当前位置:文档之家› 压力测量-实验数据误差分析和数据处理(精)

压力测量-实验数据误差分析和数据处理(精)

压力测量-实验数据误差分析和数据处理(精)
压力测量-实验数据误差分析和数据处理(精)

第二章 实验数据误差分析和数据处理

第一节 实验数据的误差分析

由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。

一、误差的基本概念

测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。

1.真值与平均值

真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种:

(1) 算术平均值 算术平均值是最常见的一种平均值。

设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为

n

x n x x x x n

i i

n ∑==+???++=121 (2-1)

(2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即

n n x x x x ????=21几 (2-2)

(3)均方根平均值

n

x

n x

x x x n

i i

n

∑==+???++=

1

222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。

设两个量1x 、2x ,其对数平均值

2

1

212

121ln ln ln x x x x x x x x x -=--=对

(2-4)

应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。

当1x /2x =2,对x =1.443, x 1.50, (对x -x )/对x =4.2%, 即1x /2x ≤2,引起的误差不超过4.2%。

以上介绍各平均值的目的是要从一组测定值中找出最接近真值的那个值。在化工实验和科学研究中,数据的分布较多属于正态分布,所以通常采用算术平均值。

2.误差的分类

根据误差的性质和产生的原因,一般分为三类:

(1)系统误差 系统误差是指在测量和实验中未发觉或未确认的因素所引起的误差,而这些因素影响结果永远朝一个方向偏移,其大小及符号在同一组实验测定中完全相同,当实验条件一经确定,系统误差就获得一个客观上的恒定值。

当改变实验条件时,就能发现系统误差的变化规律。

系统误差产生的原因:测量仪器不良,如刻度不准,仪表零点未校正或标准表本身存在偏差等;周围环境的改变,如温度、压力、湿度等偏离校准值;实验人员的习惯和偏向,如读数偏高或偏低等引起的误差。针对仪器的缺点、外界条件变化影响的大小、个人的偏向,待分别加以校正后,系统误差是可以清除的。

(2)偶然误差 在已消除系统误差的一切量值的观测中,所测数据仍在末一位或末两位数字上有差别,而且它们的绝对值和符号的变化,时而大时而小,时正时负,没有确定的规律,这类误差称为偶然误差或随机误差。偶然误差产生的原因不明,因而无法控制和补偿。但是,倘若对某一量值作足够多次的等精度测量后,就会发现偶然误差完全服从统计规律,误差的大小或正负的出现完全由概率决定。因此,随着测量次数的增加,随机误差的算术平均值趋近于零,所以多次测量结果的算数平均值将更接近于真值。

(3)过失误差 过失误差是一种显然与事实不符的误差,它往往是由于实验人员粗心大意、过度疲劳和操作不正确等原因引起的。此类误差无规则可寻,只要加强责任感、多方警惕、细心操作,过失误差是可以避免的。

3、精密度、准确度和精确度

反映测量结果与真实值接近程度的量,称为精度(亦称精确度)。它与误差大小相对应,测量的精度越高,其测量误差就越小。“精度”应包括精密度和准确度两层含义。

(1)精密度:测量中所测得数值重现性的程度,称为精密度。它反映偶然误差的影响程度,精密度高就表示偶然误差小。

(2)准确度 测量值与真值的偏移程度,称为准确度。它反映系统误差的影响精度,准确度高就表示系统误差小。

(3)精确度(精度) 它反映测量中所有系统误差和偶然误差综合的影响程度。

在一组测量中,精密度高的准确度不一定高,准确度高的精密度也不一定高,但精确度高,则精密度和准确度都高。

为了说明精密度与准确度的区别,可用下述打靶子例子来说明。如图2-1所示。

图2-1(a)中表示精密度和准确度都很好,则精确度高;图2-1(b)表示精密度很好,但准确度却不高;图2-1(c)表示精密度与准确度都不好。在实际测量中没有像靶心那样明确的真值,而是设法去测定这个未知的真值。

学生在实验过程中,往往满足于实验数据的重现性,而忽略了数据测量值的准确程度。绝对真值是不可知的,人们只能订出一些国际标准作为测量仪表准确性的参考标准。随着人类认识运动的推移和发展,可以逐步逼近绝对真值。

(a ) (b ) (c )

图 2-1 精密度和准确度的关系

4、误差的表示方法

利用任何量具或仪器进行测量时,总存在误差,测量结果总不可能准确地等于被测量的真值,而只是它的近似值。测量的质量高低以测量精确度作指标,根据测量误差的大小来估计测量的精确度。测量结果的误差愈小,则认为测量就愈精确。

(1)绝对误差 测量值X 和真值0A 之差为绝对误差,通常称为误差。记为:

0A X D -= (2-5) 由于真值0A 一般无法求得,因而上式只有理论意义。常用高一级标准仪器的示值作为实际值A 以代替真值0A 。由于高一级标准仪器存在较小的误差,因而A 不等于0A ,但总比X 更接近于0A 。X 与A 之差称为仪器的示值绝对误差。记为

A X d -= (2-6)

与d 相反的数称为修正值,记为

X A d C -=-= (2-7)

通过检定,可以由高一级标准仪器给出被检仪器的修正值C 。利用修正值便可以求出该仪器的实际值A 。即

C X A += (2-8) (2)相对误差 衡量某一测量值的准确程度,一般用相对误差来表示。示值绝对误差d 与被测量的实际值A 的百分比值称为实际相对误差。记为

%100?=

A

d

A δ (2-9) 以仪器的示值X 代替实际值A 的相对误差称为示值相对误差。记为

%100?=

X

d

X δ (2-10) 一般来说,除了某些理论分析外,用示值相对误差较为适宜。

(3)引用误差 为了计算和划分仪表精确度等级,提出引用误差概念。其定义为仪表示值的绝对误差与量程范围之比。

%100%100?=?=

n

A X d

量程范围示值绝对误差δ (2-11)

d -- 示值绝对误差;

n X -- 标尺上限值-标尺下限值。

(4)算术平均误差 算术平均误差是各个测量点的误差的平均值。

n

d i ∑=平δ n i ,,2,1 = (2-12) n —测量次数;

i d —为第 i 次测量的误差。 (5)标准误差 标准误差亦称为均方根误差。其定义为

n

d

i

∑=

2σ (2-13)

上式使用于无限测量的场合。实际测量工作中,测量次数是有限的,则改用下式

1

2-=

∑n d

i

σ (2-14)

标准误差不是一个具体的误差,σ的大小只说明在一定条件下等精度测量集合所属的每一个观测值对其算术平均值的分散程度,如果σ的值愈小则说明每一次测量值对其算术平均值分散度就小,测量的精度就高,反之精度就低。

在化工原理实验中最常用的U 形管压差计、转子流量计、秒表、量筒、电压等仪表原则上均取其最小刻度值为最大误差,而取其最小刻度值的一半作为绝对误差计算值。

5、测量仪表精确度

测量仪表的精确等级是用最大引用误差(又称允许误差)来标明的。它等于仪表示值中的最大绝对误差与仪表的量程范围之比的百分数。

%

100%100max max ?=

?=

n

n X d 量程范围

最大示值绝对误差

δ (2-15) 式中:δ

max

——仪表的最大测量引用误差;

d max ——仪表示值的最大绝对误差; X n ——标尺上限值—标尺下限值。

通常情况下是用标准仪表校验较低级的仪表。所以,最大示值绝对误差就是被校表与标准表之间的最大绝对误差。

测量仪表的精度等级是国家统一规定的,把允许误差中的百分号去掉,剩下的数字就称为仪表的精度等级。仪表的精度等级常以圆圈内的数字标明在仪表的面板上。例如某台压力计的允许误差为1.5%,这台压力计电工仪表的精度等级就是1.5,通常简称1.5级仪表。

仪表的精度等级为a ,它表明仪表在正常工作条件下,其最大引用误差的绝对值δmax 不能超过的界限,即

%%100max max

a X d

n

n ≤?=δ (2-16)

由式(2-16)可知,在应用仪表进行测量时所能产生的最大绝对误差(简称误差限)为

n X a d ?≤%max (2-17) 而用仪表测量的最大值相对误差为

X

X

a X d n n

n ?≤=%max max

δ (2-18)

由上式可以看出,用只是仪表测量某一被测量所能产生的最大示值相对误差,不会超过仪

表允许误差a% 乘以仪表测量上限X n 与测量值X 的比。在实际测量中为可靠起见,可用下式对

仪表的测量误差进行估计,即

X

X a n m ?

