当前位置:文档之家› 基本初等函数复习资料学生版

基本初等函数复习资料学生版

基本初等函数复习资料学生版
基本初等函数复习资料学生版

〖2.1〗指数函数

【2.1.1】指数与指数幂的运算

(1)根式的概念

①如果,,,1n

x a a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a 的n 次

当n 是偶数时,正数a 的正的n 次方根用符号负的n 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.

n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.

③根式的性质:n a =;

当n a =;

当n 为偶数时, (0)

|| (0)

a a a a a ≥?==?-

(2)分数指数幂的概念

①正数的正分数指数幂的意义是:0,,,m n

a a m n N +=>∈且1)n >.0的正分数指数幂等于0.

②正数的负分数指数幂的意义是:

1()0,,,m m n

n a a m n N a -+==>∈且1)n >.0的负分数指数幂没有意义.

注意口诀:底数取倒数,指数取相反数.

(3)分数指数幂的运算性质

①(0,,)r

s

r s

a a a

a r s R +?=>∈ ②()(0,,)r s rs a a a r s R =>∈

③()(0,0,)r r r

ab a b a b r R =>>∈

第1讲 §2.1.1 指数与指数幂的运算

1. 若n x a =,则x 叫做a 的n n >1,且n N *∈

n 次方根具有如下性质:

(1)在实数围,正数的奇次方根是一个正数,负数的奇次方根是一个负数;正数的偶次方根是两个绝对值相等、符号相反的数,负数的偶次方根没有意义;零的任何次方根都是零.

(2)n 次方根(*1,n n N >∈且)有如下恒等式:

n a =,||,a n a n ???为奇数

为偶数

;=(a ≥0).

2. 规定正数的分数指数幂:m

n

a =(0,,,1a m n N n *

>∈>且); 1m n

m n

a a

-

=

=

.

¤例题精讲:

【例1

】已知21n a =,求33n n

n n

a a

a a --++的值.

【例2】化简与求值:

(1

(2

???+

【2.1.2】指数函数及其性质

(4)指数函数

a 变化

象的影响

在第一象限,a 越大图象越高;在第二象限,a 越大图象越低.

第2讲 §2.1.2 指数函数及其性质(一)

1. 定义:一般地,函数(0,1)x y a a a =>≠且叫做指数函数,其中x 是自变量,函数的定义域为R .

2. 以函数2x y =与1

()2

x y =的图象为例,观察这一对函数的图象,总结如下性质:

定义域为R ,值域为(0,)+∞;当0x =时,1y =,即图象过定点(0,1);当01a <<时,在R 上是减函数,当1a >时,在R 上是增函数.

¤例题精讲:

【例1】求下列函数的定义域,和值域:

(1)1

32x

y -=; (2)51()3

x y -=;

【例2】已知函数23()(0,1)x f x a a a -=>≠且. (1)求该函数的图象恒过的定点坐标;(2)指出该函数的单调性.

第3讲 §2.1.2 指数函数及其性质(二)

¤知识要点:

以函数2x y =与1

()2

x y =的图象为例,得出这以下结论:

(1)函数()y f x =的图象与()y f x =-的图象关于y 轴对称.

(2)指数函数(0,1)x y a a a =>≠且的图象在第一象限,图象由下至上,底数由下到大.

¤例题精讲:

【例2】已知21

()21

x x f x -=+. (1)讨论()f x 的奇偶性; (2)讨论()f x 的单调性.

【例3】求下列函数的单调区间:(1)2

23

x x y a +-=; (2)1

0.21

x

y =

-.

【2.2.1】对数与对数运算

(1)对数的定义

①若(0,1)x

a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N

叫做真数.

②负数和零没有对数.

③对数式与指数式的互化:log (0,1,0)x

a x N a N a a N =?=>≠>.

(2)几个重要的对数恒等式

log 10a =,log 1a a =,log b a a b =.

(3)常用对数与自然对数

常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…). (4)对数的运算性质

如果0,1,0,0a a M N >≠>>,那么

①加法:log log log ()a a a M N MN += ②减法:log log log a a a

M M N N

-= ③数乘:log log ()n

a a n M M n R =∈ ④log a N

a

N =

⑤log log (0,)b n

a a n

M M b n R b

=

≠∈ ⑥换底公式:log log (0,1)log b a b N N b b a =

>≠且 第4讲 §2.2.1 对数与对数运算(一)

¤知识要点:

1. 定义:一般地,如果x a N =(0,1)a a >≠,那么数 x 叫做以a 为底 N 的对数(logarithm ).记作 log a x N =,其中a 叫做对数的底数,N 叫做真数

2. 我们通常将以10为底的对数叫做常用对数(common logarithm ),并把常用对数10log N 简记为lg N

在科学技术中常使用以无理数e=2.71828……为底的对数,以e 为底的对数叫自然对数,并把自然对数log e N 简记作ln N 3. 根据对数的定义,得到对数与指数间的互化关系:当0,1a a >≠时,log b a N b a N =?=.

