当前位置:文档之家› 简易数字存储示波器设计报告

简易数字存储示波器设计报告

简易数字存储示波器设计报告
简易数字存储示波器设计报告

简易数字存储示波器设计报告书

学院电子与信息工程学院

专业电子信息工程

班级电子1102班

学生姓名刘楠楠

学号1110910221

指导老师张诚老师

摘要

本作品是以MSP430F169和MSP430F149芯片为主控制器,以LCD12864液晶屏和1602液晶屏作为显示模块制作的简易数字存储示波器,能够很好的实现正弦波、方波和三角波波形以及常见波形的正常显示,同时可以显示被测波形的峰峰值,有效值和频率等相关特性。关键词:MSP430 LCD液晶屏调理电路 AD转换采样

ABSTRACT

This work is based on the MSP430F169 and the MSP430F149 chip as the main controller, using 12864 LCD liquid crystal screen and 1602 LCD as display simple digital oscilloscope module, very good realization of sine wave, triangle wave, Fang Bo and common waveform display, and can display the measured waveform peak, RMS and frequency correlation.

Keywords: MSP430 LCD AD conversion sampling

目录

一前言................................................... 错误!未定义书签。二作品设计要求 (1)

三总体方案设计 (2)

3.1 方案比较 (2)

3.2 方案选择 (4)

3.3 总体方案设计参数计算 (4)

四电路单元模块设计 (4)

4.1 单片机主控芯片电路模块 (4)

4.2 液晶显示电路模块 (6)

4.2.1LCD12864液晶模块的特点 (6)

4.2.2 液晶屏芯片管脚与功能 (6)

4.2.3 液晶屏的读写时序 (6)

五辅助电源电路 (7)

六程序软件部分 (9)

6.1 软件设计流程图 (9)

6.2 部分程序代码 (10)

七作品的调试与测试 (12)

八测试数据统计及分析 (13)

8.1测试数据统计 (13)

8.2测试数据分析与结论 (13)

九作品电路图的PCB制作 (14)

十作品实物图片 (15)

前言

数字示波器是一种用途十分广泛的电子测量仪器,与传统模拟示波器相比,数字存储示波器不仅具有可存储波形、体积小、功耗低,使用方便等优点,而且还具有强大的信号实时处理分析功能,在电子电信类实验室中使用越来越广泛。如今由于数字集成电路技术的发展而出现的新型智能化示波器,己经成为电子测量领域的基础测试仪器。随着新技术、新器件的发展,它正在向宽带化、模块化、多功能和网络化的方向发展,数字存储示波器的优势是可以实现高带宽及强大的分析功能。现在高端数字存储示波器的实时带宽已达到20GHz,可以

广泛应用于各种千兆以太网、光通讯等测试领域。而低端数字存储示波器几乎可以应用于国民经济各个领域的通用测试,同时可广泛应用于高校及职业学校的教学,为社会培养众多的后备人才。数字存储示波器的技术基础是数据采集,其设计技术可以应用于更广泛的数据采集产品中,具有深远的意义。

二作品设计要求

要求基于单片机设计一具有远程控制功能的简易数字存储示波器。具体要求如下:

(1)输入信号范围可达0~±10Vpp,分辨率可达0.4Vpp。

(2)输入信号频率范围可达100Hz~10KHz,,频率分辨率可达100Hz。

(3)实时显示输入波形(至少1个周期)

(4)具有波形存储功能,能存储至少1组波形,存储深度至少为1屏数据,并可回调存储波形。

(5)实时显示输入信号的峰峰值(Vpp)、有效值(Vrms)和频率。

(6)具有远程控制功能,通过远程终端控制该示波器的采样运行、停止、回放等操作。

(7)自制电源。

(8)其它。(在满足上述要求的基础上,自行增加功能或提高性能指标。如扩展输入信号幅度和频率范围、提高幅度和频率分辨率、增加保护电路、提高人机交互友好程度、实现远程波形数据的传输等)

三总体方案设计

3.1方案比较

方案一:利用一片430单片机作为主控芯片,对函数发生器传输过来的波形进行采样,并将采样数据送到LCD液晶屏上进行实时显示。同时通过红外装置进行无线传输,将波形数据传输给另一片430单片机,对波形的参数(频率、幅值、相位)进行实时显示。

其电路方框图如下图1所示:

图1

方案二:它的工作原理是:对于输入的信号,首先由信号调理电路将信号进行整形,滤波处理,然后将处理后的信号送入到A/D转换器的模拟输入端,由A/D转换器对输入的模拟信号进行数字化处理,数字化处理后的数据存储在定义的数组中,一帧数据采集完成后,经过一定的数字信号处理算法,计算出波形的相关参数,并对波形进行重建送入到LCD液晶显示器中显示。基于模数转换电路在给定采样时钟的节拍下把输入模拟信号转换为离散的数据值,然后送入到两片430单片机中分别实现波形的实时显示和波形相关数据的显示的功能。其电路方框图如下图2所示:

图 2

3.2方案选择

对于方案一,其实现结果效果较好,但是红外无线传输电路较复杂,且程序较繁琐;相比之下方案二则整体思路比较明确,单片机直接对调理电路调理过后的信号采样和取值,分别显示波形和波形相关参数。故本作品采用方案二作为设计方案。

3.3总体方案设计参数计算

本作品的设计要求中,由于输入信号要求0~±10Vpp,分辨率可达0.4Vpp,输入信号频率范围可达100Hz~10KHz,,频率分辨率可达100Hz。故在前级调理电路中,可以采用集成运放将基线和幅值调理成MSP430单片机能够采集的范围之内。由于波形显示需要不失真,因而在AD采样时采用单片机内部AD定时器采样,最高可达200kbps。采样数据存放在数组中,利用给液晶屏地址赋值的方式将波形显示出来。

四电路单元模块设计

4.1 单片机主控芯片电路模块

430单片机主控芯片模块电路图如下图所示:

图3 单片机主控芯片模块电路图

此模块电路主要负责对接收的信号进行AD转换,取样,再把得到的数据传送给12864液晶屏进行实时显示。信号调理主要是对被测输入信号在幅度与偏移方面进行线性处理,使信号在垂直方向上处于A/D转换器的输入范围内。待测模拟信号输入到数字示波器时首先要经过相关的处理才能够送给ADC,因为ADC对输入电压的幅度有一定的要求,一般为0-5V,或者0-2V等。对于输入的模拟信号,要根据不同的垂直灵敏度做出调整,具体说就是把小电压信号放大,将大电压信号衰减使之符合ADC的输入电压范围。因此,需要对电压大小不同的信号进行增益调整。当然,如果调理电路工作效果不是很好,就需要在函数发生器上讲波形进行适当调整,在把调整后的波形送入到430单片机中。

4.2液晶显示器电路模块

4.2.1LCD12864液晶模块的特点是:

*LCD12864显示内容128?64点阵,点大小0.48?0.48mm2,点间距0.04mm

*显示类型:STN蓝白模式、LED背光;工作电压:5V

* 控制器为KS0107

4.2.2 12864液晶屏芯片管脚与功能见表一

表一液晶模块LCM12864管脚说明

4.2.3液晶模块的读写时序

液晶模块的读写时序如下图所示

E

R/W CS1,CS2,RS DB0-DB7

t as

t ah

t whe

t dsw

>140ns >10ns t as t ah >450ns

t whe >200ns

t dsw

图4 液晶模块的写时序

E 为使能信号,高电平有效,在E 的下降沿锁存数据。

图5 液晶显示接口电路

液晶显示接口电路上图所示,图中:电位器w1用来调节对比度;DB0—

DB7为8位数据线,与AT89S52的P0.0—P0.7相连;CS1为左半屏片选信号,CS2为右半屏片选信号;P3.4接入液晶显示的的使能端;P3.1接至液晶显示器的R/W 端;P3.0接至液晶显示的指令/数据寄存器(RS 端)。

五辅助电源电路

根据交流电变成直流电的原理,该设计问题按先后顺序可分为变压电路、整流电路、滤波电路、稳压电路,其流程图如图6所示。

图6 电源电路流程图

系统电源电路的电路图如图7所示:

图7 系统可调电源电路电路图

电源变压器整流电路

滤波电路

稳压电路

为保证空载情况下输出电源稳定,R1不宜高于240Ω。取R1=200Ω。 由LM317的性质可得:

)1

1

31(25.1R RV R V o ++

= 当输出为+3到+18V 可调时,经计算得R2= 280Ω,R V1min = 0Ω,R V1max = 2400Ω。实际上不可能达到这一要求,以防实际工作中出现误差,保留一定的余度。故取R2为选用一个500Ω的电位器,因此可调500Ω电位器可以满足R2=280Ω,RV1 = 2.5K Ω的可调电位器,由于资源有限,所以本设计就选用了5.1K 的电位器并联上一个5.1K 的电阻,其有效电阻了2.55K Ω的可调电位器,此值可满足R V1max = 2400Ω的要求。

六 程序软件部分

6.1软件流程图

软件设计部分主要包括主程序模块、A /D 转换模块、LCD 显示模块、按键处理模块,其流程图如下图8所示。

图8 软件设计流程图

6.2 部分程序代码

#include "msp430.h"

#include "cry12864.h"

#include "qq.h"

#define uint unsigned int

#define uchar unsigned char

#define Num_of_Results 128

int x,y;

unsigned int Y[Num_of_Results]; //测试用Y坐标(12位AD值)uint t,max;

/*************************主函数*************************/

void main( void )

{

/*下面六行程序关闭所有的IO口*/

P1DIR = 0XFF;P1OUT = 0XFF;

P2DIR = 0XFF;P2OUT = 0XFF;

P3DIR = 0XFF;P3OUT = 0XFF;

P4DIR = 0XFF;P4OUT = 0XFF;

P5DIR = 0XFF;P5OUT = 0XFF;

P6DIR = 0XFF;P6OUT = 0Xff;

WDTCTL = WDTPW + WDTHOLD; //关闭看门狗

P6DIR |= BIT2;P6OUT |= BIT2;

Ini_Lcd();

Clear_GDRAM();

P6SEL |= 0x04; // 使能ADC通道 ADC12CTL0 = ADC12ON + SHT0_8 + MSC; // 打开ADC,设置采样时间

ADC12CTL1 =SHP + CONSEQ_2 + CSTARTADD_2; // 使用采样定时器 ADC12MCTL2 = INCH_2 + EOS;

ADC12IE = 0x04; // 使能ADC中断 ADC12CTL0 |= ENC; // 使能转换

ADC12CTL0 |= ADC12SC; // 开始转换

_EINT();

LPM4;

//实际显示X坐标

while(1);

}

#pragma vector=ADC_VECTOR

__interrupt void ADC12ISR (void)

{

static uint index = 0;

Y[index++] = ADC12MEM2; // Move results

if(index == Num_of_Results)

{

for(x=0;x<128;x++)

{

y=(Y[x]*1.0/4096.00)*64; //实际显示Y坐标

Msk[x/8+16*y]|=(0x80>>(x%8));

}

Draw_PM(Msk);

_NOP(); //在这里设置断点观察液晶屏幕显示

}

}

GUI_PrtPic(0, 0, 239, 319, gImage_root01);// 示波器面板(背景)图显示

GUI_Line(224, 268, 224, 315, 0xffff); //Running至Off间6根短白线

GUI_Line(184, 268, 184, 315, 0xffff);

GUI_Line(144, 268, 144, 315, 0xffff);

GUI_Line(104, 268, 104, 315, 0xffff);

GUI_Line( 64, 268, 64, 315, 0xffff);

GUI_Line( 24, 268, 24, 315, 0xffff);

WaveTrackCnt = 0;

GUI_PrtStr(208, 270, "Coupling", 0xfee4, 0x0274); // "Coupling"和" DC "显示

GUI_PrtStr(188, 280, " DC ", 0x0000, 0xffff);

