当前位置:文档之家› 单相全控桥式晶闸管整流电路的设计(纯电阻负载)-课程设计

单相全控桥式晶闸管整流电路的设计(纯电阻负载)-课程设计

单相全控桥式晶闸管整流电路的设计(纯电阻负载)-课程设计
单相全控桥式晶闸管整流电路的设计(纯电阻负载)-课程设计

学号:

课程设计

题目

学院

专业

班级

姓名

指导教师

2012 年12 月29 日

课程设计任务书

学生姓名:专业班级:

指导教师:工作单位:

题目:

初始条件:

(四)单相全控桥式晶闸管整流电路的设计(纯电阻负载)设计条件:1、电源电压:交流220V/50Hz

2、输出功率:1000W

3、移相范围0o~180o

要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)

1、根据课程设计题目,收集相关资料、设计主电路、控制电路;

2、用MATLAB/Simulink对设计的电路进行仿真;

3、撰写课程设计报告——画出主电路、控制电路原理图,说明主电路的工作原理、选择元器件参数,说明控制电路的工作原理、绘出主电路典型波形,绘出触发信号(驱动信号)波形,并给出仿真波形,说明仿真过程中遇到的问题和解决问题的方法,附参考资料;

4、通过答辩。

时间安排:2012.12.24-12.29

指导教师签名:年月日

系主任(或责任教师)签名:年月日

摘要

此次电力电子课程设计,主要是运用MATLAB的simulink仿真功能进行电路仿真设计。

首先,通过查阅资料,找到解决办法。由于所选的电路,在课堂上老师已经对其进行过讲解,所以,实践也还是比较顺利。依据课本中学过的理论知识,根据题目所给的设计要求,进行参数计算。由于课本上有关于参数计算的公式,因此参数设计的过程还算比较容易。理论计算完毕,接下来就是仿真过程了,通过调用simulink库中已有元件,连接成仿真电路,由于simulink中有触发脉冲,因此免去了触发电路的设计,这使得课程设计大大简化。

关键词:电力电子课设,参数设计,simulink,仿真

目录

课程设计任务书.............................................................................................................................. I 摘要................................................................................................................................................ II 1单相桥式全控整流电路带电阻负载理论简介.. (1)

1.1单相桥式全控整流电路带电阻负载工作过程简介 (1)

1.2单相桥式全控整流电路带电阻负载工作原理 (2)

1.3与此次课设相关的部分计算公式 (3)

2电路设计 (3)

2.1主电路设计 (3)

2.2驱动电路设计 (4)

2.2.1触发电路TCA785简介 (5)

2.2.2 TCA785的设计特点 (7)

2.2.3 TCA785的极限参数 (7)

2.2.4 TCA785锯齿波移相触发电路 (7)

2.3保护电路设计 (8)

2.3.1过电流保护 (8)

2.3.2电流上升率di/dt的抑制 (8)

2.3.3电压上升率du/dt的抑制 (9)

3运用simulink对电路进行仿真 (9)

3.1单相桥式全控整流仿真电路图设计 (9)

3.2仿真模块参数设置 (10)

3.3仿真输出图形 (13)

4小结与体会 (16)

5参考文献 (17)

单相全控桥式晶闸管整流电路的设计

(纯电阻负载)

1单相桥式全控整流电路带电阻负载理论简介1.1单相桥式全控整流电路带电阻负载工作过程简介

单相全控桥式整流带电阻负载电路如图1所示。

图1 单相全控桥式整流电路

在单项桥式全控整流电路中,晶闸管VT1和VT4组成一对桥臂,VT2和VT3 组成另一对桥臂。在u2正半周(即a点电位高于b点电位),若4个晶闸管均不导通,负载电流id为零,ud也为零,VT1、VT4串联承受电压u2,设VT1和VT4的漏电阻相等,则各承受u2的一半。若在触发角α处给VT1和VT4加触发脉冲,VT1、VT4即导通,电流从a端经VT1、R、VT4流回电源b端。当u2为零时,流经晶闸管的电流也降到零,VT1和VT4关断。在u2负半周,仍在触发延迟角α处触发VT2和VT3(VT2和VT3的α=0处为ωt=π),VT2和VT3导通,电流从电源的b端流出,经VT3、R、VT2流回电源a端。到u2过零时,电流又降为零,VT2和VT3关断。此后又是VT1和VT4导通,如此

