当前位置:文档之家› 三跨变截面-预应力混凝土连续梁桥

三跨变截面-预应力混凝土连续梁桥

三跨变截面-预应力混凝土连续梁桥
三跨变截面-预应力混凝土连续梁桥

炭厂沟预应力混凝土连续梁桥的设计

设计说明

一、设计依据

1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)

2、《公路桥涵设计通用规范》(JTG D60- 2004)

3、《公路工程技术标准》(JTG B01-2003)

二、技术标准和技术规范

2.1技术标准

1、荷载等级:公路—Ⅰ级;

2、桥面宽度:0.25m(栏杆)+0.5m(防撞栏)+1.5m(人行道)+9m(行车道)+1.5m (人行道)+0.5m(防撞栏)+0.25m(栏杆)=13.5m。

3、桥面设有双向2%的横坡,通过桥面铺装完成;

2.2采用规范

1、《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004)

2、《公路桥涵设计通用规范》(JTG D60- 2004)

3、《公路工程技术标准》(JTG B01-2003)

4、《公路桥涵地基和基础设计规范》(JTJ024-85)

5、《公路桥涵施工技术规范》(JTJ041-2000)

三、基础资料

该桥地质情况从上到下为黄土、古土壤、亚粘土和石灰岩。前三种土质的侧阻力分别为65KPa、70 KPa、85 KPa。由于本桩基础是支撑在基岩上的端承式。基岩为石灰

岩,其地基承载力特征值

4000

ak

f KPa

四、结构设计

4.1 孔跨布置

根据路线设计线位,结合桥跨范围地形地质情况,对变截面连续梁桥孔跨布置设计,

全桥孔跨组合为80m+125m+80m 。

图4-1 桥梁纵断面布置图

4.2 箱梁结构

箱梁采用的是单箱单室箱型截面。

桥面行车道的净宽为9m ,人行道净宽为2×1.5m ,因此在设计时设置2×0.5m 的防撞栏及2×0.25m 的人行栏杆。故箱顶宽为13.5m ,底宽为7.5m ,箱梁顶为平行面。箱梁跨中及边跨现浇段梁高为2.8m ,箱梁根部断面和墩顶0号梁段高为7.0m 。从中跨跨中至箱梁根部,箱高、箱梁底板、箱梁腹板均是按照二次抛物线变化的。从跨中跨中至箱梁根部箱梁腹板从40cm 变化为80cm ,底板从30cm 变化为90cm 。 4.3预应力钢束

纵向预应力钢束共设置有顶板束、中跨底板束、边跨底板束、合龙段临时束和预备束五种。钢筋束均采用Фs 15.2钢绞线,该设计中共采用27束和15束的两种钢筋束。采用的是预埋波纹管的形式形成管道。 4.4桥面系、支座及伸缩缝

桥面铺装采用10cm 厚的沥青混凝土和1cm 沥青抗摩层,桥面上设有防撞栏和人行栏杆。支座采用盆式橡胶支座;伸缩缝为梳齿状伸缩缝。详见施工图所示。 4.5 主要材料

主梁采用的是C55号混凝土;墩身承台采用的是C35号混凝土,基础采用的是C30号混凝土。防撞栏杆和人行栏杆采用的是C25号混凝土。预应力钢筋束采用的

是15.2s 钢绞线。普通钢筋采用的是HRB335。

五、主要计算成果

5.1 计算参数

(1)汽车横向分布系数计算

车道横向分布系数为2.30;

(2)混凝土结构的收缩徐变按照《公路钢筋混凝土及预应力混凝土桥涵设计规范》取值计算;

(3)温度作用

根据气象资料,全桥结构体系温差为+25℃,-15℃。温度梯度作用取值为:

正温度梯度为:14℃,5.5℃,0℃;

负温度梯度为;-7.0℃,-2.75℃,0℃;

(4)主桥结构计算挂篮重量为125吨。

六、施工方案

6.1下部结构施工

该桥的基础均采用的是钻孔灌注桩基础。主墩采用立模现浇施工。承台混凝土体积较大,设计采用冷却管和低水化热水泥施工,减少水化热,防止混凝土开裂。

墩身采用的是翻模法或者是滑模法施工,除安装模板外,每个桥墩处至少配有一部高塔吊与一部施工电梯,其余所需则为常规的施工设备。

6.2 上部结构施工

(1)主梁段施工

桥墩施工完成后,墩顶0号块梁段拟在墩顶埋有牛腿支撑托架上施工。用挂篮依次悬臂浇筑其余梁段,设计挂篮现浇阶段最大的重量为157吨,挂篮重量为125吨。(2)边跨现浇段

边跨现浇段在落地支架上施工,一次连续浇筑完成,边跨底板张拉时,应保证箱梁和支架间水平向自由变形,为此在现浇段底模与支架承重纵梁间密排钢管,在浇筑混凝土时应保证梁体稳定。

(3)主梁合龙段施工

全桥分三个合龙阶段,第一、二阶段合龙两边边跨;第三阶段合龙中跨,施工顺序和过程分述如下:

(1)支架上浇筑箱梁的渐变段,完成边跨合龙,待砼强度大于80%设计强度后,张拉钢束;

(2)中跨合龙

中跨合龙施工顺序如下:在中跨两悬臂端将挂篮改装为吊架,并在悬臂端设水箱作平衡重。在满足设计合龙温度情况下,焊好合龙骨架,浇筑合龙段砼,边浇筑砼边同步等效的放水。

6.3 主梁施工流程

主墩上搭设托架→现浇0号块混凝土(可分为两次浇筑)→张拉钢筋束→安装挂篮→现浇1号块混凝土→张拉钢筋束→移动并安装挂篮……按照此程序施工主梁各节段至合龙段→搭设边跨支架→浇筑边跨主梁节段→浇筑边跨合龙段→张拉边跨现浇段钢束→安装主跨合龙吊架→跨中配重→安装跨中合龙骨架→浇筑跨中合龙段砼,并同时等重卸除配重→分两次交错张拉主边跨底板钢束。

七、施工注意事项

1、本桥使用的各种材料必须符合设计提出的技术要求,按有关质量标准严格进行检验,妥善保管,并满足现行有效的规范、规程要求。

2、主梁各阶段(除现浇段和0号块外)应一次现浇完成,浇筑时应保证连续和振捣密实。所有工作缝应认真凿毛清洁,确保新老混凝土结合可靠等强。

全桥预应力混凝土构件,混凝土强度必须达到设计要求的值后(即混凝土强度达到80%以上且在标准养护条件下,混凝土养护龄期不小于5天)才能施加预应力,悬臂拼装现浇构件应及时(一般不宜超过12天)进行预应力钢束的张拉,所有预应力钢束严格按照对称、均衡张拉的原则进行张拉。预应力钢束采用张拉力和伸长量双指标控制,以张拉力为主,伸长量为辅(伸长量又施工单位根据所购钢束的具体参数指标校核计算,并报监理工程师审批)。

预应力钢束张拉完毕后,严禁撞击锚头和钢束,钢绞线和粗钢筋多余长度应用切割机切割。

主梁纵向预应力体系设计采用真空灌浆法施工工艺,并采用向配套的塑料波纹管。

3、主梁双悬臂浇筑施工时,梁段砼的浇筑、挂篮和机具的移动等,均应遵循对称、均衡、同步进行的原则,主梁面上应严格控制堆放材料和施工机具,并注意悬臂两端对称堆放。每个梁段各个施工工序应有监控、监测以确保施工质量。在特殊情况下两侧不平衡重(含现浇砼不对称的质量)只允许偏差1/4节段重量(节段自身不平衡重除外)。

4、主梁悬浇至最大悬臂时,应根据分析计算所确定的危险风速,有必要时(施工季节),结合现场和施工实际情况,研究制定具体抗风措施(可设临时抗风索),并报监

理工程师或专家评审批准后实施。

5、主梁合龙段砼浇筑采用预压配重法,即预先在合龙段两端按合龙段砼重量注水压重,边浇筑砼边防水。为了尽量减小温度的影响,要求尽快焊接合龙段劲性骨架连接(待压重水灌满后再施焊合龙段刚性骨架),并尽快浇筑合龙段砼。

6、主梁施工完成现浇桥面铺装时,应将主梁顶面全面凿毛,清除松散物、施工防水层后,方可浇筑桥面铺装,确保桥面板与桥面铺装有效结合。

7、承台、墩身等构件的砼体积较大,施工时应采取可靠措施(如采用低水化热的水泥、掺入粉煤灰、埋设冷却管)降低水化热,避免砼形成微裂缝甚至开裂;结构各施工缝、后浇筑的构件结合面(包括封锚处)应严格处理,确保可靠结合;封锚区砼可采用微膨胀砼。墩身施工需要设置劲性骨架。

8、施工中应注意有关预埋件的设置。

9、对施工图设计中所提供的基础坐标、高程等必须先进行核查,确认无误后方可对照实施。

10、设计说明中未尽事宜,请详细参阅图中标注,并严格按照《公路桥梁施工技术规范》(JTJ041-2000)执行。

一方案简介和上部结构尺寸拟定

本设计方案比选后采用的是三跨预应力混凝土变截面连续梁结构。边中跨比为0.64,全联跨径为80m+125m+80m=285m。

桥上部结构采用的是单箱单室结构,箱宽为13.5m 。下部结构采用的摩擦桩。

1.1设计基本资料

平曲线半径:无平曲线;

竖曲线半径:半径为无穷大,不考虑纵坡; 通航要求:无;

地震参数:不考虑地震影响。

1.2 设计标准

1.2.1 顺桥上的尺寸拟定

跨径:80m+125m+80m ,施工方法为悬臂施工。

桥面设计标高 1436.000

黄土

1376.90亚粘土

1367.90

石灰岩

1354.50

1359.20古土壤

1357136713771387

1397

140714171427143712500

8000

8000

28500

700

700

1:1.5

3800

2000

1388.550

1406.550

1347

1:

1.5图1.1 桥梁纵断面图

梁高:根据规范,跨中梁高取2.8m (L/44.6),支点处梁高取7.0m (L/17.9)。 梁底曲线:选用二次抛物线形式。在支座处设3m 的直线梁,以悬臂梁的悬臂为起点,梁底曲线方程为