4. 负数与零没有对数;log 10a =, log 1a a = ¤例题精讲:

【例1】求证:(1)log n a a n =; (2)log log log a a a M M N N

-=.

【例2】试推导出换底公式:log log log c a c b

b a

=

(0a >,且1a ≠;0c >,且1c ≠;0b >).

第5讲 §2.2.1 对数与对数运算(二)

¤知识要点:

1. 对数的运算法则:log ()log log a a a M N M N =+,log log log a

a a M

M N N

=-,log log n a a M n M =,其中0,1a a >≠且,0,0,M N n R >>∈. 三条法则是有力的解题工具,能化简与求值复杂的对数式.

2. 对数的换底公式log log log b a b N N a =. 如果令b =N ,则得到了对数的倒数公式1

log log a b b a

=. 同样,也可

以推导出一些对数恒等式,如log log n n a a N N =,log log m n a a n

N N m

=

,log log log 1a b c b c a =等. ¤例题精讲:

【例1】化简与求值:(1

)21

lg2lg5(lg 2

++

【例2】若2510a b ==,则

11

a b

+= .

【例3】 (1)方程lg lg(3)1x x ++=的解x =________;

(2)设12,x x 是方程2lg lg 0x a x b ++=的两个根,则12x x 的值是 .

【2.2.2】对数函数及其性质

(5)对数函数

第6讲 §2.2.2 对数函数及其性质(一)

¤知识要点:

1. 定义:一般地,当a >0且a ≠1时,函数a y=log x 叫做对数函数(logarithmic function). 自变量是x ; 函数的定义域是(0,+∞).

2. 由2log y x =与12

log y x =的图象,可以归纳出对数函数的性质:定义域为(0,)+∞,值域为R ;当1

x =时,0y =,即图象过定点(1,0);当01a <<时,在(0,)+∞上递减,当1a >时,在(0,)+∞上递增.

¤例题精讲:

【例1】求下列函数的定义域:(1)y (2)y

【例2】已知函数()log (3)a f x x =+的区间[2,1]--上总有|()|2f x <,数a 的取值围.

【例3】求不等式log (27)log (41)(0,1)a a x x a a +>->≠且中x 的取值围.

第7讲 §2.2.2 对数函数及其性质(二)

¤知识要点:

1. 当一个函数是一一映射时, 可以把这个函数的因变量作为一个新函数的自变量, 而把这个函数的自变量新的函数的因变量. 我们称这两个函数为反函数(inverse function ). 互为反函数的两个函数的图象关于直线y x =对称.

2. 函数(0,1)x y a a a =>≠与对数函数log (0,1)a y x a a =>≠互为反函数.

3. 复合函数(())y f x ?=的单调性研究,口诀是“同增异减”,即两个函数同增或同减,复合后结果为增函数;若两个函数一增一减,则复合后结果为减函数. 研究复合函数单调性的具体步骤是:(i )求定义域;(ii )拆分函数;(iii )分别求(),()y f u u x ?==的单调性;(iv )按“同增异减”得出复合函数的单调性.

¤例题精讲:

【例1】讨论函数0.3log (32)y x =-的单调性.

【例3】指数函数(0,1)x y a a a =>≠的图象与对数函数log (0,1)a y x a a =>≠的图象有何关系?

第8讲 §2.3 幂函数

知识要点:

1. 幂函数的基本形式是y x α=,其中x 是自变量,α是常数. 要求掌握y x =,2y x =,3y x =,1/2y x =,1y x -=这五个常用幂函数的图象.

2. 观察出幂函数的共性,总结如下:(1)当0α>时,图象过定点(0,0),(1,1);在(0,)+∞上是增函数.(2)当0α<时,图象过定点(1,1);在(0,)+∞上是减函数;在第一象限,图象向上及向右都与坐标轴无限趋近.

3. 幂函数y x α=的图象,在第一象限,直线1x =的右侧,图象由下至上,指数α由小到大. y 轴和直线1x =之间,图象由上至下,指数α由小到大.

¤例题精讲:

【例1】已知幂函数()y f x =的图象过点(27,3),试讨论其单调性.

【例3】幂函数m y x =与n y x =在第一象限的图象如图所示,则( ).

A .101n m -<<<<

B .1,01n m <-<<

C .10,1n m -<<>

D .1,1n m <->

〖2.3〗幂函数

(1)幂函数的定义

一般地,函数y x α

=叫做幂函数,其中x 为自变量,α是常数.

①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、二象限(图象关于y 轴对称);是奇函数时,图象分布在第一、三象限(图象关于原点对称);是非奇非偶函数时,图象只分布在第一象限.

②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1).

③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限,图象无限接近x 轴与y 轴.

④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当q

p

α=

(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q p

y x =是奇函数,若p 为奇数q 为偶数时,则q p

y x =是偶函数,若p 为偶数q 为奇数时,则q

p

y x =是非奇非偶函数.