循环的工作下去,整流电压ud和晶闸管VT1、VT4两端的电压波形如下图(2)所示。晶

和错误!未找到引用源。U2。

闸管承受的最大正向电压和反向电压分别为2/2U

2

由于在整流电路的正负半周都有整流输出电流流过负载,故该电路为全波整流。在U

一个

2

周期内,整流电压波形脉动两次,脉动次数多于半波整流电路,故该电路属于双脉波整流

电路。变压器二次绕组中,正负两个半周电流方向相反且波形对称,平均值为零,及直流分量为零,如图2所示,不存在变压器直流磁化问题,变压器绕组利用率较高。

1.2单相桥式全控整流电路带电阻负载工作原理

单相桥式全控整流电路带电阻负载工作波形如图2所示。

图2 单相桥式全控整流电路带电阻负载工作波形

第1阶段(0~ωt1):这阶段u2在正半周期,a点电位高于b点电位晶闸管VT1和VT2方向串联后于u2连接,VT1承受正向电压为u2/2,VT2承受u2/2的反向电压;同样VT3和VT4反向串联后与u2连接,VT3承受u2/2的正向电压,VT4承受u2/2的反向电压。虽然VT1和VT3受正向电压,但是尚未触发导通,负载没有电流通过,所以Ud=0,id=0。

第2阶段(ωt1 ~π):在ωt1 时同时触发VT1和VT3,由于VT1和VT3受正向电压而导通,有电流经a点→VT1→R→VT3→变压器b点形成回路。在这段区间里,ud=u2,id=iVT1=iVT3=ud/R。由于VT1和VT3导通,忽略管压降,uVT1=uVT2=0,而承受的电压为uVT2=uVT4=u2。

第3阶段(π~ωt2 ):从ωt=π开始u2进入了负半周期,b点电位高于a点电位,VT1和VT3由于受反向电压而关断,这时VT1~VT4都不导通,各晶闸管承受u2/2的电压,但VT1和VT3承受的事反向电压,VT2和VT4承受的是正向电压,负载没有电流通过,ud=0,id=i2=0。

第4阶段(ωt2 ~π):在ωt2 时,u2电压为负,VT2和VT4受正向电压,触发VT2和VT4导通,有电流经过b 点→VT2→R →VT4→a 点,在这段区间里,ud=u2,id=iVT2=iVT4=i2=ud/R 。由于VT2和VT4导通,VT2和VT4承受u2的负半周期电压,至此一个周期工作完毕,下一个周期,充复上述过程,单项桥式整流电路两次脉冲间隔为180°。

1.3与此次课设相关的部分计算公式

整流电压的平均值:

222221

1cos 1cos 2sin ()0.922

d U U U td t U π

ωωπ

π?

+?+?

=

=

=?

(1)

а=0时,Ud=Ud0=0.9U 2。а=180.

时,Ud=0。可见,а角的移相范围为180.

向负载输出的直流电流平均值为: 20.91cos 2

d d U U I R R +?

=

=

(2) 晶闸管VT 1、VT 4和 VT 2、VT 3轮流导电,流过晶闸管的平均电流只有输出直流电流平均值的一半,即:

2

1

1cos 0.4522

dvT d U I I R +?=

=(3) 负载两端电压的有效值为: U 222

1

1(2sin )()sin 22U t d t U π

πωωπ

ππ

?

-?

=

=?+?

(4) 为选择晶闸管、变压器容量、导线截面积等额定值,需要考虑发热问题,为此需要计算电流有效值。流过晶闸管的电流有效值为:

22221

1(

sin )()sin 2222VT

U U I t d t R R

π

πωωπ

ππ?

-?

=

=?+

?

(5) 变压器二次电流有效值I 2与输出直流电流有效值I 相等,为:

222221

1(

sin )()sin 22U U

I I t d t R R π

πωωπ

ππ

?

-?

==

=?+?

(6) 2电路设计

2.1主电路设计

题目所给参数要求:功率1000W ,电压220V 由P U I =? 得到:

流过负载的电流有效值为I =

P U =1000220

=4.5A (7) 负载的功率等于负载两端的电压有效值与流过负载电流的有效值的乘积:

P U I =?=2

2

11sin 2sin 222U U R ππππππ-?-??+??+=221(sin 2)2U R πππ

-?

?+(8) 当а=0时,电阻R 取得最大值,此时,(8)式可改写为:

2

U P R

= (9)

由(9)式得:

2U R P =484001000

=

=48.4Ω (10) 由(5)式来计算流过晶闸管电流的有效值:

21220

sin 2 3.22248.42

VT U I A R πππ-?=

?+== (11)

由流过晶闸管电流的有效值来确定晶闸管的额定电流:

2() 4.11.57

VT

VT I I AV A =

=(12) 加在晶闸管两端的电压最大值为22U ,取2倍的安全余量:

2()22622VT U AV U V ==(13)

2.2驱动电路设计

电力电子器件的驱动电路是电力电子主电路与控制电路之间的接口,是电力电子的重要环节,对整个装置的性能有很大的影响。采用良好的性能的驱动电路。可以使电力电子器件工作在比较理想的开关状态,缩短开关时间,对装置的运行效率,可靠性和安全性都有很大的意义。

对于相控电路这样使用晶闸管的场合,在晶闸管阳极加上正向电压后,还必须在门极与阴极之间加上触发电压,晶闸管才能从截止转变为导通,习惯上称为触发控制。提供这个触发电压的电路称为晶闸管的触发电路。它决定每一个晶闸管的触发导通时刻,是晶闸管装置中不可缺少的一个重要组成部分。晶闸管相控整流电路,通过控制触发角α的大小即控制触发脉冲起始位来控制输出电压的大小,为保证相控电路的正常工作,很重要的一点是应保证触发角α的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲。

