当前位置:文档之家› 面波

面波

面波
面波

面波勘探是近年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点,已在许多领域得到应用,并取得了良好的应用效果。文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及目前存在的问题作了说明,并给出一个应用实例。

关键词:瑞利面波地震勘探瞬态法频散曲线

1 前言

面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。

人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。

1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国F·K·Chang等人利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Explorati on”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。通过几年的实践和初步研究,R波在岩土工程勘察中的应用大致分为以下几个方面:

⑴查明工程区地下介质速度结构并进行地层划分;

⑵对岩土体的物理力学参数进行原位测试;

⑶工业与民用建筑的地基基础勘察;

⑷地下管道及埋藏物的探测;

⑸地下空洞、岩溶、古墓及废弃矿井的埋深、范围等探测;

⑹软土地基加固处理效果评价及饱和砂土层的液化判别;

⑺公路、机场跑道质量的无损检测;

⑻江河、水库大坝(堤)中软弱夹层的探测和加固效果评价等;

⑼场地土类别划分及滑坡调查等;

⑽断层及其它构造带的测定与追踪等。

2 勘探原理

面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S波)不同,它是一种地滚波。弹性波理论分析表明,在层状介质中,拉夫波是由SH 波与P波干涉而形成,而瑞利波是由SV波与P波干涉而形成,且R波的能量主要集中在介质自由表面附近,其能量的衰减与r-1/2成正比,因此比体波(P、S 波∝r-1)的衰减要慢得多。在传播过程中,介质的质点运动轨迹呈现一椭圆极化,长轴垂直于地面,旋转方向为逆时针方向,传播时以波前面约为一个高度为λR (R波长)的圆柱体向外扩散。

在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)计算出来,即P波占7%、S 波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。

综合分析表明R波具有如下特点:

⑴在地震波形记录中振幅和波组周期最大,频率最小,能量最强;

⑵在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础;

⑶由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为:

VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比;

此关系奠定了R波在测定岩土体物理力学参数中的应用;

⑷ R波在多道接受中具有很好的直线性,即一致的波震同相轴;

⑸质点运动轨迹为逆转椭圆,且在垂直平面内运动;

⑹ R波是沿地表传播的,且其能量主要集中在距地表一个波长(λR)尺度范围内。依据上述特性,通过测定不同频率的面波速度VR,即可了解地下地质构造的有关性质并计算相应地层的动力学特征参数,达到岩土工程勘察之目的。

3 野外工作方法

应用瞬态法进行现场测试时一般采用多道检波器接收,以利于面波的对比和分析。当锤子或落重在地表产生一瞬态激振力时,就可以产生一个宽频带的R波,这些不同频率的R波相互迭加,以脉冲信号的形式向外传播。当多道低频检波器接收到脉冲形振动信号后,经数据采集,频谱分析后,把各个频率的R波分离出来,并求得相应的VR值,进而绘制面波频散曲线。

当选取两道检波数据进行反演处理时,应使两检波器接收到的信号具有足够的相位差,其间距△x应满足(λR/3)~λR,即在一个波长内采样点数要小于在间距

△x内的采样点数的3倍,而大于在间距△x内的采样点数的1倍,该采集滤波原则对于不同的勘探深度及仪器分辨率和场地地层特性可作适当调整。

当采用多道检波数据进行反演处理时,虽然不受道间距公式的约束,但野外数据采集时也应考虑勘探深度和场地条件的影响。一般来说,当探测较浅部的地层介质特性时,易采用小的△x值并用小锤作震源以产生较强的高频信号,即可获得较好的结果;当探测较深部的地层介质特性时,易采用较大的△x值,并用重锤冲击地面,以产生较低频率的信号,使其能反映地下更深处的介质信息,达到岩土工程勘察之目的。

震源点的偏移距从理论上讲越大越好,且易采用两端对称激发,有利于R波的对比、分辨和识别,但偏移距增大就要求震源能量加大和仪器性能的改善。一般来说,偏移距应根据试验结果选取。就目前的仪器设备条件和反演技术水平,选用偏移距20~40m即可获得较好的测试结果。

由多道检波数据反演处理后可得一条频散曲线,一般把它作为接收段中点的解释结果。实际上该曲线所反映的地层特性为接收段内地层性质的平均结果,故当探测场地地下介质水平方向变化较大时,只要能满足勘探深度的要求,尽量使反演所用的接收段减小,以使解释结果更具客观实际。

4 工程应用

西部大开发十大项目之一的黄河沙坡头水利枢纽位于黄河上游干流上,上距待建的大柳树坝址12.1km,下距青铜峡水电站122km,行政隶属宁夏回族自治区中卫县。主要建筑物由主坝和副坝两部分组成,其中主坝拟选坝型为混凝土闸坝,最大坝高39.93m,坝长358.5m;副坝布置在黄河左岸Ⅰ级阶地,拟建坝型为土石坝,坝高5m左右,坝长约1.5km。

测区地层岩性由上至下依次为:①覆盖层由全新统风积砂壤土、粉细纱和全新统冲洪积砂卵砾石组成;②下伏基岩由棕红色、紫红色砂质粘土岩组成,局部夹有砾岩。

为探测覆盖层厚度并进行地层划分,采用瞬态面波进行勘探。实测使用美国R24工程地震仪和4Hz低频检波器。室内数据处理使用SFKSWS软件,其流程为:输入面波记录文件→显示和检查实测曲线数据→圈定面波数据窗口→在F—K域搜索确定基阶面波频谱峰脊并拾取频散数据→按搜索确定的基阶面波频谱峰脊圈定出基阶面波频谱范围→生成面波频散曲线→地质分层(人工或自动)→绘制反演拟合曲线→打印输出结果。