(式中的

),L 为悬臂长61m 。

箱梁底板上缘曲线:箱梁底板从跨中到支点截面是按照二次抛物线逐渐变厚的,坐标原点仍为悬臂梁的悬臂起点,则箱梁底板上缘曲线方程为

1.2.2横桥向的尺寸拟定

桥面布置为:0.25m (栏杆)+0.5m (防撞栏)+1.5m (人行道)+9m (行车道)+1.5m (人行道)+0.5m (防撞栏 )+0.25m (栏杆)=13.5m 。

图1.2 桥面布置横断面图通过桥面铺装实现双向2%的横坡。

二桥型方案的选择

2.1方案选择原则

在桥梁设计中要求桥梁技术先进、安全可靠、适用耐久、经济合理。随着和谐社会的提出和公众环保意识的提高,生态环保已经成为一种不可或缺的考虑因素。建设在城市中的桥梁还特别注重美观大方,即遵循我国桥梁设计中还要满足美观、环境保护和可持续发展的原则。由此,对于一定的建桥条件,根据侧重点的不同可能会做出基于基本要求的多种不同设计方案,只有通过技术经济等方面的综合比较才能科学的得出最合适的设计方案。

在桥梁设计中,基本设计原则如下:

(1)适用耐久

桥上应保证桥梁在100年的设计基准期内正常使用;桥面宽度满足当前以及今后规划年限内的交通流量;桥梁结构在通过设计荷载时不出现过大的变形和过宽的裂缝;应考虑不同的环境类别对桥梁耐久性的影响;在选择材料、保护层厚度、阻锈等方面满足耐久性的要求;桥跨结构下面有利于泄洪、通航等要求。

具体到本三跨连续梁桥,因为是高山峡谷所以没有通航要求、不需要考虑腐蚀性水对结构的影响。

(2)安全可靠

对于设计的桥梁结构在强度和稳定方面应有足够的安全储备;防撞栏杆应有足够的高度和强度,人与车流之间应做好防护栏、防止车辆撞入人行道或破坏栏杆而落入桥梁;对于交通繁忙的桥梁,应设计好照明设施,并有明确的交通标志,两端引桥坡度不宜太陡,以避免发生车辆碰撞等引起的车祸;对于修建在地震区的桥梁,应按抗震要求采取防撞措施,对于河床易变迁的河道,应设计好导流措施,防止桥梁基础底部被过度的冲刷等。

对于该桥在设计上选用的是新泽西防撞栏杆、双菱形人行道栏杆;因处在不是地震区的沟谷,则不需要考虑抗震要求、不需要考虑桥梁基础被冲刷的要求。

(3)技术先进

桥梁设计应体现现代桥梁建设的新技术。积极采用国内外的新结构、新材料、新工艺和新设备,以便于桥梁的建造和架设、减少劳动强度、加快施工进度、提高施工效率、

保证工程质量和施工安全。充分利用最新科学技术成就,把学习和创新结合起来,淘汰和摒弃原来落后和不合理的东西,只有这样才能提高我国的桥梁建设水平,赶超世界先进水平。

(4)经济性

桥梁设计应遵循因地制宜、就地取材和方便施工的原则,经济的桥型应该是造价和使用年限内养护费用综合最省的桥型,设计中应充分考虑维修的方便和维修费用少,维修时尽可能的不中断交通、或中断交通的时间最短。

(5)美观

一座桥梁应具有优美的外形,结构布置必须精炼,并在空间上有和谐的比例。桥型应与周围的环境向协调,城市桥梁和旅游区的桥梁,可比较对多的考虑建筑艺术上的要求。合理的结构布置和轮廓是美观的主要因素,结构细部的美学处理十分重要,另外,施工质量对桥梁的美观也有影响。

(6)环境保护和可持续发展

桥梁设计必须考虑环境保护和可持续发展的要求,包括生态、水、空气、噪音等方面,应从桥位布置、基础方案、墩身外形、上部结构施工方法、施工组织设计等方面全面考虑环境要求,采取必要的工程控制措施,并建立环境监测保护体系,将不利影响减至最小。

2.2方案比选

合理性往往都是在比较中发现的,没有最好的,只有更合理的。所以本桥的初步设计是在综合考虑适用性、舒适与安全性、经济性、先进性、美观等多方面因素,结合本桥址处地形、地貌、水文等信息进行方案必选。

方案必选的重要流程为:综合地质、地貌、水文信息——确定桥梁长度和桥面标高——选择桥型,拟定尺寸——多方案比较,择优。

设计方案通常是从拟定桥梁型式和桥梁分孔开始。根据不同的桥梁采用合理的主跨与边跨的比值,一般选几个(通常2~3个)有特色的体系进行进一步的分析。

设计方案的评价和比较要全面考虑上述各项指标,综合分析每一方案的优缺点,最后选定一个最佳的推荐方案。按桥梁的设计原则,造价低、材料省、施工难度小、劳动力少和桥型美观的方案应优先采用。但当技术因素或是使用性质有特殊要求时就另当别论了,因此我们在选择时还要注重考虑设计的侧重点。技术高,造价必然会高,各个因素是相互制约的。所以在比选时必须从任务书提出的要求以及地形资料和施工条件,找

出影响方案的最重要因素,分清主次,进行比选。

在本次初拟方案时,共提出80m+125m+80m的预应力混凝土变截面连续梁、75m+135m+75m的预应力混凝土连续刚构、80m+125m(挂梁长为30m)+80m T型刚构三种桥型,三种桥型均为变截面的梁。

三种桥型的上部尺寸的拟定分别综述为下:

(1)80m+125m+80m的预应力混凝土变截面连续梁:由于预应力混凝土变截面桥的边中跨之比以0.6-0.7为宜(文献[12]P480),故选取0.64的边跨比。且支点梁高选取L/17.9=7.0m,跨中梁高取L/44.6=2.8m.梁底曲线选用最常用的二次抛物线形式。

桥面宽为0.25m(栏杆)+0.5m(防撞栏)+1.5m(人行道)+9m(行车道)+1.5m (人行道)+0.5m(防撞栏)+0.25m(栏杆)=13.5m。故横截面可选取的是单箱单室截面。由文献[12]P480和文献[13]P84拟定出箱梁截面的细部尺寸为:箱梁顶宽为13.5m,底宽为7.5m.顶板厚度支点为70cm,再转化为35cm,其余为28cm,悬臂端厚度为20 cm,底板厚度由跨中到支点由30 cm变厚到90 cm,腹板厚度由跨中到支点从40 cm变厚到80 cm,均是按照二次抛物线变化。顶板与腹板连接处的承托选用1:3的比例,底板与腹板的连接处的承托选用1:1的比例。

具体的尺寸见预应力混凝土连续梁桥的总体布置图。

(2)75m+135m+75m的预应力混凝土连续刚构:根据文献[12]P487拟定边中跨之比选用0.556。支点梁高取L/18=7.5m,跨中梁高取L/54=2.5m.为了改善L/4— L/8截面底板的混凝土的应力,梁底截面选用1.65次曲线形式。

桥面宽为12m,横截面形式仍然选用的是单箱单室截面。由文献[2]P97、文献[12]P487和文献[13]P84拟定出箱梁的细部尺寸为: 箱梁顶宽为13.5m,底宽为7.5m. 顶板厚度除支点为30cm其余为27cm,悬臂端厚度为20 cm,底板厚度由跨中到支点由32 cm变厚到90 cm,腹板厚度由跨中到支点从40 cm变厚到70 cm,顶板与腹板连接处的承托选用1:3的比例,底板与腹板的连接处的承托选用1:1的比例。

具体的尺寸见预应力混凝土连续刚构桥的总体布置图。

(3) 80m+125m(挂梁长为30m)+80m T型刚构:根据文献[13]P202拟定边中跨之比为0.64。支点梁高为L/17-L/21,取6.5m,跨中梁高为支点梁高的1/5-1/2,选取2.5m。梁底截面选用二次抛物线形式。挂梁选用30m长。

桥面宽为13.5m,但是由于腹板的经济间距为2.5-4m,悬臂端的长为2-4m,故此桥型的横截面选用的是单箱双室截面。由文献[13]P202拟定出的箱梁的细部尺寸为:箱梁

顶宽为13.5m,底宽为7m 悬臂端长为2m。顶板厚度除支点为25cm其余为20cm,悬臂端厚度为15 cm,底板厚度由跨中到支点由18 cm变厚到60 cm,腹板厚度从跨中到支点为60 cm等厚,顶板与腹板连接处的承托选用1:3的比例,底板与腹板的连接处的承托选用1:1的比例。

具体的尺寸见预应力混凝土连续刚构桥的总体布置图

三种桥型的比选方案如表2-1所示。

综上所述,由于该桥位处的地基不好,而连续刚构桥对地基的承载力要求较高,并且此桥型为超静定结构,由于混凝土收缩徐变、温度变化、预应力作用、墩台不均匀沉降的影响将会产生较大的次内力,因此结构的受力不明确,主墩的直接抗压能力较差。若地基发生过大的不均匀沉降,连续梁可通过支座调整标高,抵消下沉来补救,而连续刚构做不到。而且,连续刚构的梁墩联结处应力复杂,也是该桥型的一大缺点。T型刚构桥由于其在施工阶段经常会遇到强迫合龙,使用阶段经常会因为挠度多使得桥面线性不平整,结构中的伸缩缝较多,现在该桥型已经不流行。

鉴于以上理由,现推荐80m+125m+80m的预应力混凝土变截面连续梁为最佳方案。设计采用变截面梁是为了能更好地符合梁的内力分布规律,从绝对值看,一般情况下,支点的负弯矩大于跨中的正弯矩,结构的抗弯刚度与弯矩分布规律基本协调;采用悬臂施工法时变截面梁与施工状态的内力吻合,且施工内力与成桥结构内力也基本吻合,预应力筋的作用效益高;线形美观,外型和谐,增大了桥下净空,有利于桥下通航和降低桥头引线标高以节省投资。除外形高度变化外,为满足梁内各截面抗压和抗剪的受力要求,设计中底板和腹板均采用二次抛物线变厚度。

表2-1 桥型的比选表

三设计依据和主要参数

3.1 主要材料参数

(1)混凝土:主梁采用的是C55号混凝土。墩身承台采用的是C35号混凝土,

基础采用的是C30号混凝土;防撞栏杆和人行栏杆采用的是C25号混凝土。

(2)预应力钢筋:采用的是15.2s φ,公称直径为139mm2,采用的是2715.2s φ、1515.2s φ和915.2s φ三种形式。

(3)普通钢筋:采用的是HRB335。

(4)锚具:采用的是OVM15-27、OVM15-15以及OVM15-9三种,对应的锚固垫的尺寸是350×295×Ф210、300×240×Ф170和240×180×Ф125(单位均为mm )。