⑤图象特征:幂函数,(0,)y x x α

=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,

其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线

y x =下方.

〖补充知识〗二次函数

(1)二次函数解析式的三种形式

①一般式:2

()(0)f x ax bx c a =++≠ ②顶点式:2

()()(0)f x a x h k a =-+≠ ③两根式:12()()()(0)f x a x x x x a =--≠

(2)求二次函数解析式的方法

①已知三个点坐标时,宜用一般式.

②已知抛物线的顶点坐标或与对称轴有关或与最大(小)值有关时,常使用顶点式. ③若已知抛物线与x 轴有两个交点,且横线坐标已知时,选用两根式求()f x 更方便.

(3)二次函数图象的性质

①二次函数2()(0)f x ax bx c a =++≠的图象是一条抛物线,对称轴方程为,2b

x a

=-

顶点坐标是24(,)24b ac b a a

--. ②当0a >时,抛物线开口向上,函数在(,]2b a -∞-

上递减,在[,)2b a -+∞上递增,当2b

x a

=-时,2min 4()4ac b f x a -=;当0a <时,抛物线开口向下,函数在(,]2b a -∞-

上递增,在[,)2b

a -+∞上递减,当2b

x a

=-时,2max 4()4ac b f x a -=.

③二次函数2

()(0)f x ax bx c a =++≠当2

40b ac ?=->时,图象与x 轴有两个交点

11221212(,0),(,0),||||||

M x M x M M x x a =-=

. (4)一元二次方程2

0(0)ax bx c a ++=≠根的分布

一元二次方程根的分布是二次函数中的重要容,这部分知识在初中代数中虽有所涉及,但尚不够系统和完整,且解决的方法偏重于二次方程根的判别式和根与系数关系定理(韦达定理)的运用,下面结合二次函数图象的性质,系统地来分析一元二次方程实根的分布.

设一元二次方程20(0)ax bx c a ++=≠的两实根为12,x x ,且12x x ≤.令2

()f x ax bx c =++,从以下

四个方面来分析此类问题:①开口方向:a ②对称轴位置:2b

x a

=- ③判别式:? ④端点函数值符号.

①k <x 1

≤x 2

? ???△=b 2

-4ac ≥0

af (k )>0-b 2a >k

②x 1

≤x 2

<k ? ???△=b 2

-4ac ≥0

af (k )>0-b 2a <k

③x 1<k <x 2 ? af (k )<0

④k 1

<x 1

≤x 2

<k 2

? ?????△=b 2

-4ac ≥0a >0

f (k 1)>0

f (k 2)>0k 1

<-b 2a

<k 2或?????△=b 2

-4ac ≥0a <0f (k 1)<0f (k 2)<0k 1

<-b 2a

<k 2

⑤有且仅有一个根x 1(或x 2)满足k 1<x 1(或x 2)<k 2 ? f (k 1)f (k 2)<0,并同时考虑f (k 1)=0或f (k 2)=0这两种情况是否也符合

⑥k 1

<x 1

<k 2

≤p 1

<x 2

<p 2

? ?????a >0f (k 1)>0

f (k 2

)<0

f (p 1)<0f (p 2)>0

或?????a <0

f (k 1)<0f (k 2)>0

f (p 1)>0f (p 2

)<0

此结论可直接由⑤推出.

(5)二次函数2

()(0)f x ax bx c a =++≠在闭区间[,]p q 上的最值 设()f x 在区间[,]p q 上的最大值为M ,最小值为m ,令01

()2

x p q =

+. (Ⅰ)当0a >时(开口向上)

最小值

① 若2b p a -<,则()m f p = ②若2b p q a ≤-≤,则()2b m f a

=-

③若2b

q a

->,则()m f q =

最大值

① 若02b x a -≤,则()M f q = ②02b x a

->,则()M f p =

(Ⅱ)当0a <时(开口向下)

最大值

①若2b p a -

<,则()M f p = ②若2b p q a ≤-≤,则()2b M f a

=- x

x

x

x

x x

(q)0

x

③若2b

q a

->,则()M f q =

最小值

①若02b x a -

≤,则()m f q = ②02b x a

->,则()m f p =.

x

f

x

f

x

f

x

x

x

2021新高考一轮复习专题2.1 函数概念及三要素(解析版)

第一讲 函数的概念及三要素 1.函数与映射 函数 映射 两个集合A ,B 设A ,B 是两个非空数集 设A ,B 是两个非空集合 对应法则f :A →B 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素y 和它对应 如果按某种对应法则f ,使对于集合A 中的每一个元素x ,在集合B 中都有唯一的元素 y 与之对应 名称 称y =f (x ),x ∈A 为从集合A 到集合B 的一个函数 称f :A →B 为从集合A 到集合B 的一个映射 记法 函数y =f (x ),x ∈A 映射:f :A →B 2.函数的有关概念 (1)函数的定义域、值域 在函数y =f (x ),x ∈A 中,x 叫做自变量,所有的输入值x 组成的集合A 叫做函数y =f (x )的定义域;对于 A 中的每一个x ,都有一个输出值y 与之对应.我们将所有输出值y 组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 考向一 函数、映射的判断 【例1】(1)若函数y =f (x )的定义域为M ={x |-2≤x ≤2},值域为N ={y |0≤y ≤2},则函数y =f (x )的图象可能是( ) 【修炼套路】---为君聊赋《今日诗》,努力请从今日始 【套路秘籍】---千里之行始于足下