R波在非均匀介质中传播具有频散特性,所以不同频率(波长)的R波具有不同

的传播速度。模型试验和实测结果表明,当探测的岩土层介质较为均一时,R波的相速度随深度的加大而按线性增加,只有出现不同介质的分界面时,频散曲线会出现一个所谓“Z”字型变化,该变化特征是由于地表接收到的波从上一层漏能型波转入下一层漏能型面波,且此转折点与两介质间的界面埋深有密切的关系,由此可依据实测频散曲线的“Z”字型变化点来划分地下岩性变化的分界面。

面波频散曲线解释成果与钻探结果对比为实测面波反演解释结果,其中右侧为随深度变化的面波频散曲线,左侧为钻探揭露的地层柱状图,其层位的划分具有良好的一致性,即表层风积粉细砂—中部砂卵砾石层—下部基岩。同时由图还可以得出:表层风积砂的瑞利波速度为150~250m/s,冲洪积砂卵砾石的瑞利波速度为300~400m/s,而下伏基岩(棕红色、紫红色砂质粘土岩、砾岩等)的瑞利波速度则为440~760m/s,说明瑞利波(剪切波)速度随深度的增加而升高。

5 存在问题

虽然面波探测技术在工程中的应用已很广泛,但实际工作中还存在以下问题:⑴关于实测面波频散曲线的“Z”字型现象,从理论模型的解析中还不能精确地解释此现象。因为理论的频散曲线,在介质分界面处只出现折点,对此还需深入研究和数值模拟计算;

⑵对于面波勘探深度的确定,目前国内外大多采用半波长作为R波的勘探深度,此关系是一经验公式,但在实际工作中,应根据场地地质条件、探测对象以及孔旁测试对比结果等作适当调整;

⑶测试深度相对较浅,一般情况下可靠的测量深度为20~30m,最深不过50~60m。当测试深度加大时,震源信号就必须具有足够的低频信号,目前尚难满足此要求。由于低频时的R波值很少,使得下部频散曲线的点相对稀少,所以对解释精度影响较大。就该问题笔者建议由原来的算术坐标系改为波长为对数的单对数坐标系,可使低频段频散点稀少问题得以改观。

⑷根据不同的勘测目的和要求,对产生R波的震源需作必要的改进和研究,以适应勘察的需要。如用锤子作震源时其低频值为10~20Hz左右,而用砂袋作震源时低频值为3~10Hz左右。

面波勘探作为一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、适用场地小、应用范围广等优点,但对面波勘探理论的研究以及实际应用等有待进一步的深入和开拓,使之在生产实践中不断总结、完善和提高。

参考文献

⑴杨成林等《瑞雷波勘探》北京:地质出版社1993年

⑵胡钧等《岩土工程瑞利波勘探新进展》《上海地质》1996年No.2

⑶刘康和《面波探测技术综述》《电力勘测》1997年No.2

⑷ Barbara A. Luke, et al.《Application of SASW Method Underwater》《JOURNAL OF GEOTECHNICAL and GEOENVIRONMENTAL ENGINEERING》1998 No.6。

⑸V ahid Ganji, et al. 《Automated Inversion Procedure for Spectral Analysis of Surface Waves》《JOURNAL OF GEOTECHNICAL and GEOENVIRONMENTAL ENGINEERING》1998 No.8。

面波测试方案

基于动测仪的面波测试方案 1测试原理简介 均匀介质或分层介质在点或面振源作用下,表面波场包含P、SV波及瑞利波,由于在表面P、SV波衰减快于瑞利波,当距振源一定距离表面波场以瑞利波为主。在大多数情况下,瑞利波能量集中在一个波长深度范围内,频率越低,波长越大,影响深度越深。在剖面参数(剪切波速、密度、泊松比)不同分层状态下,随着波长的增加,瑞利波穿越的层数也增加,瑞利波传播速度发生变化,瑞利波传播出现频散现象,即瑞利波传播速度随频率(或波长)的变化,如图1所示,频散曲线的变化与分层参数、分层厚度等有关,通过对频散曲线的反分析可以得到场地分层剪切波速。 图1瑞利波波长与穿透深度及传播速度间关系 不同的分析方法,对测试要求也不同,目前分析方法主要有f—k分析及互相关分析(SASW)。 2、基于互谱分析测试方法 互谱分析,顾名思义就是对两道信号作互相关分析,只要有两道信号就可以得到面波的相速度随波长或频率的变化。目前,动测仪,如RSM、FD系列,一般最多可采集四道。 这样,在互谱分析用动测仪作为采样设备是可行的。当采用两个测点时,如图2所示,测点可按共中心方式布点,即(1)测点距、振源与最近测点距相等;(2)按测点中心线位置不变,不断增加测点距;(3)通过正反敲击来消除分层倾斜及传感器不一致性的影响。如图3所示。 图2 两测点布置

图3 共中心测点布置 两点实测信号、互谱分析及得到的相速度随波长或频率变化,见图4,相速度表示面波在两测点间平均相速度。 (a) (b) (c) 图4 两测点信号(a)、互谱分析(b)及相速度随波长变化(c) 当采用三个测点,如图5所示,通过对三条信号组合分析,即CH1+CH2、CH1+CH3、CH2+CH3组合,可以得到三条剖面的相速度。见图6。

面波的频散特征和地层分层

四、面波频散特征和地层结构 面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层 弹性分布。地层的弹性参数分布越不均匀,面波频散的表现也越复杂。对于横 向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的 地层弹性分层类型。 面波频散数据的图示方式 面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列 数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表 示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。 下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。 左图是此组面波频散数据在频率(F)/相速度(Vc)座标中的图形。横座标 是频率轴,纵座标是相速度轴。各个模 态的正演频散数据表示为绿色曲线,由 基阶向高阶绿色调逐阶变亮。 这是频散数据最基本的 图示方式,可以表现出相速度随频率变化的趋势。 左图是同一组面波频散数据在半波长(L/2)/相速度(Vc)座标中的图形。 横座标是相速度轴,纵座标是半波长轴。基阶频散数据表示为其中的兰色点, 各个模态的正演频散数据表示为绿色曲线,由基阶向高阶绿色调逐阶变亮。 如果需要显示此组频散数据代表的地层参数,就可以把横座标作为剪切波速 (Vs)轴,纵坐标当作深度(Z)轴,

