁盾构第一次采用泥水盾构机施工。在施工、操作方面可借鉴经验不多,造成在施工中走过了不少弯路,出现了许多问题。泥水盾构机操作的基本原则是:控制切口压力在技术交底范围内稳定和盾构机姿态在设计要求范围内的前提下,实现盾构机正常掘进。切口压力的稳定是保证地面沉降、安全掘进的前提条件,而盾构机姿态决定隧道走向是否与设计路线符合,成型隧道符合设计要求的先决条件。如果在掘进期间,切口压力不稳定,波动较大的话,轻则沉降较大,重则引起地面塌方。所以在操作泥水盾构机的时候,每一个操作手必须清楚的明白,保证切口压力稳定的重要性。而盾构机姿态是决定我们的施工是否按设计路线施工,如果出现姿态超限,轻则隧道管片出现错台、开裂、漏水等质量问题,重则需要联系设计单位和业主,进行调线。通过一年多的泥水盾构机施工经验,结合自己以前土压平衡盾构机的操作经验,对泥水盾构机的施工和质量控制方面的一些想法做如下总结。 一.工程概况: 东莞市城市快速轨道交通R2线工程(东莞火车站~东莞虎门站段)[2303A标:榴花公园站、茶山站~榴花公园站区间]土建工程施工项目,位于方中路上的茶山站后,正线隧道与出入段线隧道并行约100m由东向西穿越宽约200米的寒溪河,进入东岸大片农田(此时出入段线进入寒溪河东岸的东城车辆段)、通过中间风井及河西岸的数幢别墅后进入莞龙路。线路继续沿莞龙路前行,绕避了数架人行天

桥后到达榴花公园前的榴花公园站结束。 本标段起讫里程YDK2+298.728~ YDK5+502.598,包含1个明挖车站(【榴花公园站】)和1个区间(【茶山站~榴花公园站区间】),1条出段线盾构隧道(【中间风井~出段线盾构井】),1条入段线盾构隧道(【茶山站~入段线盾构井】)。其中正线段茶山站~榴花公园站区间左线起讫里程为:ZDK2+301.000~ZDK3+497.720、 ZDK3+653.485~ZDK4+118.812,左线长1662.041m; 右线起讫里程为:YDK2+298.728~YDK3+434.162、YDK3+601.659~ YDK4+110.000,右线长1643、775m;区间正线总长3406.628m。其中ZDK3+653.485~ZDK3+746.000、YDK3+601.659~ YDK3+690.000采用矿山法开挖,盾构管片衬砌。 二.操作注意事项: (一)泥浆粘度控制 在泥水盾构中,泥浆的作用有两种:维持开挖面稳定和运送弃土。泥水盾构机施工时稳定开挖面的原理为:以泥水压力来抵抗开挖面的土压力和水压力以保持开挖面的稳定,同时,控制掌子面变形和地面沉降;在掌子面形成弱透水性泥膜,保持泥水压力有效作用于掌子面。泥浆作为一种运输介质将开挖下来的渣土以流体形式输送,经地面泥水处离处理设备分离,将处理过的渣土运至弃土场。 泥浆的比重和粘度等性能决定它稳定开挖面和携带渣土的能力。(1)泥浆比重 为保持开挖面的稳定,即把开挖面的变形控制到最小限度,泥

大型泥水盾构现场施工中的泥水处理

精心整理大型泥水盾构施工中的 泥 水 分

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧 施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

土压时,产生泥水平衡效果。 2、泥水管理控制 (1)、进浆泥水指标 泥浆能否在渗入土壤时形成优质泥膜,能否稳定切口前方土体, 泥水的比重是一个主要控制指标。掘进中进泥比重不易过高或过低,前者将影响泥水的输送能力,后者将破坏开挖面的稳定。 泥水比重的范围应在1.15~1.30 g/cm3,下限为1.15 g/cm3,上限根据施工的特殊要求而定,在砂性土中施工、保护地面建筑物、盾构穿越浅覆层等,可达1.30 g/cm3。甚至可达1.35 g/cm3。