=%δ (2-19) [例2-1] 用量限为5A ,精度为0.5级的电流表,分别测量两个电流,I 1 =5A,I 2 =2.5A,试求测量I 1和I 2的相对误差为多少?

%5.05

5

%5.0%1

1

=?=?=I I a n m δ

%0.15

.25%5.0%22=?=?

=I I a n m δ 由此可见,当仪表的精度等级选定时,所选仪表的测量上限越接近被测量的值,则测量的

误差的绝对值越小。

[例2-2] 欲测量约90V 的电压,实验室现有0.5级0-300V 和1.0级0-100V 的电压表。问选用哪一种电压表进行测量为好?

用0.5级0-300V 的电压表测量90V 的相对误差为

%7.190

300

%5.0%1

5

.0=?=?=U U a n m δ

用1.0级0-100V 的电压表测量90V 的相对误差为

%1.190

100

%0.1%2

.1=?=?=U U a n m δ

上例说明,如果选择得当,用量程范围适当的1.0级仪表进行测量,能得到比用量程范围

大的0.5级仪表更准确的结果。因此,在选用仪表时,应根据被测量值的大小,在满足被测量数值范围的前提下,尽可能选择量程小的仪表,并使测量值大于所选仪表满刻度的三分之二,即X >2X n /3 。这样就可以达到满足测量误差要求,又可以选择精度等级较低的测量仪表,从而降低仪表的成本。

二、有效数字及其运算规则

在科学与工程中,该用几位有效数字来表示测量或计算结果,总是以一定位数的数字来表示。不是说一个数值中小数点后面位数越多越准确。实验中从测量仪表上所读数值的位数是有限的,而取决于测量仪表的精度,其最后一位数字往往是仪表精度所决定的估计数字。即一般应读到测量仪表最小刻度的十分之一位。数值准确度大小由有效数字位数来决定。

1、 有效数字

一个数据,其中除了起定位作用的“0”外,其他数都是有效数字。如0.0037只有两位有效数字,而370.0则有四位有效数字。一般要求测试数据有效数字为4位。要注意有效数字不一定都是可靠数字。如测流体阻力所用的U 形管压差计,最小刻度是1mm ,但我们可以读到0.1mm ,如342.4mmHg 。又如二等标准温度计最小刻度为0.1℃,我们可以读到0.01℃,如15.16℃。此时有效数字为4位,而可靠数字只有三位,最后一位是不可靠的,称为可疑数字。记录测量数值时只保留一位可疑数字。

为了清楚地表示数值的精度,明确读出有效数字位数,常用指数的形式表示,即写成一个小数与相应10的整数幂的乘积。这种以10的整数幂来记数的方法称为科学记数法。

如 75200 有效数字为4位时,记为7.520*10

5

有效数字为3位时,记为7.52*10

5

有效数字为2位时,记为7.5*10

5

0.00478 有效数字为4位时,记为4.780*10

-3

有效数字为3位时,记为4.78*10-3

有效数字为2位时,记为4.7*10

-3

2、有效数字运算规则

(1)记录测量数值时,只保留一位可疑数字。

(2)当有效数字位数确定后,其余数字一律舍弃。舍弃办法是四舍六入,即末位有效数字后边第一位小于5,则舍弃不计;大于5则在前一位数上增1;等于5时,前一位为奇数,则进1为偶数,前一位为偶数,则舍弃不计。这种舍入原则可简述为:“小则舍,大则入,正好等于奇变偶”。如:保留4位有效数字 3.71729→3.717;

5.14285→5.143 7.62356→7.624 9.37656→9.376

(3)在加减计算中,各数所保留的位数,应与各数中小数点后位数最少的相同。例如将24.65 0.0082 1.632三个数字相加时,应写为 24.65 + 0.01 + 1.63 = 26.29。

(4)在乘除运算中,各数所保留的位数,以各数中有效数字位数最少的那个数为准;其结果的有效数字位数亦应与原来各数中有效数字最少的那个数相同。例如:

0.0121×25.64×1.05782应写成0.0121×25.64×1.06=0.328。上例说明,虽然这三个数的乘积为0.3281823,但只应取其积为0.328。

(5)在对数计算中,所取对数位数应与真数有效数字位数相同。 三、误差的基本性质

在化工原理实验中通常直接测量或间接测量得到有关的参数数据,这些参数数据的可靠程度如何?如何提高其可靠性?因此,必须研究在给定条件下误差的基本性质和变化规律。

1、误差的正态分布

如果测量数列中不包括系统误差和过失误差,从大量的实验中发现偶然误差的大小有如下几个特征:

(1)绝对值小的误差比绝对值大的误差出现的机会多,即误差的概率与误差的大小有关。这是误差的单峰性。

(2)绝对值相等的正误差或负误差出现的次数相当,即误差的概率相同。这是误差的对称性。

(3)极大的正误差或负误差出现的概率都非常小,即大的误差一般不会出现。这是误差的有界性。

(4)随着测量次数的增加,偶然误差的算术平均值趋近于零。这叫误差的低偿性。

根据上述的误差特征,可疑的出误差出现的概率分布图,如图2-2所示。图中横坐标表示偶然误差,纵坐标表示个误差出现的概率,图中曲线称为误差分布曲线,以)(x f y =表示。其数学表达式有高斯提出,具体形式为:

2

2221σσ

πx e

y -=

(2--20)

或 2

2x

h

e h

y -=

π

(2--21)

上式称为高斯误差分布定律亦称为误差方程。式中σ为标准误差,h 为精确度指数,σ和h 的关系为 σ

21=y (2--22)

若误差按函数关系分布,则称为正态分布。

σ越小,测量精度越高,分布曲线的峰越高切窄;σ越大,分布曲线越平坦且越宽,如图1-3所示。由此可知,σ越小,小误差占的比重越大,测量精度越高。反之,则大误差占的比重越大,测量精度越低。

2、测量集合的最佳值

在测量精度相同的情况下,测量一系列观测

值1M ,2M ,3M ,……,n M 所组成的测量集合,假设 图 2-2 误差分布 其平均值为m M ,则各次测量误差为

m i i M M x -=, i=1、2…n ,

当采用不同的方法计算平均值时,所得到误差值不同,误差出现的概率亦不同。若选取适当的计算方法,使误差最小,而概率最大,由此计算的平均值为最佳值。根据高斯分布定律,只有各点误差平方和最小,才能实现概率最大。这就是最小乘法值。由此可见,对于一组精度相同的观测值,采用算术平均得到的值是该组观测值的

最佳值。 图2-3 不同σ的误差分布曲线

3、 有限测量次数中标准误差σ的计算

由误差基本概念知,误差是观测值和真值之差。在没有系统误差存在的情况下,以无限多次测量所得到的算术平均值为真值。当测量次数为有限时,所得到的算术平均值近似于真值,称最佳值。因此,观测值与真值之差不同于观测值与最佳值之差。

令真值为A ,计算平均值为a ,观测值为M ,并令d=M-a ,D=M-A ,则 ,11a M d -= A M D -=11 ,22a M d -= A M D -=22