函数学生版

函数 1、回顾初中有关函数的概念:在一个变化过程中,有两个变量x 和y ,如果给定了一个x 值,相应地就确定唯一的一个y 值,那么我们称y 是x 的 函数. (1)变量:因变量,自变量 在用图象表示变量之间的关系时,通常用水平方向的数轴上的点自变量,用竖直方向的数轴上的点表示因变量。 (2)一次函数:①若两个变量y ,x 间的关系式可以表示成y kx b =+(b 为常数,k 不等于0)的形式,则称y 是x 的一次函数。②当b =0时,称y 是x 的正比例函数。 (3)一次函数的图象及性质 ①把一个函数的自变量x 与对应的因变量y 的值分别作为点的横坐标与纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。 ②正比例函数y =k x 的图象是经过原点的一条直线。 ③在一次函数中,当k <0, b 0时,则经1、2、4象限;当k >0, b <0时,则经1、3、4象限;当k >0, b >0时,则经1、2、3象限。 ④当k >0时,y 的值随x 值的增大而增大,当k <0时,y 的值随x 值的增大而减少。 (4)二次函数: ①一般式:22 24()24b ac b y ax bx c a x a a -=++=++(0a ≠),对称轴是,2b x a =- 顶点是 2 4,)24b ac b a a -(-; ②顶点式:2 ()y a x m k =++(0a ≠),对称轴是,x m =-顶点是(),m k -; ③交点式:12()()y a x x x x =--(0a ≠),其中(1,0x ),(2,0x )是抛物线与x 轴的交点

2函数三要素-讲义版

函数的三要素 【知识点】 一、函数的定义域 (1)研究一个函数一定在其定义域内研究,所以求定义域是研究任何函数的前提,要树立定义域优先的原则. (2)函数的定义域常由其实际背景决定,若只给解析式时,定义域就是使此式子有意义的实数x 的集合(区间表示). 常见定义域的求法: 常见定义域求法:对于()x f y =而言: ①整式:实数集R ; ②分式:使分母不等于0的实数的集合; [1 (0)x x ≠] ③0指数幂:底数不等于零; [0 (0)x x ≠] ④偶次根式:使根号内的式子大于或等于0的实数的集合; [2(0)n x x ≥] ⑤对数:真数大于零; [log (0)a x x >] ⑥由几个部分的式子构成:使各部分式子都有意义的实数的集合(即各集合的交集); 实际问题:使实际问题有意义的实数的集合. 二、函数的值域 对于)(x f y =,x A ∈,与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)(叫做函数)(x f y =的值域. 三、解析式 (1)当已知函数的类型时,可用待定系数法求解; (2)当已知表达式为()[]x g f 时,可考虑配凑法或换元法.若易将含x 的式子配成()x g ,用配凑法;若易换元后求出x ,用换元法; (3)若求抽象函数的解析式,通常采用方程组法; (4)求分段函数的解析式时,要注意符合变量的要求. 课程类型: 1对1课程 ? Mini 课程 ? MVP 课程

【课堂演练】 题型一 函数定义域 例1 求下列函数的定义域: (1)1()2 f x x =- (2)0()32(2)f x x x = +- (3)1 ()1 2f x x x =+- 练1 求下列函数的定义域: (1)83y x x =+- (2)22 111 x x y x --= - (3)()3||f x x =- 练2 函数0()(12)13 g x x x x = --的定义域为 . 例2 函数3()1log (63)f x x x = +-的定义域为( ) A .(,2)-∞ B .(2,)+∞ C .[1,2)- D .[1,2]- 练3 函数()3lg(1)f x x x =-+的定义域为( ) A .[1,3)- B .(1,3)- C .(1,3]- D .[1,3] - 练4 函数1 ()ln(31) = +f x x 的定义域是( ) A .1 (,)3- +∞ B .1 (,0)(0,)3- +∞U C .1 [,)3- +∞ D .[0,) +∞ 题型二 函数值域 ? 一次分式值域 例3 求432+-=x y 在?? ? ???-∈1,32x 上的值域.

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

函数的三要素

第一章函数 第一讲函数的概念 【知识归纳】 (1) 映射 映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中 的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B 中的元素b叫做a的象,a叫做b的原象. 一对一,多对一是映射但一对多显然不是映射 辨析: ①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等; ②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射; ③存在性:映射中集合A的每一个元素在集合B中都有它的象; ④唯一性:映射中集合A的任一元素在集合B中的象是唯一的; ⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都 有原象,即A中元素的象集是B的子集. 映射三要素:集合A、B以及对应法则f,缺一不可; (2) 映射观点下的函数概念 如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x). (3)函数概念: 设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A. 其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集. (4)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系.

