当前位置:文档之家› 函数的三要素

函数的三要素

函数的三要素
函数的三要素

第一章函数

第一讲函数的概念

【知识归纳】

(1) 映射

映射的定义:设A,B是两个非空的集合,如果按某一个确定的对应关系f,使对于集合A中

的任意一个元素x,在集合B中都有惟一确定的元素y与之对应,那么这样的对应(包括集合A,B 以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:A→B.其中与A中的元素a对应的B

中的元素b叫做a的象,a叫做b的原象.

一对一,多对一是映射但一对多显然不是映射

辨析:

①任意性:映射中的两个集合A,B可以是数集、点集或由图形组成的集合等;

②有序性:映射是有方向的,A到B的映射与B到A的映射往往不是同一个映射;

③存在性:映射中集合A的每一个元素在集合B中都有它的象;

④唯一性:映射中集合A的任一元素在集合B中的象是唯一的;

⑤封闭性:映射中集合A的任一元素的象都必须是B中的元素,不要求B中的每一个元素都

有原象,即A中元素的象集是B的子集.

映射三要素:集合A、B以及对应法则f,缺一不可;

(2) 映射观点下的函数概念

如果A,B都是非空的数集,那么A到B的映射f:A→B就叫做A到B的函数,记作y=f(x),其中x∈A,y∈B.原象的集合A叫做函数y=f(x)的定义域,象的集合C(C B)叫做函数y=f(x)的值域.函数符号y=f(x)表示“y是x的函数”,有时简记作函数f(x).

(3)函数概念:

设A、B是非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f (x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数记作:y = f (x),x∈A.

其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f (x) | x∈A}叫做函数的值域. 显然,值域是集合B的子集.

(4)函数的表示方法

1.解析式:把常量和表示自变量的字母用一系列运算符号连接起来,得到的式子叫做解析式. 2.列表法:列出表格来表示两个变量之间的对应关系.

3.图象法:用图象表示两个变量之间的对应关系.

【经典例题】

例1 以下给出的对应是不是从集合A 到B 的映射?

(1)集合A = {P | P 是数轴上的点},集合B = R ,对应关系f :数轴上的点与它所代表的实数对应;

(2)集合A = {P | P 是平面直角坐标系中的点,集合B = {(x | y ) | x ∈R ,y ∈R },对应关系f :平面直角坐标系中的点与它的坐标对应;

(3)集合A = {x | x 是三角形},集合B = {x | x 是圆},对应关系f :每一个三角形都对应它的内切圆;

(4)集合A = {x | x 是新华中学的班级},集合B = {x | x 是新华中学的学生},对应关系f :每一个班级都对应班里的学生.

练1 已知下列集合A 到B 的对应,请判断哪些是A 到B 的映射?并说明理由: (1)A=N ,B=Z ,对应法则:“取相反数”;

(2)A={-1,0,2},B={-1,0,1/2},对应法则:“取倒数”; (3)A={1,2,3,4,5},B=R ,对应法则:“求平方根”;

(4)A={α|00≤α≤900},B={x|0≤x ≤1},对应法则:“取正弦”.

例2

1. 函数y = f (x )表示( )

A .y 等于f 与x 的乘积

B .f (x )一定是解析式

C .y 是x 的函数

D .对于不同的x ,y 值也不同

2.下列各图中,可表示函数y =f (x )的图象的只可能是 ( )

A B C D

3. 下列四种说法中,不正确的是( )

A .函数值域中每一个数都有定义域中的一个数与之对应

B .函数的定义域和值域一定是无限集合

C .定义域和对应关系确定后,函数的值域也就确定了

D .若函数的定义域只含有一个元素,则值域也只含有一个元素

4. 已知f (x ) = x 2

+ 4x + 5,则f (2) = __ ,f (–1) = __ .

5. 已知f (x ) = x 2

(x ∈R ),表明的“对应关系”是______,它是____→_____的函数.

x y o x y o x y o x y o

第二讲 函数的定义域

【知识归纳】

1.函数的定义域:

函数的定义域是指使得函数有意义的自变量x 的取值。(注:专指x 的取值范围。) 2.函数定义域的求法:

(1)由函数的解析式确定函数的定义域;

(2)由实际问题确定的函数的定义域;

(3)不给出函数的解析式,而由)(x f 的定义域确定函数)]([x g f 的定义域。 注:1、具体函数的定义域

(1)若()f x 是分式,则函数的定义域是使分母不等于0的实数集;

(2)若()f x 是偶次根式,则函数的定义域是使(被开方数)根号内的式子大于或等于0的实数集合;

(3)若()f x 是对数函数,则函数的真数要大于0; (4)若0

()f x x =,则x 不等于0 。

(5)指数函数与对数函数的底大于零且不等于1. (6)正切函数的角的终边不能在y 轴上. (7)分段函数:

①分段函数是一个函数.②分段函数的定义域是各段定义域的并集,值域是各段值域的并集. (8)复合函数定义域的求法:

①已知)(x f y =的定义域是A ,求()[]x f y ?=的定义域的方法为解不等式:A x ∈)(?,求出x 的取值范围.

②已知()[]x f y ?=的定义域为A ,求)(x f y =的定义域的方法:A x ∈,求)(x ?的取值范围即可.

(9)若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;

(10)若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题. 2、抽象函数的定义域求解:

不管括号内是什么,定义域是指x 的范围;无论括号内是什么,括号的整体范围不变。

3、区间表示法:设a ,R b ∈,且b a <.

满足b x a ≤≤的全体实数x 的集合,叫做闭区间,记作[]b a ,. 满足b x a <<的全体实数x 的集合,叫做开区间,记作()b a ,.

满足b x a ≤<或b x a <≤的全体实数x 的集合,都叫做半开半闭区间,记作

(][)b a b a ,,或.b a 与叫做区间的端点,在数轴上表示时,包括端点时,用实心的点,不包括时用空

心点表示.

【经典例题】

例1.函数x x y +

-=1的定义域为( )

A .{}1x x ≤

B .{}0x x ≥ C.{}

10x x x ≥≤或 D.{}01x x ≤≤

例2.函数()()x

x x x f -+=0

1的定义域是( )

A .()0,+∞

B .(),0-∞

C.()(),11,0-∞--

D.()()(),11,00,-∞--+∞

例3.若函数()1+=x f y 的定义域是[],3,2-则()12-=x f y 的定义域是( )

5.0,2A ??

??

??

