当前位置:文档之家› 第二章 (2.1,2.2)控制系统的微分方程、传递函数

第二章 (2.1,2.2)控制系统的微分方程、传递函数

第二章动力学系统的微分方程模型

第二章:动力学系统的微分方程模型 利用计算机进行仿真时,一般情况下要给出系统的数学模型,因此有必要掌握一定的建立数学模型的方法。在动力学系统中,大多数情况下可以使用微分方程来表示系统的动态特性,也可以通过微分方程可以将原来的系统简化为状态方程或者差分方程模型等。在这一章中,重点介绍建系统动态问题的微分方程的基本理论和方法。 在实际工程中,一般把系统分为两种类型,一是连续系统;其数学模型一般是高阶微分方程;另一种是离散系统,它的数学模型是差分方程。 §2.1 动力学系统统基本元件 任何机械系统都是由机械元件组成的,在机械系统中有3种类型的基本机械元件:惯性元件、弹性元件和阻尼元件。 1 惯性元件:惯性元件是指具有质量或转动惯量的元件,惯量可以定义为使加速度(或角加速度)产生单位变化所需要的力(或力矩)。 惯量(质量)= ) 加速度(力(2 /) s m N 惯量(转动惯量)= ) 角加速度(力矩(2/) s rad m N ? 2 弹性元件:它在外力或外力偶作用下可以产生变形的元件,这种元件可以通过外力做功来储存能量。按变形性质可以分为线性元件和非线性元件,通常等效成一弹簧来表示。 对于线性弹簧元件,弹簧中所受到的力与位移成正比,比例常数为弹簧刚度k 。 x k F ?= 这里k 称为弹簧刚度,x ?是弹簧相对于原长的变形量,弹性力的方向总是指向弹 簧的原长位移,出了弹簧和受力之间是线性关系以外,还有所谓硬弹簧和软弹簧,它们的受力和弹簧变形之间的关系是一非线性关系。 3 阻尼元件:这种元件是以吸收能量以其它形式消耗能量,而不储存能量,可以形象的表示为一个活塞在一个充满流体介质的油缸中运动。阻尼力通常表示为: α x c R = 阻尼力的方向总是速度方向相反。当1=α,为线性阻尼模型。否则为非线性阻 尼模型。应注意当α等于偶数情况时,要将阻尼力表示为: ||1--=αx x c R 这里的“-”表示与速度方向相反

【习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 x 2-1已知f(x) f(t)dt 1, x 0,试求函数f (x)的一般表达式。 0 x 解 对方程f(x) f (t)dt 1,两边关于x 求导得 x f (x) f (t)dt f 2(x) 0, f (X)丄 f(x) f 2(x) 0 , 分离变量,可求得 代入原方程可得 C 0,从而f(x)的一般表达式为f (x) 评注:本题中常数的确定不能直接通过所给积分方程得到, 确定。 解由导数的定义可得 x(t s) x(t) x (t) lim s 0 s 2 |im x(s) x (t)x(s) s 0 [1 x(t)x(s)]s lim 丄辿型 s 01 x(t)x(s) s 显然可得x(0) 0,故 分离变量,再积分可得 x(t) [1 2 x (t)] !i 叫 x(s) x(0) s x (0) [1 x 2(t)] f(x) 、2(x C)' 1 2x 。 而是需将通解代回原方程来 2-2求具有性质x(t S) x(t) x(s) 1 x(t)x(s) 的函数x(t),已知x (0)存在。

x(t) tan[x(O)t C], 再由x(0) 0,知C 0,从而x(t) ta n[x(0)t]。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若M(x,y)x N(x,y)y 0,证明齐次方程M (x, y)dx N(x,y)dy 0 有积分因 1 xM(x,y) yN(x, y) 证方法1用凑微分法求积分因子。 我们有恒等式 M (x, y)dx N (x, y)dy 1 dx dv 2 {(M(x,y)x N(x,v)v)U 寺(M(x,v)x 鱼din (xy), x y 空翌din仝, x y y 所以原方程变为 -{( M (x, y)x N (x, y)y)d ln(xy) (M (x, y)x N (x, y)y)d ln —} 0。 2 y 1 1 M (x, y)x N(x, y)y「x -d ln(xy) d in 0, 2 2 M(x,y)x N(x,y)y y 由于M( x ,y) x N(x, y)y 为零次齐次函数,故它可表成仝的某一函数,记为f (上),M (x,y)x N(x, y)y y y I X MX" N(x,y)y % 巧F(in^), M(x,y)x N(x,y)y y y N (x,y)y)(¥3)} y 用(x,y) 1 M(x,y)x 乘上式两边,得 N(x,y)y