函数概念及三要素(答案)

函数的概念、表示法与定义域 一、映射与函数: (1)映射的概念: (2)一一映射: (3)函数的概念: 二、函数的三要素:定义域,值域,对应法则。 相同函数的判断方法:①定义域相同;②对应法则一样 (两点必须同时具备) (1)函数解析式的求法: ①定义法(拼凑): ②换元法: ③待定系数法: ④赋值法: (2)函数定义域的求法: ①) () (x g x f y = ,则g (x )0≠; ②)()(*2N n x f y n ∈=则f (x )0≥; ③0 )]([x f y =,则f (x )0≠; ④如:)(log )(x g y x f =,则 { ()0 0()1()1g x f x f x ><<>或; ⑤含参问题的定义域要分类讨论; ⑥对于实际问题,在求出函数解析式后;必须求出其定义域,此时的定义域要根据实际意义来确定。 (3)函数的表示法:解析法、列表法与图象法。 (4)分段函数:一个函数的定义域分成了若干个子区间,而每个子区间的解析式不同。 三.练习题: 1. 已知集合M ={1,2,3,m },4 2 {4,7,,3}N n n n =+,* ,m n N ∈,映射:31f y x →+是从M 到N 的一个函数,则m n -的值为(B) A .2 B .3 C .4 D .5 2.下列对应关系是集合P 上的函数是有 2 . (1)* ,P Z Q N ==,对应关系:f “对集合P 中的元素取绝对值与集合Q 中的元素相对应”; (2){1,1,2,2},{1,4}P Q =--=,对应关系::f x →2 ,,y x x P y Q =∈∈; (3){P =三角形},{|0}Q x x =>,对应关系:f “对P 中三角形求面积与集合Q 中元素对

函数的三要素典型例题

函数定义域的求法及常见题型 一、函数定义域求法 (一)常规函数 函数解析式确定且已知,求函数定义域。其解法是根据解析式有意义所需条件,列出关于自变量的不等式或不等式组,解此不等式(或组),即得函数定义域。 例1.求函数y = 的定义域。 (二)抽象函数 1.有关概念 定义域:函数y=f(x)的自变量x 的取值范围,可以理解为函数y=f(x)图象向x 轴投影的区间;凡是函数的定义域,永远是指自变量x 的取值范围; 2.四种类型 题型一:已知抽象函数y=f(x)的定义域为[m,n],如何求复合抽象函数y=f(g(x))的定义域? 例题2.已知函数y=f(x)的定义域[0,3],求函数y=f(3+2x)的定义域 强化训练: 1.已知函数y=f(x)的定义域[-1,5],求函数y=f(3x-5)的定义域; 2.已知函数y=f(x)的定义域[1/2,2],求函数y=f(log 2x)的定义域; 3.已知(x)f 的定义域为[-2,2],求2(x 1)f -的定义域。 题型二:已知复合抽象函数y=f(g(x))定义域[m,n],如何求抽象函数y=f(x)的的定义域? 例题4.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(x)的定义域. 强化训练: 1.已知函数y=f(x 2-2x+2)的定义域[0,3],求函数y=f(x)的定义域. 2.已知函数y=f[lg(x+1)]的定义域[0,9],求函数y=f(x)的定义域.

题型三:已知复合抽象函数y=f(g(x))定义域[m,n],如何求复合抽象函数y=f(h(x))定义域的定义域? 例题5.已知函数y=f(2x-1)的定义域[0,3],求函数y=f(3+x)的定义域. 强化训练: 1.已知函数y=f(x+1)的定义域[-2,3],求函数y=f(2x-1)的定义域. 2.已知函数y=f(2x)的定义域[-1,1],求函数y=f(log 2x)的定义域. 3. 已知f(x+1)的定义域为[-1/2,2],求f(x 2)定义域。 题型四:已知f(x)的定义域,求与f(x)相关四则运算型函数的定义域。 例6.已知f(x)的定义域为[-3,5],求φ(x )=f(-x)+f(2x+5)定义域。 强化训练: 1.已知f(x)的定义域为(0,5],求g(x)=f(x+a)f(x-a)定义域,其中-1﹤a ≦0。 二、与函数定义域相关的变形题型 (一)逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数的范围问题通常是转化为恒成立问题来解决。 例7.已知函数的定义域为R ,求实数m 的取值范围。 例8.已知函数27 (x)43 kx f kx kx += ++的定义域是R ,求实数k 的取值范围。 (二)参数型 对于含参数的函数,求定义域时,必须对分母分类讨论。 例9.已知(x)f 的定义域为[0,1],求函数(x)(x )(x a)F f a f =++-的定义域。