GUI_PrtStr(168, 273, "Volt/Div", 0xfee4, 0x0274); // "Volt/Div"和" 0.42V "显示

GUI_PrtStr(148, 275, " 0.42V ", 0x0000, 0xffff);

GUI_PrtStr(128, 270, "Time/Div", 0xfee4, 0x0274); // "Time/Div"和" 60uS "显示

GUI_PrtStr(108, 275, " 60uS ", 0x0000, 0xffff);

GUI_PrtStr( 88, 274, "TrigVolt", 0xfee4, 0x0274); // TrigVolt显示

sprintf(UART0_StrBuff, " %1.2fV ", CH1TptVal*3.3/255);

GUI_PrtStr( 68, 276, UART0_StrBuff, 0x0000, 0xffff);

GUI_PrtStr( 48, 280, "Invert", 0xfee4, 0x0274); // "Invert"和" Off "显示

GUI_PrtStr( 28, 283, " Off ", 0x0000, 0xffff);

七作品的调试和测试

简单系统硬件的调试通常采用载入简单的测试程序并运行,使用数字表或示波器观察;对有些硬件例如显示器、键盘等可直接编入程序观察程序执行状态。

首先上电复位后用示波器观察LCD屏上是否有波形输出,如有表明单片机已激活,接下来用和标准示波器相比较的方法去观察显示的波形。其简易方框图如下图9所示:

图9 比较法测试方案方框图

用标准信号发生器在输入端分别加正弦波、三角波和矩形波信号,通过调理电路后输入到单片机中。观察标准示波器显示波形的和该作品显示的波形的差异大小,适当的进行程序代码和硬件电路的调试。

八测试数据统计及分析

8.1测试数据统计

幅度和频率的测量

8.2测试数据分析及结论

由上述测试结果可知,在低频段范围内,该作品能够很好地显示正弦波、三角波和方波,并且能够实时的显示相应波形的频率数值。频率的测量在0—900Hz范围内,误差小于1%,可能由于硬件电路或软件编程的影响,致使其测量范围比设计要求稍小,但整体符合设计要求,能够满足该作品的性能指标。

九作品电路图的PCB制作

作品的整体电路图绘制出来后,在Altium Designer 软件中画出相应的原理图并制作对应的PCB图,采取手动布线完成整个PCB图的制作。PCB效果图如下图10所示:

图10 整体电路PCB图

十作品实物图片

10.1 整体作品实物图展示

图11 作品整体效果图

10.2方波、正弦波和三角波波形的实物显示图片

简易数字示波器设计_本科论文

摘要 本科毕业设计论文 题目简易数字示波器设计 I

西安交通大学城市学院本科生毕业设计(论文) 毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

摘要 学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日 III

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

简易数字存储示波器.DOS

摘要 数字存储示波器是随着数字电路的发展而发展起来的一种具有存储功能的新型示波器。原先人们看好的模拟示波器的一些优点,目前数字示波器已完全能够做到,特别是在捕获非重复信号、避免信号的虚化和闪烁、在时间上从触发事件反问寻迹——实现在电路中隔离故障等方面,数字示波器显示出了模拟示波器无可比拟的优势。因此,数字示波器由于其优势的性能、良好的性能价格化,刚一问世,就显示出它强大的生命力,各行各业均迫切需要,有其广阔的发展前途.。 本简易数字存储示波器,以单片机和可编程逻辑器件(CPLD)为控制核心,由通道调理、触发、波形显示等功能模块组成。本系统对触发系统、水平扫描速度和垂直灵敏度的自动设置功能(AUTOSET)及波形参数测量等功能进行了重点设计。使仪器最后具有单次触发存储显示方式及锁存功能,又可以对某段瞬时波形进行即时存储和连续回放显示。设计中采用了模块化设计方法,并使用了多种EDA工具,提高了设计效率。整个设计实现了存储示波器的所有功能要求,达到较高的性能指标。 关键词:可编程逻辑器件,存储器,转换器,数字存储示波器,单片机

ABSTRACT It is that one developed with development of the digital circuit is new-type oscillograph which stores the function that the figure stores the oscillograph . Original ancestors see some advantages of the good simulation oscillograph , the digital oscillograph can already be accomplished at present, catching and is not repeating the signal, avoiding melting and glimmers specially emptily, reply the mark of seeking from the incident of touching off on time of the signal --Realizing it in isolating the trouble in the circuit etc., the digital oscillograph demonstrates the incomparable advantage of the simulation oscillograph . So digital oscillograph because performance , good performance price of advantage their, just coming out , demonstrated its strong vitality, all trades and professions needed urgently , there is its wide development prospect. . T his simple and easy figure stores the oscillograph, regard one-chip computer and programmable logic device (CPLD ) as the core of controlling, nursed one's health, touched off by the pass-way, the wave form shows, etc. the function module makes up . Such functions as automatic establishment function (AUTOSET ) and wave form parameter that this system scanned the speed and vertical sensitivity in touching off system , level are measured have been designed especially. Make the instrument have single time to touch off and store the display mode and latch the function finally, can store and show with the continuous playback immediately a section of instantaneous wave forms . Have adopt the module design method in the design, has used many kinds of EDA tools, have improved design efficiency. The whole of functions of designing and realizing storing the oscillograph require , reach the higher performance index Keyword: Programmable logic device, the memory , the converter, the figure stores the oscillograph , Micro Computer Unite