…………… …………… ,a M d n n -= A M D n n -=

na M d i i -=∑∑ nA M D i i -=∑∑ 因为 0=-∑na M i na M i =∑ 代入nA M D i i -=∑∑中,即得 n

D A a i ∑+=

(2—23)

将式(2—23)式代入d i =M i -a 中得

n

D D n

D A M d i i i i i ∑∑-=--=)( (2—24)

将式(2—24)两边各平方得 21221)(2n

D n

D D D d i i i ∑∑+-=

222222)(2n

D n

D D D d i i ∑∑+-=

…………… …………… 222)(2n

D n

D D D d i i n n n ∑∑+-=

对i 求和

2

2

22)(

)(2

n

D n n

D D d

i i i

i

∑∑∑∑+-=

因在测量中正负误差出现的机会相等,故将(ΣD i )2展开后,D 1﹒D 2、D 1 ﹒D 3…,为正为负的数目相等,彼此相消,故得 2

2

2

222

n D n

n

D D

d

i

i

i

i

∑∑∑∑+-=

∑∑-=

221

i i

D n

n d

从上式可以看出,在有限测量次数中,自算数平均值计算的误差平方和永远小于自真值计

算的误差平方和。根据标准误差的定义

n

D

i

∑=

式中ΣD i

2代表观测次数为无限多时误差的平方和,故当观测次数有限时, 1

2-=

∑n d

i

σ (2—25)

4.可疑观测值的舍弃

由概率积分知,随机误差正态分布曲线下的全部积分,相当于全部误差同时出现的概率, 即 121

2

22==

?∞

--

dx e

p x σσ

π (2—26)

若误差x 以标准误差σ的倍数表示,即x=t σ,则在±t σ范围内出现的概率为2Φ(t ),超

出这个范围的概率为1-2Φ(t)。Φ(t)称为概率函数,表示为 ?-

=

Φt t dt e

t 0

2

221

)(π

(2—27)

2Φ(t)与t 的对应值在数学手册或专著中均附有此类积分表,读者需要时可自行查取。在使用积分表时,需已知t 值。由表2-1和图(2-4)给出几个典型及其相应的超出或不超出|x|的概率。

由表2-1知,当t=3, |x|=3σ时,在370次观测中只有一次测量的误差超过3σ范围。在有限次的观测中,一般测量次数不超过十次,可以认为误差大于3σ,可能是由于过失误差或实验条件变化未被发觉等原因引起的。因此,凡是误差大于3σ的数据点予以舍弃。这种判断可疑实验数据的原则称为3σ准则。

5.函数误差

上述讨论主要是直接测量的误差计算问题,但在许多场合下,往往涉及间接测量的变量,所谓间接测量是通过直接测量的量之间有一定的函数关系,并根据函数被测的量,如传热问题

中的传热速率。因此,间接测量值就是直接测量得到的各个测量值的函数。其测量误差是各个测量值误差的函数。

图 2-4 误差分布曲线的积分

表2-1 误差概率和出现次数

(1) 函数误差的一般形式 在间接测量中,一般为多元函数,而多元函数可用下式表示:

y= f (x 1,x 2,…,x n ) (2—28) 式中 y —间接测量值; x i —直接测量值。

由台劳级数展开得

n

n

x x f x x f x x f y ???++???+???=? 2211

(2—29)

或 i n

i i

x x f y ???=?∑=1

它的最大绝对误差为i

n

i i

x

x f

y ???=

?∑=1

(2—30)

式中 i

x f ?? —误差传递系数;

Δx i —直接测量值的误差;

Δy — 间接测量值的最大绝对误差。

函数的相对误差δ为

(2—31)

n

n

n

n x f

x f x f y

x x f y

x x f y

x x f y

y δδδδ??++??+??=

???+

+???+???=?= 22112211

(2)某些函数误差的计算

① 函数y=x ±z 绝对误差和相对误差

由于误差传递系数1,1±=??=??z

f x

f ,则函数最大绝对误差

Δy=±(|Δx|+|Δz|) (2—32)

相对误差 z x z

x y y r +?+?±=?=δ (2—33)

②函数形式为w

xz K y =,x 、z 、w 为变量 误差传递系数为: w Kz x y =??

w

Kx z y =?? 2

w Kxz w y -=??

函数的最大绝对误差为

w w Kxz z w Kx x w Kz y ?+?+?=?2 (2—34)

函数的最大相对误差为

w

w z z x x y y r ?+?+?=?=δ (2—35)

现将某些常用函数的最大绝对误差和相对误差列于表2—2中。 [例2-3] 用量热器测定固体比热容时采用的公式 O pH p C t t m t t M C 2)

()

(2102--=

式中 M —量热器内水的质量 m —被测物体的质量 t 0— 测量前水的温度

t 1— 放入量热器前物体的温度 t 2— 测量时水的温度

C pH2O —水的热容,4.187Kj/(kg.·K)

测量结果如下:

M=250±0.2g m=62.31±0.02g t 0=13.52±0.01℃ t 1=99.32±0.04℃ t 2=17.79±0.01℃

试求测量物的比热容之真值,并确定能否提高测量精度。

解:根据题意,计算函数之真值,需计算各变量的绝对误差和误差传递系数。为了简化计算,令θ0=t 2--t 0=4.27℃, θ1=t 1—t 2=81.53℃,.

方程改写为 O pH p C m M C 2

1

0θθ=

表2-2 某些函数的误差传递公式

各变量的绝对误差为

g M 2.0=? 02.001.001.0020=+=?+?=?t t θ g m 02.0=? 05.001.004.0120=+=?+?=?t t θ

各变量的误差传递系数为

3101052.353

.8131.62187

.427.42-?=??==??θθm C M C O H p p 22

1201041.153.8131.62187.427.42

-?-=??-=-=??θθm C M m C O H p p 206.053

.8131.62187

.4250102=??==??θθm MC C O H p p 222

1

011008.153.8131.62187.427.42502

-?-=???-=-=??θθθm C M C O H p p 函数的绝对误差

1

1

00θθθθ???+???+???+???=?p p p p p C C m m C M M C C =3.52×10-3×0.2—1.41×10-2×0.02+0.206×0.02—1.08×10-2×0.05

=0.704×10-3—0.282×10-3 + 4.12×10-3--0.54×10-3

=4.00×10-3 J/(g ·K) 880.0187.453

.8131.6227.4250=???=p C J/(g ·K)

故真值 C p =0.8798±0.0003 J/(g ·K)

由有效数字位数考虑以上的测量结果清度已满足要求。若不仅考虑有效数字位数,尚需从比较各变量的测量精度,确定是否有可能提高测量精度。则本例可从分析比较各变量的相对误差着手。

各变量的相对误差分别为 %08.0108250

2.04=?==?=-M M E M

%032.01021.331

.6202.04=?==?=-m m E m

%468.01068.427

.402.0300

=?==?=-θθθE

%0613.01013.653

.8105.0411

=?==?=-θθθE

其中以θ0的相对误差为0.468%,误差最大,是M 的5.85倍,是m 的14.63倍。为了提高C p 的测量精度,可改善θ0的测量仪表的精度,即提高测量水温的温度计精度,如采用贝克曼温度计,分度值可达0.002,精度为0.001。则其相对误差为 0040468.01068.427

.4002.00

=?==-θE

由此可见,变量的精度基本相当。提高θ0精度后C p 的绝对误差为

ΔC p =3.52×10-3×0.2—1.41×10-2×0.02+0.206×0.002—1.08×10-2×0.05 =0.704×10-3—0.282×10-3 + 0.412×10-3--0.54×10-3

=2.94×10-4J/(g ·K)

系统提高精度后,C p 的真值为 C p =0.8798±0.0003 J/(g ·K)