常微分方程教案(王高雄)第二章

第二章目录 内容提要及其它 (1) 第二章一阶微分方程的初等解法(初等积分) (2) 第一节变量分离方程与变量变换 (2) 一、变量分离方程 (2) 二、可化为变量分离方程的类型 (6) 1、齐次方程 (6) 2、可化为变量分离方程 (7) 三、应用例题选讲 (10) 第二节线性方程与常数变易法 (11) 第三节恰当方程与积分因子 (15) 一、恰当方程 (15) 二、积分因子 (20) 第四节一阶隐含方程与参数表示 (23) 一、可以解出y(或x)的方程 (24) 二、不显含y(或x)的方程 (25) 本章小结及其它 (27)

内容提要及其它 授课题目 (章、节) 第二章:一阶微分方程的初等解法 教材及主要参考书(注明页数)教材:常微分方程(第三版),王高雄等,高等教育出版社,2006年,p30-74 主要参考书: [1]常微分方程,东北师范大学微分方程教研室编,高等教育出版社,2005, p1-70 [2]常微分方程教程,丁同仁等编,高等教育出版社,1991,p1-20 [3]偏微分方程数值解法(第2版),陆金甫关治,清华大学出版社,2004, p1-12 [4]常微分方程习题解,庄万主编,山东科学技术出版社,2003,p28-169 [5]微分方程模型与混沌,王树禾编著,中国科学技术大学出版社,1999, p15-158 [6]差分方程和常微分方程,阮炯编著,复旦大学出版社,2002,p38-124 目的与要求: 掌握变量分离方程、齐次方程、线性方程、伯努利方程和恰当方程的解法.理解变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程.掌握四类典型的一阶隐方程的解法. 能熟练求解变量分离方程、齐次方程、线性方程、伯努利方程、恰当方程和四类典型的一阶隐方程.领会变量变换思想方法和积分因子方法,并能应用于求解一些特殊的常微分方程. 教学内容与时间安排、教学方法、教学手段: 教学内容: 第1节变量分离方程与变量变换; 第2节线性方程与常数变易法; 第3节恰当方程与积分因子; 第4节一阶隐方程与参数表示:可以解出(或 y x)的方程、不显含(或 y x)的方程.时间安排:8学时 教学方法:讲解方法 教学手段:传统教学方法与多媒体教学相结合。 教学重点分析: 熟悉各种类型方程的初等解法,并且能正确而又敏捷地判断方程的类型,从而用初等方法求解。 教学难点分析: 本章的教学难点是判断微分方程的类型,以及方程的转化(即把能转化为用初等方法求解的方程)。

常微分课后答案解析第二章

第一章 绪论 §1、1 微分方程:某些物理过程的数学模型 §1、2 基本概念 习题1、2 1.指出下面微分方程的阶数,并回答方程就是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+?? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程022 2=+y dx y d ω的解,这里0>ω就是常数. (1)x y ωcos =; (2)11(cos C x C y ω=就是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=就是任意常数); (5)2121,(sin cos C C x C x C y ωω+=就是任意常数); (6)B A B x A y ,()sin(+=ω就是任意常数). 解 (1)y x dx y d x dx dy 2 222cos ,sin ωωωωω-=-=-=,所以022 2=+y dx y d ω,故

x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以022 2=+y dx y d ω,故x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2222sin ,cos ωωωωω-=-==,所以02 2 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=',所 以02 2 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故0222=+y dx y d ω,因 此)sin(B x A y +=ω为方程的解. 3.验证下列各函数就是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 就是任意常数); (3)x Ce y =,02=+'-''y y y (C 就是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-='; (8))()(x f x g y = ,) () ()()(2x f x g y x g x f y '-'='.

常微分课后答案解析第二章

范文 范例 指导 参考 § 1.1 微分方程:某些物理过程的数 学模型 § 1.2 基本概念 习题 1.2 1 .指出下面微分方程的阶数,并回答方程是否线性的: 1) dy 4x 2 y ; dx 22 2) d 22 y dy 12xy 0; dx 2 dx 2 3) dy x dy 3y 2 0; dx dx 4) x d 2y 5 dy 3xy sin x ; dx 2 dx 5) dy cosy 2x 0 ; dx 解 ( 1)一阶线性微分方程; ( 2)二阶非线性微分方程; (3)一阶非线性微分方程; ( 4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 1) y cos x ; 2 ) y C 1cos x (C 1是任意常数 ); 3 ) y sin x ; 4) y C 2 sin x (C 2是任意常数 ) ; 5) y C 1cos x C 2 sin x (C 1, C 2是任意常 数 6) y Asin( x B) (A,B 是任意常数 ). 第一章 绪 论 6) sin d 2 y dx 2 e y x . 2.试验证下面函数均为方程 d 2y dx 2 2 2 y 0 的解,这里 0是常数.