用同样的比例尺作出地层剪切波速断面作对比。由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。 这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。 此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。 按面波频散特征划分地层结构类型 面波的频散现象反映了地层沿深度弹性波速的差异。在横向稳定的弹性分层地层上,面波的频散包含可以区分的多个模态,表现出各自的特征,反映在以下三个方面: 1.各模态面波的相速度随频率的变化规律。 2.各模态面波所传播弹性能量的相对比重。 3.各模态面波的振幅沿地表传播的变化规律。 这些特征的具体表现完全取决于当地地层分层的弹性参数。按照频散模态特征的不同,可以划分出三种地层分层结构类型: A.波速由表层向底层逐层增高。 B.底层波速最高,中部含低速层。 C.高波速表层复盖下部低速地层。 在这些类型的地层上激发的面波,具有不同的模态特征,分别用实例说明如下。 A.波速由表层向底层逐层增高 将这种地层上取得的面波地震记录,在频率波数域提取基阶频散数据,经过反演得到地层断面,再由此地层参数正演出多阶频散数据。此外,还采用相邻道作互相关求振幅相位谱的方法,经相位校正,得出主频率区段各相邻道间(相当于不同传播距离)的相速度数据。显示在下面的各个图中:

工程双源面波勘探及其应用

工程双源面波勘探及其应用 毛健伟聂碧波郭乃根孙秀容夏学礼 上海申丰地质新技术应用研究所有限公司 上海201106 内容提要:为了提高面波勘探的勘查深度,将多道瞬态面波勘探和微动勘查集成为一轻便的系统,使面波勘探的勘查深度加深至100∽300米,基本满足了工程上的需要。在多道瞬态面波勘探数据采集时应首先对面波波场进行分析,采用大偏移、大道距对提高频散曲线的提取精度十分重要。使用该系统在同一点两种方法采集数据得到的频散曲线有着十分好的重复性和唯一性,并能得到验证。工程双源面波勘探在浅部煤层采空区中的应用取得了很好的效果。在煤层埋藏较浅,得不到煤层反射波的煤层采空区调查中有着较好的应用前景。 关键词:面波微震双源采集系统频散 1引言 上世纪九十年代中期,北京水电物探研究所刘云祯先生首先提出了“多道瞬态面波法勘探【1】”,并研制出具有自主知识产权的多功能面波仪,开发出相应的资料处理软件。多道瞬态面波法勘探在工程界得到普遍应用。并于2004年国家颁布了“多道瞬态面波发勘察规程【2】”。通过多年的实践,多道瞬态面波法勘探在频散曲线提取中的稳定性问题【3】,频散曲线的“之”型问题【4】及勘探深度较浅等都使其应用受到限制。1998年原地质矿产部王振东先生针对多道瞬态面波勘探勘探较浅(20米左右)提出了双源面波勘探的设想【5】,拟将多道瞬态面波勘探和微动勘查在软、硬件上集成为一个系统,即同时可进行“多道瞬态面波法勘探”,又可进行“微动勘查”,取之所长,避之所短,提高面波勘探勘查深度,满足绝大部分工程的需要。 虽然“多道瞬态面波法勘探”和“微动勘查”都是应用面波在非均匀介质具有频散特性和半波长理论来研究地下地质结构,但他们在数据采集方法、使用的硬件及资料处理方法上有着较大的差别。上海申丰地质新技术应用研究所有限公司于2008年在加拿大骄佳技术公司赵冬先生的配合下,选择美国SI公司生产的S-Land数字化工程地震数据采集系统为硬件,赵东先生编制的天然原面波F-K、SPAC、ESPAC处理软件集成了工程双源面波勘探系统,并在野外进行了大量的试验,使面波勘探的勘探深度提高至100-300米。该系统之所以定名为工程双源面波勘探系统,它在两方面不同于“微动勘查”,一是它的采集硬件是多道(24或48道)而不是4或7个独立的采集单元,一个系统既可采集人工源面波,又可进行微动采集;二是它采用的传感器是2.5Hz和4.5Hz低频检波器,而不是低频摆,该系统更换检波器后还可进行地震反射和折射波法勘查,一个系统可以进行多种弹性波法数据采集,既适用又经济。