2.2.1触发电路TCA785简介

此处,驱动电路采用了德国西门子公司的集成触发电路TCA789,其管脚图如图3所示。

图3 TCA789管脚图

各引脚的名称、功能及用法如下:

引脚16(VS):电源端。使用中直接接用户为该集成电路工作提供的工作电源正端。

引脚1(OS):接地端。应用中与直流电源VS、同步电压VSYNC及移相控制信号V11的地端相连接。

引脚4(Q1)和2(Q2):输出脉冲1与2的非端。该两端可输出宽度变化的脉冲信号,其相位互差180°,两路脉冲的宽度均受非脉冲宽度控制端引脚13(L)的控制。它们的高电平最高幅值为电源电压VS,允许最大负载电流为10mA。若该两端输出脉冲在系统中不用时,电路自身结构允许其开路。

引脚14(Q1)和15(Q2):输出脉冲1和2端。该两端也可输出宽度变化的脉冲,相位同样互差180°,脉冲宽度受它们的脉宽控制端引脚12(C12)的控制。两路脉冲输出高电平的最高幅值为5VS。

引脚13(L):非输出脉冲宽度控制端。该端允许施加电平的范围为-0.5V—5VS,当该端接地时,Q1、Q2为最宽脉冲输出,而当该端接电源电压VS时,Q1、Q2为最窄脉冲输出。

引脚12(C12):输出Q1、Q2脉宽控制端。应用中,通过一电容接地,电容C12的电容量范围为150—4700pF,当C12在150—1000pF范围内变化时,Q1、Q2输出脉冲的宽度亦在变化,该两端输出窄脉冲的最窄宽度为100μs,而输出宽脉冲的最宽宽度为2000μs。

引脚11(V11):输出脉冲Q1、Q2或Q1、Q2移相控制直流电压输入端。应用中,通过输入电阻接用户控制电路输出,当TCA785工作于50Hz,且自身工作电源电压Vs为15V时,则该电阻的典型值为15kΩ,移相控制电压V11的有效范围为0.2V—Vs-2V,当其在此范围内连续变化时,输出脉冲Q1、Q2及Q1,Q2的相位便在整个移相范围内变化,其触发脉

冲出现的时刻为:

trr=(V11?R9?C10)/(VREF?K)

式中 R9、C10、VREF──分别为连接到TCA785引脚9的电阻、引脚10的电容及引脚8输出的基准电压;K──常数。

为降低干扰,应用中引脚11通过0.1μF的电容接地,通过2.2μF的电容接正电源。

引脚10(C10):外接锯齿波电容连接端。C10的实用范围为500pF—1μF。该电容的最小充电电流为10μA。最大充电电流为1mA,它的大小受连接于引脚9的电阻R9控制,C11两端锯齿波的最高峰值为VS-2V,其典型后沿下降时间为80μs。

引脚9(R9):锯齿波电阻连接端。该端的电阻R9决定着C10的充电电流,其充电电流可按下式计算:I10=VREFK/R9

连接于引脚9的电阻亦决定了引脚10锯齿波电压幅度的高低,锯齿波幅值为:V10=VREFK/(R9?C10) ,电阻R9的应用范围为3300kΩ。

引脚8(VREF):TCA785自身输出的高稳定基准电压端。负载能力为驱动10块CMOS集成电路,随着TCA785应用的工作电源电压VS及其输出脉冲频率的不同,VREF的变化范围为2.8—3.4V,当TCA785应用的工作电源电压为15V,输出脉冲频率为50Hz时,VREF的典型值为3.1V,如用户电路中不需要应用VREF,则该端可以开路。

引脚7(QZ)和3(QV):TCA785输出的两个逻辑脉冲信号端。其高电平脉冲幅值最大为VS-2V,高电平最大负载能力为10mA。QZ为窄脉冲信号,它的频率为输出脉冲Q2与Q1或Q1与Q2的两倍,是Q1与Q2或Q1与Q2的或信号,QV为宽脉冲信号,它的宽度为移相控制角φ+180°,它与Q1、Q2或Q1、Q2同步,频率与Q1、Q2或Q1、Q2相同,该两逻辑脉冲信号可用来提供给用户的控制电路作为同步信号或其它用途的信号,不用时可开路。

引脚6(I):脉冲信号禁止端。该端的作用是封锁Q1、Q2及Q1、Q2的输出脉冲,该端通常通过阻值10kΩ的电阻接地或接正电源,允许施加的电压范围为-0.5V—VS,当该端通过电阻接地,且该端电压低于2.5V时,则封锁功能起作用,输出脉冲被封锁。而该端通过电阻接正电源,且该端电压高于4V时,则封锁功能不起作用。该端允许低电平最大灌电流为0.2mA,高电平最大拉电流为0.8mA。