cos x 为方程的解. C 1 cos x 为方程的解. sin x 为方程的解. 3.验证下列各函数是相应微分方程的解: sin x 1) y x , xy y cosx ; 2) y 2 C 1 x 2 , (1 x 2)y xy 2x (C 是任意常数) 3) y Ce x ,y 2y y 0( C 是任意常数) ; 4) y xx e , y e 2 y x 2 x 2 ye 1 e ; 5) y sin x , y 2 y 2 2 y sin x sin x cos x 0 ; 6) y 12 , x y x 2 x 2 y xy 1 ; 7) y x 2 1, y 2 y (x 2 1)y 2x ; 解 ( 1) dy dx sin x , d 2 y dx 2 2 co 2 2 y ,所以 d dx 22y 0, 2 ) y C 1 sin x, C 1 2 cos 2 2 y 所以 d dx 2 2y 3) d d y x cos x , d 2 y dx 2 sin 所以 d 2 2y dx C 2 cos x C 2 2 si 2 2 y 所以 d 2 2y dx 2 C 2 sin x 为方程的解. 5) C 1 sin x C 2 cos C 1 2 cos C 2 2 sin 2 y , d 2y 所以 d 2y dx 2 0 ,故 y C 1 cos x C 2 sin x 为方程的解. 6) cos( x B) , y A 2 sin( x B) 2 y , 故 d dx 22y 0, 因此 y A sin( x B) 为方程的解.

比例阀控制系统传递函数Word版

0 引言 最近10年来发展起来的电液比例控制技术新成员——伺服比例阀,实际上是电液比例技术与电液伺服阀的进一步的“取长补短”式的融合。伺服比例阀(闭环比例阀)内装放大器,具有伺服阀的各种特性:零遮盖、高精度、高频响,但其对油液的清洁度要求比伺服阀低,具有更高的工作可靠性。 电液伺服控制系统多数具有良好的控制性能,并具有一定的鲁棒性,有广泛的应用。电液伺服系统的动态特性是衡量一套电液伺服系统设计及调试水平的重要指标。电液伺服系统由电信号处理装置和若干液压元件组成,元件的动态性能相互影响,相互制约及系统本身所包含的非线性,致使其动态性能复杂,因此,电液伺服控制系统的仿真受到越来越多的重视。 电液技术的不断发展和人们对电液系统性能要求的不断提高,了解电液伺服系统过程中的动态性能和内部各参变量随时间的变化规律,已成为电液伺服系统设计和研究人员的首要任务在系统工作过程中,主要液压元件的动态响应、系统各部分的压力变化,执行元件的位移和速度等,都是人们非常关心的。 本文以电液伺服比例阀控液压缸为例,针对Matlab/Simulink 在电液伺服控制系统仿真分析中的局限性,采用AMESim 和Matlab/Simulink 联合仿真模型,取得了良好的效果。 1 系统组成及原理 电液伺服控制系统根据被控物理量(即输出量)分为电液位置伺服系统,电液速度伺服系统,电液力伺服系统三类。本文主要介绍电液位置伺服系统的仿真研究。其中四通阀伺服比例阀控液压缸的原理如图所示。

图1 阀控缸-负载原理图系统组成图 电液位置伺服控制系统是最为常见的液压控制系统,实际的伺服系统无论多么复杂,都是由一些基本元件组成的。控制系统结构框图见图2所示。 图2 电液伺服控制系统的结构框图

常微分课后答案解析第二章

第一章 绪论 §1.1 微分方程:某些物理过程的数学模型 §1.2 基本概念 习题1.2 1.指出下面微分方程的阶数,并回答方程是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+? ? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程02 2 2=+y dx y d ω的解,这里0>ω是常数. (1)x y ωcos =; (2)11(cos C x C y ω=是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=是任意常数); (5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).

解 (1)y x dx y d x dx dy 2222cos ,sin ωωωωω-=-=-=,所以02 2 2=+y dx y d ω,故x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以0222=+y dx y d ω,故 x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2 222sin ,cos ωωωωω-=-==,所以022 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=', 所以022 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故02 2 2=+y dx y d ω,因此)sin(B x A y +=ω为方程的解. 3.验证下列各函数是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-=';

常微分课后答案解析第二章

第一章 绪论 § 微分方程:某些物理过程的数学模型 § 基本概念 习题 1.指出下面微分方程的阶数,并回答方程是否线性的: (1) y x dx dy -=24; (2)0122 2 2=+??? ??-xy dx dy dx y d ; (3)0322 =-+? ? ? ??y dx dy x dx dy ; (4)x xy dx dy dx y d x sin 352 2=+-; (5) 02cos =++x y dx dy ; (6)x e dx y d y =+??? ? ??22sin . 解 (1)一阶线性微分方程; (2)二阶非线性微分方程; (3)一阶非线性微分方程; (4)二阶线性微分方程; (5)一阶非线性微分方程; (6)二阶非线性微分方程. 2.试验证下面函数均为方程02 2 2=+y dx y d ω的解,这里0>ω是常数. (1)x y ωcos =; (2)11(cos C x C y ω=是任意常数); (3)x y ωsin =; (4)22(sin C x C y ω=是任意常数); (5)2121,(sin cos C C x C x C y ωω+=是任意常数); (6)B A B x A y ,()sin(+=ω是任意常数).