面波压制的Ridgelet域方法_包乾宗

包乾宗,高静怀,陈文超.面波压制的Ridgelet 域方法.地球物理学报,2007,50(4):1210~1215 Bao Q Z ,Gao J H ,Chen W C .Ridgelet domain method of ground -roll suppression .Chines e J .G eophys .(in Chinese ),2007,50(4):1210~1215 面波压制的Ridgelet 域方法 包乾宗,高静怀,陈文超 西安交通大学电子与信息工程学院波动与信息研究所,西安 710049 摘 要 面波压制是地震数据处理中的一个重要问题.常规的处理方法虽然能在一定程度上压制面波,但是在处理过程中只是单一的利用面波的一种特性,例如频率域滤波中利用面波与有效信号频率之间的差别,因此难以有效地压制面波.利用Ridgelet 变换可将原始地震记录拓展到(a ,τ,p )三维空间,从而可以同时利用地震记录的视速度、时间和尺度域特性差别,实现有效信号与面波的分离.文中通过理论合成记录及实际地震记录的算例,证实了基于Ridgelet 变换的面波压制方法是有效且可行的.关键词 Ridgelet 变换,面波压制,小波变换,波场分离文章编号 0001-5733(2007)04-1210-06 中图分类号 P631 收稿日期2006-06-30,2007-04-09收修定稿 基金项目 国家自然科学基金面上项目(40174032)和国家科技部国家基础研究重大项目前期研究专项(2001CCD02600)资助.作者简介 包乾宗,男,1972年生,现为西安交通大学在读博士生,主要从事地震信号处理方法研究.E -mail :bqz -chj @https://www.doczj.com/doc/a14819907.html, Ridgelet domain method of ground -roll suppression B AO Qian -Zong ,GAO Jing -Huai ,CHEN Wen -Chao In stitu te of Wa ve a nd In fo rmati on ,Sch o ol of Ele ctr on ics &Info r ma tio n Eng in eeri ng ,Xi an Jiao to ng Uni ver sit y ,Xi an 710049,Chi na A bstract Ground -r oll is a regular interferential wave existing widely in seismic data ,and it is a difficult problem in seismic data processing to suppress ground -roll .The traditional methods can do these to some extent ,but they only use the ground -r oll single characteristic during processing .We gain a transform which is valid in seismic processing ,namely ,Ridgelet transform .It can transfor m seismic data in (x ,t )domain to (a ,τ,p ).So we can use the difference in velocity ,time and scale characteristics of seismic data to process and separate different waves at the same time .Examples of processing the synthetic and real data illustrate its feasibility and effectiveness of the Ridgelet transform method in attenuating ground -roll .Keywords Ridgelet transfor m ,Ground -roll ,Wavelet transfor m ,Separation of wave field 1 引 言 在反射地震资料中面波是一种具有明显的高振 幅和频散特性的规则干扰波.在油气勘探地震数据处理过程中,面波的消除是关键的一步;面波消除的效果直接影响地震数据的后续处理,乃至偏移成像结果,而最终影响地质解释的效果.传统消除面波的方法主要是利用面波与反射波的频带差异及视速 度差异,如一维滤波、f -k 滤波、τ-p 变换等方法. 在20世纪80年代兴起的小波变换由于其具有多尺度和时频局部化性质,被迅速用于地震资料处理领域 [1~3] .1996年罗国安和杜世通 [4] ,1997年 Deighan 和Watts [5] 提出了用一维小波变换压制面 波,可是他们的方法都是基于单道数据计算的.1999年Minh -Quy Nguyen 和Jerome Mars [6] 提出了用 二维离散小波变换滤除面波,由于使用的二维离散小波变换是一维小波变换的张量积,角度分辨率较 第50卷第4期2007年7月 地 球 物 理 学 报 C HINESE JOURNAL OF GE OPHYSICS Vol .50,No .4Jul .,2007

冲击弹性波

升拓无损检测技术—冲击弹性波 (四川升拓检测技术有限责任公司,四川成都610045) 摘要:冲击弹性波则是用锤或其他激振装置与测试对象冲击产生,是弹性波的一种。因为其具有激振能量大、操作简单、便于频谱分析等特点,是一种非常适合无损检测的媒介。 关键词:无损检测技术,冲击弹性波,波的分类,反射特性,升拓无损检测 无损检测运用广范,在国内许多行业和部门,例如机械、粉末冶金、建筑、公路、铁道、隧道、桥梁、石油天然气、石化、化工、航空航天、船舶、电力、核工业、兵器、煤炭、有色金属、医疗机构、核工业、海关等领域均有运用。四川升拓检测技术有限责任公司的无损检测技术主要致力于工程质量、结构安全和广域防灾减灾等方面的设备、系统的开发和销售。以振动、波动、声响、冲击等作为测试和监测媒介。 无损检测技术,又称非破坏检查技术,在不破坏物质原有状态及化学性质的前提下,利用物质中因有缺陷或组织结构上的差异存在而使其物理性质的物理量发生变化的现象,以不使检查物使用性能和形态受到操作为前提,通过一定的检测手段来测试、显示和评估这些变化,从而了解从而了解和评价材料、产品、设备构件等被测物的性质、状态或内部结构等所采用的检查方法。 无损检测技术是第二次世界大战后迅速发展起来的一门新兴的工程科学,它最突出的特点是“无损伤”。其发展过程经历了三个阶段:无损探伤阶段、无损检测阶段和无损评价阶段。首先,无损探伤阶段主要是探测和发现缺陷;其次,无损检测阶段不仅仅是探测缺陷,还包括探测试件的一些其他信息,例如、材质、结构、性质、状态等,并试图通过测试,掌握更多的信息;再次,无损评价阶段不仅要求发现缺陷,探测试件的材质、结构、性质、状态,还要求获取更全面,更准确的综合的信息,例如缺陷(裂缝、剥离、内部空洞、蜂窝等)、几何尺寸(厚度、埋深)、位置、取向、内含物、残余应力等,结合成像技术、自动化技术、计算机数据分析和处理等技术,材料力学、断裂力学等知识综合应用,对试件或产品的质量和性能给出全面、准确的评价。无损检测技术常用的方法有冲击弹性波检测(包含超声波检测和声波检测)、射线检测,超声波检测,磁粉检测,渗透检测、涡流检测、声发射检测等方法。进入21世纪以后,为满足生产的需求,并伴随着现代科学技术的发展,特别是计算机技术、数字化与图像识别技术、人工神经网络技术和机电一体化技术的快速发展,无损检测的方法和种类日益繁多,除了上面提到的几种方法外,射线、激光、红外、微波、液晶、等技术都被应用于无损检测。

面波的频散特征和地层分层

四、面波频散特征和地层结构 面波沿地表传播波速的频散现象,反映了与其波长相应的深度范围内的地层弹性分布。地层的弹性参数分布越不均匀,面波频散的表现也越复杂。对于横向均匀的分层地层,面波表现出可以区分和识别的频散特征,从而划分出不同的地层弹性分层类型。 面波频散数据的图示方式 面波的频散规律可以表示为频率(F)和相速度(Vc)二维座标图形中的一系列数据点,也可以由频率和相速度换算出该频率的波长(L=Vc/F),将频散数据表示在以半波长(L/2)和相速度(Vc)为座标轴的二维图形中。 下面用同一地层模型正演的频散数据,显示在两种数据座标图形中供比较。 左图是此组面波频散数 据在频率(F)/相速度 (Vc)座标中的图形。横 座标是频率轴,纵座 标是相速度轴。各个模 态的正演频散数据表示 为绿色曲线,由基阶 向高阶绿色调逐阶变 亮。 这是频散数据最基本的图示方式,可以表现出相速度随频率变化的趋势。 左图是同一组面波频散数据在半波长 (L/2)/相速度(Vc)座标中的图形。 横座标是相速度轴,纵座标是半波长 轴。基阶频散数据表示为其中的兰色 点,各个模态的正演频散数据表示 为绿色曲线,由基阶向高阶绿色调逐 阶变亮。 如果需要显示此组频散数据代表的地 层参数,就可以把横座标作为剪切波 速 (Vs)轴,纵坐标当作深度(Z)轴,