(5)预应力管道:采用预埋橡胶波纹管成孔,三种预应力钢筋束对应的波纹管的内径分别为120mm 、90mm 、80mm 。

(6)支座:采用盆式橡胶支座。

(7)桥面铺装:采用的是10cm 的沥青混凝土铺装层和1cm 抗滑磨耗层。 (8)伸缩缝:采用的是梳齿式伸缩缝。

3.2设计计算主要依据

《公路钢筋混凝土及预应力混凝土桥涵设计规范》(JTG D62- 2004) 《公路砖石及混凝土桥涵设计规范》(JTG D63-2005) 《公路桥涵设计通用规范》(JTG D60- 2004) 《公路工程技术标准》(JTG B01-2003)

3.3基本计算数据

根据《公路钢筋混凝土及预应力混凝土桥涵设计规范》中的各种规定,混凝土的各项基本数据以及各阶段的限值,如下表所示:

表3-1 材料的各项基本数据与限制

四设计、受力、构造以及施工特点

4.1 设计特点:

本桥上部结构为三跨预应力混凝土连续梁桥,采用分段悬臂浇筑的方法施工,预应力混凝土连续梁桥采用悬臂施工法需在施工中进行体系转换,经过一

系列施工阶段逐渐形成最终的连续梁体系。在各个阶段,可能具有不同的静力体系,其中包括安装单元、拆除单元、预应力张拉、移动挂篮等工况,因此恒载内力计算时必须精确模拟各个施工阶段。桥梁的恒载内力是有各个施工阶段引起的内力迭加而成,显然对不同的施工方法,桥梁的恒载内力是有很大的区别的。而活载和温度、沉降内力在成桥后才发生,作用在最终的连续体系上,故与施工方法无关。悬臂施工涉及到非常多的施工工况,且由于体系发生转换而使得预加力和混凝土徐变产生的次内力的计算变得复杂,故该设计采用桥梁博士软件进行计算。

4.2受力特点:

采用悬臂施工的连续梁,在施工阶段中经历T型刚构受力状态,合龙后形成连续梁桥,恒载产生的内力有各个施工阶段产生的内力迭加而成。由于合龙段较短,其产生的内力一般较小,故T型刚构受力状态为主要部分。对悬臂施工连续梁桥,合龙后根部负弯矩很大,而中跨跨中弯矩很小;二期恒载加上去以后,根部弯矩增大,中跨跨中承受较小的正弯矩。因而,截面尺寸拟定时,应根据以上弯矩分布特点,增大主梁根部附近的抗弯刚度,提高截面下缘的承压能力。

悬臂是施工时,浇筑一节段梁体,达到一定强度后张拉此段钢束。梁体自重产生负弯矩,而预应力钢束产生正弯矩,二者结合使得梁体基本处于偏心受压受力状态,其轴向力非常大,抗剪强度一般不成问题,而最小正压力又较大,故主拉应力也易满足,所以可不设下弯配索。否则,可微弯纵向束,设置竖向预应力筋。

4.3构造特点

4.3.1零号块

零号块是悬臂浇筑施工时的中心块体,又是体系转换的控制体。梁体的受力经过零号块通过支座向墩身传递,零号块受力非常复杂,且一般作为施工机具和材料堆放的临时场地,故其顶板、底板、腹板尺寸都取的较大。

4.3.2合龙段

合龙段的施工是桥梁施工的重要环节。在合龙段施工过程中,由于温度变化、混凝土早期收缩、已完成结构的收缩徐变、现浇混凝土的水化热,以及结构体系变化和施工荷载等的因素,对尚未达到强度的合龙段混凝土有直接的影响,故必须

重视合龙段的构造措施,使合龙段与两侧梁体保持变形协调,并在施工过程中能传递内力。合龙段的长度在满足施工要求的情况下,应尽量缩短,以便于构造处理,该设计中取2m。

合龙段施工应注意以下几点:(1)合龙段应采用早强、高强、少收缩混凝土;(2)合龙段混凝土浇筑时间应选在一天中温度较低时,并使混凝土浇筑后温度开始缓慢上升为宜;(3)加强混凝土的养护。

4.3.3临时固结措施

悬臂施工时,为保证结构几何体系不变,需将墩梁固结,以承受不平衡弯矩。常用的固结方法为:在支座纵向两侧设置两排临时混凝土块作为临时支座。临时支座内穿预应力钢束,两端分别锚固在主墩和主梁横隔板内。钢束的数量应由施工中的不平衡弯矩确定。为便于拆除,在临时支座内设有约2cm厚的硫磺砂浆夹层。硫磺砂浆具有抗压强度高、加热容易软化的特点,便于临时支座的拆除。

4.4施工特点

本设计采用的是后支点挂篮悬臂浇筑的施工方法。用挂篮逐段悬拼浇筑施工的主要工艺程序为:灌注0#块,拼装挂篮,对称的浇筑1号段,挂篮的锚固点的转移、前移、调整,灌注下一段梁,依次类推完成悬臂灌注,挂篮拆除换为吊架,边跨、中跨的合龙。

按照每一梁段的混凝土分为分两次浇筑,即先浇筑底板、后浇筑腹板和顶板混凝土的施工流程图如图4-1所示。

图4-1 悬臂浇筑流程

五建立计算模型

使用环境:Dr.Bridge3.0

外部环境特性:计算相对湿度为80%,升温按照25℃,降温按照15℃。

5.1单元的划分

根据该桥梁的构造特点,划分的单元为以下形式,共划分为86个单元,边跨为2×24个,中跨为1×38个,如图5-1所示。

图5-1 边跨的模型简图

5. 2施工阶段划分

按照该桥的实际施工工序,首先浇筑1号墩和2号墩的0号块件(采用托架支撑)并设置临时固定支座,以抵抗在悬臂施工中产生的不平衡弯矩。然后安装挂篮,并对称的浇筑其他块件,支架现浇边跨,合龙边跨后拆除临时固定支座再合龙中跨,然后施加二期恒载。根据各阶段的施工顺序,由桥梁博士软件建立桥梁的施工模型。

阶段1:0号块件的施工

阶段2:挂篮拼装

阶段3:挂篮加载

本阶段的新浇筑的单元通过挂篮传递其自重,但本身不参与结构受力。

阶段4:安装1号块件

在浇筑的混凝土经过养护后强度达到要求时,对预应力进行张拉,施加预应力。

阶段5:挂篮转移锚固

当浇筑的单元开始参与结构受力(即填入施工阶段的“安装杆件号”中),其重力不再通过挂篮传递。进行挂篮加载后,必须进行相应的“挂篮锚固”阶段,解除挂篮受力。

阶段6:挂篮的拆除和安装

在挂篮进行移动操作时,除了在“挂篮拆除”信息中填入拆除挂篮号还要在“挂篮安装”信息中填入要安装的挂篮号和移动的距离。即一个挂篮的移动操作是由挂篮拆除和挂篮安装两个操作在同一个阶段完成的。

……(重复阶段3到阶段7)

阶段64:悬臂挂篮拆除,换为吊架进行边、中跨的合龙

阶段65:支架现浇边跨

阶段66:在悬臂端采用水箱压重,重量为合龙段自重(45t)的一半加上吊架重量(25t)的一半,边跨合龙段用劲性钢杆临时锁定。

阶段67:浇筑合龙段砼,同时逐级卸除边跨悬臂端的压重荷载(22.5t)并且张拉部分边跨合龙钢束。

阶段68:边跨现浇支架落架,拆除主墩顶临时支座,锁定主墩顶永久支座,完成体系转换(结构变为两个单悬臂梁),拆除边跨吊架(25t/个)。

阶段69 :浇筑中跨合龙段砼,同时逐级卸除中跨悬臂端的压重荷载(45t),中跨合龙段临时锁定,并且切断主墩临时支承的钢筋。同时按先长后短的顺序张拉部分中跨合龙段钢束。

阶段70:拆除中跨的吊架

阶段71:张拉边、中跨剩余的连续钢束,施加桥面二期恒载

阶段72:根据《公桥规》的编制理念,使用阶段的收缩徐变时间应为“0”天,而将结构的收缩徐变考虑到施工阶段中,即添加一个较长的施工周期,用以完成结构的收缩徐变,而不在使用阶段考虑。故最后一个阶段为考虑收缩徐变,加一个较长的施工期,本设计选用10年,即3650天。

变截面连续梁完整计算书

一、工程概况 上部结构采用预应力混凝土变截面连续箱梁,为双幅结构。单幅箱梁采用单箱单室截面,箱梁顶板宽11.99m,底板宽为6.99米,箱梁顶板设置1.5%的横坡。边跨端部及中跨跨中梁高均为2.0m(以梁体中心线为准),箱梁根部梁高为4.0米,梁高从2.0m到箱梁根部按1.5次抛物线规律变化;边跨端部及中跨跨中底板厚度为0.25米,箱梁悬臂根部底板厚度为0.6米,箱梁底板厚度从2.0m到悬臂根部按1.5次抛物线规律变化。箱梁腹板在3.5m长度内由0.45米直线变化至0.6米。 桥台采用重力式U型桥台,桥台与道路中心线正交布置。桥台扩大基础应嵌入中风化岩面不少于0.5m,同时应满足基底持力层抗压承载力要求,桩基础应嵌入中风化岩层长度不小与2.5倍桩径,桥台台身采用C25片石混凝土浇筑,台帽混凝土采用C30钢筋混凝土。台后的填料采用压实度不小于96%的砂卵石,回填时应预设隔水层或排水盲沟。 桥墩均采用钢筋混凝土八棱形截面,基础采用桩基接承台。桥墩墩身截面为3.5×2.0m,截面四角对应切除70×50cm倒角。墩顶设盖梁,桥墩盖梁尺寸为 6.99m(长)×2.4m(宽)×2.6m(高),承台尺寸为8.4m(长)×3.4m(宽)×2.5m。每个承台接两根直径2.0m的桩基。 所有的桩基础均采用嵌岩桩,用人工挖孔成桩。桩基础应嵌入完整的中风化岩面不少于3倍桩径,并要求嵌岩岩石襟边宽度大于3.0m,同时应满足基底持力层岩石抗压强度要求。 桥型布置见图1 桥型立面布置图。 图1 桥型立面布置图 二、主要技术标准 汽车荷载:公路-I级。 人群荷载:3.5 KN/m2。 2.4.桥梁宽度:

变截面连续梁式桥设计入门

变截面连续梁桥设计入门 预应力混凝土连续梁桥在公路桥梁中的应用范围越来越广泛,跨径超过40m时多采用变截面箱梁,本文主要介绍变截面连续箱梁桥设计的入门知识和容易遗漏的一些技术处理措施。 一、变截面连续梁桥的适用范围 变截面连续梁桥主跨经济跨径一般在40~250m之间,桥型优点在于施工技术成熟、造价低廉、行车舒适、养护简单;缺陷在于结构自重大、容易开裂、恒载在使用荷载中占据较大比例、建筑高度高。 二、箱梁构造设计 1.箱梁箱室分配 (1)鉴于多室箱梁弯曲内力分配难以把握,箱梁最好采用单箱单室; (2)箱梁分室受畸变和横框架抗弯控制,当箱梁最大宽高比超过3~3.5时应考虑分室; (3)当采用单箱多室结构时,各墩支撑最好一条腹板对应一排支座; (4)当腹板与支座不是一一对应或支座中心与腹板中心存在偏离时应进行支座处横隔板的横向抗弯计算。 2.箱梁梁高 箱梁梁高的控制因素主要包括: (1)箱梁根部梁高一般取主跨跨径的1/16~1/20;跨中梁高一般取主跨跨径的1/40~1/60。 (2)跨中梁高最小箱内净高一般不宜小于1.5m,特小跨径桥梁例外。 (3)箱梁最矮梁段箱体宽高比不大于3.5。 3.梁高变化 箱梁梁高一般采用抛物线变化,主跨跨径小于120m时采用2次抛物线,大于120m时采用1.8、1.6或1.5次抛物线。 4.底板厚度 箱梁底板厚度变化规律一般采用2次抛物线,最薄处根据桥梁跨径、构造需要和横向抗弯计算确定一般为20cm~32cm;最厚处底板厚度一般取跨径的1/200~1/120,根据下缘压应力要求控制。

1.纵向预应力 一般由内力设计控制:抵抗负弯矩设置顶板束;抵抗正弯矩设置底板束;抵抗主拉应力设置腹板束。

变截面连续梁桥常用施工方法与经典图纸

变截面连续梁桥常用施工方法 1.支架现浇法 支架现浇法适用于旱地且跨径不太大的桥梁,施工中支架的安全、变形等是必须引起重视的问题。 2.悬臂施工法 悬臂施工法是大跨径连续梁桥常用的施工方法,属于一种自架设方式,分为悬臂拼装与悬臂浇筑两种。 悬臂拼装指在预制场预制梁节段、然后进行逐节对称拼装,拼装方法主要有扒杆吊装法、缆索吊装法、提升法等。 悬臂浇注法则是利用挂蓝在桥墩两侧对称浇注箱梁节段、待已浇节段混凝土强度达到要求的张拉强度后进行预应力张拉,然后移动挂蓝进行下一节段施工,直至合拢。目前主要采用该法施工。 不论悬拼还是悬浇,都是属于自架设方式施工,且已成结构的状态(包括受力,变形)具有不可调整性,所以,施工成败的关键在于临时锚固的可靠性,施工过程中的应力监测、变形预测与标高调整以及体系转换的实施。 经典图纸:变截面预应力连续刚构箱梁桥施工图范例 桥梁全长:695.4m 设计行车速度:80Km/h。 荷载等级:公路-Ⅰ级,无人群荷载。 桥宽:左右幅桥宽布置为0.5m 11m(行车道)0.5m(防撞护栏)。 高程:黄海高程系统。 坐标:北京坐标系。

地震烈度:设计基本地震动加速度峰值A=0.05g,抗震设防烈度为6度。 桥面横坡:主桥单向横坡2%,引桥处在横坡变化段上。 单箱单室截面箱梁顶宽:12米底宽6.5米 顶板悬臂长度:2.75米顶板悬臂端部厚:20cm 根部厚70cm。全桥分五联,其中第二联为主桥,采用(70 130 70)m跨的变截面预应力混凝土 连续刚构箱梁;两岸引桥采用预应力混凝土T梁,第一、三联为先简支后刚构 (采用部分连续墩),第四、五联为先简支后连续。 主桥数量表、引桥数量表、地质纵断面图、桥型布置图 箱梁标准横断面图、箱梁施工程序示意图 箱梁截面标高、箱梁一般构造图 箱梁纵向预应力钢束布置图 箱梁纵向钢束竖弯平弯要素表 箱梁纵向预应力钢束材料数量及引伸量计算表 纵向钢束布置断面图20张 箱梁纵向预应力钢束定位钢筋示意图 箱梁锚下加强钢筋布置图 箱梁横、竖向预应力钢束(筋)布置图 箱梁横、竖向预应力钢束(筋)锚固大样图 箱梁横、竖向预应力钢束(筋)数量表 箱梁横、竖向预应力钢束(筋)定位钢筋示意图 箱梁0号节段一般构造图、箱梁0号节段钢筋布置图 箱梁1-16、1-16号节段钢筋布置图 箱梁17号节段钢筋布置图、箱梁17号节段一般构造图

变截面预应力混凝土连续箱梁大桥施工技术研究

变截面预应力混凝土连续箱梁大桥施工技术研究 发表时间:2016-03-21T10:10:38.140Z 来源:《基层建设》2015年26期供稿作者:徐立骞 [导读] 杭州市城市建设基础工程有限公司随着桥梁技术不断发展,变截面预应力混凝土箱梁得到越来越广泛的应用。杭州市城市建设基础工程有限公司浙江杭州 310004 摘要:随着桥梁技术不断发展,变截面预应力混凝土箱梁得到越来越广泛的应用。某桥主桥为变截面连续梁桥,在施工过程中进行了相应的施工控制。本文结合某桥对变截面预应力混凝土连续箱梁施工要点进了研究,可为同类型工程施工提供参考。关键词:变截面;预应力;箱梁大桥;钢管桩;施工技术 1、工程概况 某桥工程桩号分别为K0+000,终点桩号K2+300,全长2.3km。主桥上部构造:混凝土C55:16293.6m3Ⅰ钢筋606t,Ⅱ钢筋2747t,预应力钢绞线841t。该桥左幅设计为:(4×32m)等截面预应力砼连续箱梁+(58+3×96+58)变截面预应力砼连续箱梁+(3×24)等截面预应力砼连续箱梁+(4×32)等截面预应力砼连续箱梁+(3×32)等截面预应力砼连续箱梁;右幅设计为:(3×32m +24.175m)等截面预应力砼连续箱梁+(58+3×96+58)变截面预应力砼连续箱梁+(25.825+2×27)等截面预应力砼连续箱梁+(4×32)等截面预应力砼连续箱梁+(3×32)等截面预应力砼连续箱梁,总长828m。全桥位于直线段,部分纵面位于-2.4%和2.4%直线纵坡段,其余位于R=8000,T=144的竖曲线上。 2、箱梁结构形成 该桥起点桩号为K0+842.877,终点桩号K1+670.877,大桥全长828m(双幅),主桥设计为58m+3×96m+58m五跨变截面预应力混凝土连续箱梁。主桥上部箱梁为变截面单箱双室断面,箱梁梁高、底板厚度均按圆曲线变化。主跨箱梁根部梁高(箱梁中心线)为560cm,跨中梁高(箱梁中心线)为270cm,箱梁顶板全宽为2050cm,厚度25cm。底板宽度957.7至1180.8cm变化,厚度为73.6—30cm。腹板厚度分别为75cm及50cm。箱梁在花瓶墩顶处设300cm厚的横隔板。主跨箱梁单“T”共分12段悬臂浇筑,0号梁段长12m,其余1-12号梁分段长为7x300+5x400cm,边跨、次边跨、中跨合拢段都为2m,边跨现浇段长10m。0号梁段和边跨现浇段采用钢管桩支架现浇施工,主跨T构采用对称挂篮悬臂现浇施工,悬浇最重梁段为1794kN。全桥合拢顺序为:先合拢两个边跨,接着合拢次边跨,最后合拢中跨。 3、0#段桥梁结构特点 3.1 0#块施工 该桥0#段采用单箱双室结构,节段长1200cm,墩顶高560cm,底板宽957.7cm,顶板宽2050cm,0号块混凝土方量为473.3m3,0号块重量为12542kN。考虑0#块长度较长,桥面与墩身宽比大,结合设计图纸及实际施工条件,主桥0#块支架选用钢管桩支架,图1 0#段支架示意。 图1 0#段支架示意 3.2钢管桩支架构造 钢管桩支架由钢管桩立柱、剪刀撑、主横梁、纵向分配梁、落架系统、模板系统等分别由六部形成: 1)钢管桩立柱:墩柱两侧底板位置各设置3根φ700σ10钢管桩立柱,用于支撑底板、腹板荷载以及抵抗部分施工不平衡力距;两侧各设置3根φ530σ6钢管桩立柱,用于支撑腹板和翼板荷载。 2)剪刀撑:钢管桩立柱之间设置[20槽钢剪刀撑增加支架横向稳定,剪刀撑的层数根据支架高度进行调整。 3)主横梁:主横梁采用两根Ⅰ45b工字钢,横梁与钢管桩采用焊接。 4)纵向分配梁:纵向分配梁采用Ⅰ25b工字钢,分配梁按照支架设计进行布设。 5)落架系统:纵向分配梁与主横梁之间设置木楔,以便于后期模板拆除。 6)模板系统:外侧模采用定型钢模,单侧模板长度组合为4.5m+3.5m+4.5m,几何尺寸以设计图为准;考虑0#段内部几何尺寸变化较大,内模采用组合木模。 3.3钢管桩支架搭设 安装前准备→钢管立柱→设置剪力撑→安装主横梁→安装纵向分配梁及木模→铺设底模→预压→卸载→调整模板标高→安装侧模→钢筋预应力绑扎→砼浇筑。 3.4准备顺序 钢管桩支架拼装应做好以下准备: 1)根据设计图纸要求,在加工场下料,焊接过程中应注意控制杆件的结合尺寸及焊接质量;