[]4,1.-B []5,5.-C []7,3.-D 例4.已知函数(),1

1

+=

x x f 则函数()[]x f f 的定义域是( ) {}1.-≠x x A {}2.-≠x x B {}21.-≠-≠x x x C 且{}21.-≠-≠x x x D 或

例5.已知()x f

21-求函数??

?

?

?-x

x f 213的定义域是?

例6.若函数()2

68y kx x k =-++的定义域是R ,求实数k 的取值范围.

例7.已知函数x x x f -+=11lg )(,求函数)2

(12)1()(x

f x x f x F +++=的定义域.

例8.已知函数()23x x f x a b =?+?,其中常数,a b 满足0ab ≠. (1)若0ab >,判断函数()f x 的单调性;

(2)若0ab <,求(1)()f x f x +>时x 的取值范围.

【巩固练习】

1.函数()x x x y +-=

1的定义域为( )

{}

0.≥x x A

{}

1.≥x x B

{}{}

01. ≥x x C

{}

10.≤≤x x D

2.()x

x f 11211++

=

的定义域为 .

3.已知函数()x f 的定义域为[].2,2- ①求函数()x f 2的定义域; ②求函数??

?

??-141x f 的定义域. 4.已知函数(

)

42-x f

的定义域[]5,3∈x ,则函数()x f 的定义域是?

5.如果函数()()()

x x x f -+=11的图像在x 轴上方,则()x f 的定义域为( ).

{

}1

.x x B {}11.-≠x x x D 且

6. (1)已知1,,,,≠∈+

a R z y x a ,设,,log 11log 11

z

y

a a a

y a

x --==用x a ,表示z .

(2)设ABC ?的三边分别为c b a ,,,且方程01lg 2)lg(22

2

2=+--+-a b c x x 有等根,判断

ABC

?的形状.

第三讲函数的值域

【知识归纳】

1.函数的值域:

函数的值域是指在定义域的范围内函数的取值范围。(是指y的取值范围。)

2.函数值域的求法:见经典例题中分类。

【经典例题】

一.观察法:对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域。

例1 求函数y=3+√(2-3x) 的值域。

二.反函数法:函数的反函数存在时,则其反函数的定义域就是原函数的值域。

例2.求函数

34

56

x

y

x

+

=

+值域。

三.配方法:数是二次函数或可化为二次函数的复合函数时,可以利用配方法求函数值域。

例3.求函数

225,

y x x x R

=-+∈的值域。

四.判别式法:适用于二次方程的分式函数或无理函数,可用判别式法求函数的值域。

使用判别式求函数值域的条件是自变量x∈R。

例4.求函数y=(2x2-2x+3)/(x2-x+1)的值域。

点评:把函数关系化为二次方程F(x,y)=0,由于方程有实数解,故其判别式为非负数,可求得函数的值域。特别注意转化后的二次方程的二次项系数为0的情况。

常适应于形如y=(ax2+bx+c)/(dx2+ex+f)及y=ax+b±√(cx2+dx+e)的函数。

五、均值不等式法:适用于二次型的分式函数。,使用均值不等式的条件是“一正,二定,三相等”。x+a/x≥2√x·a/x=2√a(x>0);x+a/x≤-2√a(x<0)。

例5. 求函数y=x 2

+x+1/x+1的值域。

.1

12..2

22

22222

b

a y 型:直接用不等式性质k+x bx

b. y 型,先化简,再用均值不等式

x mx n

x 1 例:y 1+x x+x

x m x n c y 型 通常用判别式

x mx n x mx n

d. y 型

x n

法一:用判别式 法二:用换元法,把分母替换掉

x x 1(x+1)(x+1)+1 1

例:y (x+1)1211

x 1x 1x 1=

=++==≤

''

++=++++=+++-===+-≥-=+++

六、函数有界性法:直接求函数的值域困难时,可以利用已学过函数的有界性,来确定函数的值域。

6.求函数

1

1x x

e y e -=+的值域。

七、倒数法:

例7.求函数2

3x y x +=

+的值域

八、单调法性法:利用函数在给定的区间上的单调递增或单调递减求值域。

例8求函数y=4x -√1-3x(x ≤1/3)的值域。

九、换元法 :新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形式,进而求出值域。

例9.求函数y=x-3+2x+1 的值域。

十、分离常数法:

例10.求函数 y=521+-x x

的值域

【巩固练习】

1.函数y =

)1(1

>x x

的值域是---------------------------------------[ ] A .(),0()0,+∞∞- B .R C .(0,1) D .(1,)∞+走

2.下列函数中,值域是(0,∞+)的是-------------------------------- [ ] A .

y = 132+-x x B .y =21+x ()0>x C .12++=x x y D .2

1x

y =

3.已知函数()f x 的值域是[]2,2-,则函数()1y f x =+的值域是--------[ ] A.[]1,3- B.[]3,1- C.[]2,2- D.[]1,1-

4.)(x f =∈-x x x ,2

{3,2,1±±±},则)(x f 的值域是: . 5.函数212y x x =--+的值域为: . 6.函数21

22

y x x =

-+的值域为: .

7.求下列函数的值域 (1)1y x =- (2)221y x x =--- (3)2(23)y x x =-≤≤

(4)2211x y x -=+ (5)21y x x =-- (6)y =x

x

3121-+

8.当[1,3]x ∈时,求函数2

()26f x x x c =-+的值域

第四讲 函数的解析式

【知识归纳】

求函数解析式的方法: 1、整体代换(配凑法)

2、换元法( 注意新元的取值范围)

3、待定系数法(已知函数类型如:一次、二次函数、反比例函数等)

4、构造方程组(如自变量互为倒数、已知f (x )为奇函数且g (x )为偶函数等)

5、赋值法

【经典例题】

类型一 具体函数的解析式求法

题型一、代入法求解析式

例1 已知2

()357f x x x =++,求(21)f x +的解析式.

练 已知()21f x x =+,2,0

()1,0x x g x x ?≥=?-

,求[()]f g x 和[()]g f x 的解析式。

题型二、换元法

例2、已知2

2

11(),11x x f x x --=++,求()f x 的解析式

练 已知2

(1sin )sin cos f x x x -=-,求f(x)的解析式

题型三、配方法求函数解析式

例3、已知(1)2f x x x +=+,求f(x)及f(x+1)的解析式。

练 已知3

3

11

()f x x x

x +=+

,求f(x)的解析式

题型四、待定系数法

例4、已知()31,()[()]23f x x g x f g x x =-=+为一次函数,,求()g x 的解析式

练 2、已知二次函数()g x 满足(1)1g =,(1)5g -=,图像过原点,求()g x ;

题型五、赋值法

例5、已知)

0(1)1

()(2≠+=-x x x f x f ,求)(x f ;

类型二 抽象函数的解析式求法

例1、若函数()f x 满足12()()3f x f x x

+=,求()f x 的解析式。

练 已知2 f (x )-f 1x ??