数字示波器的设计

计算机工程应用技术本栏目责任编辑:贾薇薇 数字示波器的设计 刘岩 (天津工业大学信息与通信工程学院,天津300160) 摘要:数字示波器是现代电子测量中最常角的仪器,它是一种可以用来观察、测量、记录各种瞬时电压,并以波形方式显示其与时间关系的电子仪器。本文中详细介绍了数字存储示波器的原理及特点,给出了一种以单片机和可编程逻辑器件为控制核心的设计方案,同时给出了其硬件和软件设计的结构及思路。 关键词:数字示波器;模块化;FPGA 中图分类号:TM935文献标识码:A文章编号:1009-3044(2008)20-30375-02 TheDesignofDigitalOscilloscope LIUYan (TianjinIndustryUniversity,InformationandCommunicationEngineeringInstitute,Tianjin300160,China) Abstract:Themodernelectronicdigitaloscilloscopeisthemostcommonlymeasuredangleoftheapparatus,whichisacanbeusedtoob-serve,measureandrecordallkindsoftransientvoltageandwavetoshowtheirrelationshipwiththetimetheelectronicdevice.Thisarticledescribedthedigitalstorageoscilloscopeindetailandtheprinciplefeaturesofthispaper,amicrocontrollerandaprogrammablelogicdevicetocontrolthecoreofthedesignplan,andgaveitshardwareandsoftwaredesignofthestructureandideas. Keywords:Digitaloscilloscopes;modular;FPGA 1引言 数字示波器是智能化数字存储示波器的简称,是模拟示波器技术、数字化测量技术、计算机技术的综合产物。它能够长期存储波形,可进行负延时触发,便于观侧单次过程和缓变信号,具有多种显示方式和多种输出方式,同时还可以进行数学计算和数据处理,功能扩展也十分方便,比普通模拟示波器具有更强大的功能,因此在电子电信类实验室中使用越来越广泛。 2数字示波器的工作原理 数字存储示波器不是将波形存储在示波管内的存储栅网上,而是存在存储器中,因而存储时间可以无限长。数字存储示波器主要利用A/D转换技术和数字存储技术来工作,它能迅速捕捉瞬变信号并长期保存。该示波器首先对模拟信号进行高速采样以获得相应的数字数据并存储,存储器中储存的数据用来在示波器的屏幕上重建信号波形;然后利用数字信号处理技术对采样得到的数字信号进行相关处理与运算,从而获得所需要的各种信号参数;最后,该示波器根据得到的信号参数绘制信号波形,并对被测信号进行实时、瞬态分析,以方便用户了解信号质量,快速准确地进行故障诊断。数字存储示波器将输入模拟信号经过AD/转换,变成数字信号,储存在半导体存储器RAM中,需要时将RAM中存储的内容读出显示在LCD,或通过DA/转换,将数字信号变换成模拟波形显示在示波管上。数字存储示波器框图如图l所示。数字存储示波器可以采用实时采样,每隔一个采样周期采样一次,可以观察非周期信号川。数字示波器的采样方式包括实时采样和等效采样(非实时采样)。等效采样又可以分为随机采样和顺序采样,等效采样方式大多用于测量周期信号。数字示波器工作原理框架如图1。 图1数字存储示波器的基本原理方框图 3数字示波器的主要特点 与传统的模拟示波器相比,数字存储示波器有其非常突出的特点,其具体表现如下:(1)信号采样速率大大提高数字存储示波器首先在采样速率上有较大地提高。可从最初采样速率等于两倍带宽提高至五倍甚至十倍。相应对正弦波取样引入的失真也从10%降低至3%甚至1%。(2)显示更新速率更高数字存储示波器的显示更新速率最高可达每秒40万个波形,因而在观察偶发信号和捕捉毛刺脉冲方面更加方便。(3)波形的采样、存储与显示可以分离在存储阶段,数字示波器可对快速信号采用较高的速率进行采样与存储,而对慢速信号则采用较低速率进行采样与存储;在显示阶段,不同频率的信号读出速度可以采用一个固定的速率并可以无闪烁地观测极慢信号与单次信号,这是模拟示波器所无能为力的。(4)存储时间长由于数字存储示波器是把模拟信号用数字方式存储起来,因此,其存储时间理论上可以无限长。(5)显示方式灵活多样为适应对不同波形的观测,数字存储示波器有滚动显示、刷新显示、 收稿日期:2008-04-22

虚拟数字示波器的设计和实现

一、绪论 1.1 虚拟示波器背景 示波器是电子测量行业最常用的测量仪器之一,主要用来测量并显示被测信号的参数和波形,在科学研究、科学实验以及现场监测等许多领域被广泛应用。随着科学研究的不断深入和各种高新技术的不断发展,传统示波器的诸如波形不稳定、测读不准确等许多缺陷逐渐显露出来,而且体积大,耗电多,越来越不能满足现代应用的需要。 “虚拟仪器”这一新概念测量仪器的诞生,使示波器突破了传统,在功能和作用等多方面发生了根本性变化。虚拟仪器将计算机和测量系统融合于一体,用计算机软件代替传统仪器的某些硬件的功能,用计算机的显示器代替传统仪器物理面板。 虚拟示波器是虚拟仪器的一种,它不仅可以实现传统示波器的功能,具有存储、再现、分析、处理波形等特点,而且体积小,耗电少。虚拟示波器使用功能强大的微型计算机来完成信号的处理和波形的显示,利用软件技术在屏幕上设计出方便、逼真的仪器面板,进行各种信号的处理、加工和分析,用各种不同的方式(如数据、图形、图表等)表示测量结果,完成各种规模的测量任务。鉴于虚拟示波器的种种优点及广泛用途,研究出性能优越、价格低廉的虚拟示波器是十分重要的。 1.2 性能指标 本示波器与常见的示波器比较,最大的特点是可以定量地给出信号的各种参量,比如最大、最小值和频率等,无需使用者再去数格子,然后还要计算。特别适合于学校教学实验的需求,在学校教学中可以直联投影机,使全体学生都可以远距离看到信号波形的演示。 本示波器采样USB接口,其频率比并口示波器略高,同样支持直流测量,可以定量测量信号,主要技术指标如下: 采样频率:共八挡可调:323.53kHz、100kHz、50kHz、20kHz、10kHz、5kHz、2kHz、1kHz。本机测量的信号频率应在70kHz以下。 最高输入电压:共两挡可选:±2.5V,±12.5V,如果接入10:1示波器探棒,最大输入电压可达±125V。 输入阻抗:1MΩ。 供电电压:无需外部供电,直接从PC机的USB口取电。 接口:USB接口。 二、硬件设计 具体电路原理图见附录一,从图中可以看出电路的输入信号调理部分和信号转换部分与常见的并口示波器相同,R10、R11、R12、R13、R14、C19、C20和C21构成输入交直流切换和衰减网络,提供交直流输入切换和1:1、1:5的输入信号切换功能;TL074中的一个运放U 1 A和其周边元件构成一个跟随放大器,提供了输入保护和阻抗转换功能;TL074中的另一个运放U1B