盾构隧道掘进机的发展史

盾构隧道掘进机的发展史 1818年,英国工程师布伦诺尔设计出一种挖掘机,在泰晤士河底下挖掘隧道。他观察过一种名叫凿船虫的蛀木软体动物,发现这种虫子利用圆管形硬壳支撑孔洞四周的特朵铖,继续向前钻进。于是受到启发,制造了一个箱形铁壳(称为盾构),利用千斤顶在松软的土壤中向前推进。挖掘工人则在铁壳内一面挖掘,一面在隧道内壁衬砖。这便是人类的第一台盾构机。1825年至1841年间,利用布仑诺尔设计的盾构凿通韦平到罗瑟海斯的世界第一条水下隧道,长约1100米。 1865年,英国桥梁工程师巴洛发明一种盾构,并注册了专利,这种盾构是圆筒形,直径较布仑诺尔设计的为小,不用砖铺砌隧道内壁,而用铁块砌块。巴洛和工程师格雷特黑德利用这种盾构在一年之内凿通泰晤士河床下的第二条隧道。格雷特黑德还改进了挖隧道技术,以压缩空气抵消外面的水压。1890年,伦敦用这种技术建成了世界上第一条地下铁道。 盾构机全名叫盾构隧道掘进机,是一种隧道掘进的专用工程机械,现代盾构掘进机集光、机、电、液、传感、信息技术于一体,具有开挖切削土体、输送土碴、拼装隧道衬砌、测量导向纠偏等功能,涉及地质、土木、机械、力学、液压、电气、控制、测量等多门学科技术,而且要按照不同的地质进行“量体裁衣”式的设计制造,可靠性要求极高。盾构掘进机已广泛用于地铁、铁路、公路、市政、水电等隧道工程。 用盾构机进行隧洞施工具有自动化程度高、节省人力、施工速度快、一次成洞、不受气候影响、开挖时可控制地面沉降、减少对地面建筑物的影响和在水下开挖时不影响水面交通等特点,在隧洞洞线较长、埋深较大的情况下,用盾构机施工更为经济合理。 盾构机的基本工作原理就是一个圆柱体的钢组件沿隧洞轴线边向前推进边对土壤进行挖掘。该圆柱体组件的壳体即护盾,它对挖掘出的还未衬砌的隧洞段起着临时文撑的作用,承受周围土层的压力,有时还承受地下水压以及将地下水挡在外面。挖掘、排土、衬砌等作业在护盾的掩护下进行。 据了解,采用盾构法施工的掘进量占京城地铁施工总量的45%,目前共有17台盾构机为地铁建设效力。虽然盾构机成本高昂,但可将地铁暗挖功效提高8到10倍,而且在施工过程中,地面上不用大面积拆迁,不阻断交通,施工无噪音,地面不沉降,不影响居民的正常生活。不过,大型盾构机技术附加值高、制造工艺复杂,国际上只有欧美和日本的几家企业能够研制生产。 盾构机根据工作原理一般分为手掘式盾构,挤压式盾构,半机械式盾构(局部气压、全局气压),机械式盾构(开胸式切削盾构,气压式盾构,泥水加压盾构,土压平衡盾构,混合型盾构,异型盾构)。