???

= 3x ,求函数f (x )的解析式

【巩固练习】

1、已知2

()91,()f x x g x x =+=,求满足[()][()]f g x g f x =的x 的值。

2、已知二次函数()F x ,其图像的顶点是(1,2)-,且经过原点,求()F x 。

3、已知()f x 为二次函数,若(0)0f =且(1)()1f x f x x +=++,求函数()f x 的解析式。

4、设二次函数()f x 满足(2)(2)f x f x -=--,且图象在y 轴上的截距为1,被x 轴截得的线段长为

22,求函数的解析式。

5.若12)1(2

+=+x x f ,求)(x f 。

6.若一次函数)(x f 满足x x f f 21)]([+=,求)(x f 。

7. 已知f (x ) = x 2

+ 1,则f (3x + 2) = ;

已知:f(x +1)=x +2x ,求f(x)的解析式;

8. 已知f(x)=a x 2

+bx +c ,若f(0)=0,且f(x +1)=f(x)+x +1,求f(x).

9. 已知f(2x +1)=x 2

+1,求f(x)的解析式.

10. 已知f(x +1)=3x +2,则f(x -1)=( )。

高考复习函数知识点总结

高考复习 函数知识点总结 一.函数概念的理解以及函数的三要素 (1)函数的概念 ①设A 、B 是两个非空的数集,如果按照某种对应法则f ,对于集合A 中任何一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么这样的对应(包括集合A ,B 以及A 到B 的对应法则f )叫做集合A 到B 的一个函数,记作:f A B →. ②函数的三要素:定义域、值域和对应法则. ③只有定义域相同,且对应法则(函数关系式)也相同的两个函数才是同一函数. (2)区间的概念及表示法 ①设,a b 是两个实数,且a b <,满足a x b ≤≤的实数x 的集合叫做闭区间,记做[,]a b ; 满足a x b <<的实数x 的集合叫做开区间,记做(,)a b ; 满足a x b ≤<,或a x b <≤的实数x 的集合叫做半开半闭区间,分别记做 [,)a b ,(,]a b ; 满足,,,x a x a x b x b ≥>≤<的实数x 的集合分别记做 [,),(,),(,],(,)a a b b +∞+∞-∞-∞. 注意:对于集合{|}x a x b <<与区间(,)a b ,前者a 可以大于或等于b ,而后者必须a b < . (3)求函数的定义域时,一般遵循以下原则: ① 分式的分母不为0; ② 偶次根式下被开方数大于0; ③ 0y x = ,则有0x ≠ ; ④ 对数函数的真数大于0,底数大于0切不等于1 注意:①解析式为整式的函数定义域为R ; ②若()f x 是由有限个基本初等函数的四则运算而合成的函数时,则

其定义域一般是各基本初等函数的定义域的交集; ③对于求复合函数定义域问题,一般步骤是:若已知() f x的定义域 为[,] a g x b ≤≤解出. f g x的定义域应由不等式() a b,其复合函数[()] (4)求函数的值域或最值 常用方法: ①观察法:对于比较简单的函数,我们可以通过观察直接得到值域或最值. ②配方法:将函数解析式化成含有自变量的平方式与常数的和,然后根据变量 的取值范围确定函数的值域或最值. ③判别式法:若函数() =可以化成一个系数含有y的关于x的二次方程 y f x 2 ++=,则在()0 a y x b y x c y ()()()0 a y≠时,由于,x y为实数,故必须有 2()4()()0 ?=-?≥,从而确定函数的值域或最值. b y a y c y ④不等式法:利用基本不等式确定函数的值域或最值. ⑤换元法:通过变量代换达到化繁为简、化难为易的目的,三角代换可将代 数函数的最值问题转化为三角函数的最值问题. ⑥反函数法:利用函数和它的反函数的定义域与值域的互逆关系确定函数的 值域或最值. ⑦数形结合法:利用函数图象或几何方法确定函数的值域或最值. ⑧函数的单调性法. (5)函数解析式 ①换元法;(用于求复合函数的解析式) ②配凑法;(用于求复合函数的解析式)

函数概念及其基本性质

第二章函数概念与基本初等函数I 一. 课标要求: 函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,从而发展学生对变量数学的认识。教材把指数函数,对数函数,幂函数当作三种重要的函数模型来学习,强调通过实例和图象的直观,揭示这三种函数模型增长的差异及其关系,体会建立和研究一个函数模型的基本过程和方法,学会运用具体函数模型解决一些实际问题. 1.会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成 的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域, 2. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象. 3.通过具体实例,了解简单的分段函数,并能简单应用. 4. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形. 5. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法. 6.理解有理数指数幂的意义,通过具体实例了解实数指数幂的意义,掌握幂的运算. 7.了解指数函数模型的实际背景.理解指数函数的概念和意义,掌握f(x)=a x的符号、意义,能借助计算器或计算机画出具体指数函数的图象,探索并理解指数函数的有关性质(单调性、值域、特别点). 8.理解对数的概念及其运算性质,了解对数换底公式及其简单应用,能将一般对数转化为常用对数或自然对数,通过阅读材料,了解对数的发现历史及其对简化运算的作用.通过具体函数,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,掌握f(x)=log a x符号及意义,体会对数函数是一类重要的函数模型,能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的有关性质(单调性、值域、特殊点). 9.知道指数函数y=a x与对数函数y=log a x互为反函数(a>0, a≠1),初步了解反函数的概念和f- -1(x)的意义. 10.通过实例,了解幂函数的概念,结合五种具体函数 1 312 ,,, y x y x y x y x - ====的 图象,了解它们的变化情况 11.通过应用实例的教学,体会指数函数是一种重要的函数模型. 12. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例. 二. 编写意图与教学建议 1.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学. 2..教材对函数的三要素着重从函数的实质上要求理解,而对定义域、值域的繁难计算,特别是人为的过于技巧化的训练不做提倡,要准确把握这方面的要求,防止拨高教学. 3. 函数的表示是本章的主要内容之一,教材重视采用不同的表示法(列表法、图象法、分析法),目的是丰富学生对函数的认识,帮助理解抽象的函数概念. 在教学中,既要充分发挥图象的直观作用,又要适当地引导学生从代数的角度研究图象,使学生深刻体会数形结合这一重要数学方法.