引脚5(VSYNC):同步电压输入端。应用中需对地端接两个正反向并联的限幅二极管,该端吸取的电流为20—200μA,随着该端与同步电源之间所接的电阻阻值的不同,同步电压可以取不同的值,当所接电阻为200kΩ时,同步电压可直接取AC220V。

2.2.2TCA785的设计特点

TCA785的基本设计特点有:能可靠地对同步交流电源的过零点进行识别,因而可方便地用作过零触发而构成零点开关;它具有宽的应用范围,可用来触发普通晶闸管、快速晶闸管、双向晶闸管及作为功率晶体管的控制脉冲,故可用于由这些电力电子器件组成的单管斩波、单相半波、半控桥、全控桥或三相半控、全控整流电路及单相或三相逆变系统或其它拓扑结构电路的变流系统;它的输入、输出与CMOS及TTL电平兼容,具有较宽的应用电压范围和较大的负载驱动能力,每路可直接输出250mA的驱动电流;其电路结构决定了自身锯齿波电压的范围较宽,对环境温度的适应性较强,可应用于较宽的环境温度范围(-25—+85°C)和工作电源电压范围(-0.5—+18V)。

2.2.3TCA785的极限参数

电源电压:+8—18V或±4—9V;

移相电压范围:0.2V—VS-2V;

输出脉冲最大宽度:180°;

最高工作频率:10—500Hz;

高电平脉冲负载电流:400mA;

低电平允许最大灌电流:250mA;

输出脉冲高、低电平幅值分别为VS和0.3V;

同步电压随限流电阻不同可为任意值;

极限工作频率:10—500Hz;

工作温度范围:工业品 -25—+85℃。

2.2.4TCA785锯齿波移相触发电路

由于TCA785自身的优良性能,决定了它可以方便地用于主电路为单个晶闸管或晶体管,单相半控桥、全控桥和三相半控桥、全控桥及其它主电路形式的电力电子设备中触发晶闸管或晶体管,进而实现用户需要的整流、调压、交直流调速、及直流输电等目的。西门子TCA785触发电路,它对零点的识别可靠,输出脉冲的齐整度好,移相范围宽;同时它输出脉冲的宽度可人为自由调节。西门子TCA785外围电路如图4所示。

图4 TCA785锯齿波移相触发电路原理图

2.3保护电路设计

电力电子电路中,除了电力电子器件参数选择合适、驱动电路设计良好外,采用合适的过电压、过电流、du/dt 保护和di/dt 保护也是必要的。

2.3.1过电流保护

快速熔断器的断流时间短,保护性能较好,是目前应用最普遍的保护措施。快速熔断器可以安装在直流侧、交流侧和直接与晶闸管串联。

接阻感负载的单相全控桥电路,通过晶闸管的有效值

/2 3.54T d I I A ==

选取RLS-4快速熔断器,熔体额定电流4A 。

2.3.2电流上升率di/dt 的抑制

晶闸管初开通时电流集中在靠近门极的阴极表面较小的区域,局部电流密很大,然后以0.1mm/μs 的扩展速度将电流扩展到整个阴极面,若晶闸管开通时电流上升率di/dt 过大,会导致PN 结击穿,必须限制晶闸管的电流上升率使其在合适的范围内。其有效办

法是在晶闸管的阳极回路串联入电感。如图5所示:

图5 电感抑制电路

2.3.3电压上升率du/dt的抑制

加在晶闸管上的正向电压上升率du/dt也应有所限制,如果du/dt过大,由于晶闸管结电容的存在而产生较大的位移电流,该电流可以实际上起到触发电流的作用,使晶闸管正向阻断能力下降,严重时引起晶闸管误导通。为抑制du/dt的作用,可以在晶闸管两端并联R-C阻容吸收回路。如图6所示:

图6 阻容吸收电路

3运用simulink对电路进行仿真

3.1单相桥式全控整流仿真电路图设计

电阻负载的单相桥式全控整流仿真电路图如图7所示。

在示波器的五个波形中,第一个的波形表示的是晶闸管VT1的电流ivt1,第二个是晶闸管VT1的电压uvt1,第三个表示的是负载电阻上的电流id,第四个表示的是二次侧绕组的电流i2,第五个是负载电阻上的电压ud。

下面将分析延迟角α分别为0°、30°、60°、90°、150°时的波形变化。

图7 电阻负载的单相桥式全控整流仿真电路图3.2仿真模块参数设置

1.交流电源参数设置

图8 交流电源参数设置

图8 交流电源的设置

“Phase”为0d,其频率“Frequency”

对交流电,电压“Peak amplitude”为峰值,设为311V,

设置为50Hz,周期T=1/f=1/50=0.02s。

2.脉冲信号发生器参数设置

图9 脉冲信号发生器参数设置

“pulse type”设置为Time based,

“Time”设置为Use simulation time,

“Amplitude”设置为1.0,

“Period”设置为0.02,

“Pulse Width”设置为10,

Pulse 参数对话框,其中相位延迟Phase delay的设置,按关系t=αT/360°计算。

对交流电T=0.02s,pulse2的相位比pulse1延迟0.01s。具体设置如表1所示。

表1 脉冲信号相位延迟参数设置

αPulse1(s) Pulse2(s)