泥水平衡盾构机在不同地质层掘进的操作控制

泥水平衡盾构机在不同地质层掘进的操作控制 摘要:泥水平衡盾构适合多种恶劣环境施工,尤其是穿江越海。本文以南水北调穿黄隧道为实例,简述泥水盾构掘进在不同地质层中的风险和操作控制。 关键字:泥水盾构机;地质层;操作 工程简介 1、工程概况:南水北调中线穿黄隧洞包括3450m过黄河隧洞和800m邙山隧洞,采用一台泥水平衡式盾构机自北向南推进,埋深45m隧道施工。隧道直径9m,采用预制混凝土管片拼装支护方式。 2、工程地质:根据勘探资料,隧道大约由以下地质层构成:1)全土层:由黄土状粉质壤土、古土壤、淤泥、粉质粘土、淤泥质粘土、粉质壤土、淤泥质粉质粘土、砂壤土中的一种或几种组成,所占隧洞总长度的13.2% ;2)全砂层:由粉砂、细砂、中砂、粗砂、含砾砂中的一种或几种组成,所占隧洞总长度的25.6%;3)复合层:由全土层和全砂层中的任何两种或以上组成,所占隧洞总长度的15.0%;4)砂砾石层:只要含有砂砾石层就作为单独的一层,所占隧洞总长度的34.5%;5)钙质结核土层:层中只要含有钙质结构就作为单独的一层,所占隧洞总长度的11.7%;地质结构复杂多变。 盾构机的选择 1、盾构机的分类与区别 隧道掘进机(Tunnel Boring Machine简称TBM)大体分为硬岩掘进机、土压平横盾构机、泥水平衡盾构机和顶管机四类。硬岩掘进机用于地质稳定性较好的隧道工程,比如岩石层,一般用于山体隧道;顶管机一般用于距离短、直径小,地质疏松的小型直线隧道;土压平衡盾构(EPB)一般用于沙、水含量较少的地质,它是通过螺旋输送机出渣同时控制出渣量来保持压力平衡;泥水平衡盾构(slurry)用于地质变化大、条件比较恶劣的环境下,通过进、排泥浆管道出渣同时保持泥浆在气垫仓的液位保持盾构平衡,并且地面配备泥水分离设备。他们的区别主要在于出渣方式不同。本工程可使用加泥式土压平衡盾构和泥水平衡盾构。但土压平衡盾构一般只适应0.3MPa以下的水压,本工程水压高达0.45MPa,因此选用泥水平衡盾构。 2、加压式泥水平衡盾构工作原理 泥水平衡盾构是通过对泥浆压力进行调节和控制建立平衡、保证掘进的,采用膨润土悬浮液(俗称泥浆)作为支护材料。泥浆有两个作用:1)、在隧道开挖仓形成泥膜,支撑掌子面,防止隧道上方坍塌;2)、将掘进开挖出的渣土通过进、排泥浆将渣土悬浮于膨润土浆液中,通过管道泵出至配套的泥水处理设备进行分离。泥浆再通过沉淀调制,重复使用。泥水盾构适用的地质范围较大,从软弱砂

大型泥水盾构施工中的泥水处理

大型泥水盾构施工中的 泥 水 分 离 处 理 系 统

第一章绪论 一、泥水加压式盾构及其泥水分离处理系统概述 盾构法施工已有170余年历史,随着科学水平的不断提高,盾构技术也得到不断发展和完善。至今,盾构已发展成为软土地层修建隧道的一种专用施工机械,盾构施工法也已成为当今城市隧道和地铁工程中不可缺少的一种施工法。 为了满足城市隧道建设的地表沉降控制和加快施工速度,泥水加压式盾构逐渐发展并成熟,泥水加压式盾构用泥浆代替气压,用管道输送代替轨道出土,加快了掘进速度,改善了劳动条件和施工环境,能较好地稳定开挖面和防止地表隆陷,成为当今一种划时代的盾构新技术。 1996年,上海采用直径11.22m泥水加压式盾构,成功穿越7m 浅覆土河床和4.2m超浅覆土软土地层,完成延安东路南线水底公路隧道施工,标志着中国隧道施工技术已达到国际先进水平。 近来,上海市相继开始建设大连路和复兴东路越江隧道工程,并采用直径11.22m泥水加压式盾构施工,为该施工工艺在软土地基中施工提供了广阔的舞台。 泥水加压式盾构是在机械掘削式盾构的前部刀盘后侧设置隔板,它与刀盘之间形成压力室,将加压的泥水送入泥水压力室,当泥水压力室充满加压的泥水后,通过加压作用和压力保持机构,来谋求开挖面的稳定。盾构推进时由旋转刀盘切削下来的土砂经搅拌装置搅拌后

形成高浓度泥水,用流体输送方式送到地面。在地面调整槽中,将泥水调整到合适地层土质状态后,由泥水输送泵加压后,经管路送到开挖面泥水压力室,泥水在稳定开挖面的同时,将刀盘切削下来的土砂搅成浓泥浆,再由排泥泵经管路输送到地面。被送到地面的泥水,根据土砂颗粒直径,通过一次分离设备和二次分离设备将土砂分离并脱水后,排去分离后的水,经调整槽进行再次调整,使其成为优质泥水后再循环到开挖面。 二、泥水平衡机理及指标 1、泥水平衡机理 泥水平衡盾构是在切削刀盘与隔板之间形成的密封舱中,注入满足施工要求压力的泥浆,使其在开挖面形成泥膜,支承正面土体,并由安装在正面的大刀盘切削土体表层泥膜,由刀盘开口进入密封舱与泥水混合后,形成高密度泥浆,由排泥泵及管道输送至地面进行处理,整个过程通过建立在地面中央控制室内的泥水平衡自动控制系统统一管理。盾构掘进机设有操作步骤设定,各操作步骤间设有联锁装置,制约因误操作而引起事故,施工安全可靠。 在实际施工中,泥膜的形成是至关重要的。当泥水压力大于地下水压力时,泥水理论按达西定律渗入土壤,形成与土壤间隙成一定比例的悬浮颗粒,在“阻塞”和“架桥”效应的作用下,被捕获并积聚于土壤与泥水的接触表面,泥膜就此形成。随着时间的渐渐推移,泥膜的厚度不断增加,渗透抵抗力逐渐增强,当泥膜抵抗力远大于正面