基于STM32的简易数字示波器

山东科技大学 课程设计报告 设计题目:基于STM32的简易数字示波器 专业: 班级学号: 学生姓名: 指导教师: 设计时间: 小组成员:

基于STM32的数字示波器设计 -----------硬件方面设计 摘要 本设计是基于ARM(Advance RISC Machine)以ARM9[2]为控制核心数字示波器的设计。包括前级电路处理,AD转换,波形处理,LCD显示灯模块。前级电路处理包括程控放大衰减器,极性转换电路,过零比较器组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。充分使用了Proteus Multisim仿真工具,大大提高了设计效率,可测量输入频率范围为1HZ—50KHZ 的波形,测量幅度范围为-3.3V—+3.3V,并实现波形的放大和缩小,实时显示输入信号波形,同时测量波形输入信号的频率。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本。 关键词:AD ,ARM,实时采样,数字示波器

目录 前言---------------------------------------------------------------------------------3第一章绪论--------------------------------------------------------------------4 1.1课题背景---------------------------------------------------------------------4 1.2课题研究目的及意义----------------------------------------------------4 1.3课题主要的研究内容----------------------------------------------------5 第二章系统的整体设计方案--------------------------------------------6 2.1硬件总体结构思路--------------------------------------------------------6 第三章硬件结构设计------------------------------------------------------------7 3.1程控放大模块设计-------------------------------------------------------7 3.1.1程控放大电路的作用-------------------------------------------7 3.1.2程控放大电路所用芯片---------------------------------------7 3.1.3AD603放大电路及原理----------------------------------------8 3.2极性转换电路设计------------------------------------------------------10 3.3 AD转换电路及LED显示电路等(由组内其他同学完成) 第四章软件设计(由组内其他同学完成) 第五章性能能测试与分析--------------------------------------------------15 第六章设计结论及感悟-----------------------------------------------17参考文献----------------------------------------------------------------------18

毕业设计(论文)开题报告-简易数字示波器设计

毕业设计(论文)开题报告-简易数字示波器设计西安交通大学XX学院 本科毕业设计(论文)开题报告 题目简易数字示波器设计所在系电气与信息工程学生姓名 XXXXX 专业电子信息工程班级信息XXX学号 XXXXXX3 指导教师 XXXX 教学服务中心制表 年月 本科毕业设计(论文)开题报告 对题目的陈述 1.结合毕业设计(论文)课题情况,根据查阅的文献资料,撰写1000字左右的文献综述: (说明选题意义、国内外研究现状、主要研究内容) 数字示波器是数据采集,A/D转换,软件编程等一系列的技术制造出来的高性能示波器。数字示波器一般支持多级菜单,能提供给用户多种选择,多种分析功能。还有一些示波器可以提供存储,实现对波形的保存和处理。目前高端数字示波器主要依靠美国技术,对于300MHz带宽之内的示波器,目前国内品牌的示波器在性能上已经可以和国外品牌抗衡,且具有明显的性价比优势, 数字示波器自上个世纪七十年代诞生以来,其应用越来越广泛,已成为测试工程师必备的工具之一。21世纪是一个科学和技术都在飞速发展的时代,随着电子技术、计算机技术、通信技术和自动化技术的高速发展,电子测量仪器也有了巨大的发展。数字式示波器就以其存储波形及多种信号分析、计算、处理等优良的性能从而逐步取代模拟示波器。用数字示波器能完成对信号的一次性采集,把波形存储起来,还可以通过移位操作观察波形的任何一部分等等。

数字示波器是随着数字集成电路技术的发展而出现的新型智能化示波器,己经成为电子测量领域的基础测试仪器。随着新技术、新器件的发展,它正在向宽带化、模块化、多功能和网络化的方向发展。数字示波器的优势是可以实现高带宽及强大的分析功能。现在高端数字示波器的实时带宽已达到20GHz,可以广泛应用于各种千兆以太网、光通讯等测试领域。而低端数字示波器几乎可以应用于国民经济各个领域的通用测试,同时可广泛应用于高校及职业学校的教学,为社会培养众多的后备人才。数字示波器的技术基础是数据采集,其设计技术可以应用于更广泛的数据采集产品中,具有深远的意义。 为了巩固大学4年来所学的知识,将课本上的理论知识运用到实际中,我选择了简易数字示波器这个题目作为的大学毕业设计题目。 自从1972年世界上第一台数字示波器问世以来,经历了三个发展阶段。1986年以前为DSO发展的初期阶段,当时的取样率较低,一般不超过50MSa/s,带宽在20MHz以下,结构形式以数字存储加传统模拟示波器二合一的组合式为主,功能少,性能低。主要代表性产品有美国哥德(Gould)公司生产的4035,HP公司生产的HP54200。1986年--1994年,伴随高速ADC和高速RAM的迅速发展,DSO的发展也进入了快车道,取样率达到了4GSa/s,记录长度超过32K。每年各示波器生产厂商都推出新的型号,技术上开始走向成熟。1989年,HP公司率先停止了模拟示波器的生产,专心培育数字示波器市场。到1993年,DSO的销售额就超过了传统模拟示波器,使持续将近半个世纪的模拟示波器市场发生动摇。1995年以后,DSO 在技术上己经成熟,带宽在100MHz以上,DSO已经完全取代了模拟示波器。2004年10月,AGILENT公司推出了具震撼性的DS081304A数字存储示波器,带宽 3GHz,上升时间23ps,最高采样率40GHz。这时,除了继续提高取样率(最高达 40GSa/s)、带宽(达20GHz)和增加记录长度(达16MB)外,DSO制造商开始向100MHz 以下带宽的通用DSO方向发展,并且性价比迅速提高。1996年,AGILENT公司面向