简支转连续梁桥名目

目录 一、绪论 1、先简支转连续梁桥概述 1.1、先简支转连续梁桥的优缺点 1.2、先简支转连续桥梁的研究背景 1.3、先简支转连续桥梁的研究现状 2、论文的主要研究内容和方法 二、简支转连续桥梁的基本理论 1、简支转连续结构体系形式和施工方法 1.1、简支转连续结构体系形式 1.2、简支转连续桥梁的施工方法和控制过程 2、简支转连续桥梁的基本理论分析 2.1、概述 2.2、梁体应力基本理论 2.3、先简支转连续桥梁的次内力和内力重分布 2.4、先简支转连续桥梁的主梁内力 3、软件简介 3.1、有限元法简介 3.2、迈达斯Civil简介 三、简支转连续体系受力特性分析 1、工程概论 2、迈达斯Civil建模过程

3、不同施工工序下体系受力计算 3.1、内力计算 3.2、变形计算 4、计算结果分析 5、结论 四、参数分析 1、收缩徐变的影响分析 五、不同跨数的次内力分析 六、施工技术研究

一、绪论 1、先简支转连续桥梁的概述 1.1、先简支转连续桥梁的优缺点 先简支转连续桥梁是两跨及两跨以上的预应力混凝土通过现浇混凝土的形式连接而成的连续结构,该连续结构有一下几个优点: (1)具有刚度大、变形小、伸缩缝少和行车舒适的优点; (2)简支梁的预应力钢束在工厂进行张拉,而负弯矩区的预应力钢束布置及张拉均在主梁上进行,仅需吊装设备起吊主梁,减少施工设备,又能减少或避免张拉预应力钢束阻碍地面交通; (3)预制梁能采用标准构件,进行工厂化统一生产和管理,有利于技术操作,减少施工时间,提高了经济效益,缩短了工期。 先简支转连续桥梁是连续结构,有以下缺点: (1)基础不均匀沉降将在结构中产生附加内力,因此,对桥梁基础要求较高,通常适用于地基较好的场地。 (2)箱梁界面局部温差,混凝土收缩、徐变及预加应力均会在结构中产生附加内力,增加了设计计算的复杂程度。 1.2、先简支转连续桥梁的研究背景 从简支梁发展到简支转连续梁是一个漫长复杂的过程。简支梁是应用最早、最广泛的一种桥梁形式,因其简单的构造,方便施工,能够适应较大的地基沉降,因此在中小跨径桥梁中普遍应用。但是,简支梁桥的桥面因有伸缩缝的存在,致使行车颠簸。尽管简支梁的桥面连接本身就存在着缺陷,无法与连续梁结构体系的良好性能相比,但施工方面的优点使其在桥梁建设中扔占有一定的地位。需要

变截面连续箱梁毕业开题报告

开题报告 1 工程简介 该桥为南水北调中线一期工程总干渠邯邢渠段跨渠公路。地震设防烈度7度。地质资 料如图所示:粘性土(厚度为1.5-4.9m),壤土(厚度为2.2-9.5),粉砂(厚度为1.3-5.3m)。 材料:C50混凝土,铰缝采用C50细石混凝土。立柱、盖梁及桥头搭板采用C30混 凝土,基桩采用C25混凝土。桥面铺装采用三涂FYT-1改进型防水层+10cm厚C50混凝 土(原路面为混凝土路面)或10cmC50混凝土找平层+三涂FYT-1改进型防水层+10cm厚 C50混凝土(原路面为沥青路面)。预应力钢绞线采用1860级高强低松弛s 15.24钢绞线。 2 桥梁设计 (1)桥型布置 分孔:该桥采用现浇预应力变截面连续箱梁,对于多于两跨的连续梁,其边跨一般为中跨的0.6-0.8倍左右,当采用箱型截面的三跨连续梁时,其边跨可以是中跨的0.5-0.7倍。该桥共3跨,跨径采用18+30+18比例合适,总跨径为66m;一般30

梁高的确定:该桥型为变截面连续箱梁。根据规定可知,变截面梁支点截面的梁高H支约为(1/16-1/20)l(l为中间跨径),跨中梁高H中约为(1/1.6-1/2.5)H支。因此该桥中间跨径l=30m,H支=1.7m,H中=1m。桥宽为4.5m+2×1m的人行道·。 桥两端设置耳墙和背墙,长3m,主要是固定桥两端的土,桥两端分别设置8cm的伸缩缝。 (2)桥横断面设置 ①桥向两侧设置2%横坡,主要是有利于排水。桥宽6.5m,属于窄桥,由于桥宽小于20m的一般设置为单箱单室截面,因此该桥箱型设置单箱单室,由于该桥墩型为独立中墩,在中墩处箱梁采用全实梁,全实梁长度为2m,桥台处也采用全实梁,长度为1m。悬臂端部厚度不小于10cm,故跨中梁悬臂端取20cm,悬臂根部取30cm,悬臂长150cm,箱梁顶板厚度应满足横向弯矩的要求和布置纵向预应力筋的要求;参考如下: 腹板与顶板尺寸的关系 ②底板厚的拟定:箱梁底板厚度随箱梁负弯矩的增大而逐渐加厚之墩顶,以适应箱梁下缘的受压要求,墩顶区域底板不宜太薄,否则压应力过高,由此产生的徐变将使跨中区域梁体下挠度较多。一般底板厚度与主跨之比宜为1/140~1/170,跨中区域底板厚度可按构造要求设计,跨中底板宜为20~25cm。底板除承受自身荷载外,还承受一定的施工

变截面连续梁完整计算书

28+36+46+36+28m变截面连续梁计算书 第一章概述 1.1、工程简介 上部标准段结构为预应力混凝土现浇箱梁结构,跨径28+36+46+36+28m,桥宽23.5m,梁高1.8~5.9m,桥面布置为8m(人行道)+15m(车行道)+0.5m (防撞护栏),桥面铺装为10cm沥青混凝土+8cm C50混凝土。梁体采用后张法预应力构件,结构计算考虑施工和使用阶段中预应力损失以及预应力、温度、混凝土收缩徐变等引起的次内力对结构的影响。 1.1.1、采用的主要规范及技术标准 ①、《工程建设标准强制性条文》建标【2000】202号 ②、建设部部颁标准《城市桥梁设计荷载标准》CJJ11-2011 ③、交通部部颁标准《公路桥涵设计通用规范》JTG D60-2015 ④、交通部部颁标准《公路桥涵地基与基础设计规范》JTG D63—2007 ⑤、交通部部颁标准《公路钢筋混凝土及预应力混凝土桥涵设计规范》JTG D62-2004 ⑥、建设部部颁标准《城市道路设计规范》CJJ37-90 技术标准: 1、道路等级:主干路 2、设计车速:主线60km/h。 3、设计荷载:公路—Ⅰ级。

4、地震烈度:Ⅶ度,地震动峰值加速度0.1g。 5、横断面:8m(人行道)+15m(车行道)+0.5m(防撞护栏)=23.5m 6、桥梁结构设计安全等级:一级 7、路面类型:沥青混凝土路面。 1.1.2、应用的计算软件 Midas CIVIL 1.1.3、主要参数及荷载取值 1)主梁:C55混凝土,γ=26kN/m3,强度标准值f ck=35.5MPa,f tk=2.74MPa。强度设计值f cd=24.4MPa,f td=1.89Pa,桥梁达到设计强度的100%张拉2)二期恒载: 结构部分:155KN/m; 装饰部分:①侧面装饰12KN/m ②底面装饰6K N/m 3)预应力钢束采用1860级φs15.20钢绞线,公称面积139.0mm2,标准强度f pk=1860MPa(270级),张拉控制应力σcon=1350MPa。 4)管道每米局部偏差对摩擦的影响系数:0.0015 k=; μ=; 5)预应力钢筋与管道壁的摩擦系数:0.17 ζ=; 6)钢筋松弛系数,Ⅱ级(低松弛),0.3 7)锚具变形、钢筋回缩和接缝压缩值:6mm l?=(单端); 8)混凝土加载龄期:7天; 9)收缩徐变效应计算至3650天 10)端横梁支座不均匀沉降为采用5.6mm,次中横梁支座不均匀沉降为采

变截面箱型连续梁桥桥梁工程毕业设计

目录 第一章方案比选 (1) 1.1方案选取 (1) 1.11方案一:50+80+50M的变截面箱型连续梁桥 (1) 1.12方案二:4×45M等截面预应力砼连续刚构梁 (2) 1.13方案三:65+115M斜拉桥 (3) 1.2各方案主要优缺点比较表 (4) 1.3.结论 (4) 第二章毛截面几何特性计算 (5) 2.1基本资料 (5) 2.1.1主要技术指标 (5) 2.1.2材料规格 (5) 2.2结构计算简图 (5) 2.3毛截面几何特性计算 (6) 第三章内力计算及组合 (9) 3.1荷载 (10) 3.1.1结构重力荷载 (10) 3.1.2支座不均匀沉降 (11) 3.1.3活载 (11) 3.2结构重力作用以及影响线计算 (11) 3.2.1输入数据 (11) 3.3支座沉降(SQ2荷载)影响计算 (20) 3.5荷载组合 (24) 3.5.1按承载能力极限状态进行内力组合 (25) 3.5.2按正常使用极限状态进行内力组合 (27)

第四章配筋计算 (31) 4.1计算原则 (31) 4.2预应力钢筋估算 (31) 4.2.1材料性能参数 (31) 4.2.2预应力钢筋数量的确定及布置 (31) 4.3预应力筋的布置原则 (37) 第五章预应力钢束的估算及布置 (39) 5.1按正常使用极限状态的应力要求估算 (39) 5.1.1截面上、下缘均布置预应力筋 (39) 5.1.2仅在截面下缘布置预应力筋 (40) 5.1.3仅在截面上缘布置预应力筋 (41) 5.2按承载能力极限状态的强度要求估算 (41) 5.3预应力筋估算结果 (42) 5.4预应力筋束的布置原则 (44) 5.5预应力筋束的布置结果 (45) 第六章净截面及换算截面几何特性计算 (45) 6.1净截面几何特性计算(见表6-1) (46) 6.2换算截面几何特性计算(见表6-2) (46) 第七章预应力损失及有效预应力计算 (47) 7.1控制应力及有关参数的确定 (48) 7.1.1控制应力 (48) 7.1.2其他参数 (48) σ的计算 (48) 7.2摩阻损失1l σ的计算 (50) 7.3混凝土的弹性压缩损失4l σ的计算 (52) 7.4预应力筋束松弛损失5l

大跨变截面钢连续梁桥(主跨185m)——崇启大桥(现场高清图文简介)