泥水盾构泥水系统技术

泥水盾构泥水系统技术 傅德明 上海申通地铁集团公司 2010.3 1 泥水盾构简介 ?1818年,英国的布鲁诺从蛀虫钻孔得到启示,提出盾构掘进隧道设想。 ? 1825--1843年,布鲁诺在伦敦泰吾士河下用盾构法修建458m长的矩形隧(11.4m× 6.8m)。 ? 1830年,英国的罗德发明“气压法”辅助解决隧道涌水。

1874年Greathead提出泥浆盾构专利 1896年,开始应用刀盘式盾构掘进机 不 ?20世纪60年代初,穿越不稳定和含水地层的隧道工程辅助技术有:降水法、气压 法、地层加固法和冻结法。 ?气压法最经济有效,由于安全和健康等原因,希望有一种能不干扰地面和使工人不 在气压下施工的隧道掘进机,欧洲国家提出“局部气压方法”,但这种对工作面不能提供不变的和有规则的支护。 ?英国隧道专家建议在隔舱板前用喷水“水力盾构”,但水不能支护开挖面,无法阻 止开挖面不停地流动。这种情况与充满水的挖槽相类拟,从而提出在开挖面用类同槽壁法的支护,这样就诞生了泥水加压盾构掘进机。 ?1967年,英国开发成功首台泥水加压平衡盾构。 ?1974年,日本开发成功首台土压平衡盾构。 ?1987--1991年,英国、法国采用11台盾构掘进深50km长的英法海峡隧道,创造单 台盾构连续掘进21km的记录。 ?1989--1996年,日本采用8台世界最大直径14.14m泥水加压盾构,掘进东京湾海 峡隧道,2条隧道各长9.4km。 英国体系泥水盾构

?1964年英国Mott, Hay和Anderson的John Bartlett 申请了泥水加压平 衡盾构掘进机原理专利(英国专利号1083322)。 ?1971年开挖直径4.1m、长140m的试验段。英国体系泥水加压平衡盾构掘 进机与同类德国体系相对照,其研制的特征是有长槽的鼓轮状的切削头、提取来自压力室的泥浆,有粗和细两套分离装置,以及以控制弃土出口压力(阀或泵)的方法保持开挖面的压力。当时,英国由于缺乏能适合促进这种技术的隧道工程,这种技术的发展受到了限制。 日本体系泥水盾构 ?日本工程师相信液体支护隧道开挖面的原理、他们称为“泥水加压平衡盾 构”(即泥水加压平衡盾构)。 ?1970年日本铁建公司在京叶线森崎运河下,羽田隧道工程中采用了直径 7.29m的泥水加压盾构施工,土质为冲积粉砂土层和洪积砂层,N值为2-50,施工 长度为865× 2条=1712延米,见图1。 ?直径7.29m泥水加压盾构掘进机,在隧道施工中获得了极大的成功,它是 当代时最大直径的泥水加压平衡盾构。 ?纵观日本在近30年的泥水盾构发展,自日本泥水盾构问世以来,泥水盾 构一直持续发展。

盾构法特点总结

地下工程 盾构法施工过程涉及的力学问题分析 专业:土木工程系 班级: 1009 姓名: 日期: 2013/04/27 南京过江隧道(盾构施工) 一、南京过江隧道简介 南京长江隧道于2008年5月开工到2009年8月22日全线胜利贯通,是南京城市总体规划确定的“五桥一隧”过江隧道之一,是南京跨江发展战略的标准基础设施项目,工程位于南京长江大桥和长江三桥之间,南起南京市和西新城区,北至浦口江、珠江镇,全长5853