基于STC单片机虚拟简易示波器的设计

题目:基于STC单片机虚拟简易示波器的设计

目录 1.实验目的及意义 (1) 2. 试验内容及方案论证 (1) 3.系统工作原理 (2) 4.硬件电路设计 (2) 5.系统软件设计 (4) 5.1下位机设计 (4) 5.2 上位机设计 (8) 6.系统调试 (10) 6.1硬件调试 (10) 6.2 软件调试 (10) 6.3 软硬联调 (11) 7.实验结果与误差分析 (11) 8.实验小结及体会 (12) 参考文献: (13)

1.实验目的及意义 (1)学会利用AT89C5X系列单片机控制AD7862实现模拟的电压的采集; (2)学会利用串口与PC机进行通信将测量数据发送给PC机,在PC机上利用Visual C++ 6.0编写上位机界面,并显示数据与波形; (3)通过应用Altium Designer 6软件掌握电路板的原理图绘制及pcb板的生成; (4)学会利用Keil uVision4软件编写并调试单片机的下位机程序,利用Keil uVision4与wave6000软件结合,对硬件电路采集来的数据进行分析。 2. 试验内容及方案论证 在实际应用中,经常会遇到一些突发信号,需要对其进行高速采集,这种情况下采用高速的A/D自然成为首选。AD7862是AD公司推出的一个高速,低功耗,双12位的A/D转换,单+5V供电,功率为60mW。它包含两个4us的延时的ADC,两个锁存器,一个内部的+2.5V参考电压和一个高速并行输出端口。有四个模拟输入通道,分为两组,由A0选择。每一组通道有两个输入(VA1 & VA2 or VB1 & VB2),它们能同时的被采样和转化,保存相对的信号信息。它可以接受+10v的输入电压范围(AD7862-10),+2.5(AD7862-3)和0-2.5v(AD7862-2)。对模拟电压输入,具有过电保护功能,相对地,允许输入电压到达+17v,+7v,+7v,而不会造成损害,本实验选用AD7862-10。其具有以下主要特点: 1、4通道模拟输入,2路同时转换(内置2个可同时工作的12位集成AD 转换器); 2、4us转换时间,250ksps采样速率; 3、可选模拟量输入±10V(AD7862-10); 4、高速12位并行总线输出; 5、内部提供+2.5V参考电压或者由外部提供参考电压;; 6、单一电源工作。 本实验采用的微处理器是STC89C52RC单片机。STC89C52RC单片机使用方便,它与AT89S52单片机具有相同的内核,内部有256 Bytes片内RAM、8K Flash ROM,支持串口下载,易于在线编程调试,故采用这种单片机来做处理器。

简易数字存储示波器

简易数字存储示波器 06204526 程杰

图片预览

一、任务分析 制作一个简易数字存储示波器,其结构框图如下图所示 二、方案论证与比较 1.波形采集模块 波形采集模块采用AD 转换芯片将模拟波形信号转换为数字信号发送给单片机,有如下几种方案: 方案1 采用片外并行AD 芯片,如ADC0809。 优点:使用广泛,参考资料很多。 缺点:并行接口占用单片机口线较多,接线复杂。 方案2 采用单片机内置AD 转换功能,如A VR 、C8051等单片机内置的ADC 优点:集成在单片机内部,不需要额外连线,方便易行。 缺点:片内集成的ADC 速度较低,无法采集频率高的信号,没有独立多路AD , 多通道AD 会降低采样速度。 方案3 采用片外串行高速ADC 芯片如maxim 公司的高速ADC 串行芯片,外加 FPGA 控制采样。 优点:速度块,占用单片机口线少,可以很容易实现MHz 级别的波形采样 缺点:价格昂贵,资料较少。

综合考虑价格和易行性,本系统采用方案2,采用A VR mega64芯片中的内置ADC。2.微处理控制模块 微处理控制模块采用单片机来完整,经济可行: 方案1 采用经典80C51系列单片机 优点:使用广泛,资料丰富 缺点:功能较少,性能较弱 方案2 采用atmel公司的高档8位单片机A VRmega64 优点:高性能,价格相对较低,内置ADC 缺点:上市时间较短,资料少 方案3 采用atmel公司的高档8位单片机A VRmega64控制显示部分,外加一片FPGA控制采样 优点:FPGA采样速度快,单片机控制显示方便,取长补短 缺点:系统较为复杂 由于本人对A VR单片机使用较为熟悉,所以本系统采用方案2,即A VRmega64来完成,其基本性能指标如下: ·先进RISC结构,性能达到1MHz有1MIPS ·64KB Flash程序存储空间 ·4KB SRAM 、4KB EEPROM ·内置I2C、SPI、PWM、ADC等功能 ·支持在线编程ISP功能 3.存储模块 存储模块采用SRAM来存储波形采集模块所采集到的波形,有如下三种方案: 方案1 采用外置一片62256和74HC573作为锁存器,扩展单片机的存储空间优点:外扩空间容量很大 缺点:接线复杂,出现错误不容易排查 方案2 采用A VR 单片机内置4KB RAM,划分出约2KB空姐供存储波形数据,也可以存储数十页的数据。 优点:无须接线,体现了高档单片机RAM大的优势 缺点:空间较少,需要大量存储时仍然不够 方案3 利用FPGA内部的SRAM

基于STM32的数字示波器设计

山东科技大学电子技术综合实践报告 设计题目:基于STM32的简易数字示波器 专业:电子信息科学与技术 班级学号:电科10-1 1001050903 学生姓名: 指导教师: 设计时间:2013.6.18 摘要

本设计是基于ARM(Advance RISC Machine)以STM32为控制核心简易示波器的设计。包括前级电路处理,AD转换,LCD显示灯模块。前级电路处理由程控放大衰减器,极性转换电路组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。可测量输入频率范围为1HZ—50KHZ的波形,测量幅度范围为-3.3V—+3.3V,实时显示输入信号波形,同时测量波形输入信号的峰峰值。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用范围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本,完全可以把本设计当做手持数字示波器。 关键词:AD ,STM32,实时采样,数字示波器