解 (1)y x dx y d x dx dy 2222cos ,sin ωωωωω-=-=-=,所以02 2 2=+y dx y d ω,故x y ωcos =为方程的解. (2)y x C y x C y 2 2 11cos , sin ωωωωω-=-=''-=',所以0222=+y dx y d ω,故 x C y ωcos 1=为方程的解. (3)y x dx y d x dx dy 2 222sin ,cos ωωωωω-=-==,所以022 2=+y dx y d ω,故x y ωsin =为方程的解. (4)y x C y x C y 2 2 22sin , cos ωωωωω-=-=''=',所以022 2=+y dx y d ω,故x C y ωsin 2=为方程的解. (5)y x C x C y x C x C y 2222121sin cos , cos sin ωωωωωωωωω-=--=''+-=', 所以022 2=+y dx y d ω,故x C x C y ωωsin cos 21+=为方程的解. (6)y B x A y B x A y 2 2 )sin(, )cos(ωωωωω-=+-=''+=',故02 2 2=+y dx y d ω,因此)sin(B x A y +=ω为方程的解. 3.验证下列各函数是相应微分方程的解: (1)x x y sin = ,x y y x cos =+'; (2)212x C y -+=,x xy y x 2)1(2 =+'-(C 是任意常数); (3)x Ce y =,02=+'-''y y y (C 是任意常数); (4)x e y =,x x x e ye y e y 2212-=-+'-; (5)x y sin =,0cos sin sin 22 2 =-+-+'x x x y y y ; (6)x y 1- =,12 22++='xy y x y x ; (7)12 +=x y ,x y x y y 2)1(2 2 ++-=';

第二章 微 分 方 程 模 型.

第二章 微 分 方 程 模 型 建立微分方程模型就是把物理、化学、生物科学、工程科学和社会科学中的规律和原理用含有待定函数的导数或微分的数学关系式表示出来。这一章我们由浅入深地介绍一些微分方程模型。 2.1 简单模型 例1 物体在空气中的下落与特技跳伞问题 假设质量为m 的物体在空气中下落,空气阻力与物体的速度平方成正比,阻尼系数为k (>0),求物体的运动规律。 解 所谓运动规律即下落距离与时间的关系,如图2.1.1, 建立坐标系。设x 为物体下落的距离,于是物体下落的速度为 dx v dt =, 加速度为 22d x a dt =, 根据牛顿第二定律F ma =,可以列出微分方程 2 22d x d x m k m g d t d t ?? =-+ ???, (2.1.1) 负号表示阻力方向与速度方向相反。 例2 单摆的自由振动问题。 如图2.1.2 为一个单摆,上端固定在O 点,M 为一质量为m 的质点,摆杆OM 之长为L (摆杆的质量忽略不计)。单摆的平衡位置为铅垂线'OO 。将质点M 拉开,使OM 与'OO 成一个角度0θ,然后放手任其自由运动,试求摆杆OM 和铅垂线'OO 的夹角θ与时间t 的关系。 解 将重力分解为径向力F 与切向力T ,T 的大小为sin mg θ,M 的切向加速 度为22d a L dt θ =,于是,由牛顿第二定律,列出微分方程 22s i n d m a m L m g dt θ θ== , 即 22s i n d g dt L θθ=-, (2.1.2)

设初始时刻0t =,摆杆的初始位置为0θ,初始角速度为0,则单摆的运动规律的研究就化为微分方程的初值问题 ()()22 00' 0s i n ,,0.t t d g dt L t t θθθθθ==?=-??? =??=??? (2.1.3) 图2.1.1 图2.1.2 例3 考古和地质学中文物和化石年代的测定问题。 考古、地质学等方面的专家常用14C (碳14)来估计文物或化石的年代。它们的依据是,宇宙射线不断轰击大气层,使之产生中子,中子与氧气作用生成具有放射性的14C 。这种放射性碳可以氧化成二氧化碳。二氧化碳被植物所吸收,而动物又以植物为食物,于是放射性碳就被带到各种动植物体内。由于14C 是放射性的,无论存在于空气中或生物体内它都在不断衰变,活着的生物通过新陈代谢不断地摄取14C ,使得生物体内的14C 与空气中的14C 有相同的百分含量。生物体死后它停止摄取14C ,因而尸体内的14C 由于不断衰变而不断减少。碳定年代法就是根据14C 的衰变减少量的变化情况来判定生物的死亡时间的。 基本假设 (1)现代生物体中14C 的衰变速度与古代生物体中14C 的衰变速度相同(依据是地球周围大气中14C 的百分含量可认为基本不变,即宇宙射线照射大气层的强度自古至今基本不变); (2)14C 的衰变速度与该时刻14C 的含量成正比(这条假设的根据来自于原子物理学理论)。 下面用微分方程建模。 设在时刻t (年)生物体中14C 的存量为()x t ,由假设(2)知