米,由越江隧道、将西周大桥和接线道路三部分组成,隧道建筑长度3790米,其中盾构段长3020米。 南京长江隧道分左右两条隧道,每条隧道设置三车道,设计行车速度为80Km/h。盾构设计内经,外径。圆形衬砌环用环宽2m、厚、每环由10块管片组成。 图1 南京长江 图2 南京长江越江隧道 图3 隧道盾构段 图4 盾构隧道直径 二、南京过江隧道施工 南京长江隧道是当今世界上直径最大的盾构隧道之一,其江底埋深达60多米,水压高达每平方厘米公斤,兼地质情况复杂,地层透水性强,一次掘进距离长达3公里多,面临着多项世界级难题和挑战,泥水平衡式盾构机(如图6)是水下隧道施工最安全最先进的设备。泥水平衡式盾构机施工隧道(如图;图;图) 图泥水平衡式盾构机施工隧道

图泥水平衡式盾构机施工隧道 图泥水平衡式盾构机施工隧道 图6 泥水平衡式盾构机 三、盾构机设计与工作原理介绍 南京长江隧道,根据本工程的特点和地质条件专门定制了两台超大直径溺水平衡式盾构机进行施工,下面展示这两台盾构机的设计和工作原理: 盾构机主要包括主机和三个后配套车架,总重多达四千多吨,主机最前端是开挖地层的刀盘,直径达米,刀盘上安装有先行刀,重行刮刀和边缘铲刀等类型的刀具200多把,刀盘的六个主刀壁在正常的大气压下进土,维护人员可以通过中心人闸进入主刀壁。 图7 盾构机的直径 图8 刀盘维护人员 对磨损的刀具进行更换,为了检测刀具的磨损,部分刀具内部安装了传感器感应系统,一旦传感器发出信号,整个刀盘上设计有77把可设置常压更换的刀具,这些刀具安装在刀闸中,当刀具磨损,需要更换刀具时,工作人员进入刀盘腹壁内,将刀具通过刀闸回缩,刀

盾构机液压系统原理海瑞克解读

上海吉原公司培训讲稿 盾构机液压系统原理 一.液压系统原理 盾构机的绝大部分工作机构主要由液压系统驱动来完成,液压系统可以说是盾构机的心脏,起着非常重要的作用。这些系统按其机构的工作性质可分为: 1. 盾构机液压推进及铰接系统 2. 刀盘切割旋转液压系统 3. 管片拼装机液压系统 4. 管片小车及辅助液压系统 5. 螺旋输送机液压系统 6. 液压油主油箱及冷却过滤系统 7. 同步注浆泵液压系统 8. 超挖刀液压系统 以上8个系统除同步注浆泵液压系统在1号拖车、超挖刀液压系统在盾壳前体为两个独立的系统外,其余6个液压系统都共用一个油箱,并安装在2号拖车上组成一个液压泵站。有的系统还相互有联系。下面就分别介绍一下以上8个液压系统的作用及工作原理。 (一)盾构机液压推进及铰接系统 1. 盾构机液压推进 (1)盾构机液压推进系统的组成 盾构机液压推进系统由液压泵站,调速、调压机构,换向控制阀组及推进油缸组成,30个油缸分20组均布的安装在盾构中体内圆壁上(见图),并分为上、下、左、右四个可调整液压压力的区域,为盾构机前进提供推进力、推进速度,通过调整四个区域的压力差来实现盾构机的 - 1 - 上海吉原公司培训讲稿 转弯调向及

径半的曲率转机弯或纠偏时接系统的主要作用是减小盾构能纠偏功。铰。阻力间围岩的摩擦减少盾尾与管片、盾体与,上的直线段从而:泵站进系统液压(2)

推泵定量1P001)和一一是由恒压变量泵(统推进系的液压泵站提进构的前量恒压变泵为盾功)(1P002组成的双联泵,率为75KW,)(A300例比溢流阀过力可通油泵上的电液压恒的供恒定动力。压泵的。恒恒持定供油压力保的时围0-q整调,流量在范内变化,调整后泵xma压油源以避免溢恒统控于常量式压变泵用阀系的流损失。 - 2 - 上海吉原公司培训讲稿 进推联的D四组并别送达A、B、C、输由恒压变量泵出的高压油分,油缸控制推进调整和换向后再去过方向控制阀组,经阀组的流量、压力油每组控制。因及