0 0 0.01

30 0.00167 0.01167

60 0.00333 0.01333

90 0.005 0.015

150 0.00833 0.01833

180 0.01 0.02 3.电流表参数设置

图10电流测量参数设置

“Output signal”设置为complex。

4.电压表参数设置

图11 电压测量

“Output signal”设置为complex。

5.晶闸管参数设置

晶闸管参数按默认设置

3.3仿真输出图形

1 α=0°时的仿真输出波形如图12所示。

图12α=0°时的仿真输出波形如图2 α=30°时的仿真输出波形如图13所示。

图13 α=30°时的仿真输出波形如图3 α=60°时的仿真输出波形如图14所示。

图14 α=60°时的仿真输出波形如图4 α=90°时的仿真输出波形如图15所示。

图15α=90°时的仿真输出波形如图5 α=150°时的仿真输出波形如图16所示。

图16α=150°时的仿真输出波形如图

6 α=180°时的仿真输出波形如图17所示。

图17 α=180°时的仿真输出波形如图

由仿真结果可以发现,当输入交流电压为220V ,50Hz 时,触发角α可以在0o到180o变化,且随着α的增大,输出电压的平均值Ud 逐渐降低,当α=180o时,Ud 降为了零。

在α=0o时,由仿真输出电压波形可以求得此时输出电压的有效值U=220V

,此时的输

出功率

22

U220

P==1000W

R48.4

达到最大。α继续增大时,输出功率P减小,当α增大到180o时,P减小到零。

通过以上分析可以发现,所设计的带电阻负载的单相桥式全控整流电路能够满足预期要求,设计成功。

4小结与体会

本次课程设计的内容是单相全控桥式晶闸管整流电路的设计(纯电阻负载),了解了整流电路的工作原理,通过到图书馆查阅资料,和上网搜索,对单相全控桥式晶闸管整流电路在纯电阻负载时做了比较详细的分析。

该单相全控桥式晶闸管整流电路最大的特点是:在原有的单相全控桥式晶闸管整流电路的基础上,通过改变驱动晶闸管的脉冲,将50Hz的交流电压整流成直流电压,并将它加到负载电路两端。而负载电路则由纯电阻电路构成。

本次课程设计,加深了我对课程《电力电子技术》理论知识的理解,提高了运用所学的各门知识解决问题的能力。在本次课程设计中,涉及到很多学科,包括:电力电子技术、电路原理等,学会了如何整合自己所学的知识去解决实际问题。

通过本次课程设计,对课堂上所学关于电力电子的知识有了更深的理解,对如何运用网络上的丰富资料有了些经验。总之,这次课设使我受益匪浅。

电力电子课程设计单相交流调压电路

电力电子课程设计单相交流调压电路电力电子 课程设计说明书 题目: 单相交流调压电路课程设计 院系: 水能 专业班级: 学号: 学生姓名: 摘要 交流调压电路广泛用于灯光控制(如调光灯和舞台灯光控制)及异步电动机的软启动,也用于异步电动机调速。在电力系统中,这种电路还常用于对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。在这些电源中如采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联。这都是十分不合理的。采用交流调压电路在变压器一次侧调压,其电压、电流值都比较适中,在变压器二次侧只要用二极管整流就可以了。这样的电路体积小、成本低、易于设计制造。单相交流调压电路是对单相交流电的电压进行调节的电路。用在电热制、交流电动机速度控制、灯光控制和交流稳压器等合。与自耦变压器调压方法相比,交流调压电路控制简便,调节速度快,装置的重量轻、体积小,有色金属耗也少。 目录

1、电路设计的目的及任 务 .................................................................... 1 1.1课程设计的目的与要 求 (1) 1.2课程设计的内 容 ..................................................................... (1) 1.3仿真软件的使 用 ..................................................................... (2) 1.4设计方案选 择 ..................................................................... ....... 2 2、单相交流调压主电路设计及分 析 (3) 2.1 电阻性负 载 ..................................................................... (3) 2.1.1 电阻性负载的交流调压器的原理分析 (3) 2.1.2 结果分 析 ..................................................................... (6)

单相桥式整流电路课程设计报告..