用同样的比例尺作出地层剪切波速断面作对比。由于面波由地表向下的波动影响深度和它的半波长关系密切,利用这种对比显示,往往可以找出地层断面在频散数据中反映出的特征。当然如此对比绝不是意味着半波长就是深度,或者相速度就等于剪切波速。 这种频散数据显示方式,可以由频散数据预先估计地层波速断面的轮廓,并且在反演后和地层参数直观的对比。 此外,如果将频散数据换算成相应的频率和波数(K = F/Vc),还可以在频率波数谱图中,标出各个模态频散数据在能量谱中的座标位置,比较各模态在不同频段的相对能量。 按面波频散特征划分地层结构类型 面波的频散现象反映了地层沿深度弹性波速的差异。在横向稳定的弹性分层地层上,面波的频散包含可以区分的多个模态,表现出各自的特征,反映在以下三个方面: 1.各模态面波的相速度随频率的变化规律。 2.各模态面波所传播弹性能量的相对比重。 3.各模态面波的振幅沿地表传播的变化规律。 这些特征的具体表现完全取决于当地地层分层的弹性参数。按照频散模态特征的不同,可以划分出三种地层分层结构类型: A.波速由表层向底层逐层增高。 B.底层波速最高,中部含低速层。 C.高波速表层复盖下部低速地层。 在这些类型的地层上激发的面波,具有不同的模态特征,分别用实例说明如下。 A.波速由表层向底层逐层增高 将这种地层上取得的面波地震记录,在频率波数域提取基阶频散数据,经过反演得到地层断面,再由此地层参数正演出多阶频散数据。此外,还采用相邻道作互相关求振幅相位谱的方法,经相位校正,得出主频率区段各相邻道间(相当于不同传播距离)的相速度数据。显示在下面的各个图中:

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的应用 摘要 在近地表勘探工作中,常用的方法有地质钻探、地震折射和反射 等方法。地质钻探方法比较可靠,但是成本高,且具有破损性;地震 折射方法和反射方法对于波阻抗差异较小的地质体界面反映较弱,不 容易分辨,特别折射波法要求下层介质的速度一定要大于上层介质的 速度,如果地层存在低速夹层和速度倒转,则折射法将无能为力。瑞 雷面波勘探法是一种新型的地震勘探方法,能够弥补传统方法的不 足。本文就是研究如何利用瑞雷面波的频散特性进行浅层地质勘探检 测。 引言 (1) 第一章地震面波简介 (2) 第二章瑞利波勘察原理及现场工作方法 (3) 2.1瑞利波勘察原理 (3) 2.2多道瞬态面波数据采集方法 (4) 第三章瑞利波资料整理与解释 (6) 3.1面波频散曲线的深度解释 (6) 3.2层厚度的计算方法 (6) 3.3层速度的计算方法 (7) 第四章工程实例 (9) 4.1工程概述 (9) 4.2数据采集和处理 (9) 4.3底层划分及滑动面确定 (11)

第五章结论 (15) 致谢 (16) 参考文献 (17)

引言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,集中于自由表面,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。上个世纪九十年代中期,日本科学家在研究常时微动的过程中发现,常时微动是一种震源(包含面波在内)并初步完成了地基勘察。这是一项具有很大潜力的面波勘探方法。

面波探测技术方案

深圳地铁7号线福赤区间面波勘探技术方案 深圳市工勘岩土集团有限公司 二O一四年十二月

目录 1、前言 (1) 2、主要勘探目的 (1) 3、执行规范 (1) 4、方法原理 (2) 5、测线布置 (3) 6、瑞利波法现场测试方法 (5) 7、资料处理与解释 (6) 8、提交成果 (8) 9、工期 (8) 10、投入人员及仪器设备 (9)

1、前言 受中国水电四局的委托,我公司拟对深圳地铁7号线福赤盾构区间进行面波(瑞利波)法勘探。本区间自福田河南岸的福临站北端开始,至滨河大道的赤尾站西端结束,里程桩号大致范围为: 左线ZDK20+360.117~ZDK20+845.492; 右线YDK20+347.717~YDK20+844.001。 线路下穿福田河、福临小区、滨河大道等,线路经过区地面环境复杂多变,将会给面波勘探带来诸多不便和影响,有的区段可能难以展开勘探,即使是积极创造条件勉强开展慨叹的区段,也需要投入更多的时间、人力、物力等,并且在诸多不利因素背景下所解算的成果资料的可信度会大打折扣。为了尽可能全面地完成地质任务,编制此方案。2、主要勘探目的 通过面波(瑞利波)勘探,揭示盾构区间隧道穿越区岩土强度的分布,提请盾构施工时提前采取相应措施。 3、执行规范 本次探测执行如下技术规范: 1)《多道瞬态面波勘察技术规程》(JGJ/T143—2004); 2)《物化探工程测量规范》(DZ/T0153-95); 3)《城市工程地球物理探测规范》(中华人民共和国行业标准JJ7-2007); 4)《水利水电工程物探规程》(中华人民共和国水利水电行业标准