第二章 误差和分析数据处理

第二章误差和分析数据处理 1.指出下列各种误差是系统误差还是偶然误差?如果是系统误差,请区别方法误差、仪器和试剂误差或操作误差,并给出它们的减免办法。 (1)砝码受腐蚀;(2)天平的两臂不等长;(3)容量瓶与移液管未经校准;(4)在重量分析中,试样的非被测组分被共沉淀;(5)试剂含被测组分;(6)试样在称量过程中吸湿;(7)化学计量点不在指示剂的变色范围内;(8)读取滴定管读数时,最后一位数字估计不准;(9)在分光光度法测定中,波长指示器所示波长与实际波长不符。(10)在HPLC测定中,待测组分峰与相邻杂质峰部分重叠。 答:(1)系统误差;校准砝码。 (2)系统误差;校准仪器。 (3)系统误差;校准仪器。 (4)系统误差;控制条件扣除共沉淀。 (5)系统误差;扣除试剂空白或将试剂进一步提纯。 (6)系统误差;在110℃左右干燥后称重。 (7)系统误差;重新选择指示剂。 (8)偶然误差;最后一位是估计值,因而估计不准产生偶然误差。 (9)系统误差;校准仪器。 (10)系统误差;重新选择分析条件。 2.表示样本精密度的统计量有哪些? 与平均偏差相比,标准偏差能更好地表示一组数据的离散程度,为什么? 3.说明误差与偏差、准确度与精密度的区别和联系。 4.什么叫误差传递?为什么在测量过程中要尽量避免大误差环节? 5.何谓t分布?它与正态分布有何关系? 6.在进行有限量实验数据的统计检验时,如何正确选择置信水平? 7.为什么统计检验的正确顺序是:先进行可疑数据的取舍,再进行F检验,在F检验通过后,才能进行t检验? 8.说明双侧检验与单侧检验的区别,什么情况用前者或后者? 9.何谓线性回归?相关系数的意义是什么? 10.进行下述运算,并给出适当位数的有效数字。

误差和分析数据处理

第一章绪论 第一节药物分析学科的性质、目的与任务 药物分析主要是采用化学、物理化学或生物化学等方法和技术,研究化学合成药物和结构已知的天然药物及其制剂的组成、理化性质、真伪鉴别、纯度检查以及有效成分的含量测定等,同时也涉及生化药物、基因工程药物以及中药制剂的质量控制。 药物分析是一门研究和发展药品质量控制的方法性学科。 药品是用于预防、治疗和诊断疾病,有目的地调节人体生理功能并规定有适应征或者功能主治、用法和用量的物质。药品是一种特殊商品,药品质量的好坏关系到用药的安全和有效,关系到人民的身体健康和生命安全。 药物分析的目的是检验药品质量,保证人民用药的安全、合理、有效。 药物分析就是运用各种有效的分析方法和手段,如化学分析法,仪器分析法,生物化学和生物学等方法全面控制药品的质量。 药物分析的主要的任务包括药物成品的理化检验,药物生产过程中的质量控制,药物贮存过程中的质量考察,医院调配制剂的快速分析;新药研究开发中的质量标准制订以及体内药物分析等。 由此可见,从药物的研制、生产、贮藏、供应、使用到临床血药浓度监测一系列过程,都离不开药物分析的方法和手段。 第二节药品质量标准和药典 一、药品质量标准 药品质量标准是国家对药品的质量、规格和检验方法所作出的技术性规定,是保证药品质量,进行药品生产、经营、使用、管理及监督检验等部门共同遵循的法定依据。 我国药品质量标准分为中华人民共和国药典(简称中国药典)和国家药品监督管理局颁发的药品质量标准(简称局颁标准),二者均属于国家药品质量标准,具有等同的法律效力。 二、中华人民共和国药典 《中华人民共和国药典》现行版本为2000年版,简称中国药典(2000年版)。中国药典还出版英文版,缩写为ChP。 我国已出版了7版药典(1953、1963、1977、1985、1990、1995和2000年版)。 中国药典分为两部(一、二部),各部有凡例和有关的附录。一部收载中药材、成方及单味制剂等;二部收载化学药品、抗生素、生化药品、放射性药品和生物制品等。 (一)中国药典主要内容

实验数据误差分析和数据处理

第二章 实验数据误差分析和数据处理 第一节 实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=121 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑==+???++= 1 222221均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值

误差理论与数据处理 实验报告

《误差理论与数据处理》实验指导书 姓名 学号 机械工程学院 2016年05月

实验一误差的基本性质与处理 一、实验内容 1.对某一轴径等精度测量8次,得到下表数据,求测量结果。 Matlab程序: l=[24.674,24.675,24.673,24.676,24.671,24.678,24.672,24.674];%已知测量值 x1=mean(l);%用mean函数求算数平均值 disp(['1.算术平均值为:',num2str(x1)]); v=l-x1;%求解残余误差 disp(['2.残余误差为:',num2str(v)]); a=sum(v);%求残差和 ah=abs(a);%用abs函数求解残差和绝对值 bh=ah-(8/2)*0.001;%校核算术平均值及其残余误差,残差和绝对值小于n/2*A,bh<0,故以上计算正确 if bh<0 disp('3.经校核算术平均值及计算正确'); else disp('算术平均值及误差计算有误'); end xt=sum(v(1:4))-sum(v(5:8));%判断系统误差(算得差值较小,故不存在系统误差) if xt<0.1 disp(['4.用残余误差法校核,差值为:',num2str(x1),'较小,故不存在系统误差']); else disp('存在系统误差'); end bz=sqrt((sum(v.^2)/7));%单次测量的标准差 disp(['5.单次测量的标准差',num2str(bz)]);

p=sort(l);%用格罗布斯准则判断粗大误差,先将测量值按大小顺序重新排列 g0=2.03;%查表g(8,0.05)的值 g1=(x1-p(1))/bz; g8=(p(8)-x1)/bz;%将g1与g8与g0值比较,g1和g8都小于g0,故判断暂不存在粗大误差if g1

实验误差及数据处理习题

误差理论与数据处理 学号: ____________ 姓名: __________ 专业: _____________ 评分: _______ 上课时间: 第____周星期____上午[ ]下午[ ]晚上[ ] 请将1-24小题的答案对应地填在下表中 一、单选题(每小题3分,共36分)。 1.采用“四舍六入五单双”法,将下列各数据取为2位有效数字(修约间隔为0.1),其 结果正确的是: A. 2.750→2.7 B. 2.650→2.6 C. 2.65001→2.6 D. 2.6499→2.7 2.自然数6的有效数字位数为: A. 1位 B. 2位 C. 3位 D. 无穷位 3.L=0.1010m的有效数字位数为: A. 2位 B. 3位 C. 4位 D. 5位 4.V=2.90×103m/s的有效数字位数为: A. 3位 B. 5位 C. 6位 D. 7位 5.下列单位换算正确的是: A. 0.06m=60mm B. 1.38m=1380mm C. 4cm=40mm D. 5.0mm=0.50cm 6.用有效数字运算法则计算123.98-40.456+ 7.8,其结果正确的是: A. 91.324 B. 91.3 C. 91.32 D. 91 7.用有效数字运算法则计算271.3÷0.1和3.6×4.1,其结果正确的是: A. 3×103和14.8 B. 3×103和15 C. 2712和14.76 D. 2712和15 8.用有效数字运算法则计算 4.0345 +38.1 9.0121-9.011 ,其结果正确的是: A. 3705.827 B. 370.8273 C. 3705.8 D. 4×103

数据处理与误差分析报告

物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分 尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预 先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告 要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签 名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照 实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差