电力电子课程设计报告

目录 一、设计任务说明 (3) 二、设计方案的比较 (4) 三、单元电路的设计和主要元器件说明 (6) 四、主电路的原理分析 (9) 五、各主要元器件的选择: (12) 六、驱动电路设计 (14) 七、保护电路 (16) 八、元器件清单 (21) 九、设计总结 (22) 十、参考文献 (23)

一、设计任务说明 1.设计任务: 1)进行设计方案的比较,并选定设计方案; 2)完成单元电路的设计和主要元器件说明; 3)完成主电路的原理分析,各主要元件的选择; 4)驱动电路的设计,保护电路的设计; 5)利用仿真软件分析电路的工作过程; 2.设计要求: 1)单相桥式相控整流的设计要求为: 负载为感性负载,L=700mH,R=500Ω 2)技术要求: A.电网供电电压为单相220V; B.电网电压波动为5%——10%; C.输出电压为0——100V;

二、设计方案的比较 单相桥式整流电路有两种方式,一种是单相桥式全控整流电路,一种是单相桥式半控整流电路。主要方案有三种: 方案一: 采用单相桥式全控整流电路,电路图如下: 对于这个电路,每一个导电回路中有两个晶闸管,即用两个晶闸管同时导通以控制导电的回路,不需要续流二极管,不会出现失控现象,整流效果好,波形稳定。变压器二次绕组不含直流分量,不会出现变压器直流磁化的问题,变压器利用率高。 方案二: 采用单相桥式半控整流电路,电路图如下: 相较于单相桥式全控整流电路,对每个导电回路进行控制,只需一个晶闸管,而另一个用二极管代替,这样使电路连接简便,且

降低了成本,降低了损耗。但是若无续流二极管,当α突然增大到180°或触发脉冲丢失时,会发生一个晶闸管持续导通而两个二极管轮流导通的情况,这使d U成为正弦半波,级半周期d U为正弦波,另外半周期d U为零,其平均值保持恒定,相当于单相半波不可控整流电路时的波形,即失控现象。因此该电路在实际应用中需要加设续流二极管。 综上所述:单相桥式半控整流电路具有线路简单、调整方便的优点。但输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相桥式全控整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。因此选择方案一的单相桥式全控整流电路。

三相桥式全控整流电路课程设计.

目录 1. 绪论 (1) 2. 主电路设计及原理 (2) 2.1总体框架图 (2) 2.2三相桥式全控整流电路的原理 (2) 2.3 实验内容 (5) 3. 单元电路设计 (7) 3.1 主电路 (7) 3.2 触发电路 (7) 3.3 保护电路 (8) 3.4 硬件电路PCB版图 (11) 3.4.1 顶层视图 (11) 3.4.2 底层视图 (12) 3.4.3 顶层覆盖图 (12) 3.4.4 3D视图 (13) 4 .电路分析与仿真 (14) 4.1 带电阻负载的波形分析 (14) 4.2 三相桥式全控整流电路定量分析 (16) 4.2.1 仿真模型图 (19) 4.2.2 仿真实验结论 (19) 5. 结论 (20) 6. 参考文献 (22) 7. 附录 (23)

第一章绪论 整流电路技术在工业生产上应用极广。如调压调速直流电源、电解及电镀的直流电源等。整流电路就是把交流电能转换为直流电能的电路。大多数整流电路由变压器、整流主电路和滤波器等组成。它在直流电动机的调速、发电机的励磁调节、电解、电镀等领域得到广泛应用。 整流电路通常由主电路、滤波器和变压器组成。20世纪70年代以后,主电路多用硅整流二极管和晶闸管组成。滤波器接在主电路与负载之间,用于滤除脉动直流电压中的交流成分。变压器设置与否视具体情况而定。变压器的作用是实现交流输入电压与直流输出电压间的匹配以及交流电网与整流电路之间的电隔离(可减小电网与电路间的电干扰和故障影响)。整流电路的种类有很多,有半波整流电路、单相桥式半控整流电路、单相桥式全控整流电路、三相桥式半控整流电路、三相桥式全控整流电路等。 把交流电变换成大小可调的单一方向直流电的过程称为可控整流。整流器的输入端一般接在交流电网上。为了适应负载对电源电压大小的要求,或者为了提高可控整流装置的功率因数,一般可在输入端加接整流变压器,把一次电压U1,变成二次电压U2。由晶闸管等组成的全控整流主电路,其输出端的负载,我们研究是电阻性负载、电阻电感负载(如直流电动机的励磁绕组,滑差电动机的电枢线圈等)。以上负载往往要求整流能输出在一定范围内变化的直流电压。为此,只要改变触发电路所提供的触发脉冲送出的早晚,就能改变晶闸管在交流电压U2一周期内导通的时间,这样负载上直流平均值就可以得到控制。

单相全控桥式晶闸管整流电路设计(纯电阻负载)

1 单相桥式全控整流电路的功能要求及设计方案介绍 1.1 单相桥式全控整流电路设计方案 1.1.1 设计方案 图1设计方案 1.1.2 整流电路的设计 主电路原理图及其工作波形 图2 主电路原理图及工作波形