SL326-2005); 5)《工程测量规范》(GB/50026-2007)。 4、方法原理 瑞利波是面波的一种。瑞利波法是利用瑞利波的运动学特征和动力学特征来进行工程质量检测及工程地质勘察的地球物理方法。 在自由界面(如地面)上进行竖向激振时,均会在其表面附近产生各种波长的瑞利波,其二维和三维波动及传播示意图见图1和图2。瑞利波有三个与工程质量检测和地质勘察有关的主要特征: (1)、在分层介质中,瑞利波具有频散特性; 图1 瑞利波的椭圆极化示意图(二维) (2)、瑞利波的波长不同,穿透深度也不同; (3)、瑞利波的传播速度与介质的物理力学性质密切相关。

面波

面波勘探是近年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点,已在许多领域得到应用,并取得了良好的应用效果。文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及目前存在的问题作了说明,并给出一个应用实例。 关键词:瑞利面波地震勘探瞬态法频散曲线 1 前言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国F·K·Chang等人利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Explorati on”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。通过几年的实践和初步研究,R波在岩土工程勘察中的应用大致分为以下几个方面: ⑴查明工程区地下介质速度结构并进行地层划分; ⑵对岩土体的物理力学参数进行原位测试; ⑶工业与民用建筑的地基基础勘察; ⑷地下管道及埋藏物的探测; ⑸地下空洞、岩溶、古墓及废弃矿井的埋深、范围等探测; ⑹软土地基加固处理效果评价及饱和砂土层的液化判别; ⑺公路、机场跑道质量的无损检测; ⑻江河、水库大坝(堤)中软弱夹层的探测和加固效果评价等; ⑼场地土类别划分及滑坡调查等;

面波勘探技术分析

面波勘探技术分析 近年来,由于地震的频繁发生,对浅层地球物理勘探技术有了更高的要求,面波勘探技术就是在此情况下应运而生的新的勘探技术,其以简便、快速、高分辨率等特点而在许多领域得以应用,并取得了很好的效果。本文对面波勘探技术进行了具体的介绍,同时分析了面波勘探技术在野外方法,以及面波勘探技术在工程及应用过程中存在的问题进行了具体的阐述。 标签:面波;勘探;瞬态法 1 概述 随着近几年对浅层地震研究的深入,面波勘探随之发展起来,成为国内外在勘探浅层地震中普遍采取的一种方法。在面波中有瑞利波(R波)和拉夫波(L 波)之分,在进行面波勘探时通常称为R波,因其在同组波组中具有较强的能量、同时振幅也高于其他波,频率也处于最低点,在测量时很容易识别。 同时面波勘探技术对于面波还有另外一种分法,稳态法、瞬态法和无源法,这种分类法主要是根据产生面波的震源不同进行分类的,但其在测试时的原理是一样的。 2 面波勘探技术 面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S 波)不同,它是一种地滚波。在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)出来,即P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。 综合分析表明R波具有如下特点: (1)在地震波形记录中振幅和波组周期最大,频率最小,能量最强。 (2)在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础。 (3)由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为: VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比; 此关系奠定了R波在测定岩土体物理力学参数中的应用。

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的应用 摘要 在近地表勘探工作中,常用的方法有地质钻探、地震折射和反射 等方法。地质钻探方法比较可靠,但是成本高,且具有破损性;地震 折射方法和反射方法对于波阻抗差异较小的地质体界面反映较弱,不 容易分辨,特别折射波法要求下层介质的速度一定要大于上层介质的 速度,如果地层存在低速夹层和速度倒转,则折射法将无能为力。瑞 雷面波勘探法是一种新型的地震勘探方法,能够弥补传统方法的不 足。本文就是研究如何利用瑞雷面波的频散特性进行浅层地质勘探检 测。 引言 (1) 第一章地震面波简介 (2) 第二章瑞利波勘察原理及现场工作方法 (3) 2.1瑞利波勘察原理 (3) 2.2多道瞬态面波数据采集方法 (4) 第三章瑞利波资料整理与解释 (6) 3.1面波频散曲线的深度解释 (6) 3.2层厚度的计算方法 (6) 3.3层速度的计算方法 (7) 第四章工程实例 (9) 4.1工程概述 (9) 4.2数据采集和处理 (9) 4.3底层划分及滑动面确定 (11)

第五章结论 (15) 致谢 (16) 参考文献 (17)

引言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,集中于自由表面,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。上个世纪九十年代中期,日本科学家在研究常时微动的过程中发现,常时微动是一种震源(包含面波在内)并初步完成了地基勘察。这是一项具有很大潜力的面波勘探方法。

纵波速度参数对面波频散特征的影响

纵波速度参数对面波频散特征的影响 瑞雷波勘探技术是一种兴起时间不长的地球物理勘探方法。与其他地震波勘探方法相比,具有工作条件简单、不受波反射因素的影响以及浅层分辨率高等优势。目前已被广泛应用于工程地质界。论文针对目前瑞雷波反演方法中存在的诸如反演参数单一、反演参数设置不合理等不足,通过正演软件进行数值模拟,重点研究了分层介质中各层纵波速度对瑞雷波频散曲线的影响。为实现瑞雷波多参数的反演提供基础资料。 标签:瑞雷波频散曲线;正演计算;正演参数 1 概述 面波,在地球物理勘探中我们通常称之为地滚波,反射波记录下来的大多数都是瑞雷波[1]。瑞雷波在多层介质中所产生的相速度随频率变化的现象被称为瑞雷波的频散[2]。而频散曲线正是瑞雷波勘探获得的直接成果。瑞雷波勘探技术作为一种新兴的地球物理勘探方法,以其特有的优势被广泛应用于工程地质勘察、复合地基检测等领域。但是在实际应用过程中也暴露了许多问题,这些问题主要体现在如下几个方面:①瑞雷波的反演方法较多,但是这些方法均建立在一维模型基础上,与被探测的三维目标体存在较大的差异。因此如何实现瑞雷波的二维反演甚至是三维全空间反演是目前瑞雷波研究的重点内容。②目前的面波数据处理采用的是基阶面波,而高阶面波的应用将会大大改善目前的勘探精度和勘探效果。因此如何提取高阶面波,以提高勘探精度特别是软弱夹层的勘探能力,是摆在面波数据处理方面的一个难题。③瑞雷波解释成果存在较大的多解性,特别是解释结果随着道间距、偏移距以及采集通道数出现较大的差别,这也是目前瑞雷波勘探所面临的迫切需要解决的技术问题。 针对上述问题,本论文利用瑞雷波正演计算程序,采用数值模拟的方法研究层状分布的岩土体的纵波速度对岩土体中瑞雷波频散曲线的影响规律。为进一步优化瑞雷波正演算法提供基礎资料。 2 基本原理 Knopoff快速计算法计算的是角速度为ω,相速度为VR的地震波在几个水平、均匀介质组成的层状空间中的传播问题[3]。我们知道应力与位移的关系式为: δm=ρm(γm-1)cosPmAm-iρm(γm-1) sinPmβm+ρmγmγβmcosQmCm-iρmγβmsinQmDm τm=iρmγmγαmsinPmAm-ρmγmγαmcosPmBm-iρm(γm-1)sinQmCm+ρm (γm-1)cosQmDm(1)