误差和分析数据处理

第二章 误差和分析数据处理 第一节 概 述 定量分析的任务是要准确地解决“量”的问题,但是定量分析中的误差是客观存在的,因此,必须寻找产生误差的原因并设法减免,从而提高分析结果的可靠程度,另外还要对实验数据进行科学的处理,写出合乎要求的分析报告。 第二节 测量误差 一、绝对误差和相对误差 1. 绝对误差 测量值与真实值之差称为绝对误差。δ = x - μ 2. 相对误差 绝对误差与真值的比值称为相对误差。 %100%100?-=?μ μμδ x 若真实值未知,但δ 已知,也可表示为 %100?x δ 3. 真值与标准参考物质 理论真值:如某化合物的理论组成等。 约定真值:如国际计量大会上确定的长度、质量、物质的量单位等。 相对真值:如标准参考物质的含量。 标准参考物质:经权威机构鉴定并给予证书的,又称标准试样。 实际工作中,常把最有经验的人用最可靠的方法对标准试样进行多次测定所得结 果的平均值作为真值的替代值。 二、系统误差和偶然误差 1. 系统误差(可定误差) 由某种确定的原因引起,一般有固定的方向,大小在试样间是恒定的,重复测定 时重复出现。

按系统误差的来源分类:方法误差、仪器或试剂误差、操作误差。 方法误差:滴定分析反应进行不完全、干扰离子的影响、滴定终点与化学计量点 不符、副反应的发生、沉淀的溶解、共沉淀现象、灼烧时沉淀的分解或挥发。 仪器或试剂误差:砝码、容量器皿刻度不准、试剂中含有被测物质或干扰物质。 操作误差:称样时未注意防止吸湿、洗涤沉淀过分或不充分、辨别颜色偏深(浅)、 读数偏高(低)。 按系统误差的数值变化规律分类:恒定误差、比例误差。 系统误差可用加校正值的方法予以消除。 2. 偶然误差(随机误差、不可定误差) 由于偶然的原因如温度、湿度波动、仪器的微小变化、对各份试样处理时的微小 差别等引起,其大小和正负都不固定。 偶然误差服从统计规律,可用增加平行测定次数加以减免。 三、准确度和精密度 1. 准确度与误差 准确度表示分析结果与真实值接近的程度。准确度的大小用绝对误差或相对误差 表示。评价一个分析方法的准确度常用加样回收率衡量。 2. 精密度与偏差 精密度表示平行测量的各测量值之间互相接近的程度。精密度的大小可用偏差、 相对平均偏差、标准偏差和相对标准偏差表示。重复性与再现性是精密度的常见别名。 偏差:d = x i - x 平均偏差: n x x d n i i ∑=-=1 相对平均偏差: %100/)(%1001?-=?∑=x n x x x d n i i 标准偏差(标准差): 1 )(1 2 --= ∑=n x x S n i i

误差分析和数据处理

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多 少次测定,但是测定结果总不会是完全一样。这 说明在测定中有误差。为此我们必须了解误差产 生的原因及其表示方法,尽可能将误差减到最 小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求 测到的。严格来讲,由于测量仪器,测定方法、 环境、人的观察力、测量的程序等,都不可能是 完善无缺的,故真值是无法测得的,是一个理想 值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差 出现的机率相等,故将各观察值相加,加以平均, 在无系统误差情况下,可能获得极近于真值的数 值。故“真值”在现实中是指观察次数无限多时, 所求得的平均值(或是写入文献手册中所谓的 “公认值”)。

(二)平均值 然而对我们工程实验而言,观察的次数都是 有限的,故用有限观察次数求出的平均值,只能 是近似真值,或称为最佳值。一般我们称这一最 佳值为平均值。常用的平均值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正 态分布时,用最小二乘法原理可以证明:在一组 等精度的测量中,算术平均值为最佳值或最可信 赖值。 n x n x x x x n i i n ∑=++==121 式中: n x x x 21、——各次观测值;n ――观察 的次数。 (2)均方根平均值 n x n x x x x n i i n ∑=++==12 22221 均 (3)加权平均值 设对同一物理量用不同方法去测定,或对同 一物理量由不同人去测定,计算平均值时,常对 比较可靠的数值予以加重平均,称为加权平均。

物理实验-误差分析与数据处理

目录 实验误差分析与数据处理 (2) 1 测量与误差 (2) 2 误差的处理 (6) 3 不确定度与测量结果的表示 (10) 4 实验中的错误与错误数据的剔除 (13) 5 有效数字及其运算规则 (15) 6 实验数据的处理方法 (17) 习题 (25)

实验误差分析与数据处理 1 测量与误差 1.1 测量及测量的分类 物理实验是以测量为基础的。在实验中,研究物理现象、物质特性、验证物理原理都需要进行测量。所谓测量,就是将待测的物理量与一个选来作为标准的同类量进行比较,得出..................................它们的倍数关系的过程.......... 。选来作为标准的同类量称之为单位,倍数称为测量数值。一个物理量的测量值等于测量数值与单位的乘积。 在人类的发展历史上,不同时期,不同的国家,乃至不同的地区,同一种物理量有着许多不同的计量单位。如长度单位就分别有码、英尺、市尺和米等。为了便于国际交流,国际计量大会于1990年确定了国际单位制(SI ),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。 1.直接测量与间接测量 测量可分为两类。一类是直接测量,是指直接将待测物理量与选定的同类物理量的标准单位相比较直接得到测量值的一种测量。它无须进行任何函数关系的辅助运算。如用尺测量长度、以秒表计时间、天平称质量、安培表测电流等。另一类是间接测量,是指被测量与直接测量的量之间需要通过一定的函数关系的辅助运算,才能得到被测量物理量的量值的测 量。如单摆测量重力加速度时,需先直接测量单摆长l 和单摆的周期T ,再应用公式224T l g π=,求得重力加速度g 。物理量的测量中,绝大部分是间接测量。但直接测量是一切测量的基础。不论是直接测量,还是间接测量,都需要满足一定的实验条件,按照严格的方法及正确地使用仪器,才能得出应有的结果。因此实验过程中,一定要充分了解实验目的,正确使用仪器,细心地进行操作读数和记录,才能达到巩固理论知识和加强实验技能训练的目的。 2.等精度测量与不等精度测量 同一个人,用同样的方法,使用同样的仪器,在相同的条件下对同一物理量进行多次测量,尽管各次测量并不完全相同,但我们没有任何充足的理由来判断某一次测量更为精确,只能认为它们测量的精确程度是完全相同的。我们把这种具有同样精确程度的测量称之为等精度测量。在所有的测量条件中,只要有一个发生变化,这时所进行的测量即为不等精度测量。在物理实验中,凡是要求多次测量均指等精度测量,应尽可能保持等精度测量的条件不变。严格地说,在实验过程中保持测量条件不变是很困难的。但当某一条件的变化对测量结果的影响不大时,乃可视为等精度测量。在本书中,除了特别指明外,都作为等精度测量。 1.2 误差及误差的表现形式 1.误差 物理量在客观上有着确定的数值,称为真值。测量的最终目的都是要获得物理量的真值。但由于测量仪器精度的局限性、测量方法或理论公式的不完善性和实验条件的不理想,测量

物理误差分析及数据处理

第一章 实验误差评定和数据处理 (课后参考答案) 制作:李加定 校对:陈明光 3.改正下列测量结果表达式的错误: (1)± 625 (cm ) 改:±(cm ) (2) ± 5(mm ) 改: ± 5(mm ) (3)± 6 (mA ) 改: ± (mA ) (4)96 500±500 (g ) 改: ± (kg ) (5)±(℃) 改: ±(℃) 4.用级别为,量程为10 mA 的电流表对某电路的电流作10次等精度测量,测量数据如下表所示。试计算测量结果及标准差,并以测量结果形式表示之。 解:①计算测量列算术平均值I : 10 1 19.548 ()10i i I I mA ===∑ ②计算测量列的标准差I σ: 0.0623 (cm)I σ= = ③根据格拉布斯准则判断异常数据: 取显著水平a =,测量次数n =10,对照表1-3-1查得临界值0(10,0.01) 2.41g =。取max x ?计算i g 值,有 6 60.158 2.536 2.410.0623 I I g σ?= = => 由此得6I =为异常数据,应剔除。 ④用余下的数据重新计算测量结果