主电路原理说明: (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

2 触发电路的设计 2.1 晶闸管触发电路 触发电路在变流装置中所起的基本作用是向晶闸管提供门极电压和门极电流,使晶闸管在需要导通的时刻可靠导通。根据控制要求决定晶闸管的导通时刻,对变流装置的输出功率进行控制。触发电路是变流装置中的一个重要组成部分,变流装置是否能正常工作,与触发电路有直接关系,因此,正确合理地选择设计触发电路及其各项技术指标是保证晶闸管变流装置安全,可靠,经济运行的前提。,开始启动A/D转换;在A/D转换期间,START应保持低电平。 2.1.1 晶闸管触发电路的要求 晶闸管触发主要有移相触发、过零触发和脉冲列调制触发等。触发电路对其产生的触发脉冲要求: (1)触发信号可为直流、交流或脉冲电压。 (2)触发信号应有足够的功率(触发电压和触发电流)。 (3)触发脉冲应有一定的宽度,脉冲的前沿尽可能陡,以使元件在触发导通后,阳极电流能迅速上升超过掣住电流而维持导通。 (4)触发脉冲必须与晶闸管的阳极电压同步,脉冲移相范围必须满足电路要求。 (5)、为使并联晶闸管能同时导通,触发电路应能产生强触发脉冲。强触发电流幅值为出发电流的3~5倍左右,脉冲前沿的陡度取为1~2 晶闸管触发电路应满足下列要求 (1)触发脉冲的宽度应该保证晶闸管的可靠导通,对感性和反电动势负载的变流器采用宽脉冲或脉冲列触发,对变流器的启动,双星型带平衡电抗器电路的触发脉冲应该宽于30°,三相全控桥式电路应小于60°或采用相隔60°的双窄脉冲。 (2)脉冲触发应有足够的幅度,对户外寒冷场合,脉冲电流的幅度应增大为器件最大触发电流的3—5倍,脉冲前沿的陡度也要增加。一般需达1-2A/us (3)所提供的触发脉冲不应超过晶闸管门极的电压、电流和额定功率,且在门极伏安特性的可靠触发区域之内。 (4)应有良好的抗干扰性能、温度稳定性及主电路的电气隔离。

单相交流调压电路

单相交流调压电路 一、工作原理 单相交流调压电路带组感性负载时的电路以及工作波形如下图所示。之所产生的滞后由于阻感性负载时电流滞后电压一定角度,再加上移相控制所产生的滞后,使得交流调压电路在阻感性负载时的情况比较复杂,其输出电压,电流与触发角α,负载阻抗角φ都有关系。当两只反并联的晶闸管中的任何一个导通后,其通态压降就成为另一只的反向电压,因此只有当导通的晶闸管关断以后,另一只晶闸管才有可能承受正向电压被触发导通。由于感性负载本身滞后于电压一定角度,再加上相位控制产生的滞后,使得交流调压电路在感性负载下大的工作情况更为复杂,其输出电压、电流波形与控制角ɑ、负载阻抗角φ都有关系。其中负载阻抗角)arctan(R wL =?,相当于在电阻电感负载上加上纯正弦交流电压时,其电流滞后于电压的角度为φ。为了更好的分析单相交流调压电路在感性负载下的工作情况,此处分φαφαφα<=>,,三种工况分别进行讨论。 (1)φα>情况 图1 电路图(截图) 图2 工作波形图φα>(截图)

上图所示为单相反并联交流调压电路带感性负载时的电路图,以及在控制角 触发导通时的输出波形图,同电阻负载一样,在i u 的正半周α角时, i T 触发导通,输出电压o u 等于电源电压,电流波形o i 从0开始上升。由于是感性负载,电流o i 滞后于电压o u ,当电压达到过零点时电流不为0,之后o i 继续下降,输出电压o u 出现负值,直到电流下降到0时,1T 自然关断,输出电压等于0,正半周结束,期间电流o i 从0开始上升到再次下降到0这段区间称为导通角0θ。由后面的分析可知,在φα>工况下,ο180<φ因此在2T 脉冲到来之前1T 已关断,正负电流不连续。在电源的负半周2T 导通,工作原理与正半周相同,在o i 断续期间,晶闸管两端电压波形如图2所示。 为了分析负载电流o i 的表达式及导通角θ与α、φ之间的关系,假设电压坐标原点如图所示,在αω=t 时刻晶闸管T 1导通,负载电流i 0应满足方程 L 0Ri d d t io +=i u =i U 2sin t ω 其初始条件为: i 0|αω=t =0, 解该方程,可以得出负载电流i 0在α≤t ω≤θα+区间内的表达式为 i 0=])sin()[sin()(2tan /)(2φαωφαφωω-----+t i e t L R U . 当t ω=θα+时,i 0=0,代入上式得,可求出θ与α、φ之间的关系为 sin (θα+-φ)=sin (α-φ)e φθtan /- 利用上式,可以把θ与α、φ之间的关系用下图的一簇曲线来表示。

单相桥式全控整流电路设计_(纯电阻负载)