【精选习题】第二章一阶微分方程的初等解法

第二章 一阶微分方程的初等解法 2-1 已知? ≠=x x dt t f x f 0 ,0 ,1)()(试求函数)(x f 的一般表达式。 解 对方程? =x dt t f x f 0 1)()(,两边关于x 求导得 ?=+'x x f dt t f x f 0 20)()()(, 即 0)() (1 ) (2=+'x f x f x f , 分离变量,可求得 ) (21)(C x x f +± =, 代入原方程可得0=C ,从而)(x f 的一般表达式为x x f 21)(= 。 评注:本题中常数的确定不能直接通过所给积分方程得到,而是需将通解代回原方程来确定。 2-2 求具有性质) ()(1) ()()(s x t x s x t x s t x -+=+的函数)(t x ,已知)0(x '存在。 解 由导数的定义可得 s s x t x s x t x s x s t x s t x t x s s )]()(1[) ()()(lim )()(lim )(200-+=-+='→→ s s x s x t x t x s )()()(1)(1lim 20?-+=→, 显然可得0)0(=x ,故 )](1[)0() 0()(lim )](1[)(20 2t x x s x s x t x t x s +?'=-?+='→ 分离变量,再积分可得

])0(tan[)(C t x t x +'=, 再由0)0(=x ,知0=C ,从而 ])0(tan[)(t x t x '=。 评注:本题是函数方程的求解问题,利用导数定义建立微分关系,转化为求解常微分方程的初值问题。 2-3 若0),(),(≠+y y x N x y x M ,证明齐次方程0),(),(=+dy y x N dx y x M 有积分因 子 ) ,(),(1 y x yN y x xM +。 证 方法1 用凑微分法求积分因子。 我们有恒等式 dy y x N dx y x M ),(),(+ )})(),(),(())(),(),({(21y dy x dx y y x N x y x M y dy x dx y y x N x y x M --+++= 而 )ln(xy d y dy x dx =+, y x d y dy x dx ln =-, 所以原方程变为 0}ln )),(),(()ln()),(),({(21=-++y x d y y x N x y x M xy d y y x N x y x M 。 用y y x N x y x M y x ),(),(1 ),(+= μ乘上式两边,得 0ln ),(),(),(),(21)ln(21=+-+y x d y y x N x y x M y y x N x y x M xy d , 由于 y y x N x y x M y y x N x y x M ),(),(),(),(+-为零次齐次函数,故它可表成y x 的某一函数,记为)(y x f , )(ln )()(),(),(),(),(ln y x F e f y x f y y x N x y x M y y x N x y x M y x ===+-,

第2章习题解答

习题解答 1. 系统的微分方程为()4()2()x t x t u t '=-+,其中()u t 是幅度为1,角频率为1rad/s 的方波输入信号,试建立系统的Simulink 模型并进行仿真。 解:用积分器直接构造求解微分方程的模型 由原微分方程()4()2()x t x t u t '=-+可知 x '经积分模块作用就得x ,而x 经代数运算又产生x ',据此可以建立系统模型并仿真,实现建模与仿真步骤如下。 ⑴利用Simulink 模块库中的基本模块,不难建立系统模型,如题图1所示。 题图1 求解微分方程的模型 模型中各个模块说明如下。 ①()u t 输入模块:它的参数设置如题图1(a)所示,模块名称由原来的Pulse Generrator 改为()u t 。 题图1(a) ()u t 输入模块的参数设置