重列数据如表1-3-3。 计算得 9 1 19.564 ()9i i I I mA ===∑ ,0.0344 ()I mA σ== 再经过格拉布斯准则判别,所有测量数据符合要求。 算术平均值I 的标准偏差为I σ 0.01145I σ= = = (mA ) 按均匀分布计算系统误差分量的标准差σ仪 为 0.0289σ?=仪0.5%10 (mA ) 合成标准差σ为 0.031σ (mA ) 取0.04σ= (mA),测量结果表示为 9.560.04x x σ=±=± (mA ) 5.用公式24m d h ρπ= 测量某圆柱体铝的密度,测得直径d =±(cm ),高h =±(cm ),质量m =±(g )。计算铝的密度ρ和测量的标准差ρσ,并以测量结果表达式表示之。 解 (1)计算铝的密度ρ: 322 4436.488 2.7003g /m 3.1416 2.042 4.126 m c d h ρπ?= =??=() (2)计算g 标准差相对误差: 对函数两边取自然对数得 ln ln 4ln ln 2ln ln m d h ρπ=-+-- 求微分,得

第四章误差与实验数据的处理-答案

第四章误差与实验数据的处理练习题参考答案 1. 下列各项定义中不正确的是( D) (A)绝对误差是测定值和真值之差 (B)相对误差是绝对误差在真值中所占的百分率 (C)偏差是指测定值与平均值之差 (D)总体平均值就是真值 2. 准确度是(分析结果)与(真值)的相符程度。准确度通常用(误差)来表示,(误差)越小,表明分析结果的准确度越高。精密度表示数次测定值(相互接近)的程度。精密度常用(偏差)来表示。(偏差)越小,说明分析结果的精密度越高。 3. 误差根据其产生的原因及其性质分为系统误差和(随机误差)两类。系统误差具有(重复性)、(单向性)和(可测性)等特点。 4. 对照试验用于检验和消除(方法)误差。如果经对照试验表明有系统误差存在,则应设法找出其产生的原因并加以消除,通常采用以下方法:(空白试验),(校准仪器和量器),( 校正方法)。 5. 对一个w(Cr)=%的标样,测定结果为%,%,%。则测定结果的绝对误差为(-%),相对 误差为(-%)。 6. 标准偏差可以使大偏差能更显著地反映出来。(√) 7. 比较两组测定结果的精密度(B) 甲组:%,%,%,%,% 乙组:%,%,%,%,% (A)甲、乙两组相同(B)甲组比乙组高(C)乙组比甲组高(D)无法判别 8. 对于高含量组分(>10%)的测定结果应保留(四)位有效数字;对于中含量组分(1%~10%) 的测定结果应保留(三)位有效数字;对于微量组分(<1%)的测定结果应保留(两)位有效数字。 9. 测定的精密度好,但准确度不一定好,消除了系统误差后,精密度好的,结果准确度就好。(√) 10. 定量分析中,精密度与准确度之间的关系是( C) (A)精密度高,准确度必然高(B)准确度高,精密度也就高 (C)精密度是保证准确度的前提(D)准确度是保证精密度的前提 11. 误差按性质可分为(系统)误差和(随机)误差。 12. 下列叙述中错误的是( C)

误差分析和数据处理

误差和分析数据处理 1 数据的准确度和精度 在任何一项分析工作中,我们都可以看到用同一个分析方法,测定同一个样品,虽然经过多少次测定,但是测 定结果总不会是完全一样。这说明在测定中有误差。为此 我们必须了解误差产生的原因及其表示方法,尽可能将误 差减到最小,以提高分析结果的准确度。 1.1 真实值、平均值与中位数 (一)真实值 真值是指某物理量客观存在的确定值。通常一个物理量的真值是不知道的,是我们努力要求测到的。严格来讲,由于测量仪器,测定方法、环境、人的观察力、测量的程 序等,都不可能是完善无缺的,故真值是无法测得的,是 一个理想值。科学实验中真值的定义是:设在测量中观察 的次数为无限多,则根据误差分布定律正负误差出现的机 率相等,故将各观察值相加,加以平均,在无系统误差情 况下,可能获得极近于真值的数值。故“真值”在现实中 是指观察次数无限多时,所求得的平均值(或是写入文献 手册中所谓的“公认值”)。 (二)平均值 然而对我们工程实验而言,观察的次数都是有限的,故用有限观察次数求出的平均值,只能是近似真值,或称

为最佳值。一般我们称这一最佳值为平均值。常用的平均 值有下列几种: (1)算术平均值 这种平均值最常用。凡测量值的分布服从正态分布 时,用最小二乘法原理可以证明:在一组等精度的测量中, 算术平均值为最佳值或最可信赖值。 式中: n x x x 21、——各次观测值;n ――观察的次数。 (2)均方根平均值 (3)加权平均值 设对同一物理量用不同方法去测定,或对同一物理量 由不同人去测定,计算平均值时,常对比较可靠的数值予 以加重平均,称为加权平均。 式中;n x x x 21、——各次观测值; n w w w 21、——各测量值的对应权重。各观测值的 权数一般凭经验确定。 (4)几何平均值 (5)对数平均值 以上介绍的各种平均值,目的是要从一组测定值中找 出最接近真值的那个值。平均值的选择主要决定于一组观 测值的分布类型,在化工原理实验研究中,数据分布较多 属于正态分布,故通常采用算术平均值。 (三)中位数(xM )

误差理论与数据处理实验报告要点

误差理论与数据处理 实验报告 姓名:黄大洲 学号:3111002350 班级:11级计测1班 指导老师:陈益民

实验一 误差的基本性质与处理 一、实验目的 了解误差的基本性质以及处理方法 二、实验原理 (1)算术平均值 对某一量进行一系列等精度测量,由于存在随机误差,其测得值皆不相同,应以全部测得值的算术平均值作为最后的测量结果。 1、算术平均值的意义:在系列测量中,被测量所得的值的代数和除以n 而得的值成为算术平均值。 设 1l ,2l ,…,n l 为n 次测量所得的值,则算术平均值 121...n i n i l l l l x n n =++==∑ 算术平均值与真值最为接近,由概率论大数定律可知,若测量次数无限增加,则算术平均值x 必然趋近于真值0L 。 i v = i l -x i l ——第i 个测量值,i =1,2,...,;n i v ——i l 的残余误差(简称残差) 2、算术平均值的计算校核 算术平均值及其残余误差的计算是否正确,可用求得的残余误差代数和性质来校核。 残余误差代数和为: 1 1 n n i i i i v l nx ===-∑∑ 当x 为未经凑整的准确数时,则有:1 n i i v ==∑0 1)残余误差代数和应符合:

当 1n i i l =∑=nx ,求得的x 为非凑整的准确数时,1 n i i v =∑为零; 当 1n i i l =∑>nx ,求得的x 为凑整的非准确数时,1 n i i v =∑为正;其大小为求x 时 的余数。 当 1n i i l =∑