函数三要素教案

(一)教学目标 1.知识与技能 (1)了解函数三要素的含义,掌握根据函数的三要素判定两个函数是否为同一个函数的方法. (2)会求简单函数的定义域和函数值. 2.过程与方法 通过示例分析,让学生掌握求函数定义域的基本题型及方法,进一步加深对函数概念的理解.通过求出函数的函数值,加深对应法则的认识. 3.情感、态度与价值观 通过动手实践研究数学问题,提高分析问题,解决问题能力;体会成功地解答数学问题的学习乐趣,培养钻研精神. (二)教学重点与难点 重点:掌握函数定义域的题型及求法. 难点:理解函数由定义域与对应法则确定函数这一基本原则.

二、授课内容: 【知识要点】 ⑴定义域———自变量x 的取值范围 函数三要素 ⑵值 域———函数值的集合 ⑶对应法则——自变量x 到对应函数值y 的对应规则 注意:①核心是对应法则;②值域是由定义域与对应法则所确定了的,故确定一个函数只需确定其定义域、对应法则则即可;③如何判断“两个”函数为同一函数;④函数()12-= x x f 的对应法则f :x (平方再 减1整体再开平方)y 。而在此基础上的函数()1+=x f y ,其自变量为式中的x 而不是1+x ,其对应法则x (加1再取f 运算)y ,即x (加1整体平方再整体减1再整体开方)y ,故此时()1)1(12-+=+x x f 。 【典型例题】 1.函数定义域求法 ⑴已知函数的解析式求定义域时需要注意: ①()x f 是整式,则定义域为R ; ②()x f 是分式,则令分母不为0的值为定义域; ③()x f 是偶次根式,则函数定义域为使被开方式为非负数的自变量集合; ④若()x f 由几个部分式子构成,则定义域是使几个部分式子都有意义的值的集合; ⑤函数[]2 )(x f y =的定义域()x f 0≠; ⑥对数函数()x f y a log =(0>a ,且1≠a )的定义域要求()x f >0; ⑵求函数()[]x g f 的定义域,()x g 相当于()x f 中的x 。 ⑶当函数由实际问题给出时,还应考虑实际意义。 例1:求下列函数的定义域 ①()0 2 )1(4--= x x x f ; ②()1 21 12 2+-+ ++=x x x x x f ; ③()x x f 11111++ = 042 ≥-x 22≤≤-x 解析:①由 ? ∴函数定义域为[)(]2,11,2?- 01≠-x 1≠x 012 ≥++x x (Ⅰ) ② 12 ++x x 的判别式0

高三复习 高中数学复习讲义 第一课时函数概念及其性质

高中数学复习讲义 第一课时函数概念及其性质 第1课 函数的概念 【基础练习】 1. 设有函数组:①y x = ,y = y x = ,y = ;③y ,y = ;④1(0),1 (0), x y x >?=?-

(3) ()1f x x =+,(1,2]x ∈. 值域是(2,3]. 【范例解析】 例 1.设有函数组:①21 ()1 x f x x -=-,()1g x x =+; ②()f x = , ()g x = ③()f x =()1g x x =-;④()21f x x =-,()21g t t =-.其中表示同一个函数的有 . 例2.求下列函数的定义域:① 12y x =+- ② ()f x = 例3.求下列函数的值域: (1)242y x x =-+-,[0,3)x ∈; (2)2 2 1 x y x =+()x R ∈; (3 )y x =- 【反馈演练】 1.函数f (x )=x 21-的定义域是___________. 2.函数) 34(log 1 )(2 2-+-= x x x f 的定义域为_________________. 3. 函数2 1 ()1y x R x = ∈+的值域为________________. 4. 函数23y x =-+_____________. 5.函数)34(log 25.0x x y -= 的定义域为_____________________. 6.记函数f (x )=1 3 2++- x x 的定义域为A ,g (x )=lg [(x -a -1)(2a -x )](a <1) 的定义域为B . (1) 求A ; (2) 若B ?A ,求实数a 的取值范围.

数学补习学校函数三要素测试题(赵先举整理)

翔龙教育2012高一测试题 内容:函数三要素 1. 点(x , y )在映射“f ”的作用下的象是点(x +2y , 3x -4y ),则在此映射的作用下的点(5, 6)的原象是( )。 A (5, 6) B (17, -9) C ( 516, 10 9 ) D 其它答案 2. 下列各组函数中表示同一函数的是 (A )x x f =)(与2 )()(x x g = (B )||)(x x x f =与?????-=2 2 )(x x x g )0()0(<>x x (C )||)(x x f =与3 3 )(x x g = (D )1 1 )(2--=x x x f 与)1(1)(≠+=t t x g 3. 设函数???<+≥+-=0 ,60 ,64)(2x x x x x x f 则不等式)1()(f x f >的解集是( ) A ),3()1,3(+∞?- B ),2()1,3(+∞?- C ),3()1,1(+∞?- D )3,1()3,(?--∞ 4. 已知函数???<-≥+=0 , 40, 4)(2 2x x x x x x x f 若2(2)(),f a f a ->则实数a 的取值范围是 A (,1)(2,)-∞-?+∞ B (1,2)- C (2,1)- D (,2)(1,)-∞-?+∞ 5. 函数)13lg(13)(2++-= x x x x f 的定义域是 A.),3 1(+∞- B. )1,3 1(- C. )31,31(- D. )3 1,(--∞ 6. 设()x x x f -+=22lg ,则?? ? ??+??? ??x f x f 22的定义域为 ( ) A. ()()4,00,4 - B. ()()4,11,4 -- C. ()()2,11,2 -- D. ()()4,22,4 -- 7. 已知函数y =f (2x )的定义域是[-1,1],则函数y=f (log 2x ) 的定义域是( ) 8. 函数y =lg(x 2-3x +2)的定义域为F ,y =lg(x -1)+lg(x -2)的定义域为G ,那么 ( ) A .F ∩G=? B .F=G C .F G D .G F 9. 已知函数y =f (2x )的定义域是[-1,1],则函数y =f (log 2x )的定义域是 ( ) A .(0,+∞) B .(0,1) C .[1,2] D .[2,4] 10. 函数=2sin 2x -6sin x +4的值域是( ) (A )[0, 12] (B )[0, 11] (C )[-1, 1] (D )[5, 1] 11. 设x x f -= 11 )(,则)]([x f f 的表达式为 (A )x (B ) 2 )1(1 x - (C )x - (D )x -11