②Gs 增益模块:增益参数Gain 设置为2。 ③求和模块:其图标形状Icon shape 选择rectangular ,符号列表Lisl of signs 设置为+-。 ④积分模块:参数不需改变。 ⑤G 1增益模块:增益参数设置为4,它的方向旋转可借助Format 菜单中的Rotate Block 命令实现。 ⑥Scope 示波器:在示波器参数设置窗口选择Data history 页,选中其中的Save data to workspace 复选框。这将使送入示波器的数据同时被保存在MA TLAB 工作空间的默认名为ScopeData 的结构矩阵或矩阵中。 ⑵设置系统仿真参数。单击模型编辑窗口Simulation 菜单中的Configuration Parameters 选项,打开仿真参数设置对话框,选择Solver 选项,把仿真的停止时间Sto ptime 设置为20。 ⑶仿真操作。双击示波器图标,打开示波器窗口。选择模型编辑窗口中Simulation 菜单中的Stan 命令,就可在示波器窗口中看到仿真结果的变化曲线,如题图1(b)所示。 题图1(b) 仿真结果 2. 建立使用阶跃信号为输入信号,经过传递函数为1 5.01 s 的一阶系统的Simulink 模型并进行仿真。要求:⑴查看其输出波形在示波器上的显示;⑵修改仿真参数Max step size 为2、Min step size 为1,在示波器上查看波形;⑶修改示波器Y 坐标轴范围为0~2,横坐标范围为0~15,查看波形。 解:⑴①利用Simulink 模块库中的基本模块,不难建立系统模型,如题图2所示。 题图2 一阶系统的Simulink 模型 模型中各个模块说明如下。 ()u t 输入模块:它的step time 被设置为0,模块名称由原来的step 改为()u t 。 Transfer Fon 传递函数模块:在Denominator coefficient 文本框中定义分母多项式系数向量为[0.5 1]。

常微分方程答案一二章

习题1.2 4. 给定一阶微分方程2dy x dx =, (1). 求出它的通解; (2). 求通过点()1,4的特解; (3). 求出与直线23y x =+相切的解; (4). 求出满足条件1 02ydx =?的解; (5). 绘出(2),(3),(4)中的解得图形。 解:(1). 通解显然为2,y x c c =+∈?; (2). 把1,4x y ==代入2y x c =+得3c =,故通过点()1,4的特解为23y x =+; (3). 因为所求直线与直线23y x =+相切,所以223 y x c y x ?=+?=+?只有唯一解,即 223x c x +=+只有唯一实根,从而4c =,故与直线23y x =+相切的解是24y x =+; (4). 把2y x c =+代入 1 2ydx =? 即得5c =,故满足条件 1 2ydx =? 的解是 253y x =+; (5). 图形如下: -1.5 -1-0.500.51 1.5 1234567

5. 求下列两个微分方程的公共解: 242422,2y y x x y x x x y y ''=+-=++-- 解:由2424222y x x x x x y y +-=++--可得 ()()2 2 2210y x x y -++= 所以2y x =或212y x =--,2y x =代入原微分方程满足,而212y x =--代入原微分方程不满足,故所求公共解是代入原微分方程不满足。 6. 求微分方程20y xy y ''+-=的直线积分曲线。 解:设所求直线积分曲线是y kx b =+,则将其代入原微分方程可得 220 0010 k b k xk kx b k b k b k k -=?+--=??====?-=?或 所以所求直线积分曲线是0y =或1y x =+。 8. 试建立分别具有下列性质的曲线所满足的微分方程: (2). 曲线上任一点的切线介于两坐标轴之间的部分等于定长l ; (5). 曲线上任一点的切线的纵截距等于切点横坐标的平方。 解:因为过点(),x y 的切线的横截距和纵截距分别为y x y - ' 和y xy '-,故 (2). ()2 2 2y x y xy l y ??'-+-= ?'? ?; (5). 2y xy x '-=。 习题2.1 1. 求下列方程的解: (2). ()210y dx x dy ++=,并求满足初值条件0,1x y ==的特解; 解:当0y ≠,分离变量,得 2111 dy dx y x =-+ 两边同时积分,得

微分方程模型习题

(微分方程模型) .一个半球状雪堆,其体积融化地速率与半球面面积成正比,比例系数 > .设融化中雪堆始终保持半球状,初始半径为且小时中融化了总体积地,问雪堆全部融化还需要多长时间? .从致冰厂购买了一块立方体地冰块,在运输途中发现,第一小时大约融化了 ()求冰块全部融化要多长时间(设气温不变) ()如运输时间需要小时,问:运输途中冰块大约会融化掉多少? .一展开角为α地圆锥形漏斗内盛着高度为地水,设漏斗底部地孔足够大(表面张力不计),试求漏斗中地水流光需要多少时间? .容器甲地温度为度,将其内地温度计移入容器乙内,设十分钟后温度计读数为度,又过十分钟后温度计读数为度,试求容器乙内地温度. .一块加过热地金属块初始时比室温高度,分钟测得它比室温高度,问:()小时后金属块比室温高多少?()多少时间后,金属块比室温高度? .设初始时容器里盛放着含净盐千克地盐水升,现对其以每分钟升地速率注入清水,容器内装有搅拌器能将溶液迅时搅拌均匀,并同时以每分钟升地速率放出盐水,求小时后容器里地盐水中还含有多少净盐? .某伞降兵跳伞时地总质量为公斤(含武器装备),降落伞张开前地空气阻力为,该伞降兵地初始下落速度为,经秒钟后降落伞打开,降落伞打开后地空气阻力约为试球给伞降兵下落地速度(),并求其下落地极限速度. .年月日英国人创建了一项最低开伞地跳伞纪录,它从比萨斜塔上跳下,到离地英尺时才打开降落伞,试求他落地时地速度. .证明对数螺线上任一处地切线与极径地夹角地正切为一常数,().实验证明,当速度远低于音速时,空气阻力正比与速度,阻力系数大约为.现有一包裹从离地米高地飞机上落下,()求其落地时地速度()如果飞机高度更大些,结果会如何,包裹地速度会随高度而任意增大吗? .生态学家估计人地内禀增长率约为,已知年世界人口数为亿(×)而当时地人口增长率则为.试根据模型计算:()世界人口数地上限约为多少()何时将是世界人口增长最快地时候? .早期肿瘤地体积增长满足模型(λ,其中λ为常数),()求肿瘤地增倍时间 σ.根据统计资料,一般有σ()(单位为天),肺部恶性肿瘤地增倍时间大多大于天而小于天(发展太快与太慢一般都不是恶性肿瘤),故σ是确定肿瘤性质地重要参数之