泥水式盾构机发展概况及工作原理

泥水式盾构机发展概况及工作原理 泥水式盾构机 1发展概况 泥水式盾构机是通过有一定压力的泥浆来支撑稳固开挖面;由旋转刀盘、悬臂刀头或水力射流等进行土体开挖;开挖下来的土料与泥水混合以泥水状态由泥浆泵进行输运。泥水式盾构机适用于各种松散地层,有无地下水均可。采用泥水式盾构机进行施工的隧洞工程都说明它是一种低沉降及安全的施工方法,在稳定的地层中其优点更加明显。 最初的泥水盾构要追溯到一百多年前的Greathead及Haag的专利。由于高透水性地层用压缩空气支撑隧洞开挖面非常困难,1874年,Greathead开发了用流体支撑开挖面的盾构,开挖出的土料以泥水流的方式排出。1896年Haag在柏林为第一台德国泥水式盾构申请了专利,该盾构以液体支撑开挖面,其开挖室是有压和密封的。1959年E.C.Gardner成功地将以液体支撑开挖面应用于一台用于建造排污隧洞的直径为3.35m的盾构。1960年Schneidereit引进了用膨润土悬浮液来支撑开挖面,而H.Lorenz的专利提出用加压的膨润土液来稳固开挖面。1967年第一台有切削刀盘并以水力出土、直径为3.1m的泥水盾构在日本开始使用。在德国,第一台以膨润土悬浮液支撑开挖面的盾构由Wayss&Freytag开发并投入使用。 泥水式盾构机的发展有三种历程,即日本历程、英国历程和德国历程。到目前则只有日本和德国两个主要的发展体系。日本的发展历程导致当今的泥水盾构,德国的发展历程导致水力盾构。以日本的泥水盾构为基础发展了土压平衡盾构,而德国的水力盾构导致很多不同的机型,如混合型盾构,悬臂刀头泥水盾构及水 力喷射盾构等。德国和日本体系的主要区别是,德国式的在泥水舱中设置了气压舱,便于人工正面控制泥水压力,构造简单;日本式的泥水密封舱中全是泥水,要有一套自动控制泥水平衡的装置。

盾构培训总结docx

浅谈盾构陈国全 盾构在我国发展迅速,尤其是近些年的城市轨道交通建设,盾构显得尤为重要,盾构是集隧道施工中的开挖、出土、支护、衬砌等多项作业于一体的联合施工机械,其将隧道的施工过程形成了工厂化的流水性作业。机械专业性强,人工操作少,施工方便等明显特点。 盾构的分类: 盾构的分类方法很多,常见的有两种分类方法:根据施工环境的不同,盾构的“类型”分为软土盾构和复合盾构两类。 软土盾构是指适用于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩条件下的一类盾构。软土盾构的主要特点是刀盘仅安装切刀和刮刀,无需滚刀。 复合盾构是指既适用于软土、又适用于硬岩的一类盾构,主要用于既有软土又有硬岩的复杂地层施工。复合盾构的主要特点是刀盘既安装有切刀和刮刀,又安装有滚刀 盾构按支护地层的形式主要分为自然支护式、机械支护式、压缩空气支护式、 泥浆支护式、土压平衡支护式五种机型。目前应用最广的是土压平衡盾构(土压 平衡支护式)和泥水盾构(泥浆支护式)两种机型。 土压平衡盾构的工作原理:土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构千斤顶的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。 泥水平衡盾构的工作原理:泥水加压平衡盾构(slurry pressure balance shield),简称SPB盾构或泥水盾构。是在机械式盾构的前部设置隔板,与刀盘之间形成泥水仓,开挖面的稳定是将泥浆送入泥水仓内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜的张力保持水压力,以平衡作用于开挖面的土压力和水压力。开挖的土砂以泥浆形式输送到地面,通过泥水处理设备进行分离,分离后的泥水进行质量调整,再输送到开挖面。 泥水盾构根据泥水仓构造形式和对泥浆压力的控制方式的不同,泥水盾构分为:1.直接控制型2.间接控制型.德国采用间接控制型泥水盾构,其泥水系统由泥