函数的概念与表示复习讲义与习题.doc

第四讲函数的概念与表示 一.知识归纳: 1.映射 ( 1)映射:设 A 、 B 是两个集合,如果按照某种映射法则f,对于集合 A 中的任一个 元素,在集合 B 中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及 A到 B 的对应法则 f )叫做集合 A 到集合 B 的映射,记作 f : A→B。 ( 2)象与原象:如果给定一个从集合 A 到集合 B 的映射,那么集合 A 中的元素 a 对应的 B 中的元素 b 叫做 a 的象, a 叫做 b 的原象。 注意:( 1)对映射定义的理解。( 2)判断一个对应是映射的方法。 2.函数 ( 1)函数的定义 ①原始定义:设在某变化过程中有两个变量x、y,如果对于 x 在某一范围内的每一个确定的值, y 都有唯一确定的值与它对应,那么就称y 是 x 的函数, x 叫作自变量。 ②近代定义:设 A 、 B 都是非空的数的集合,f: x→y是从 A 到 B 的一个对应法则,那么从 A 到 B 的映射 f : A→B就叫做函数,记作y=f(x) ,其中 x∈ A,y ∈ B,原象集合 A 叫做函数的定义域,象集合 C 叫做函数的值域。 注意:①C B; ② A,B,C 均非空 ( 2)构成函数概念的三要素:①定义域②对应法则③值域 3.函数的表示方法:①解析法②列表法③图象法 注意:强调分段函数与复合函数的表示形式。 二.例题讲解: 【例 1】下列各组函数中,表示相同函数的是() (A) f(x)=lnx 2,g(x)=2lnx (B)f(x)= a log a x (a>0 且 a≠1),g(x)=x (C) f(x)= 1 x 2 , g(x)=1 - |x| (x ∈[ - 1,1]) (D) f(x)= log a a x (a>0 且 a≠1),g(x)= 3 x3 解答:选D 点评:判断两个函数是否相同主要是从定义域、对应法则两个方面加以分析。 变式:下列各对函数中,相同的是( D ) (A) f(x)= x 2, g(x)=x (B)f(x)=lgx 2 ,g(x)=2lgx (C)f(x)= lg x 1 , g(x)=lg(x - 1)- lg(x+1) (D) f(x)= 1 u 1 v 1 , g(x)= v x 1 u 1 【例 2】( 1)集合 A={3,4},B={5,6,7} ,那么可以建立从 A 到 B 的映射的个数是;从B 到 A 的映射的个数是。 ( 2)设集合 A 和 B 都是自然数集合N,映射 f:A→B把集合 A 中的元素 n 映射到集 合 B 中的元素2n+n,则在映射 f 下,像20 的原象是。 解答:( 1)从 A 到 B 可分两步进行,第一步 A 中的元素 3 可有 3 种对应方法( 5 或 6 精选

最新函数三要素经典习题(含答案)

函数的三要素练习题 (一)定义域 1 、函数()f x = ) A 、[2,2]- B 、(2,2)- C 、(,2)(2,)-∞-+∞ D 、{2,2}- 2 _ _ _; 定义域为________; [1,1]-; [4,9] 3、若函数(1)f x + (21)f x -的定义域是 ;函数 1(2)f x +的定义域为 。1][,)2 +∞ 4、知函数()f x 的定义域为[]1,1-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。11m -≤≤ 5、求下列函数的定义域 (1)2|1|)43(43 2-+--=x x x y 解:(1)???-≠≠?≠-+≥-≤?≥--3 102|1|410432x x x x x x x 且或 ∴x ≥4或x ≤-1且x ≠-3,即函数的定义域为 (-∞,-3 )∪(-3,-1)∪[4,+∞] (2)y = {|0}x x ≥ (3)0 1(21)1 11y x x = +-++(二)解析式 1. 设X={x|0≤x ≤2},Y={y|0≤y ≤1},则从X 到Y 可建立映射的对应法则是( ) (A )x y 32= (B )2)2(-=x y (C )24 1x y = (D )1-=x y 2. 设),(y x 在映射f 下的象是)2 ,2(y x y x -+,则)14,6(--在f 下的原象是( ) (A ))4,10(- (B ))7,3(-- (C ))4,6(-- (D ))2 7,23(-- 3. 下列各组函数中表示同一函数的是 (A )x x f =)(与2)()(x x g = (B )||)(x x x f =与?????-=22)(x x x g )0()0(<>x x (C )||)(x x f =与33 )(x x g = (D )1 1)(2--=x x x f 与)1(1)(≠+=t t x g 4. 已知函数y f x =+()1定义域是[]-23,,则y f x =-()21的定义域是( )

函数的三要素学生版

一、函数与映射的基本概念判断 1. 设:f M N →是集合M 到N 的映射,下列说法正确的是 A 、M 中每一个元素在N 中必有象 B 、N 中每一个元素在M 中必有原象 C 、N 中每一个元素在M 中的原象是唯一的 D 、N 是M 中所在元素的象的集合 2. 设集合{1,0,1},{1,2,3,4,5}M N =-=,映射:f M N →满足条件“对任意的x M ∈, ()x f x +是奇数” ,这样的映射f 有____个 3. 设2:x x f →是集合A 到集合B 的映射,若B={1,2},则B A 一定是_____ 4. 若一系列函数的解析式相同,值域相同,但其定义域不同,则称这些函数为“值同函数”,那么解析式为2y x =,值域为{4,1}的“值同函数”共有______个 5. 以下各组函数表示同一函数是________________ (1)f (x )=2x ,g (x )=33x ; (2)f (x )=x x ||,g (x )=? ??<-≥;01,01x x (3)f (x )=x 1+x ,g (x )=x x +2; (4)f (x )=x 2-2x -1,g (t )=t 2-2t -1。 二、函数的定义域 1.求下列函数的定义域 (1)2161x x y -+= ;(2 )34x y x +=- 2.(1) 已知)(x f 的定义域为]30(,,求)2(2x x f +定义域。 (2)若函数()x f 23-的定义域为[]2,1-,求函数()x f 的定义域 (3)已知)1(+x f 的定义域为)32[,-,求 2f x y -的定义域。 3. 求函数()f x = 4. 若函数()f x = 3 442++-mx mx x 的定义域为R ,则实数m 的取值范围是 ( )