函数的三要素练习题

一、选择题 1.已知函数()()0f x x a x a a =+--≠,()()() 2200x x x h x x x x ?-+>?=?+≤??, 则()(),f x h x 的奇偶性依次为( ) A .偶函数,奇函数 B .奇函数,偶函数 C .偶函数,偶函数 D .奇函数,奇函数 2.若)(x f 是偶函数,其定义域为()+∞∞-,,且在[)+∞,0上是减函数, 则)2 52()23(2+ +-a a f f 与的大小关系是( ) A .)23(-f >)252(2++a a f B .)23(-f <)2 52(2++a a f C .)23(-f ≥)252(2++a a f D .)23(-f ≤)2 52(2++a a f 3.已知5)2(22+-+=x a x y 在区间(4,)+∞上是增函数,则a 的范围是( ) A .2a ≤- B .2a ≥- C .6-≥a D .6-≤a 4.设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=, 则()0x f x ?<的解集是( ) A .{}|303x x x -<<>或 B .{}|303x x x <-<<或 C .{}|33x x x <->或 D .{}|3003x x x -<<<<或 5.已知3()4f x ax bx =+-其中,a b 为常数,若(2)2f -=,则(2)f 的值等于( ) A .2- B .4- C .6- D .10- 6.函数33()11f x x x =++-,则下列坐标表示的点一定在函数f (x )图象上的是( ) A .(,())a f a -- B .(,())a f a - C .(,())a f a - D .(,())a f a --- 二、填空题 1.设()f x 是R 上的奇函数,且当[)0,x ∈+∞ 时,()(1f x x =, 则当(,0)x ∈-∞时()f x =_____________________。 2.若函数()2f x a x b =-+在[)0,x ∈+∞上为增函数,则实数,a b 的取值范围是 。 3.已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++=_____。 4.若1()2 ax f x x +=+在区间(2,)-+∞上是增函数,则a 的取值范围是 。 5.函数4()([3,6])2 f x x x =∈-的值域为____________。

专题1.1 函数概念及三要素(学生版)

第一讲函数的概念及三要素 1.函数与映射 2.函数的有关概念 (1)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,所有的输入值x组成的集合A叫做函数y=f(x)的定义域;对于A 中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数.

分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 考向一函数、映射的判断 【例 1】(1)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( ) (2)集合A={x|0≤x≤4},B={y|0≤y≤2},下列不表示从A到B的函数的是( ) A.f:x→y= 1 2 x B.f:x→y= 1 3 x C.f:x→y= 2 3 x D.f:x→y=x

【举一反三】 1.下列从集合M到集合N的对应关系中,其中y是x的函数的是 A.M={x|x∈Z},N={y|y∈Z},对应关系f:x→y,其中y=x 2 B.M={x|x>0,x∈R},N={y|y∈R},对应关系f:x→y,其中y=±2x C.M={x|x∈R},N={y|y∈R},对应关系f:x→y,其中y=x2 D.M={x|x∈R},N={y|y∈R},对应关系f:x→y,其中y=2 x 2.下图中,能表示函数y=f(x)的图象的是( ) A.B.C.D. 考向二函数定义域求法 类型一:已知解析式求定义域 的定义域是。 【例2-1】(1)函数y=√3?x lgx (x?1)0的定义域是。 (2)函数y= √12+x?x2

函数的三要素方法总结

一、考点自我梳理: 1.函数的概念 设A、B 是__________,如果按照某个确定的对应关系f,使对于集合A 中的_______数x,在集合B 中都有__________的数f(x)和它对应,那么就称_______为从集合A 到集合B 的一个函数.记作:y=f(x),x∈A.其中,x 叫做自变量,x 的取值范围A 叫做函数的_______;与x 的值相对应的y 值叫做函数值,函数值的集合_________叫做函数的值域.值域是集合B 的______。 两个函数为同一函数的条件:1._________________2._________________2.函数的定义域: (1)定义:________________________________________________________;(2)求函数定义域的主要依据: ①分式的分母不能为________;②偶次方根的被开方数必须________;③零的 ________次方无意义;负分数指数幂的底数_______ ④对数函数的底数必须______,真数必须______ ⑤实际问题中的函数定义域要根据自变量的实际意义确定。⑥反函数的定义域由_________2、求函数解析式的常用方法: 求值域的常用方法: 请同学们对本节所学知识归纳总结后,画出知识树:二、自主体验: 1.设{}{} 02,02M x x N y y =≤≤=≤≤给出下列四个图形,其中能表示从集合M 到集合N 的函数关系的有( ) 2.下列各组函数是同一函数的是() ①f (x )=-2x 3 与g (x )=x -2x ; ②f (x )=x 与g (x )=x ;③f (x )=x 0 与g (x )=1x 0; ④f (x )=x 2 -2x -1与g (x )=t 2 -2t -1.A.①② B.①③ C.③④ D.①④ 3.已知f(x),g(x)分别由下表给出 则f[g(1)]+g[f(2)]=_________ x 123g(x) 3 2 1 x 123f(x) 2 1 1 知识树: 我的疑问: 我的收获与发现:

高中数学全套讲义 必修1 函数三要素 拔高学生版

目录 函数三要素专题 (2) 模块一:函数定义域 (2) 考点1:具体函数求定义域 (2) 考点2:抽象函数求定义域 (4) 模块二:函数值域 (5) 考点3:直接法求值域 (5) 考点4:换元法求值域 (6) 模块三:函数解析式 (7) 考点5:换元法求解析式 (8) 课后作业: (8)

函数三要素专题 模块一:函数定义域 ⑴ 具体函数的自然定义域: 目前的限制条件有分母不为零,零的零次方无意义,偶次根式下非负; ⑵ 限制定义域: ① 人为规定的限制,如2 ()1[12]f x x x =+∈-,,; ② 实际背景的限制; ⑶抽象复合函数的定义域问题. 考点1:具体函数求定义域 例1.(1)(2017?西青区模拟)函数1 ()2f x x =+-( ) A .{|2}x x ≠ B .{|3x x <-或3}x > C .{|33}x x - D .{|33x x -且2}≠ (2)(2019春?海安县校级期中)函数()f x =( ) A .{|0}x x > B .{|1}x x C .{|1x x 或0}x < D .{|01}x x < (3)(2018秋?天河区校级月考)函数y =( ) A .[2-,1]- B .[2-,1] C .[2,)+∞ D .(-∞,1)(1?,)+∞

(4)(2018秋?道里区校级月考)函数 y =的定义域为( ) A .[3-,2) [1-,2] B .[3-,2)(1-?,2) C .[3-,2](1-?,2] D .[3-,2)(1-?,2] 例2.(1)(2018秋?蒸湘区校级月考)函数()f x =的定义域为R ,则实数m 的取值范围是( ) A .[0,8] B .[0,8) C .[8,)+∞ D .(,8)-∞ (2)(2018秋?文峰区校级月考)已知函数231 ()3 x f x ax ax -=+-的定义域是R ,则实数a 的取 值范围是( ) A .13 a > B .120a -< C .120a -<< D .13 a (3)(2018秋?沙坪坝区校级期中)若函数 ()f x R ,则实数a 的取 值范围是( )

【高中数学】函数的概念及三要素(学生版)

【高考数学】函数的概念及三要素 【套路秘籍】 1.函数与映射 2.函数的有关概念 (1)函数的定义域、值域 在函数y=f(x),x∈A中,x叫做自变量,所有的输入值x组成的集合A叫做函数y=f(x)的定义域;对于A中的每一个x,都有一个输出值y与之对应.我们将所有输出值y组成的集合称为函数的值域. (2)函数的三要素:定义域、对应法则和值域. (3)函数的表示法 表示函数的常用方法有解析法、图象法和列表法. 3.分段函数 若函数在其定义域的不同子集上,因对应法则不同而分别用几个不同的式子来表示,这种函数称为分段函数. 分段函数的定义域等于各段函数的定义域的并集,其值域等于各段函数的值域的并集,分段函数虽由几个部分组成,但它表示的是一个函数. 【套路修炼】 考向一函数、映射的判断 【例1】(1)若函数y=f(x)的定义域为M={x|-2≤x≤2},值域为N={y|0≤y≤2},则函数y=f(x)的图象可能是( )

(2)集合A ={x |0≤x ≤4},B ={y |0≤y ≤2},下列不表示从A 到B 的函数的是( ) A .f :x →y =1 2x B .f :x →y =1 3x C .f :x →y =2 3 x D .f :x →y =x 【举一反三】 1.下列从集合M 到集合N 的对应关系中,其中y 是x 的函数的是 A .M ={x|x ∈Z},N ={y|y ∈Z},对应关系f:x →y ,其中y =x 2 B .M ={x|x >0,x ∈R},N ={y|y ∈R},对应关系f:x →y ,其中y =±2x C .M ={x|x ∈R},N ={y|y ∈R},对应关系f:x →y ,其中y =x 2 D .M ={x|x ∈R},N ={y|y ∈R},对应关系f:x →y ,其中y =2 x 2.下图中,能表示函数y =f(x)的图象的是( ) A . B . C . D . 考向二 函数定义域求法 类型一:已知解析式求定义域 【例2-1】(1)函数y =√3?x lgx 的定义域是 。 (2)函数y = √12+x?x 2 (x ?1)0的定义域是 。