盾构机液压系统说明

液压系统说明目录 一、液压系统的基本元件 二、盾构机液压系统说明

一、液压系统元件 1液压泵 液压泵是液压系统的动力元件,按结构可以分为柱塞泵、齿轮泵、叶片泵,按排量可以分为定量泵、变量 泵,按输出出口方向又可以分为单向泵、双向泵。 泵都是由电动机或其他原动机带动旋转,通过这种往复的旋转将油不断地输送到管路中,通过各种阀的作 用,控制着执行元件的运行。 在大连地铁盾构机中,螺旋输送机使用一个双向变量泵和一个定量泵,推进系统中使用一个大排量的单向 变量泵,管片安装机种使用两个单向变量泵,注浆系统 中使用一个单向变量泵,辅助系统使用一个单向变量泵。

a.定量齿轮泵 注:右侧油液进入泵内,齿轮旋转带动油液从左侧出口流出,排量是一定的

c.定量叶片泵 注:转子转动,带动叶片推动油液1、2进油,3、4出油,排量一定 d.斜盘式柱塞泵 注:斜盘由联轴器带动转动,往复吸油、压油,斜盘角度是可以调控的

2液压阀 液压阀根据作用可以分为压力控制阀、流量控制阀、方向控制阀。 压力控制阀可以控制液压回路的压力,如当液压回路中压力过大时,溢流阀或卸荷阀打开泄压。 流量控制阀可以控制液压回路中的流量大小,根据流量的不同可以控制执行元件的速度。 方向控制阀主要控制液压回路中液压油的流动方向,由此可以改变液压油缸的伸缩。 各种阀一般安装在靠近泵的油液管路中,相对来说比较集中,便于检查和维修。 a.单向阀 注:油液从P1口进入,克服弹簧力推开单向阀的阀芯,经孔隙从p2 口流出,油液只能从p1流向p2

b.溢流阀 注:油从压力口进入,通过阻尼孔进入后腔,克服弹簧压力,推开阀芯,油液 从溢流口

狮子洋隧道盾构施工技术

狮子洋隧道盾构施工技术 1工程相关简介 1.1 工程概况 狮子洋隧道广深港铁路客运专线的控制性工程,工程位于珠江入海口、虎门大桥上游,处于线路东涌站~虎门站之间,下穿珠江主航道——狮子洋水道,隧道工程全长10.8km,设计时速350公里,是我国首座水下铁路隧道,同时也是目前国内水深最深、长度最长、标准最高的水下盾构隧道,被誉为“中国铁路的世纪隧道”。 狮子洋隧道分为进口(SDⅡ标)、出口(SDⅢ标)两个标段,盾构隧道投入四台直径Φ11.18m气压调节式泥水平衡盾构机,采用“相向掘进,地下对接,洞内解体”方式组织施工。我中铁隧道集团承担狮子洋隧道出口标段(SDⅢ标)的施工任务,合同总价亿元。 SDⅢ标段工程包括引道敞开段180m,明挖暗埋段长597m,工作井长23m,明挖工程总长800m;盾构段左线长4450m,右线长4750m;另外,还包含敞开段雨棚、设备用房、11处联络通道和泵房等附属工程。左线正线长度 5.25km,右线正线长度5.55km。 盾构隧道采用预制拼装式管片衬砌,管片采用“5+2+1”双面楔形通用环管片,错缝拼装。管片内径9.8m、外径10.8m、管片厚度500mm、管片环宽2.0m,楔形量为24mm。盾构隧道以管片自防水为主,接缝采用两道弹性密封止水条防水。 隧道最大纵坡20‰,最小纵坡3‰。盾构隧道最大覆土52.3m,最小覆土7.8m;狮子洋水道最大水深26.4m,水深最大处的隧道覆土26.0m。隧道轨面最低点标高为-60.988m,与百年一遇高潮位的高差约64.2m。 盾构隧道大部分处于微风化泥质粉砂岩、砂岩和砂砾岩中,局部位于淤泥质与粉质黏土中,部分地段穿越软硬不均底层,并通过多处断裂带和风化深槽;穿越基岩的最大单轴抗压强度为,渗透系数达×10-4m/s,石英含量最高达%,岩石地层的黏粉粒(≤75μm)含量达%。地下水主要为第四系地层的孔隙水和白垩系岩层的裂隙水,且具承压性,本标段隧道最大水压为。 本标段工程有工程规模大、设计标准高、涉及工法多、工期紧、工程地质复杂、水压力大、盾构掘进距离长等特点。同时,本工程存在明挖基坑地层软弱、长距离盾构掘进及刀具管理、高水压带压作业以及江底地中盾构对接与拆解等重难点。