函数的概念练习题

函数的概念练习题 一、填空题 1、函数的 、 、 统称函数的三要素 2、下列几组函数相等的是 。 ①11 12+=--=x y x x y 与②1112+?-=-=x x y x y 与 ③x x y x y +?-=-=1112与④x y x y ==与2⑤x y x y ==与2)( 3、若函数,1)(2+-=x x x f 则=)1(f ,=--+)1()1(n f n f 。 4、函数)(x f y =与a x =的交点个数为 。 5、函数2233x x x x y -+-= 的定义域为 ,函数24x y -=的定义域 为 。 6、函数)3,1[,12)(2-∈+-=x x x x f ,则函数=+)2(x f 。 7、函数)(x f 的定义域为)3,2[-,则)()()(x f x f x g -+=的定义域为 。 8、函数1)(22+=x x x f ,则=)2 1()2(f f 。 二、解答题 9、下列对应那些能称为函数?并说明理由。 (1)R x x x ∈→,1,(2),y x →这里R y R x x y ∈∈±=+,, (3),y x →这里R y R x x y ∈∈= +,,(4),.12R x x x ∈+→ 10、求下列函数的定义域 (1)3 21)(-=x x f (2)22)(x x x f -=

(3)2232)(2 ++--=x x x x f 11、求下列函数的值域。 (1)]3,0[,32)(2∈--=x x x x f (2)),0[,113)(+∞∈+-=x x x x f (3)123 2)(22+-+-=x x x x x f ( 4)x x y 21-+= 12、

高一数学必修①第一章_集合与函数概念讲义

心智家三优教育高一特训营数学教学进度表

¤学习目标:通过实例,了解集合的含义,体会元素与集合的“属于”关系;能选择自然语言、图形语言、 集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用;掌握集合的表示方法、常用数集及其记法、集合元素的三个特征. ¤知识要点: 1. 把一些元素组成的总体叫作集合(set ),其元素具有三个特征,即确定性、互异性、无序性. 2. 集合的表示方法有两种:列举法,即把集合的元素一一列举出来,并用花括号“{ }”括起来,基本形式为123{,,,,}n a a a a ???,适用于有限集或元素间存在规律的无限集. 描述法,即用集合所含元素的共同特征来表示,基本形式为{|()x A P x ∈},既要关注代表元素x ,也要把握其属性()P x ,适用于无限集. 3. 通常用大写拉丁字母,,,A B C ???表示集合. 要记住一些常见数集的表示,如自然数集N ,正整数集*N 或 N +,整数集Z ,有理数集Q ,实数集R . 4. 元素与集合之间的关系是属于(belong to )与不属于(not belong to ),分别用符号∈、?表示,例如3N ∈, 2N -?. ¤例题精讲: 【例1】试分别用列举法和描述法表示下列集合: (1)由方程2(23)0x x x --=的所有实数根组成的集合; (2)大于2且小于7的整数. 【例2】用适当的符号填空:已知{|32,}A x x k k Z ==+∈,{|61,}B x x m m Z ==-∈,则有: 17 A ; -5 A ; 17 B . 【例3】试选择适当的方法表示下列集合:(教材P 6 练习题2, P 13 A 组题4) (1)一次函数3y x =+与26y x =-+的图象的交点组成的集合; (2)二次函数24y x =-的函数值组成的集合; (3)反比例函数2 y x =的自变量的值组成的集合. *【例4】已知集合2{| 1}2 x a A a x +==-有唯一实数解,试用列举法表示集合A .

函数概念及三要素

函数概念及三要素 1.函数的概念: 设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的 任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数(function ). 记作: y=f(x),x ∈A . 其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域(domain );与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域(range ). 2.分段函数:在定义域内不同的区间上有不同的 。注:分段函数是 个函数,而不是多个函数。 3.复合函数:若(),(),(,)y f u u g x x m n ==∈,那么[]()y f g x =称为复合函数,u 称为中间变量,它的取值范围是()g x 的值域。 方法一:函数定义域的求法 关注:分母、根号、指对数底数对数真数、tan 、零次方的底数 例题:)35lg(lg x x y -+= 的定义域为_______ 方法二:求函数解析式的常用方法 1、配凑法 2、待定系数法 3、换元法 4、解方程组法 例1、已知2(1)23f x x x -=--,则()f x = 。

例2、已知2 (31)965f x x x +=-+,则()f x = 。 例3、已知()f x 是一次函数,且(1)(1)23f x f x x +--=+,则()f x = 。 例4、已知()2()32f x f x x +-=-,则()f x = 。 例5、已知()f x 是奇函数,()g x 是偶函数,并且()()1f x g x x +=+,则()g x = 。 方法三:分段函数 分段函数在其定义域的不同子集上,因对应关系不同,而分别用几个不同的式子来表示,这种函数就称之为分段函数.分段函数虽然有几个部分组成,但它表示的是一个函数.近几年高考考察的频率较高. 1.函数 22, 0,()log , 0.x x f x x x ?=?>?≤则1()4f =____;方程1()2f x -=的解是____. 2. 已知函数11,02()ln ,2 x f x x x x ?+<≤?=??>?,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取 值范围是( ) (A ) (1,)+∞ (B )3[,)2+∞ (C )32[,)e +∞ (D )[ln 2,)+∞

数学必修1讲义

第一章集合与函数概念 一、集合有关概念 1、集合得含义: 一般地,我们把研究对象统称为元素,把一些元素组成得总体叫做集合(简称为集)。 2、集合得中元素得三个特性: (1)元素得确定性:对于一个给定得集合,集合中得元素就是确定得,任何一个对象或者就是或者不就是这个给定得集合得元素。 (2)元素得互异性:任何一个给定得集合中,任何两个元素都就是不同得对象,相同得对象归入一个集合时,仅算一个元素。 (3)元素得无序性:集合中得元素就是平等得,没有先后顺序,因此判定两个集合就是否一样,仅需比较它们得元素就是否一样,不需考查排列顺序就是否一样。 3、元素与集合得关系:2hf7sHC。51kBEbP。 (1)如果 a 就是集合 A 得元素,就说 a 属于A,记作: (2)如果 a 不就是集合 A 得元素,就说 a 不属于A,记作: 4、集合得表示: *用拉丁字母表示集合:A={我校得篮球队员},B={1,2,3,4,5} *常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N*或N+ 整数集Z 有理数集Q 实数集R (1)列举法:把集合中得元素一一列举出来,写在大括号内。如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2} aypYuMZ。0DeBxzM。 (2) 图示法:Venn图 (3) 描述法(数学式子描述与语言描述):把集合中得元素得公共属性描述出来,写在大括号{}内。具体方法:在大括号内先写上表示这个集合元素得一般符号及取值(或变化)范围,再画一条竖线,在竖线后写出这个集合中元素所具有得共同特征。