第二章 二阶线性偏微分方程的分类

第二章 二阶线性偏微分方程的分类 1.把下列方程化为标准形式: (1)02=+++++u cu bu au au au y x yy xy xx 解:因为 02 22112 12=?-=-a a a a a a 所以该方程是抛物型方程,其特征方程为 12 2 =-± =a a a a dx dy 。 它只有一族实的特征线 c x y =- 在这种情况下,我们设x y -=ξ,x =η(或令y =η,总之,此处η是与ξ无关的任一函数,当然宜取最简单的函数形式x =η或y =η)。 方法一:用抛物型方程的标准形式 ][12122 F Cu u B u B A +++- =ηξηηη 先算出: ? ??? ? ? ?? ? ? ?-====?+?+?+?+?=++++=?+-+?+?+?=++++==?+?+=++=b c C b c b a a a b b a a a B c b a a a b b a a a B a a a a a a a A y x yy xy xx y x yy xy xx y y x x 0F ,1010020 2 1)1(0020 2 002 2212212112 2122121112 221221122ηηηηηξξξξξηηηη ∴])[(1 u bu u c b a u +++--=ηξηη 即 01=+ + -+ u a u a b u a b c u ηξηη 方法二:应用特征方程,作自变量变换,求出 ??? ??=+-=+-=+--==+-= ,2 ,ξξηξξξηηξηξξηηηξξηξξξηξu u u u u u u u u u u u u u u u u u yy xy xx y x 代入原方程得,0)(=++-+u bu u b c au ηξξη

2机械控制工程基础第二章答案解析

习 题 2.1 什么是线性系统?其最重要的特性是什么?下列用微分方程表示的系统中,x o 表示系统输出,x i 表示系统输入,哪些是线性系统? (1) x x x x x i o o o o 222=++ (2) x tx x x i o o o 222=++ (3) x x x x i o 222o o =++ (4) x tx x x x i o o o 222o =++ 解: 凡是能用线性微分方程描述的系统就是线性系统。线性系统的一个最重要特性就是它满足叠加原理。该题中(2)和(3)是线性系统。 2.2 图(题2.2)中三同分别表示了三个机械系统。求出它们各自的微分方程,图中x i 表示输入位移,x o 表示输出位移,假设输出端无负载效应。 图(题2.2) 解: (1)对图(a)所示系统,由牛顿定律有

x m x c x x c i o o 2 o 1 )(=-- 即 x c x c c x m i 1 2 1 o o )(=++ (2)对图(b)所示系统,引入一中间变量x,并由牛顿定律有 )1()()(1 x x c k x x o i -=- )2()(2 x k x x c o o =- 消除中间变量有 x ck x k k x k k c i o 1 2 1 o 2 1 )(=-- (3)对图(c)所示系统,由牛顿定律有 x k x x k x x c o o i o i 2 1 )()(=-+- 即 x k x c x k k x c i i o o 1 2 1 )(+=++ 2.3求出图(题2.3)所示电系统的微分方程。 图(题2.3) 解:(1)对图(a)所示系统,设i 1为流过R 1的电流,i 为总电流,则有 ?+=idt C i R u o 12 2 i R u u o i 1 1=-

Matlab控制系统传递函数模型

MATLAB及控制系统 仿真实验 班级:智能0702 姓名:刘保卫 学号:06074053(18)