实验数据误差分析与数据处理

第一章实验数据误差分析与数据处理 第一节实验数据误差分析 一、概述 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验测量值和真值之间,总是存在一定的差异,在数值上即表现为误差。为了提高实验的精度,缩小实验观测值和真值之间的差值,需要对实验数据误差进行分析和讨论。 实验数据误差分析并不是即成事实的消极措施,而是给研究人员提供参与科学实验的积极武器,通过误差分析,可以认清误差的来源及影响,使我们有可能预先确定导致实验总误差的最大组成因素,并设法排除数据中所包含的无效成分,进一步改进实验方案。实验误差分析也提醒我们注意主要误差来源,精心操作,使研究的准确度得以提高。 二、实验误差的来源 实验误差从总体上讲有实验装置(包括标准器具、仪器仪表等)、实验方法、实验环境、实验人员和被测量五个来源。 1.实验装置误差 测量装置是标准器具、仪器仪表和辅助设备的总体。实验装置误差是指由测量装置产生的测量误差。它来源于: (1)标准器具误差 标准器具是指用以复现量值的计量器具。由于加工的限制,标准器复现的量值单位是有误差的。例如,标准刻线米尺的0刻线和1 000 mm刻线之间的实际长度与1 000 mm单位是有差异的。又如,标称值为1kg的砝码的实际质量(真值)并不等于1kg等等。 (2)仪器仪表误差 凡是用于被测量和复现计量单位的标准量进行比较的设备,称为仪器或仪表.它们将被测量转换成可直接观察的指示值。例如,温度计、电流表、压力表、干涉仪、天平,等等。 由于仪器仪表在加工、装配和调试中,不可避免地存在误差,以致仪器仪表的指示值不等于被测量的真值,造成测量误差。例如,天平的两臂不可能加工、调整到绝对相等,称量时,按天平工作原理,天平平衡被认为两边的质量相等。但是,由于天平的不等臂,虽然天平达到平衡,但两边的质量并不等,即造成测量误差。 (3)附件误差 为测量创造必要条件或使测量方便地进行而采用的各种辅助设备或附件,均属测量附件。如电测量中的转换开关及移动测点、电源、热源和连接导线等均为测量附件,且均产生测量误差。又如,热工计量用的水槽,作为温度测量附件,提供测量水银温度计所需要的温场,由于水槽内各处温度的不均匀,便引起测量误差,等等。 按装置误差具体形成原因,可分为结构性的装置误差、调整性的装置误差和变化性的装置误差。结构性的装置误差如:天平的不等臂,线纹尺刻线不均匀,量块工作面的不平行性,光学零件的光学性能缺陷,等等。这些误差大部分是由于制造工艺不完善和长期使用磨损引起的。调整性的装置误差如投影仪物镜放大倍数调整不准确,水平仪的零位调整不准确,千分尺的零位调整不准确,等等。这些误差是由于仪器仪表在使用时,未调整到理想状态引起的。变化性的装置误差如:激光波长的长期不稳定性,电阻等元器件的老化,晶体振荡器频率的长期漂移,等等。这些误差是由于仪器仪表随时间的不稳定性和随空间位置变化的不均匀性造成的。 2.环境误差 环境误差系指测量中由于各种环境因素造成的测量误差。 被测量在不同的环境中测量,其结果是不同的。这一客观事实说明,环境对测量是有影响的,是测量的误差来源之一。环境造成测量误差的主要原因是测量装置包括标准器具、仪器仪表、测量附件同被测对象随着环境的变化而变化着。 测量环境除了偏离标准环境产生测量误差以外,从而引起测量环境微观变化的测量误差。 3.方法误差

物理实验误差分析与数据处理

物理实验误差分析与数 据处理 Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】

目录 实验误差分析与数据处理 (2) 1 测量与误差 (2) 2 误差的处理 (6) 3 不确定度与测量结果的表示 (10) 4 实验中的错误与错误数据的剔除 (13) 5 有效数字及其运算规则 (15) 6 实验数据的处理方法 (17) 习题 (25)

实验误差分析与数据处理 1 测量与误差 测量及测量的分类 物理实验是以测量为基础的。在实验中,研究物理现象、物质特性、验证 物理原理都需要进行测量。所谓测量,就是将待测的物理量与一个选来作为标...................... 准的同类量进行比较,得出它们的倍数关系的过程...................... 。选来作为标准的同类量称之为单位,倍数称为测量数值。一个物理量的测量值等于测量数值与单位的乘积。 在人类的发展历史上,不同时期,不同的国家,乃至不同的地区,同一种物理量有着许多不同的计量单位。如长度单位就分别有码、英尺、市尺和米等。为了便于国际交流,国际计量大会于1990年确定了国际单位制(SI ),它规定了以米、千克、秒、安培、开尔文、摩尔、坎德拉作为基本单位,其他物理量(如力、能量、电压、磁感应强度等)均作为这些基本单位的导出单位。 1.直接测量与间接测量 测量可分为两类。一类是直接测量,是指直接将待测物理量与选定的同类物理量的标准单位相比较直接得到测量值的一种测量。它无须进行任何函数关系的辅助运算。如用尺测量长度、以秒表计时间、天平称质量、安培表测电流等。另一类是间接测量,是指被测量与直接测量的量之间需要通过一定的函数关系的辅助运算,才能得到被测量物理量的量值的测量。如单摆测量重力加速 度时,需先直接测量单摆长l 和单摆的周期T ,再应用公式224T l g π=,求得重力 加速度g 。物理量的测量中,绝大部分是间接测量。但直接测量是一切测量的基础。不论是直接测量,还是间接测量,都需要满足一定的实验条件,按照严格的方法及正确地使用仪器,才能得出应有的结果。因此实验过程中,一定要充分了解实验目的,正确使用仪器,细心地进行操作读数和记录,才能达到巩固理论知识和加强实验技能训练的目的。 2.等精度测量与不等精度测量 同一个人,用同样的方法,使用同样的仪器,在相同的条件下对同一物理量进行多次测量,尽管各次测量并不完全相同,但我们没有任何充足的理由来判断某一次测量更为精确,只能认为它们测量的精确程度是完全相同的。我们把这种具有同样精确程度的测量称之为等精度测量。在所有的测量条件中,只要有一个发生变化,这时所进行的测量即为不等精度测量。在物理实验中,凡是要求多次测量均指等精度测量,应尽可能保持等精度测量的条件不变。严格地说,在实验过程中保持测量条件不变是很困难的。但当某一条件的变化对测量结果的影响不大时,乃可视为等精度测量。在本书中,除了特别指明外,都作为等精度测量。

误差和分析数据处理习题

第二章误差和分析数据处理习题 一、最佳选择题 1. 如果要求分析结果达到0.1%的准确度,使用灵敏度为0.1mg的天平称取试样时,至少应称取() A. 0.1g B. 0.2g C. 0.05g D. 0.5g 2. 定量分析结果的标准偏差代表的是()。 A. 分析结果的准确度 B. 分析结果的精密度和准确度 C. 分析结果的精密度 D. 平均值的绝对误差 3. 对某试样进行平行三次测定,得出某组分的平均含量为30.6% ,而真实含量为30.3% ,则30.6%-30.3%=0.3% 为() A. 相对误差 B. 绝对误差 C. 相对偏差 D. 绝对偏差 4. 下列论述正确的是:() A. 准确度高,一定需要精密度好; B. 进行分析时,过失误差是不可避免的; C. 精密度高,准确度一定高; D. 精密度高,系统误差一定小; 5. 下面哪一种方法不属于减小系统误差的方法() A. 做对照实验 B. 校正仪器 C. 做空白实验 D. 增加平行测定次数 6. 下列表述中,最能说明系统误差小的是( ) A. 高精密度 B. 与已知的质量分数的试样多次分析结果的平均值一致 C. 标准差大 D. 仔细校正所用砝码和容量仪器等 7. 用下列何种方法可减免分析测定中的系统误差() A. 进行仪器校正 B. 增加测定次数 C. 认真细心操作 D. 测定时保证环境的湿度一致 8. 下列有关偶然误差的论述中不正确的是() A.偶然误差是由一些不确定的偶然因素造成的; B.偶然误差出现正误差和负误差的机会均等;