如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形}90qy1aJ。2fZxY1j。 5、集合得分类: (1)有限集含有有限个元素得集合 (2)无限集含有无限个元素得集合 (3)空集不含任何元素得集合例:{x|x2=-5} 二、集合间得基本关系 1、包含关系 (1)子集:真子集或相等 (2)真子集 2、相等关系:元素相同 两个结论:任何一个集合就是它本身得子集,即A A 对于集合A,B,C,如果 A B, B C ,那么 A C 3、空集 结论:空集就是任何集合得子集,就是任何非空集合得真子集 *集合子集公式:含n个元素得集合子集有2?个,真子集有2?-1个 三、集合得基本运算 1、并集 2、交集 *性质:A∩A=A,A∩φ=φ,A∩B=B∩A,A∩B=A, A∩B=B AUA=A, AUΦ=A,AUB=BUA ,AUB包含A, AUB包含B 3、全集与补集 *性质:CU(CUA)=A,(CUA)∩A=Φ,(CUA)∪A=U,(CuA)∩(CuB)= Cu(AUB),(CuA) U (CuB)= Cu(A∩B)al5t6aw。eN17HuK。 选择补充:集合中元素得个数: 四、函数有关概念

人教A版高一数学函数的概念知识点总结与例题讲解

函数的概念知识点总结 本节主要知识点 (1)函数的概念. (2)函数的三要素与函数相等. (3)区间的概念及其表示. 知识点一 函数的概念 初中学习的函数的传统定义 一般地,如果在一个变化过程中,有两个变量x 和y ,对于x 的每一个值,y 都有唯一的值与之对应,我们就说x 是自变量,y 是因变量,此时也称y 是x 的函数. 函数的近代定义 设A , B 是非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()x f 和它对应,那么就称f :B A →为从集合A 到集合B 的一个函数,记作 )(x f y =,A x ∈. 其中,x 叫作自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫作函数值,函数值的集合{}A x x f y y ∈=),(叫做函数的值域.显然,值域是集合B 的子集. 对函数的近代定义的理解 (1)只有两个非空的数集之间才可能建立函数关系.定义域或值域为空集的函数是不存在的. 如x x y --= 11就不是函数. (2)注意函数定义中的“三性”:任意性、存在性和唯一性. 任意性:集合A 中的任意一个元素x 都要考虑到. 存在性:集合A 中的任意一个元素x ,在集合B 中都存在对应元素y . 唯一性:在集合B 中,与每一个元素x 对应的元素y 是唯一的.

(3)集合B 不一定是函数的值域,值域是集合B 的子集. 在集合B 中,可以存在元素在集合A 中没有与之对应者. 例1. 讨论二次函数的定义域和值域. 解:二次函数的一般式为()02≠++=a c bx ax y ,为整式函数,所以其定义域为R ,其值域的确定分为两种情况: ①当0>a 时,函数的值域为?????? -≥a b ac y y 442; ②当0

2020高一数学必修一:必修一总复习(1对1讲义)

必修一复习一、知识结构 集合 集合表示法 集 合 的 运 算集 合 的 关 系 列举法描 述 法 图 示 法 包 含 相 等 子集与真子集 交 集 并 集 补 集 函数 函 数 及 其 表 示 函 数 基 本 性 质 单 调 性 与 最 值 函 数 的 概 念 函 数 的 奇 偶 性 函 数 的 表 示 法 映射 映 射 的 概 念 集合与函数概念 基本初等函数(Ⅰ) 幂函数 有理指数幂整数指数幂 无理指数幂 运算性质 定义 对数 指数 对数函数 指数函数 互为反函数 图像与性质 定义定义 图像与性质 函数的应用 函数模型及其应用 函数与方程 对数函数 指数函数 几类不同增长的函数模型 二分法 函数的零点 用已知函数模型解决问题 建立实际问题的函数模型

二、考点解析 考点一:集合的定义及其关系 考点分析: 1.集合中的元素具有的三个性质:确定性、无序性和互异性; 2.集合的3种表示方法:列举法、描述法、韦恩图; 例1.定义集合运算:.设 ,则集合的所有元素之和为( ) A .0; B .2; C .3; D .6 考点二、集合间的基本关系 ,() 经典考题: 例2.第二十九届夏季奥林匹克运动会将于2008年8月8日在北京举行,若集合A={参加北京奥运会比赛的运动员},集合B={参加北京奥运会比赛的男运动员},集合C={参加北京奥运会比赛的女运动员},则下列关系正确的是( ) A . B. C. D. 考点三、集合间的基本运算 考点分析 {}|,,A B z z xy x A y B *==∈∈{}{}1,2,0,2A B ==A B *A B A ?φφB φ≠B B A ?C B ?C B A =I A C B =Y

函数概念及其三要素

函数概念及其相关概念(2课时) 考点一:由函数的概念判断是否构成函数 函数概念:设A 、B 是非空的数集,如果按照某种确定的关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f (x )和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数。 例1. 下列从集合A 到集合B 的对应关系中,能确定y 是x 的函数的是( ) ① A={x x ∈Z},B={y y ∈Z},对应法则f :x →y= 3 x ; ② A={x x>0,x ∈R}, B={y y ∈R},对应法则f :x →2 y =3x; ③ A=R,B=R, 对应法则f :x →y=2 x ; 变式1. 下列图像中,是函数图像的是( ) ① ② ③ ④ 变式2. 下列式子能确定y 是x 的函数的有( ) ①2 2 x y +=2 ②111x y -+ -= ③y=21x x -+- A 、0个 B 、1个 C 、2个 D 、3个 变式3. 已知函数y=f (x ),则对于直线x=a (a 为常数),以下说法正确的是( ) A. y=f (x )图像与直线x=a 必有一个交点 B. y=f (x )图像与直线x=a 没有交点 C. y=f (x )图像与直线x=a 最少有一个交点 D. y=f (x )图像与直线x=a 最多有一个交点 考点二:同一函数的判定 函数的三要素:定义域、对应关系、值域。 如果两个函数的定义域相同,并且对应关系完全一致,我们就称这两个函数相等。 例2. 下列哪个函数与y=x 相同( ) A. y=x B. 2 y x = C. () 2 y x = D.y=t 变式1.下列函数中哪个与函数3 2y x =-相同( ) A. 2y x x =- B. 2y x x =-- C. 3 2y x x =-- D. 2 2y x x -= 变式2. 下列各组函数表示相等函数的是( ) O O O O X X X X y y y y