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的 应用 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

面波法勘探在工程勘察中的应用 摘要 在近地表勘探工作中,常用的方法有地质钻探、地震折射和反射 等方法。地质钻探方法比较可靠,但是成本高,且具有破损性;地 震折射方法和反射方法对于波阻抗差异较小的地质体界面反映较 弱,不容易分辨,特别折射波法要求下层介质的速度一定要大于上 层介质的速度,如果地层存在低速夹层和速度倒转,则折射法将无 能为力。瑞雷面波勘探法是一种新型的地震勘探方法,能够弥补传 统方法的不足。本文就是研究如何利用瑞雷面波的频散特性进行浅 层地质勘探检测。 引言 (1) 第一章地震面波简介 (2) 第二章瑞利波勘察原理及现场工作方法 (3) 瑞利波勘察原理 (3) 多道瞬态面波数据采集方法 (4) 第三章瑞利波资料整理与解释 (6) 面波频散曲线的深度解释 (6) 层厚度的计算方法 (6) 层速度的计算方法 (7) 第四章工程实例 (9) 工程概述 (9) 数据采集和处理 (9)

底层划分及滑动面确定 (11) 第五章结论 (15) 致谢 (16) 参考文献 (17)

引言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,集中于自由表面,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。上个世纪九十年代中期,日本科学家在研究常时微动的过程中发现,常时微动是一种震源(包含面波在内)并初步完成了地基勘察。这是一项具有很大潜力的面波勘探方法。

面波勘探原理及其应用

毕业设计(论文) 题目:面波在地震波场中的特性研究及其应用Surface wave in the characteristics of seismic wave field research and its application 学生姓名:高振兵 专业:勘查技术与工程 班级:07023209 指导教师:方根显 二零一一年六月

摘要 瑞利面波勘探是近年发展起来的一种新的浅层地球物理勘探方法,具有简便、快速、经济、分辨率高、成果直观、适用场地小等优点,已在许多领域得到应用,并取得了良好的应用效果[1]。瑞利面波是一类频率较低、能量较强的次生波,且主要沿着介质的分界面传播,其能量随着与界面距离的增加迅速衰减。瑞利面波与反射波、折射波一样都含有地下介质的地质信息。本文从瑞利面波的概念、工作原理及方法、频散特征、反演研究以及实际资料的应用等方面,用多道检波器测量来了解面波勘探在浅层地表调查中的应用。 关键词:瑞利面波、频散曲线、波动方程、瞬态瑞雷波勘探。

ABSTRACT Rayleigh wave exploration is developed in recent years, a new shallow geophysical exploration methods, it is a simple, quick, economy, high resolution, achievements intuitive, applicable site, has the advantages of small find application in many fields, and have achieved good application effect.Rayleigh's is a kind of lower frequency, energy strong secondary wave, and mainly the boundary surface along the medium, the energy with the spread of interface distance attenuation increases rapidly. Rayleigh wave reflection wave, with all contain the same refraction wave of underground medium geological information.This article from Rayleigh's concept, principle and method , frequency dispersion characteristics, and inversion study and the actual material application etc, with multi-channel detectors measurements to understand surface wave exploration in the application of shallow surface survey. keywords: Rayleigh wave,frequency disperse curve, wave equation, transient state Rayleigh wave prospecting.

瑞雷面波勘探

瑞雷面波勘探及软件应用 摘要 本文主要介绍SWS型多波列数字图象工程勘察与工程检测仪和其配套的SWS瞬态面波数据处理软件的使用方法,通过对其工作原理和瑞雷面波理论的介绍,说明多道面波采集系统在发展瞬态面波法方面的关键作用。并且通过一个实例具体说明如何使用该仪器进行野外数据的采集及数据处理软件的使用。 关键词 SWS瞬态面波数据处理软件;多道面波采集系统;瞬态面波法 Abstract This text introduce SWS type many wave arrange digital vision project reconnoitre wave operation method ,data processing of software the related to project detector and its SWS transient state mainly,Pass to its operation principle and theoretical introduction of auspicious Ray a wave,Prove many dishes of surface wave gather system wave key effect ,law of developing transient state。And concrete to prove how about to use this software to go on datum gathering ,graph processing and analysing through one instance。 Keywords Wave data processing software SWS; Many dishes of surface wave gather the system; Wave law the transient state

面波勘探技术分析

面波勘探技术分析 摘要:面波勘探是近年起来的一种新的浅层地球物理勘探,具有简便、快速、分辨率高、成果直观、适用场地小等优点,已在许多领域得到,并取得了良好的应用效果。文章介绍了面波勘探技术的发展概况、探测原理、主要特点及其野外测试方法,对其应用范围及存在的作了说明,并给出一个应用实例。 主题词:面波勘探瞬态法 一、概述 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、