C.偶然误差在分析中是不可避免的; D.偶然误差具有单向性 9. 滴定分析中出现下列情况,属于系统误差的是:() A. 滴定时有溶液溅出 B. 读取滴定管读数时,最后一位估测不准 C. 试剂中含少量待测离子 D. 砝码读错 10. 某一称量结果为0.0100mg, 其有效数字为几位?() A . 1 位 B. 2 位 C. 3 位 D. 4 位 11. 测的某种新合成的有机酸pK a值为12.35,其K a值应表示为() A. 4.467×10 -13; B. 4.47×10 -13; C.4.5×10 -13; D. 4×10 -13 12. 指出下列表述中错误的表述( A ) A. 置信水平愈高,测定的可靠性愈高 B. 置信水平愈高,置信区间愈宽 C. 置信区间的大小与测定次数的平方根成反比 D. 置信区间的位置取决于测定的平均值 13. 下列有关置信区间的描述中,正确的有:(A) A. 在一定置信度时,以测量值的平均值为中心的包括真值的范围即为置信区间 B. 真值落在某一可靠区间的几率即为置信区间 C. 其他条件不变时,给定的置信度越高,平均值的置信区间越宽 D. 平均值的数值越大,置信置信区间越宽 14. 分析测定中,使用校正的方法,可消除的误差是( )。 A. 系统误差 B. 偶然误差 C. 过失误差 D. 随即误差 15. 关于t分布曲线和正态分布曲线形状的叙述,正确的是:( ) A. 形状完全相同,无差异; B. t分布曲线随f而变化,正态分布曲线随u而变; C. 两者相似,而t分布曲线随f而改变; D. 两者相似,都随f而改变。 16. ) 457 .2 1. 17 /( ) 25751 .0 83 .2 5. 472 (+ ? ? = y 的计算结果应取有效数字的位数是( ) A. 3位 B. 4位 C. 5位 D. 6位 17. 以下情况产生的误差属于系统误差的是( )。 A. 指示剂变色点与化学计量点不一致; B. 滴定管读数最后一位估测不准; C. 称样时砝码数值记错;

实验数据误差分析和数据处理

第二章实验数据误差分析和数据处理 第一节实验数据的误差分析 由于实验方法和实验设备的不完善,周围环境的影响,以及人的观察力,测量程序等限制,实验观测值和真值之间,总是存在一定的差异。人们常用绝对误差、相对误差或有效数字来说明一个近似值的准确程度。为了评定实验数据的精确性或误差,认清误差的来源及其影响,需要对实验的误差进行分析和讨论。由此可以判定哪些因素是影响实验精确度的主要方面,从而在以后实验中,进一步改进实验方案,缩小实验观测值和真值之间的差值,提高实验的精确性。 一、误差的基本概念 测量是人类认识事物本质所不可缺少的手段。通过测量和实验能使人们对事物获得定量的概念和发现事物的规律性。科学上很多新的发现和突破都是以实验测量为基础的。测量就是用实验的方法,将被测物理量与所选用作为标准的同类量进行比较,从而确定它的大小。 1.真值与平均值 真值是待测物理量客观存在的确定值,也称理论值或定义值。通常真值是无法测得的。若在实验中,测量的次数无限多时,根据误差的分布定律,正负误差的出现几率相等。再经过细致地消除系统误差,将测量值加以平均,可以获得非常接近于真值的数值。但是实际上实

验测量的次数总是有限的。用有限测量值求得的平均值只能是近似真值,常用的平均值有下列几种: (1) 算术平均值 算术平均值是最常见的一种平均值。 设1x 、2x 、……、n x 为各次测量值,n 代表测量次数,则算术平均值为 n x n x x x x n i i n ∑==+???++=1 21 (2-1) (2) 几何平均值 几何平均值是将一组n 个测量值连乘并开n 次方求得的平均值。即 n n x x x x ????=21几 (2-2) (3)均方根平均值 n x n x x x x n i i n ∑== +???++= 1 2222 21 均 (2-3) (4) 对数平均值 在化学反应、热量和质量传递中,其分布曲线多具有对数的特性,在这种情况下表征平均值常用对数平均值。 设两个量1x 、2x ,其对数平均值 2 1212 121ln ln ln x x x x x x x x x -=--=对 (2-4) 应指出,变量的对数平均值总小于算术平均值。当1x /2x ≤2时,可以用算术平均值代替对数平均值。 当1x /2x =2,对x =, =x , (对x -x )/对x =%, 即1x /2x ≤2,引起的误差不超过%。

数据处理及误差分析

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 物理实验课的基本程序 物理实验的每一个课题的完成,一般分为预习、课堂操作和完成实验报告三个阶段。 §1 实验前的预习 为了在规定时间内,高质量地完成实验任务,学生一定要作好实验前的预习。 实验课前认真阅读教材,在弄清本次实验的原理、仪器性能及测试方法和步骤的基础上,在实验报告纸上写出实验预习报告。预习报告包括下列栏目: 实验名称 写出本次实验的名称。 实验目的 应简单明确地写明本次实验的目的要求。 实验原理 扼要地叙述实验原理,写出主要公式及符号的意义,画上主要的示意图、电路图或光路图。若讲义与实际所用不符,应以实际采用的原理图为准。 实验内容 简明扼要地写出实验内容、操作步骤。为了使测量数据清晰明了,防止遗漏,应根据实验的要求,用一张A4白纸预先设计好数据表格,便于测量时直接填入测量的原始数据。注意要正确地表示出有效数字和单位。 §2 课堂操作 进入实验室,首先要了解实验规则及注意事项,其次就是熟悉仪器和安装调整仪器(例如,千分尺调零、天平调水平和平衡、光路调同轴等高等)。 准备就绪后开始测量。测量的原始数据(一定不要加工、修改)应忠实地、整齐地记录在预先设计好的实验数据表格里,数据的有效位数应由仪器的精度或分度值加以确定。数据之间要留有间隙,以便补充。发现是错误的数据用铅笔划掉,不要毁掉,因为常常在核对以后发现它并没有错,不要忘记记录有关的实验环境条件(如环境温度、湿度等),仪器的精度,规格及测量量的单位。实验原始数据的优劣,决定着实验的成败,读数时务必要认真仔细。运算的错误可以修改,原始数据则不能擅自改动。全部数据必须经老师检查、签名,否则本次实验无效。两人同作一个实验时,要既分工又协作,以便共同完成实验。实验完毕后,应切断电源,整理好仪器,并将桌面收拾整洁方能离开实验室。 §3 实验报告 实验报告是实验工作的总结。要用简明的形式将实验报告完整而又准确地表达出来。实验报告要求文字通顺,字迹端正,图表规矩,结果正确,讨论认真。应养成实验完后尽早写出实验报告的习惯,因为这样做可以收到事半功倍的效果。 完整的实验报告应包括下述几部分内容: 数据表格 在实验报告纸上设计好合理的表格,将原始数据整理后填入表格之中(有老师签名的原始数据记录纸要附在本次报告一起交)。 数据处理 根据测量数据,可采用列表和作图法(用坐标纸),对所得的数据进行分析。按照实验要求计算待测的量值、绝对误差及相对误差。书写在报告上的计算过程应是:公式→代入数据→结果,中间计算可以不写,绝对不能写成:公式→结果,或只写结果。而对误差的计算应是:先列出各单项误差,按如下步骤书写,公式→代入数据→用百分数书写的结果。 结果表达 按下面格式写出最后结果: )N ()(N )N (总绝对误差测量结果待测量?±=.. %100(??=N N )Er 相对误差 结果分析 对本次实验的结果及主要误差因数作简要的分析讨论,并完成课后的思考题。还

相关主题
文本预览
相关文档 最新文档