工程名称:崇明至启东长江公路通道工程(江苏段) 设计:中交公路规划设计院 施工:中交二航局 开工日期:2009-2 竣工日期:2011-2 工程简介:崇启大桥为多跨连续梁结构,主桥跨度为102+185×4+102= 944m。无论联长还是跨径均属国内第一!主桥钢箱梁为变高等宽断面,箱梁单幅宽16.1m,主桥总宽33.2m,两幅桥间距1m,顶板设计为25000m的竖曲线,底板呈二次抛物线变化,近引桥一跨箱梁高度从3.5米变化至9米,中跨部分高度从4.8米变化至9米。主桥钢箱梁横隔板间距5.6m,两道横隔板之间设置一道横肋。横隔板采用实腹式和框架式两种构造,框架中根据断面高低设置“X”或“V”形斜撑。根据受力需要,钢箱梁在不同区段采用了不同的横肋布置,底板受力较大的部位,采用框架式横肋,底板受力较小的部位,采用只在顶部加劲的横肋型式。支点处及边跨端部横隔板采用实腹式横隔板。 钢箱梁采用正交异性钢桥面板,顶板均采用U肋加劲,底板及腹板采用扁钢加劲。根据受力情况的不同,钢箱梁在不同区段采用不同钢板厚度:顶板板厚为16~22mm,腹板厚度为16~28mm,底板厚度为14~48mm。 钢箱梁大节段现场工地连接采用以栓接为主的栓焊组合方式:除了顶板采用焊接连接外,其余的U肋、底板和腹板及其加劲肋均采用高强螺栓连接。 为确保挑臂桥面下U肋加劲的密闭性,在每个梁段端部U肋内设置隔板,并与顶板焊接,保证U肋内部密闭。梁段间U肋依旧采用栓接。 施工特点:根据国内现有起重船的起重能力及钢箱梁制造运输能力,崇启大桥钢箱梁采用大节段整跨吊装。最大吊装长度185m,最大吊重约2730t ,全桥共分12个大节段,现场采用栓焊组合方式进行连接。

简支转连续梁桥的几个关键问题

简支转连续梁桥的几个关键问题 摘要 随着我国高速公路建设的迅猛发展,桥梁的建造数量大幅度增加,桥型结构和施工工艺也在不断丰富。其中“先简支后连续梁”由于其施工便利及优越的工作性能在中等跨径的桥梁中得到了大量使用。简支转连续梁桥兼顾了简支梁桥和连续梁桥的优点,其数量在我国混凝土梁桥中占相当大的比重。简支转连续梁桥施工中有许多关键控制环节需要进行深入的研究。本文论述了简支连续梁桥及其结构体系、连续构造、梁桥支承、梁桥横向整体性,探讨简支连续梁桥的结构形式、构造设计及施工工艺等。 关键词:简支连续梁桥;体系与构造;施工工艺 Research On Several Key Problems of Simple-Continuous Girder Bridge Abstract Along with our country the rapid development of the highway construction, bridge construction quantity increases substantially, bridge structure and construction technology are also constantly enriched. "First simply supported to continuous girder" due to its convenient construction and excellent working performance in middle span has been widely used in the bridge.Simple-continuous girder bridge has the advantages of simply-supported girder bridge and continuous bridge, which has already a large proportion in concrete girder bridge.A number of key technologies in construction stage of simple-continuous girder bridge need to be studied.This paper discusses simply-supported and continuous beam bridges and structure system, continuous construction, beam bridge support, lateral integrity of beam bridges, probes into structure types, construction design and construction technology, etc. of simply-supported and continuous beam bridges. Keywords:simply-supported and continuous beam bridge; system and construction; construction technology

二桥北汊桥大跨径变截面连续箱梁施工组织设计方案

大跨径变截面连续箱梁施工 赵根生王小山姜艳玲 山东省交通工程总公司 【摘要】南京长江二桥北汊桥为预应力连续箱型梁桥,主桥桥跨布置为(90+3 * 165十90)m。采用悬臂浇注法施工,主要介绍其上部结构的施工工艺。 【关键词】PC连续箱梁施工工艺 一、简介 南京长江二桥北汊桥主桥上部90m+3 * 165m+90m五跨PC变截面连续箱梁,位于半径R=16000m 的竖曲线上。桥宽32m,PC箱梁由上下分离的单箱单室箱梁截面组成。箱梁根部 0号块高 8.8m,跨中梁高 3m,箱梁顶板宽15.42m,底板宽7.5m,翼缘板悬壁长3.96m。箱形梁高按二次抛物线变化。 0号块设两道横隔板。 二、现浇段施工为方便挂篮施工 1.支架搭设 根据挂篮的构造特点,0号、1号、2号段采用在支架上浇注混凝土施工。支架采用4根φ1000mm、壁厚10mm的钢管作为竖向主要受力构件。墩身施工时在墩身顶端预留纵向孔,内穿2根φ15mm 丝杠,通过丝杠将以钢管为主件联接而成的架结构锚固于墩身上,从而形成稳定安全的支架体系。 在支架体系上设灌砂筒,上安放支架,其上铺设底模板。用行架结构将两根钢管锚固于墩顶,可节省许多落地支架所需要的构件安设,即节约材料、缩短安装时间,又增加了支架的安全系数。支架体系上设砂筒,有利于底膜的高度调整和拆除,加快了施工进度。 2.支架预压 现浇支架搭设完成后,进行预压,以检测支架的承载力和稳定性,同时消除永久变形,测定弹性变形,底板高程的调整提供依据。

压载是以 1号梁段重量确定预压荷载。取安全系数 1.4倍即 210号,进行堆载压载,压载结果证明支架是安全可靠的,满足施工要求。 3.0号、1号、2号段施工 0号段混凝土体积大,配筋多,断面复杂,且预应力管道密集,是上部结构受力最复杂的主要浇至箱梁顶。 l号、2号分别一次浇注完成。0号、1号、2号所用侧模均为挂篮悬浇段侧模,这样增加模板的周转次数,节省材料,加快了进度。 4.边跨现浇段基本相同 三、挂篮施工O号、回号、2号现浇段完成以后,进行挂篮悬浇施工 1.挂篮构造及特点 根据本桥梁体分段多、工期紧,结构要求严格等特点,选择了正梯形整体行架挂篮。 挂篮由主行系,后锚系及滑动行走系、悬吊系、模板系及工作平台等五部分组成。连同所有模板及施工机具荷载共重80.5t。 挂篮具有以下特点:结构重量轻,整体钢度大、变型小、构件数量少,拼装快,挂篮下有足够行走作业空间。挂篮同模板整体前移,加工容易,造价低廉操作系统实用方便(如图1)。

变截面箱型连续梁桥--桥梁工程毕业设计

变截面箱型连续梁桥--桥梁工程毕业设计

————————————————————————————————作者:————————————————————————————————日期:

目录 第一章方案比选 (1) 1.1方案选取 (1) 1.11方案一:50+80+50M的变截面箱型连续梁桥 (1) 1.12方案二:4×45M等截面预应力砼连续刚构梁 (2) 1.13方案三:65+115M斜拉桥 (3) 1.2各方案主要优缺点比较表 (4) 1.3.结论 (4) 第二章毛截面几何特性计算 (5) 2.1基本资料 (5) 2.1.1主要技术指标 (5) 2.1.2材料规格 (5) 2.2结构计算简图 (5) 2.3毛截面几何特性计算 (6) 第三章内力计算及组合 (10) 3.1荷载 (10) 3.1.1结构重力荷载 (10) 3.1.2支座不均匀沉降 (11) 3.1.3活载 (11) 3.2结构重力作用以及影响线计算 (11) 3.2.1输入数据 (11) 3.3支座沉降(SQ2荷载)影响计算 (21) 3.5荷载组合 (25) 3.5.1按承载能力极限状态进行内力组合 (25)

3.5.2按正常使用极限状态进行内力组合 (28) 第四章配筋计算 (32) 4.1计算原则 (32) 4.2预应力钢筋估算 (32) 4.2.1材料性能参数 (32) 4.2.2预应力钢筋数量的确定及布置 (32) 4.3预应力筋的布置原则 (38) 第五章预应力钢束的估算及布置 (40) 5.1按正常使用极限状态的应力要求估算 (40) 5.1.1截面上、下缘均布置预应力筋 (41) 5.1.2仅在截面下缘布置预应力筋 (42) 5.1.3仅在截面上缘布置预应力筋 (42) 5.2按承载能力极限状态的强度要求估算 (43) 5.3预应力筋估算结果 (44) 5.4预应力筋束的布置原则 (45) 5.5预应力筋束的布置结果 (47) 第六章净截面及换算截面几何特性计算 (47) 6.1净截面几何特性计算(见表6-1) (48) 6.2换算截面几何特性计算(见表6-2) (49) 第七章预应力损失及有效预应力计算 (49) 7.1控制应力及有关参数的确定 (50) 7.1.1控制应力 (50) 7.1.2其他参数 (50) 的计算 (51) 7.2摩阻损失1l

变截面连续箱梁施工方案

变截面连续箱梁施 工方案

5.变截面连续箱梁施工 东山大桥主桥内侧变截面连续箱梁为三向预应力混凝土结果,采用单箱单室截面。外侧箱梁为变截面连续箱梁采用纵向预应力混凝土结构,采用单箱单室截面。 表5-1:悬臂法箱梁施工桥梁表 连续箱梁的0#块及边跨直线现浇段均采用支架现浇法施工,其余各节段均采用三角挂篮或菱形挂篮悬臂灌筑施工。支架及挂篮拼装好后进行预压,消除非弹性变形。模板安装及钢筋绑扎检测合格后,进行混凝土浇筑。混凝土由拌和站集中拌和,混凝土运输车运至施工现场。泵送混凝土入模。混凝土浇筑后进行养护,达至设计张拉要求后进行预应力施工,挂篮移动,重复进行完成悬臂段的施工,最后进行直线段及合拢段的施工。各阶段施工顺序见图8-5所示。