②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 二、面波勘探技术 面波是一种特殊的地震波,它与地震勘探中常用的纵波(P波)和横波(S波)不同,它是一种地滚波。 在各向均匀半无限空间弹性介质表面上,当一个圆形基础上下运动时,由它产生的弹性波入射能量的分配率已由Miller(1955年)出来,即P波占7%、S波占26%、R波占67%,亦就是说,R波的能量占全部激振能量的2/3,因此利用R波作为勘探方法,其信噪比会大大提高。 综合分析表明R波具有如下特点: ⑴在地震波形记录中振幅和波组周期最大,频率最小,能量最强; ⑵在不均匀介质中R波相速度(VR)具有频散特性,此点是面波勘探的理论基础;

⑶由P波初至到R波初至之间的1/3处为S波组初至,且VR与VS具有很好的相关性,其相关式为: VR=VS·(0.87+1.12μ)/(1+μ);式中:μ为泊松比; 此关系奠定了R波在测定岩土体物理力学参数中的应用; ⑷R波在多道接受中具有很好的直线性,即一致的波震同相轴; ⑸质点运动轨迹为逆转椭圆,且在垂直平面内运动; ⑹R波是沿地表传播的,且其能量主要集中在距地表一个波长(λR)尺度范围内。 依据上述特性,通过测定不同频率的面波速度VR,即可了解地下地质构造的有关性质并计算相应地层的动力学特征参数,达到岩土工程勘察之目的。 三、野外工作方法

高频面波方法

高频面波方法 摘要:自20世纪80年代起通过多道地震记录系统获取高频(≥2 Hz)瑞雷面波数据以求取近地表地球物理中剪切(S)波速度的方法开始被使用。这篇综述文章讨论的是最近15年来堪萨斯地质调查所与中国地质大学的科研团队在高频面波技术中取得的主要成果。面波的多道分析方法(MASW)是一种非入侵式的确定近地表剪切波速度的声波勘探方法。MASW 与直接测井方法的结果只有不到15%的差异。研究表明进行面波的高阶模式和基阶模式的同步反演能够提高模型分辨率和勘探深度。另外一个重要的地震参数,品质因子(Q),也能利用MASW方法通过反演瑞雷面波的衰减系数得到。一个反演模型可以通过阻尼最小二乘法求得,反演模型解范围内的最佳阻尼因子由模型分辨率矩阵和模型协方差矩阵加权求和的迹构成的目标函数所确定。目前的科技进展包括近地表介质中高频瑞雷面波建模,其为时间-偏移域中的浅层地震和瑞雷面波反演打下了基础。以任意检波器排列方式获取数据做频率-速度域的频散能量高分辨率成像的技术为3维面波勘探打开了窗口。成功的面波模式分离为获取高水平分辨率剪切波速度剖面提供了有价值的技术手段。 关键词:瑞雷面波,频散,高阶模式,模式分离,地震建模,模型验证 前言 面波具有导波和频散的性质。瑞雷面波是沿着自由表面传播的面波,例如大地-空气或者大地-水的交界面,并且往往以相对低的速度,低的频率,以及高振幅为特征。瑞雷面波是纵波和Sv波干涉行成的。在均匀介质中基阶模式瑞雷面波质点运动轨迹是从左到右沿着自由表面按照椭圆轨道逆时针方向运动。随着深度的增加,到了足够深度时质点运动轨迹变成了顺时针方向并且仍然是椭圆轨道。质点的运动轨迹被约束到了与波传播方向一致的垂直面上。由于固体的均匀半空间的原因,瑞雷面波不是频散的并且当泊松比等于0.25时以几乎0.9194Vs(剪切波速度)的速度传播,这里的Vs(剪切波速度)是半空间的横波速度(sheriff and Geldart,1983)。然而,由于在固体均匀半空间上覆盖了一层速度较低的层,当瑞雷面波的波长为该层厚度的1到30倍范围内是,瑞雷面波会发生频散现象(Stokoe et al。,1994)。在给定模型中更长的波长穿透更深的深度,一般具有更大的相速度,并且对深层的弹性性质更敏感(Babuska and Cara,1991)。相反地,相对短的波长对浅层的物理性质更敏感。因此,在一个特定阶数的面波中,出现了一个特定的相速度对应一个特定的波长的面波频散现象。 剪切波速度能够通过反演面波(瑞雷面波或者拉夫面波)的频散相速度得到(e.g., Dorman and Ewing, 1962)。近地表剪切波速度也能通过反演高频瑞雷面波得到。一些地震方法利用瑞雷面波的频散获取近地表介质的剪切波速度。Stokoe和Nazarian(1983)以及Nazarian et al.(1983)提出了一种面波勘探方法,面波的谱分析(SASW),其通过分析瑞雷面波的频散曲线生成近地表的剪切波速度剖面。Matthews et al.(1996)用详细的图表总结了SASW方法和连续面波法(CSW)(Tokimatsu et al.,1991; Abbiss, 1981)。在最近的15年,堪萨斯大学的堪萨斯地质调查所(KGS)开发了一种叫做面波多道分析(MASW)的方法,这种方法能追溯到Song et al.(1989)的研究成果中。这种方法包括高频(≥2 Hz)宽频瑞雷面波的采集,瑞雷面波中频散曲线的提取,获取近地表剪切波速度剖面的频散曲线反演。随着地球物理团队在地质和地球物理问题上的应用,MASW方法引起了越来越多的关注,因为这种方法具有非侵入性,非危险性,低成本,以及相对高的精度。它成为了近地表地质,环境,工程应用中获取剪切波速度的主要方法。 在地下水,工程,环境研究,以及石油勘探中,近地表介质的弹性性质与其对地震波传播的影响是重要的研究目标。剪切波速度是建筑工程中的关键参数。作为一个案例,Imai 和Tonouchi(1982)研究了路堤,以及冲击层,洪积层,和第三纪岩层中的纵波速度和剪切波速度,证明了在这些沉积层中剪切波速度与N值的一致性。(打桩的锤击数;Clayton et

相关主题
文本预览
相关文档 最新文档