函数三要素复习讲义

1. 函数的三要素是什么?如何比较两个函数是否相同? (定义域、对应法则、值域) 相同函数的判断方法:①表达式相同;②定义域一致 (两点必须同 时具备) 2. 求函数的定义域有哪些常见类型? () ()例:函数的定义域是y x x x =--432lg ()()()(答:,,,)022334 函数定义域求法: ● 分式中的分母不为零; ● 偶次方根下的数(或式)大于或等于零; ● 指数式的底数大于零且不等于一; 对数式的底数大于零且不等于一,真数大于零。 ● 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 ● 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 ● 反三角函数的定义域 函数y =arcsinx 的定义域是 [-1, 1] ,值域是,函数y = arccosx 的定义域是 [-1, 1] ,值域是 [0, π] ,函数y =arctgx 的 定义域是 R ,值域是 .,函数y =arcctgx 的定义域是 R ,值域 是 (0, π) . 当以上几个方面有两个或两个以上同时出现时,先分别求出满足每一个 条件的自变量的范围,再取他们的交集,就得到函数的定义域。 3. 如何求复合函数的定义域? []的定,则函数,,的定义域是 如:函数)()()(0)(x f x f x F a b b a x f -+=>-> 义域是_____________。 [](答:,)a a - 复合函数定义域的求法:已知)(x f y =的定义域为[]n m ,,求[] )(x g f y =的定义域,可由n x g m ≤≤)(解出x 的范围,即为[])(x g f y =的定义域。

函数的概念-三要素的求法(整理版)

函数的概念,三要素的求法 一、函数的概念: 1. 函数的概念: 函数概念:设A 、B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数 记作:y = f (x ),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f (x ) | x ∈A }叫做函数的值域. 显然,值域是集合B 的子集. (2)函数的表示方法 1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系. 3.图象法:用图象表示两个变量之间的对应关系. (3)典型例题: 1. 函数y = f (x )表示( ) A .y 等于f 与x 的乘积 B .f (x )一定是解析式 C .y 是x 的函数 D .对于不同的x ,y 值也不同 2.下列各图中,可表示函数y =f (x )的图象的只可能是 A B C D 3. 下列四种说法中,不正确的是( ) A .函数值域中每一个数都有定义域中的一个数与之对应 B .函数的定义域和值域一定是无限集合 C .定义域和对应关系确定后,函数的值域也就确定了 D .若函数的定义域只含有一个元素,则值域也只含有一个元素 4. 已知f (x ) = x 2 + 4x + 5,则f (2) = __ ,f (–1) = __ . 5. 已知f (x ) = x 2 (x ∈R ),表明的“对应关系”是______,它是____→_____的函数. 2.映射 x y o x y o x y o x y o

高一数学函数的三要素

1.2.2函数的三要素 (一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则. (三)教学方法 启发式教学,在老师引导,学生在合作的状态下理解知识、应用知识,提升学生应用知识和基本技能探究解决问题的能力. (四)教学过程 复习回顾范例分析 . )求函数的定义域; 的值; 相等? ; 2}.

.区间的概念: 表示; 表示; 示; ; . ; 有以下几种情况: . )

例1 求下列函数的定义域 (1)21 12 y x =-+; (2)22 4 x y x -= -;

(3)1 || y x x = +; (4)2y ; (5)1 ||3 y x =-; (6)y (a 为常数). 【解析】(1)x ∈R ; (2)要使函数有意义,必须使x 2 – 4≠0,得原函数定义域为{x | x ∈R 且x ≠±2}; (3)要使函数有意义,必须使x + |x |≠0,得原函数定义域为{x | x >0}; (4)要使函数有意义,必须使10, 40,x x -≥?? -≥? 得原函数的定义域为{x | 1≤x ≤4}; (5)要使函数有意义,必须使240, ||30;x x ?-≥?-≠? 得原函数定义域为{x | –2≤x ≤2}; (6)要使函数有意义,必须使ax – 3≥0,得 当a >0时,原函数定义域为{x | x ≥3 a }; 当a <0时,原函数定义域为{x | x ≤ 3 a }; 当a = 0时,ax – 3≥0的解集为?,故原函数定义域为?. 例2 (1)已知函数f (x )的定义域为(0, 1),求f (x 2)的定义域. (2)已知函数f (2x + 1)的定义域为(0, 1),求f (x )的定义域. (3)已知函数f (x + 1)的定义域为[–2, 3],求f (2x 2 – 2)的定义域. 【解析】(1)∵f (x )的定义域为(0, 1), ∴要使f (x 2)有意义,须使0<x 2<1,即–1<x <0或0<x <1,∴函数f (x 2)的定义域为{x | –1<x <0或0<x <1}. (2)∵f (2x + 1)的定义域为(0, 1),即其中的函数自变量x 的取值范围是0<x <1,令t = 2x + 1,∴1<t <3,∴f (t )的定义域为1<x <3,∴函数f (x )的定义域为{x | 1<x <3}. (3)∵f (x + 1)的定义域为–2≤x ≤3, ∴–2≤x ≤3. 令t = x + 1,∴–1≤t ≤4, ∴f (t )的定义域为–1≤t ≤4. 即f (x )的定义域为–1≤x ≤4,要使f (2x 2 – 2)有意义,须使–1≤2x 2 – 2≤4, ∴≤x ≤或x 函数f (2x 2 – 2)的定义域为{x |x ≤≤x 注意:对于以上(2)(3)中的f (t )与f (x )其实质是相同的.

相关主题
文本预览
相关文档 最新文档