高中数学必修一讲义

高中数学必修一讲义 第一章集合与函数概念 课时一:集合有关概念 1.集合的含义:集合为一些确定的、不同的东西的全体,人们能意识到这些东 西,并且能判断一个给定的东西是否属于这个整体。 2.一般的研究对象统称为元素,一些元素组成的总体叫集合,简称为集。 3.集合的中元素的三个特性: (1)元素的确定性:集合确定,则一元素是否属于这个集合是确定的:属于或不属于。例:世界上最高的山、中国古代四大美女、…… (2)元素的互异性:一个给定集合中的元素是唯一的,不可重复的。 例:由HAPPY的字母组成的集合{H,A,P,Y} (3)元素的无序性:集合中元素的位置是可以改变的,并且改变位置不影响集合 例:{a,b,c}和{a,c,b}是表示同一个集合 3.集合的表示:{…} 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋} (1)用大写字母表示集合:A={我校的篮球队员},B={1,2,3,4,5} (2)集合的表示方法:列举法与描述法。 1)列举法:将集合中的元素一一列举出来 {a,b,c……} 2)描述法:将集合中元素的公共属性描述出来,写在大括号内表示集合。 {x∈R| x-3>2} ,{x| x-3>2} ①语言描述法:例:{不是直角三角形的三角形} ②Venn图:画出一条封闭的曲线,曲线里面表示集合。 4、集合的分类: (1)有限集:含有有限个元素的集合 (2)无限集:含有无限个元素的集合 (3)空集:不含任何元素的集合例:{x|x2=-5} 5、元素与集合的关系: (1)元素在集合里,则元素属于集合,即:a∈A (2)元素不在集合里,则元素不属于集合,即:a A 注意:常用数集及其记法:(&&&&&) 非负整数集(即自然数集)记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R 课时二、集合间的基本关系 1.?包含?关系—子集 (1)定义:如果集合A的任何一个元素都是集合B的元素,我们说这两个集合有包含关系, A?(或B?A) 称集合A是集合B的子集。记作:B A?有两种可能(1)A是B的一部分,; 注意:B (2)A与B是同一集合。 反之: 集合A不包含于集合B,或集合B不包含集合A,记作A?/B或B?/A 2.?相等?关系:A=B (5≥5,且5≤5,则5=5) 实例:设 A={x|x2-1=0} B={-1,1} ?元素相同则两集合相等? 即:①任何一个集合是它本身的子集。A?A ②真子集:如果A?B,且A≠ B那就说集合A是集合B的真子集,记作A B(或B A) 或若集合A?B,存在x∈B且x A,则称集合A是集合B的真子集。 ③如果 A?B, B?C ,那么 A?C ④如果A?B 同时 B?A 那么A=B

高中数学函数专题之函数三要素

函数的三要素 【函数定义域求法】 一、常规型 即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。 分式中的分母不为零; 偶次方根下的数(或式)大于或等于零; 指数式的底数大于零且不等于1; 0的0次幂没有意义; 对数式的底数大于0且不等于1,真数大于0。 正切函数x y tan = ??? ??∈+≠∈Z ππk k x R x ,2,且 余切函数x y cot = ()Z π∈≠∈k k x R x ,,且 例1 求函数8|3x |15x 2x y 2-+--=的定义域。 例2 求函数x x y cos lg 252+-=的定义域。 二、抽象函数型 抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。 ? 类型一:已知)x (f 的定义域,求)]x (g [f 的定义域。 其解法是:已知)x (f 的定义域是[a ,b ]求)]x (g [f 的定义域是解b )x (g a ≤≤,即为所求的定义域。 例1 已知)x (f 的定义域为[-2,2],求)1x (f 2-的定义域。 ? 类型二:已知)]x (g [f 的定义域,求f(x)的定义域。 其解法是:已知)]x (g [f 的定义域是[a ,b ],求f(x)定义域的方法是:由b x a ≤≤,求g(x)的值域,即所求f(x)的定义域。 例1 已知)1x 2(f +的定义域为[1,2],求f(x)的定义域。 三、实际问题型 这里函数的定义域除考虑解析式有意义外,还要注意问题的实际意义对自变量的限制 例1 用长为L 的铁丝弯成下部为矩形上部为半圆的框架,如图,若矩形底边长为2x ,求此框架围成的面积y 与x 的函数关系式,并求定义域。 四、逆向型 即已知所给函数的定义域求解析式中参数的取值范围。特别是对于已知定义域为R ,求参数范围问题通常是转化为恒成立问题来解决。

函数的定义及三要素

函数的定义及三要素 考点一、函数概念的理解 [例1] 下列对应是否为A 到B 的函数: (1)A =R ,B ={x |x >0},f :x →y =|x |; (2)A =Z ,B =Z ,f :x →y =x 2; (3)A =Z ,B =Z ,f :x →y =x ; (4)A =[-1,1],B ={0},f :x →y =0. [例2】下列各图中,可表示函数)(x f y 的图象的只可能是( ) 变式1:在下列从集合A 到集合B 的对应关系中不可以确定y 是x 的函数的是( ①A ={x |x ∈Z },B ={y |y ∈Z },对应法则f :x →y =x 3; ②A ={x |x >0,x ∈R },B ={y |y ∈R },对应法则f :x →y 2=3x ; ③A ={x |x ∈R },B ={y |y ∈R },对应法则f :x →y :x 2+y 2=25; ④A =R ,B =R ,对应法则f :x →y =x 2; ⑤A ={(x ,y )|x ∈R ,y ∈R },B =R ,对应法则f :(x ,y )→S =x +y ; ⑥A ={x |-1≤x ≤1,x ∈R },B ={0},对应法则f :x →y =0. A .①⑤⑥ B .②④⑤⑥ C .②③④ D .①②③⑤ 变式2、如图中,哪些是以x 为自变量的函数的图象,为什么?

考点二、相等函数的判断 [例2] 下列各对函数中,是相等函数的序号是________. ①f(x)=x+1与g(x)=x+x0 ②f(x)=x+2与g(x)=|2x+1| ③f(n)=2n+1(n∈Z)与g(n)=2n-1(n∈Z) ④f(x)=3x+2与g(t)=3t +2 变式:下列各组式子是否表示相等函数?为什么? (1)f(x)=|x|,φ(t)=t2; (2)y=x2,y=(x)2; (3)y=x+1·x-1,y=x2-1; (4)y=1+x·1-x,y=1-x2. 考点三、求函数的定义域 [例3] 求下列函数的定义域: (1)y=2x+3; (2)f(x)= 1 x+1; (3) y=x-1+1-x; (4)y= x+1 x2-1.

相关主题
文本预览
相关文档 最新文档