前言 (1) 第1章绪论 (2) 1.1课题背景 (2) 1.2课题研究的目的和意义 (2) 1.3课题的主要研究工作 (3) 第2章系统整体设计方案 (3) 2.1硬件总体结构 (3) 2.2系统实现的原理介绍 (4) 2.2.1 STM32处理器介绍 (4) 2.2.2 LCD显示介绍 (5) 2.3软件整体设计 (6) 2.4数字手持示波器技术参数 (6) 第3章软件编程与调试 (7) 3.1软件设计总体框图 (7) 3.2键盘控制程序 (7) 3.3峰峰值测量程序设计 (8) 3.4LCD显示程序设计 (9) 第四章性能测试与分析 (11) 第五章总结 (13) 第六章参考文献 (14)

简易数字示波器设计

电信专业综合实践 设计题目:在LPC2210 开发板的基础上 ----------简易数字示波器设计 学校: 班级: 姓名: 学号: 指导老师: 2011.1.1

目录 第1章设计内容与要求 ...................................... 错误!未定义书签。 1.1 设计内容............................................ 错误!未定义书签。 1.2 设计要求............................................ 错误!未定义书签。 1.3 系统功能............................................ 错误!未定义书签。 1.4 应用分析............................................ 错误!未定义书签。第2章系统总体设计 ........................................ 错误!未定义书签。 2.1 总体框图............................................ 错误!未定义书签。 2.2 总体设计分析........................................ 错误!未定义书签。第3章硬件结构............................................ 错误!未定义书签。 3.1 5V电源电路.......................................... 错误!未定义书签。 3.2 系统电源电路........................................ 错误!未定义书签。 3.3 复位电路............................................ 错误!未定义书签。 3.4 JTAG接口电路........................................ 错误!未定义书签。 3.5 系统存储器电路...................................... 错误!未定义书签。 3.6 TFT液晶接口电路 (12) 3.7 串口接口电路 (13) 3.8 ADC电路 (14) 3.9 按键控制电路........................................ 错误!未定义书签。 3.10 主芯片电路 (14) 第4章软件分析 (14) 4.1 软件框图分析 (14) 4.2 任务的划分 (15) 4.3 任务的优先级设计 (15) 4.4 液晶初始化设计 (16) 4.5 定时器设计 (16) 4.6 AD转换设计 (16)

简易示波器课程设计报告

课程设计报告 课程名称综合电子设计 题目简易数字示波器 指导教师 起止日期 系别自动化 专业自动控制 学生姓名 班级/学号 成绩

摘要 本系统由CPLD,单片机控制模块,键盘,LED,幅度控制模块,低通滤波模块组成,采用当前主流DDS 技术完成,能产生从1HZ-260KHZ 正弦波,方波,三角波以及这三种同频率波的线性组合,失真度限制在6%之内。 一、功能介绍 1. 具有产生正弦波、方波、三角波三种周期性波形的性能。 2. 用键盘输入编辑生成上述三种波形(同周期)的线性组合波形。 3. 输出波形频率范围为1Hz~200kHz(非正弦波频率按10 次谐波计算;重复频率可调,频率步进间隔1Hz。) 4. 输出波形幅度范围0~5V(峰-峰值),可按步进为0.1V(峰-峰值)。 5. 具有显示输出波形种类、重复频率(周期)和幅度的功能。 6. 增加稳幅输出功能,当负载变化时,输出电压幅度变化不大于±3%(负载变化范围:100Ω~∞)。 二、方案论证与比较 常见信号源的制作方法有: 方案一:采用锁相式频率合成。将一个高稳定度和高精确度的标准频率经过加减乘除的运算产生同样稳定度的大量离散频率技术,它在一定程度上既要频率稳定精确,又要频率在很大范围内可变的矛盾。但频率受VCO 可变频率范围的影响,高低频率比不可能做的很高,而且只能产生方波和正弦波。 方案二:采用模拟奋力元件或单片压控函数发生器MAX0832,可产生正弦波,方波,三角波,通过调整外部元件可改变输出频率,但采用模拟器件由于元件分散性太大,即使使用单片函数发生器,参数也与外部元件有关,外接的电阻电容对参数影响很大,不能实现波形运算输出等智能化的功能。 方案三:采用DDFS,即直接数字频率合成技术,以Nyquist 时域采样原理为基础,在时域中进行频率合成,它可以快速转换频率,频率,相位,幅度都可以实现程控,便于单片机控制,所以,本系统采用此方案。 三、系统设计 系统总体设计方框图:

简易数字存储示波器研究

简易数字存储示波器研究 基于MCU8051和FPGA的控制平台,采用实时采样与等效采样两种方式实现了时频率为10Hz-10MHz的波形数据的实时采样,存储与回放。做到垂直灵敏度含1v/div,0.1v/div和2my/div三档,扫描速度合20ms/div,2uv/div,100ns/div 三档。系统的频率测量精度达0.001Hz,电压测量精度达0.05V。自带100KHz 方波信号为系统测频时钟与电压基准源的进行自动校准,此外,还实现了对波形数据的单次触发存储与调出功能和AUTO显示功能。 标签:数字存储;示波器;等效采样;实时采样 1引言 数字存储示波器是20世纪70年代初发展起来的一种新型示波器。这种类型的示波器可以方便地实现对模拟信号波形进行长期存储并能利用机内微处理器系统对存储的信号做进一步的处理,例如对被测波形的频率、幅值、前后沿时间、平均值等参数的自动测量以及多种复杂的处理。数字存储示波器的出现使传统示波器的功能发生了重大变革。 2数字存储示波器基本工作原理 数字存储示波器在信号进入示波器后立刻通过高速A/D转换器将模拟信号快速采样、存储。通过单片机对信号进行处理,得到信号的波形参数,存储并通过D/A转换器后可由示波器显示,从而实现模拟示波器的功能。但相对于模拟示波器,数字示波器测量精度高,还可对信号进行存储。本系统的原理方框图如图1所示: 3系统功能模块与硬件电路 基于数字示波器的基本原理,可以把整个系统分为频率测量、采样保持、触发方式选择、位置调节、显示控制几个主要的模块。模拟信号通过信号调理模块(阻抗变换、程控放大、触发电路),将模拟信号的幅值大小调整到高速AD(AD9225)的输入范围0V-4V。然后通过AD9225对信号进性采样。我们采用外部有源晶振作为高速AD的采样时钟来控制恒定的采样率4MHz(晶振的固有振荡频率),在FPGA内部增加波形存储控制模块,当满足触发条件时FP-GA以下抽样的方式对AD转换得到的数据进行存储,抽样频率由可水平分辩率来控制(若为AUTO功能,则与信号的频率有关)。将抽样的数据分别存储到双口RAM中,在送人行列扫描电路(2片DAC0800)前经过了波形显示控制模块,它的作用是对RAM的数据及读入起始地址的进行处理。从而实现波形在模拟示波器上的左右平移。同时在FPGA内部实现了512点的FFT计算,成功得分析了输入信号的频谱。系统的连接框图如图2所示:

数字存储示波器的使用

数字存储示波器的使用

实验二数字存储示波器的使用 加灰色底纹部分是预习报告必写部分 示波器是一种常用的电子仪器,主要用于观察和测量各种电信号。配合各种传感器把非电量转换成电量,示波器也可以用来观察各种非电量的变化过程。示波器有多种类型和型号,但它们基本原理是相同的。本实验是用双信号发生器的输出信号在示波器中合成李萨如图形。 [实验目的] 1.了解示波器的主要结构和显示波形的基本原理。 2.学会使用函数信号发生器。 3.学会用示波器观察波形以及测量电压、周期和频率等。 4、理解李萨如图形合成原理及方法。 [实验仪器] DS1052E型数字存储示波器、DG1022双通道函数/任意波形发生器、连接线(2根) 【示波管的简单介绍】

示波管如图1所示 示波管包括有: (1)一个电子枪,它发射电子,把电子加速到一定速度,并聚焦成电子束; (2)一个由两对金属板组成的偏转系统;(3)一个在管子末端的荧光屏,用来显示电子束的轰击点。 所有部件全都密封在一个抽成真空的玻璃外壳里,目的是为了避免电子与气体分子碰撞而引起电子束散射。接通电源后,灯丝发热,阴极发射电子。栅极加上相对于阴极的负电压,它有两个作用:①一方面调节栅极电压的大小控制阴极发射电子的强度,所以栅极也叫控制极;②另一方面栅极电压和第一阳极电压构成一定的空间电位分布,使得由阴极发射的电子束在栅极附近形成一个交叉点。第一阳极和第二阳极的作用一方面构成聚焦电场,使得经过第一交叉点又发散了的电子在聚焦场作用下又会聚起来;另一方面使电子加速,电子以高速打在荧光屏上,屏上

③数字滤波的频率上线 MATH 为系统的数学运算界面 REF 为导入导出已保存的文件菜单或保存文件,但不存储X-Y方式的波形 设置水平系统HORIZONTAL(MENU、POSITION(水平位置) SCALE(水平范围) MENU ①延迟扫描:用来放大一段波形,以便查看图形细节②时基:Y-T、X-Y(水平轴上显示通道1电压,垂直轴上显示通道2电压)、Roll③采样率:显示系统采样率 设置触发系统TRIGGER(LEVEL、MENU、50%、FORCE) MENU中的触发模式有边沿触发、脉宽触发、斜率触发、视频触发、交替触发(稳定触发双通道不同步信号,此触发模式下,不能产生X-Y波形,且交替触发菜单中触发类型为视频触发时它的同步分为:所有行、指定行、奇数场、偶数场)。触发方式:自动、普通、单次,如在自动下无法稳定两波形,可选择单次稳定波形。触发设置:灵敏度、触发抑制:设置重新启动触发电路的时间间隔,时间范围为:500ns-1.5s、

基于STM32的数字示波器设计

科技大学 电子技术综合实践报告设计题目:基于STM32的简易数字示波器 专业:电子信息科学与技术 班级学号:电科10-1 1001050903 学生: 指导教师: 设计时间:2013.6.18 摘要

本设计是基于ARM(Advance RISC Machine)以STM32为控制核心简易示波器的设计。包括前级电路处理,AD转换,LCD显示灯模块。前级电路处理由程控放大衰减器,极性转换电路组成,AD的转换速率最高为500KSPS,采用实时采样方式,设计中采用模块设计方法。可测量输入频率围为1HZ—50KHZ的波形,测量幅度围为-3.3V—+3.3V,实时显示输入信号波形,同时测量波形输入信号的峰峰值。 总体来看,本文所设计的示波器,体积小,价格低廉,低功耗,方便携带,适用围广泛,基本上满足了某些场合的需要,同时克服了传统示波器体积庞大的缺点,减小成本,完全可以把本设计当做手持数字示波器。 关键词:AD ,STM32,实时采样,数字示波器

前言 (1) 第1章绪论 (2) 1.1课题背景 (2) 1.2课题研究的目的和意义 (2) 1.3课题的主要研究工作 (3) 第2章系统整体设计方案 (3) 2.1硬件总体结构 (3) 2.2系统实现的原理介绍 (4) 2.2.1 STM32处理器介绍 (4) 2.2.2 LCD显示介绍 (5) 2.3软件整体设计 (6) 2.4数字手持示波器技术参数 (6) 第3章软件编程与调试 (7) 3.1软件设计总体框图 (7) 3.2键盘控制程序 (7) 3.3峰峰值测量程序设计 (8) 3.4LCD显示程序设计 (9) 第四章性能测试与分析 (12) 第五章总结 (14) 第六章参考文献 (15)

相关主题
文本预览
相关文档 最新文档