盾构培训总结

篇一:盾构培训总结docx 浅谈盾构陈国全 盾构在我国发展迅速,尤其是近些年的城市轨道交通建设,盾构显得尤为重要,盾构是集隧道施工中的开挖、出土、支护、衬砌等多项作业于一体的联合施工机械,其将隧道的施工过程形成了工厂化的流水性作业。机械专业性强,人工操作少,施工方便等明显特点。 盾构的分类: 盾构的分类方法很多,常见的有两种分类方法:根据施工环境的不同,盾构的“类型”分为软土盾构和复合盾构两类。 软土盾构是指适用于未固结成岩的软土、某些半固结成岩及全风化和强风化围岩条件下的一类盾构。软土盾构的主要特点是刀盘仅安装切刀和刮刀,无需滚刀。 复合盾构是指既适用于软土、又适用于硬岩的一类盾构,主要用于既有软土又有硬岩的复杂地层施工。复合盾构的主要特点是刀盘既安装有切刀和刮刀,又安装有滚刀 盾构按支护地层的形式主要分为自然支护式、机械支护式、压缩空气支护式、泥浆支护式、土压平衡支护式五种机型。目前应用最广的是土压平衡盾构(土压平衡支护式)和泥水盾构(泥浆支护式)两种机型。 土压平衡盾构的工作原理:土压平衡盾构是在机械式盾构的前部设置隔板,在刀盘的旋转作用下,刀具切削开挖面的泥土,破碎的泥土通过刀盘开口进入土仓,使土仓和排土用的螺旋输送机内充满切削下来的泥土,依靠盾构千斤顶的推力通过隔板给土仓内的土碴加压,使土压作用于开挖面以平衡开挖面的水土压力。 泥水平衡盾构的工作原理:泥水加压平衡盾构(slurry pressure balance shield),简称spb 盾构或泥水盾构。是在机械式盾构的前部设置隔板,与刀盘之间形成泥水仓,开挖面的稳定是将泥浆送入泥水仓内,在开挖面上用泥浆形成不透水的泥膜,通过该泥膜的张力保持水压力,以平衡作用于开挖面的土压力和水压力。开挖的土砂以泥浆形式输送到地面,通过泥水处理设备进行分离,分离后的泥水进行质量调整,再输送到开挖面。 泥水盾构根据泥水仓构造形式和对泥浆压力的控制方式的不同,泥水盾构分为:1.直接控制型2.间接控制型.德国采用间接控制型泥水盾构,其泥水系统由泥浆和空气双重回路组成。在盾构的泥水仓内插装一道半隔板,在半隔板前充以压力泥浆,在半隔板后面盾构轴心线以上部分充以压缩空气,形成空气缓冲层,气压作用在半隔板后面与泥浆的接触面上,由于接触面上气、液具有相同压力,因此只要调节空气压力,就可以确定和保持在开挖面上相应的泥浆支护压力。 土压平衡盾构的三种工作模式:根据地质条件、水位和压力情况,盾构机有敞开式、闭合(epb)式和半敞开式三种掘进模式。1)敞开式:在前方掌子面足够稳定并且涌水能够被控制,可以采用“敞开式”作业。 2)半敞开式:用于含水,且水压为1~1.5bar,掌子面可以稳定的地层中。半敞开式作业时隧道掘进速度近似于敞开式作业。 3)epb模式:用于围岩不稳定、水压压力高、水量大时。采用epb模式施工时,可以用泡沫系统改善碴土的流动情况。 土压平衡盾构的构成:盾构机主要由9大部分组成,他们分别是刀盘、盾体、主驱动、人舱、管片拼装机、排土机构、后配套装置、电气系统和辅助设备。 刀盘是一个带有多个进料槽的切削盘体,位于盾构机的最前部,用于切削土体。刀盘上可根据被切削土质的软硬而选择安装硬岩刀具或软土刀具。土压平衡盾构的刀盘有两种形式:1)面板式 2)辐条式。 盾体主要包括前盾、中盾和尾盾三部分,这三部分都是管状筒体,呈前大后小锥形分布。中盾和前盾通过法兰以螺栓连接。中盾内侧的周边位置装有推进油缸,推进油缸杆上安有塑料撑靴,撑靴顶推在后部已安装好的管片上,通过控制油缸杆向后伸出可以提供给盾构机向前的掘进力。推进油缸按照安装布置被分成

相关主题
文本预览
相关文档 最新文档