步骤 步骤Ⅱ 步骤Ⅲ 步骤Ⅳ 步骤Ⅴ 步骤Ⅵ 图8-5悬浇箱梁施工步骤图

搭设支架 0#块钢筋制作 边跨直线段施 挂篮制造,试拼与临时支承钢管 0#块施工 拼装挂篮 分块吊装1#、1′#梁段底板、腹 拖移内模架,安装1#、1′#梁段内模及 混凝土灌注后测量观测 对称灌注1#、1′#梁段养护 1#、1′#梁段顶面张拉及压 张拉后测量观测点 计算调整2#、2′#梁段施工立模 对称牵引1#、1′#梁段挂篮 2#(2′#)~N#(N ′#)梁段悬灌循拆除挂篮 5.1 0#块施工的工序流程如下: 0#块支架拼装→支架预压检验→0#浇筑施工→在0# 块上拼装挂篮及预压→挂篮悬臂浇筑1#块→悬臂浇筑n#块→边跨现浇段施工→边跨合拢段施工→中跨合拢段施工。 图8-6 悬臂现浇梁施工工艺框图 5.1.1临时支承安装 临时支承体系由支承钢管和OVM15-5预应力体系共同组成,是箱梁悬臂浇筑施工中的主要受力构件,是保证本桥施工安全度

简支-连续施工连续梁桥设计

简支-连续施工连续梁桥设计 发表时间:2019-08-07T16:02:28.563Z 来源:《防护工程》2019年10期作者:焦武军 [导读] 本文将重点通过对简支-连续施工从结构转换工法、结构工作原理和工程案例等方面深入探究,阐述简支-连续施工的优缺点、适用性和未来发展前景。 广州华晖交通技术有限公司 511458 摘要:探讨高等级公路中多跨径中、小等跨径的桥梁采用简支-连续施工连续梁的设计,分析简支-连续施工连续梁结构体系的形式、后期预应力效应、温度及徐变等影响,并结合工程实例、计算模型、运营项目跟踪等进行分析。通过从设计、施工、运营、养护各个环节研究,通过从安全性、经济性、耐久性、景观等方面综合比较,阐述简支-连续施工连续梁结构的优缺点、适用环境、施工重难点等。 关键词:简支-连续;连续梁桥;设计;施工 一、引言 简支-连续施工连续梁桥具有施工工艺简单可行,上部结构施工优先采用装配化、工厂化、标准化,建成通车后具备连续梁行车平顺、结构受力合理等特点。随着国家生产力水平不断提高,国家在土木工程行业贯彻执行标准化,预制结构由混凝土结构慢慢发展为钢结构、钢混结构等,为简支-连续施工连续梁适用于原来的中、小跨径向中、大跨径连续梁转变。本文将重点通过对简支-连续施工从结构转换工法、结构工作原理和工程案例等方面深入探究,阐述简支-连续施工的优缺点、适用性和未来发展前景。 二、结构体系转换工法 在简支-连续施工的连续梁桥中,简支结构体系转换连续梁体系的的常见工法: (1)简支梁施工连续墩顶位置预留现浇段槽口,简支梁安装完毕浇筑墩顶现浇段,并在墩顶连续段设计普通钢筋承担负弯矩。(2)简支梁施工连续墩顶位置预留现浇段槽口,简支梁安装完毕采用连接器将连续墩两侧主梁内纵向预应力钢束连接,最后浇筑墩顶现浇段混凝土转换为连续结构。 (3)简支梁施工连续墩顶位置预留现浇段槽口,简支梁安装浇筑连续墩顶现浇段混凝土,采用后张法张拉墩顶负弯矩区预应力,压注水泥浆转换为连续结构。 工法一施工简单易行,连续墩顶由于负弯矩存在,仅设置墩顶普通钢筋连接,成桥后结构运营期间容易出现横桥向裂缝,结构连续的效果较差,且横桥向裂缝严重影响桥梁的适用性和耐久性。工法二将主梁内纵向预应力钢束进行墩顶连接,故结构连续的效果最好,但是通常墩顶预留槽不能太宽,故工法二进行墩顶预应力钢束连接施工施工较困难而较小采用。工法三为鉴于工法一工法二之间,吸取了工法一施工简单可行和工法三墩顶预应力钢束防止墩顶裂缝,因此简支-连续施工连续梁一般简支-连续梁桥通常为连续墩顶预应力短束和普通钢筋连接相结合。 三、结构体系工作原理 目前,我国预应力混凝土连续梁桥成熟的施工工法:满堂支架现浇施工、悬臂浇筑或拼装施工、移动模架施工、顶推施工及简支-连续施工等。其中简支-连续施工为先进行简支安装,随后通过浇筑现浇段混凝土进行结构连续,该工法具有预制拼装结构的施工方便、工厂化预制、质量标准化,成桥后又具有连续梁桥行车舒适性、结构受力合理的特点,在我国高等级公路建设中广泛采用。 简支-连续施工连续桥因施工过程存在结构体系的转换,设计中应结合施工工序对结构内力进行验算。例如以小箱梁为例,桥梁在预制和吊装完毕,桥梁上部结构成单片梁简支结构,根据箱梁横桥向和纵桥向连接施工工序的差异分两种施工工法:工法一首先进行箱梁纵向连接,即将每片简支梁沿纵向连接转换为连续梁结构,随后再进行桥梁横向连接直到桥梁形成一个统一空间整体结构,各箱梁根据横向分布原则共同承担上部结构恒活载;再进行横向整体化;工法二首先对箱梁横向湿接缝进行浇筑混凝土,将简支梁通过湿接缝横向连接为一个整体,随后对上部结构整体进行纵向墩顶连接,进而将结构整体转换为连续结构。由于工法一采取先进行单梁简支-连续施工,可按平面杆系进行计算分析,结构分析简单且较为精确;工法二采取桥面整体进行简支-连续施工,桥面结构在连续之前已属空间结构,可采用空间粱格法进行结构烦心,虽结构分析比较繁杂但结构较为精确。考虑工法一结构受力简单明了,在设计和施工过程中经常采用,主要便于采用手算和计算机设计辅助软件的分析结果复核验证,提高计算分析结果的安全性和可靠性。 四、工程实例 广州市番禺区某二级公路兼城市干道功能跨河桥梁,桥梁跨径组合为4x25m=100m,桥梁按左右分幅设计,单幅桥梁宽度为 12m=0.5m防撞栏+11m行车道+0.5m防撞栏,桥梁横桥向布置中边板各两块,其中边板预制宽度为2.85m,中板预制宽度为2.4m,梁间湿接缝宽度为0.5m,梁高为1.4m;桥面采用11cm厚沥青混凝土桥面铺装+10cm厚C40防水混凝土整体化层。 桥梁标准横断面图 桥梁为直线桥,设计荷载为公路-I级,安全等级为一级,主梁混凝土采用C50,预应力钢绞线采用低松弛高强钢绞线,直径为 15.2mm,标准桥墩为1860Mpa,弹性模量Ey=1.95x105Mpa,采用预埋波纹管后张法,支座采用GJZ和GJZF4系列橡胶支座。上部结构采用简支-连续施工法,具体施工步骤如下: 第一阶段:集中预制小箱梁,主梁混凝土浇筑完成后经标准养护7天并达到设计强度100%后,张拉预制小箱梁正弯矩区预应力钢束,张拉完成即压注不低于M50水泥浆,随后将预制完成的小箱梁运输至工点桥进行吊装施工,安装临时支座将预制梁安装就位,形成由临时支座支撑的简支梁结构,应及时焊接湿接缝钢筋以保证临时结构稳定。 第二阶段:安装1#、3#墩顶永久支座,浇筑1#、3#墩顶连续段接头混凝土,待混凝土达到设计强度100%后,张拉墩顶负弯矩区预应

MIDAS中PSC变截面箱梁施工阶段及PSC设计例题

PSC变截面箱梁施工阶段及PSC设计例题 北京迈达斯技术有限公司 2007年3月19日 一、结构描述 (2) 二、结构建模 (4) 三、分步骤说明 (4) 1、定义材料和截面特性 (4) 2、建立上部梁单元并赋予单元截面属性 (7) 3、定义结构组并赋予结构组单元信息 (11) 4、定义边界组并定义边界条件 (12) 5、定义荷载工况和荷载组 (13) 6、定义施工阶段 (14) 7、分阶段定义荷载信息 (14) 8、分析及后处理查看 (20) 9、按照JTG D62规范的要求对结构进行PSC设计 (21)

PSC变截面箱梁施工阶段及PSC设计例题 对于常规的PSC连续梁桥我们通常可以参考建模助手建立的模型,对于特殊的桥型或有特殊要求的结构我们需要按照一般方法建立有限元模型,施加边界和荷载进行分析。这个例题主要说如何使用一般方法建立PSC连续梁桥并定义施工阶段进行施工阶段分析和按照JTG D62规范对结构进行设计验算。 一、结构描述 这是一座50+62+50的三跨预应力混凝土连续箱梁桥,这里仅模拟其上部结构。施工方法采用悬臂浇注,跨中截面和端部截面如图1所示。 图1-1 跨中截面示意

图1-2 支座截面示意 桥梁立面图如图2所示。 图2 连续梁立面图 图3 钢束布置形状

二、结构建模 对于施工阶段分析模型,通常采用的建模方法是: 1、定义材料和截面特性(包括混凝土收缩徐变函数定义); 2、建立上部梁单元并赋予单元截面属性; 3、定义结构组并赋予结构组信息; 4、建立边界组并定义边界条件; 5、定义荷载工况和荷载组; 6、定义施工阶段; 7、分阶段定义荷载信息(分施工阶段荷载和成桥荷载两部分); 8、分析,分析完成后定义荷载组合进行后处理结果查看; 9、定义设计验算参数按照JTG D62对结构进行长短期及承载能力验算。 下面就每个步骤分别详述如下—— 三、分步骤说明 1、定义材料和截面特性 本模型中涉及的材料包括混凝土主梁(C40)、预应力钢绞线(Strand1860)。如下图4所示。 图4 材料列表 通常对于预应力混凝土结构(PSC结构)按照现浇施工时,要考虑混凝土的收缩徐变效应,因此需要在建模前要定义混凝土的收缩徐变函数,按照如下图所示定义混凝土收缩徐变函数。