实验四控制系统数学模型转换及MATLA实现 一、实验目的 熟悉MATLAB的实验环境。 掌握MATLAB建立系统数学模型的方法。 二、实验内容 (注:实验报告只提交第2题) 1、复习并验证相关示例。 (1)系统数学模型的建立 包括多项式模型(TranSfer FunCtiOn,TF),零极点增益模型(ZerO-POIe,ZP), 状态空间模型 (State-SPace,SS ); (2)模型间的相互转换 系统多项式模型到零极点模型(tf2zp ),零极点增益模型到多项式模型(zp2tf ), 状态空间模 型与多项式模型和零极点模型之间的转换(tf2ss,ss2tf,zp2ss …); (3)模型的连接 模型串联(SerieS ),模型并联(parallel ),反馈连接(feedback) 2、用MATLAB故如下练习。 x+2 :6{J?=——;----- (1)用2种方法建立系统?-的多项式模型。 程序如下: %?立系统的多项式模型(传递函数) %方法一,直接写表达式 s=tf('s') GSI=(S+2)∕(s^2+5*s+10) %方法二,由分子分母构造 num=[1 2]; den=[1 5 10]; Gs2=tf( nu m,de n) figure PZmaP(GS1) figure PZmaP(GS1) grid On 运行结果: 易知两种方法结果一样 Tran Sfer fun Cti on: Tran Sfer fun Cti on:

S + 2 s^2 + 5 S + 10 Tran Sfer fun Cti on: S + 2 s^2 + 5 S + 10 ^)=1°

第二章地下水运动的基本微分方程及定解条件

第二章地下水运动的基本微分方程及定解条件 一、填空题 1.渗流连续方程是在地下水运动中的具体表现。 2.试写出在忽略含水层骨架压缩情况下的地下水连续方程。 3.地下水运动基本微分方程实际上是方程,方程的左端表示单位时间内从方向和方向进入单元含水层的净水量,右端表示单元含水层在单位时间。 4.地下水平面二维、三维流基本微分方向的数学意义分别表示渗流区内 的渗流规律,它们的物理意义分别表示任一、的水量均衡方程。 5.裘布依假设的要点是,实际上意味着是铅直的,流线以及没有。 6.单位面积(或单位柱体)含水层是指,高等于柱体含水层。 7.贮水率的物理意义是:当水头时,从含水层中由于水,以及介质骨架的,而释放(贮存)的水量。贮水系数与贮水率比较,主要差别有两点:一是含水层不同,前者是,后者是,二是释放出不同,前者有疏干重力水和弹性水量,后者则完全是水量。 8.在渗流场中边界类型主要分为、以及。 二、判断题 1.对含水层来说其压缩性主要表现在空隙和水的压缩上。() 2.贮水率μt=ρg(α+nβ)也适用于潜水含水层。() 3.贮水率只用于三维流微分方程。() 4.贮水系数既适用承压含水层,也适用于潜水含水层。() 5.在一定条件下,含水层的给水度可以是时间的函数,也可以是一个常数。() 6.潜水含水层的给水度就是贮水系数。() 7.在其它条件相同而只是岩性不同的两个潜水含水层中。在补给期时,给水度μ大,水位上升大,μ小,水位上升小,在蒸发期时,μ大,水位下降大,μ小,水位下降小。()

8.地下水连续方程和基本微分方向实际上都是反映质量守恒定律。( ) 9.地下水三维流基本微分方程div (K·gradH) = /s H t μ=??既适用于承压水也适用 于潜水。( ) 10.潜水和承压水含水层的平面二维流基本微分方向都是反映单位面积含水层的水量均衡方程。( ) 11.在潜水含水层中当忽略其弹性释水量时,则所有描述潜水的非稳定流方程都怀其稳定流方程相同。( ) 12.各向异性承压含水层中的二维非稳定流基本微分方程为( )。 (1) (2) 13.描述地下水剖面二维流的微分方程为 ( ) 14.描述均质各向同性含水层中地下水部面二维流微分方程为 。( ) 15.通常所指的布西涅斯克方程实际上就是具有源项的潜水运动的基本微分方程。( ) 16.第二类边界的边界面有时可以是流面,也可以是等势面或者既不是流面也不是等势面。( ) 17.在实际计算中,如果边界上的流量和水头均已知,则该边界既可做为第一类边界也可做为第二类边界处理。( ) 18.凡是边界上存在着河渠或湖泊等地表水体时,都可以将该边界做为第一类边界处理。( ) 19.同一时刻在潜水井流的观测孔中测得的平均水位降深值总是大于该处潜水面的降深值。( ) 20.凡是承压含水层中剖面上的等水头线都是铅垂线。( ) 21.在潜水含水层中,同一铅垂面上的地下水位启下而上是逐渐抬高,潜水面处的地下水位最高。( ) 22.在水平分布的均质潜水含水层中任取两等水头面分别交于底板A 、B 和潜

相关主题
文本预览
相关文档 最新文档