变截面连续箱梁悬浇施工

主桥上部结构形式为预应力变截面连续箱梁,采用悬臂浇筑法施工。施工程序为:在主墩旁设托架立模施工0#和1#块件→利用墩顶块件作工作面,拼装挂篮→利用挂篮悬臂浇筑其余块件,施加预应力→边跨合拢,张拉底板预应力索,拆除边跨临时支座,完成体系转换→次中跨合拢,解除临时锚固→中跨合拢,张拉底板索,完成全桥的体系转换。 一、0#、1#块件施工 主墩墩身施工完毕,在承台顶利用型钢和贝雷钢架拼装0#、1#块件施工托架。施工托架采用扇形托架,其长度根据现浇块件的长度和挂篮拼装需要而定,横桥向的宽度比箱梁底板宽1.5m,以便设立箱梁腹板的外模,托架顶加设型钢垫梁,并与箱梁底面纵向线形一致,托架拼装时要与立柱预埋筋和承台顶面预埋螺栓紧密联结。 托架拼装完成后,在墩顶安置盆式支座,然后设置预应力筋的墩梁临时固结体系(详见相关设计图纸),以此来平衡悬臂浇筑过程中产生的不平衡弯矩。 梁段底模支承在钢垫梁上,底板由组合钢模围绕着支座拼装而成,模面与支座保持一致,并按设计要求调整纵坡。底模和支座的缝隙用塑料泡膜嵌塞以防止漏浆。底模铺设完成后,使用水箱加水预压(与梁体砼同重),消除非弹性变形,观察弹性变形量,并与计算值比较,调整底模标高。 水箱放置时,利用水平仪观测底板标高H1,水箱加水后,测得标高为H2,水箱拆除后,测得标高为H3,则非弹性变形S非= H1-

H3,弹性变形S弹= H3- H2。 钢筋绑扎时,如有必要,可采用劲性钢骨架措施,以保证钢筋骨架的刚度和稳定性。钢筋绑扎完成后,紧接着穿波纹管,预埋锚垫板及加强钢筋,同时绑扎下一节段固定端预埋钢筋。波纹管两端用透明胶纸包裹以防砼浆进入管内。预应力管道应精确放样,并用设计规定的钢筋焊接固定,以减少张拉时预应力的损失。 块件外侧模用组合钢模加以拼装。外侧模钢支架上设置横向预应力张拉平台。模板高度的调整以及拆模均使用模底设置的千斤顶。内模和过人洞模均采用木模,为拆卸方便,其内侧采用角钢支撑连接。为确保箱梁断面尺寸,箱梁底板上预埋T形钢筋并与底板主筋焊接以供芯模支撑。端模采用组合钢模,外侧用支架支撑,内设长拉杆螺栓对拉。堵头板采用木模,每端用角钢作斜支撑与支架联结,以保证准确定位。 模板安装顺序为:安装底模→外侧模→内模→端模→顶板底模→堵头板→外翼边板。 砼浇筑时先浇筑0#块件和墩顶横隔板,然后对称浇筑1#块件。浇筑从外侧向内侧进行,浇筑前要检查预埋件的预埋位置,特别是挂篮系统的预埋件。提前做好砼配合比,并根据砂石含水率及时修改施工配合比。砼浇筑用输送泵运输,底板设串筒以防止离析,砼坍落度控制在17cm~20cm,砼中掺加早强减水剂。砼浇筑时注意不要使振捣棒触碰预应力管道。 砼终凝后进行洒水养护,强度达到90%后方可进行张拉工作,按照设计要求,其张拉程序为:

简析先简支后结构连续梁桥设计

简析先简支后结构连续梁桥设计 发表时间:2017-11-01T10:07:07.573Z 来源:《基层建设》2017年第20期作者:张华燕[导读] 摘要:随着钢铰线、锚固体系的不断更新和发展,以及其他新技术的应用,使先简支后连续梁桥得到更大的发展。 山东格瑞特监理咨询有限公司威海 264200 摘要:随着钢铰线、锚固体系的不断更新和发展,以及其他新技术的应用,使先简支后连续梁桥得到更大的发展。本文主要介绍了先简支后连续梁桥设计,及设计中应注意问题。 关键词:先简支后结构连续梁桥;设计;注意问题先简支后连续梁桥作为一种连续梁桥,具有造价低,整体性好,建筑高度低,刚度大,桥面接缝少,质量容易控制等优点。由于支点处采用了现浇湿接缝的技术措施,可通过现浇段混凝土宽度,底面坡度等满足斜、弯、坡桥的变梁长及支座顶变高度的构造要求,此结构更适合斜、弯、坡桥。 一、墩顶湿接头构造设计 (1)对于单横梁单、双支座简支结构连续梁桥,在上述简支梁构造改进基础上,将新浇钢筋混凝土墩顶横梁设计为与简支梁形成整体,并对简支梁起嵌固作用。构造上,墩顶横梁与简支梁同高,以端横隔板为侧模。设置由顺盖梁方向的横梁主要纵向受力钢筋、简支梁纵向受力钢筋和足够的箍筋形成的普通钢筋体系,设置由上缘纵向抵抗负弯矩预应力钢筋以及可能因支座沉降需要的下缘纵向预应力钢筋形成的预应力体系。 (2)对于双横梁双支座简支结构连续梁桥,在上述简支梁构造改进基础上,设计强大的端横梁将多片简支梁形成整体。构造上,端横梁高度与简支梁同高,设置由顺盖梁方向的横梁主要纵向受力钢筋、简支梁梁肋、翼板纵向受力钢筋和足够的箍筋形成的普通钢筋体系,设置由上缘纵向抵抗负弯矩预应力钢筋以及可能因支座沉降需要的下缘纵向预应力钢筋形成的预应力体系。 (3)对于简支刚构连续梁桥,在上述简支梁构造改进基础上,将新浇钢筋混凝土墩顶横梁设计为与简支梁、桥墩盖梁形成整体,并对简支梁起嵌固作用。构造上,构造上,墩顶横梁与简支梁同高,以端横隔板为侧模。设置由顺盖梁方向的横梁主要纵向受力钢筋、简支梁纵向受力钢筋、预埋于盖梁的竖向钢筋和足够的箍筋形成的普通钢筋体系,设置由上缘纵向抵抗负弯矩预应力钢筋、预埋于盖梁的竖向预应力钢筋以及可能因基础沉降需要的下缘纵向预应力钢筋形成的预应力体系。 二、支座体系设计 双支座简支结构连续梁桥支座受力不均、可能出现一排支座脱空,从而导致桥墩偏心受压等现象的确存在,现行桥规规定梁的单个支承点上纵向仅设一个支座也是为使桥梁受力明确。单支座简支结构连续梁桥支座支承于墩顶梁端湿接头混凝土结构上,新老混凝土接缝正处于剪力主梁最大的部位,如果墩顶梁端湿接头混凝土施工以及墩顶二次预应力建立不可靠,可能导致“连续”失效,进而危机桥梁结构安全。双支座简支结构连续梁桥支座支承于预制T梁混凝土结构上,如果墩顶梁端湿接头混凝土施工以及墩顶二次预应力建立不可靠,可能导致“连续”失效,一般不至于危机桥梁结构安全。 三、先简支后结构连续梁桥总体设计 3.1简支连续梁每一联跨数一般不超过5跨。当桥梁跨径达到30 m,桥梁纵坡达到2.5%,且墩高在15 m 以上,或其他墩梁刚度比适合墩梁固接时,原则上均采用简支刚构连续梁桥,以便减少支座维护、更换等工作。对于20 m 以下跨径桥梁,原则上均采用简支桥面连续梁桥;对于20 m 以上跨径桥梁,墩顶连续和墩梁固接应采用预应力构造,对于20 m 左右跨径桥梁,可以采用以预应力空心板为基础的钢筋混凝土结构连续设计,但应严格限制裂缝宽度。 3.2支承方式设计 ①双支座简支结构连续梁桥支座受力不均、可能出现一排支座脱空频繁出现,支座容易疲劳,影响使用寿命;另外,一排支座脱空还会导致桥墩偏心受压负担增大,对桥墩受力不利。另一方面,双支座简支结构连续梁桥支座支承于预制T 梁混凝土结构上,即使墩顶梁端湿接头混凝土施工以及墩顶二次预应力建立不可靠,导致“连续”失效,一般不至于危机桥梁结构安全。同时,双支座简支结构连续梁桥施工工序简单,特别是避免了支座转换,极大的方便了施工。 ②单支座简支结构连续梁桥受力体系及力学行为明确,设计不可预见的不利因素少,理应具有更高的可靠性和耐久性。但单支座简支结构连续梁桥支座支承于墩顶梁端湿接头混凝土结构上,新老混凝土接缝正处于剪力主梁最大的部位,如果墩顶梁端湿接头混凝土施工以及墩顶二次预应力建立不可靠,可能导致“连续”失效,进而危机桥梁结构安全。 ③鉴于目前墩顶梁端湿接头混凝土施工以及墩顶二次预应力建立质量保证度不高,采用双支座简支结构连续梁桥不失为避免出现桥梁结构安全的一种措施,但鉴于双支座简支结构连续梁桥支座受力不均、可能出现一排支座脱空,从而导致桥墩偏心受压的问题的存在,设计中必须考虑支座受力不均、支座受力变化幅度大对支座耐久性以及桥墩受力的影响。 ④按照简支梁构造改进措施,只要墩顶现浇横梁足够强大,预制梁嵌入墩顶现浇横梁在25 cm 以上,墩顶现浇横梁钢筋构造合理,并与预制梁各种伸出钢筋形成整体,墩顶连续施工质量得到保证,采用单支座简支结构连续梁桥是合理的。 ⑤单支座简支结构连续梁桥具有墩顶单、双横梁之分。从连接可靠、结构耐久、适应曲线桥梁受力需要考虑,宜采用单横梁方式。 3.3简支连续梁桥,必须考虑施工中体系转换、各工序下混凝土龄期的不同,并对各施工步骤中结构的安全提供设计保证。设计考虑的施工工序、流程如下:T梁预制→分批张拉T梁内抵抗正弯矩的预应力钢束→T梁安装并连接T梁横隔板→现浇墩顶湿接头或墩梁固接混凝土→体系转换→张拉抵抗负弯矩的预应力钢束→T 梁翼板间现浇带或空心板企口混凝土浇筑→二期恒载施加→成桥。 3.4必须根据成桥目标,按照施工过程进行正装、到装结构分析,给出各主要工况下梁、板体及墩顶连续构造的状态参数,以便于施工过程控制。 3.5简支连续梁桥设计中应充分考虑混凝土收缩徐变、温度变化以及基础不均匀沉降的影响,其中,简支结构连续梁桥需考虑支座更换引起的“强迫”位移对结构的影响。一般情况下,简支结构连续梁桥对中墩考虑0.8~ 1.2 cm 的支座强迫位移进行结构分析,简支刚构连续梁桥对中墩考虑1.0~ 1.5 cm 的基础不均匀沉降进行结构分析。 3.6鉴于简支梁吊装能力一般不存在困难,同时,二次浇筑结构性桥面铺装层的质量控制困难,原则上不采用主梁二次浇筑成型的设计方案。

相关主题
文本预览
相关文档 最新文档