单相桥式全控整流电路的设计一、 1. 设计方案及原理 1.1 原理方框图 触发电路 驱动电路 整流主电路 负载 1.2 主电路的设计 电阻负载主电路主电路原理图如下: 1.3主电路原理说明 1.3.1电阻负载主电路原理 (1)在u2正半波的(0~α)区间,晶闸管VT1、VT4承受正向电压,但无触发脉冲,晶闸管VT2、VT3承受反向电压。因此在0~α区间,4个晶闸管都不导通。假如4个晶闸管的漏电阻相等,则Ut1.4= Ut2.3=1/2u2。 (2)在u2正半波的(α~π)区间,在ωt=α时刻,触发晶闸管VT1、VT4使其导通。 (3)在u2负半波的(π~π+α)区间,在π~π+α区间,晶闸管VT2、VT3承受正向电压,因无触发脉冲而处于关断状态,晶闸管 VT1、VT4承受反向电压也不导通。 (4)在u2负半波的(π+α~2π)区间,在ωt=π+α时刻,触发晶闸管VT2、VT3使其元件导通,负载电流沿 b→VT3→R→VT2→α→T的二次绕组→b流通,电源电压沿正半周期的方向施加到负载电阻上,负载上有输出电压(ud=-u2)和电流,且波形相位相同。

1.4整流电路参数的计算 电阻负载的参数计算如下: (1) 整流输出电压的平均值可按下式计算 U d=0.45U2(1+cos ) (1-1) 当α=0时,取得最大值,即= 0.9 ,取=100V则U d =90V,α=180o 时,=0。α角的移相范围为180o。 (2) 负载电流平均值为 I d=U d/R=0.45U2(1+cos )/R (1-2) (3)负载电流有效值,即变压器二次侧绕组电流的有效值为 I2=U2/R (1-3) (4)流过晶闸管电流有效值为 IVT= I2/ (1-4) 二、元器件的选择 晶闸管的选取 晶闸管的主要参数如下: ①额定电压U TN 通常取和中较小的,再取靠近标准的电压等级作为晶闸管型的额定电压。在选用管子时,额定电压应为正常工作峰值电压的2~3倍, 以保证电路的工作安全。 晶闸管的额定电压 U TN=(2~3)U TM(2-1) U TM:工作电路中加在管子上的最大瞬时电压

单相全控桥式晶闸管整流电路的设计

电力电子技术课程设计报告题目:单相全控桥式晶闸管整流电路的设计

目录 第1章绪论 (3) 1.1 电力电子技术的发展 (3) 1.2 电力电子技术的应用 (3) 1.3 电力电子技术课程中的整流电路 (4) 第2章系统方案及主电路设计 (5) 2.1 方案的选择 (5) 2.2 系统流程框图 (6) 2.3 主电路的设计 (7) 2.4 整流电路参数计算 (9) 2.5 晶闸管元件的选择 (10) 第3章驱动电路设计 (12) 3.1 触发电路简介 (12) 3.2 触发电路设计要求 (12) 3.3 集成触发电路TCA785 (13) 3.3.1 TCA785芯片介绍 (13) 3.3.2 TCA785锯齿波移相触发电路 (17) 第4章保护电路设计 (18) 4.1 过电压保护 (18) 4.2 过电流保护 (19) 4.3 电流上升率di/dt的抑制 (19) 4.4 电压上升率du/dt的抑制 (20) 第5章系统仿真 (21) 5.1 MATLAB主电路仿真 (21) 5.1.1 系统建模与参数设置 (21) 5.1.2 系统仿真结果及分析 (22) 5.2 proteus 触发电路仿真 (26) 设计体会 (28) 参考文献 (29) 附录A 实物图 (30) 附录B 元器件清单 (31)

第1章绪论 1.1 电力电子技术的发展 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。这就使得晶闸管的应用受到了很大的局限。70年代后期,以门极可关断晶闸管(GTO)、电力双极型晶体管(BJT)和电力场效应晶体管(Power-MOSFET)为代表的全控型器件迅速发展。全控型器件的特点是,通过对门极(基极、栅极)的控制既可使其开通又可使其关断。在80年代后期,以绝缘栅极双极型晶体管(IGBT)为表的复合型器件异军突起。它是MOSFET和BJT的复合,综合了两者的优点。与此相对,MOS控制晶闸管(MCT)和集成门极换流晶闸管(IGCT)复合了MOSFET和GTO。 1.2 电力电子技术的应用 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。能够理论联系实际,在培养自动化专业人才中占有重要地位。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 在电力电子技术中,可控整流电路是非常重要的内容,整流电路是将交流电变为直流电的电路,其应用非常广泛。工业中大量应用的各种直流电动机的调速均采用电力电子装置;电气化铁道(电气机车、磁悬浮列车等)、电动汽车、

单相交流调压电路课程设计完整版

单相交流调压电路课程 设计 HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】

《电力电子技术》课程设计设计题目: 单相交流调压电路 院(系): 能源工程学院 专业年级: 13级电气二班 姓名: 徐刚刚 学号: 指导教师: 荆红莉 2015年12月 28日

课程设计(论文)任务及评语 院(系):能源工程学院教研室:电气工程及其自动化 : 成 绩 : 平 时 20% 论 文 质 量 60% 答 辩 20% 以 百 分 制 计 算 前 言 电 力 电 子 技 术 是研究采用电力电子器件实现对电能的交换和控制的科学,是20世纪50年代诞生, 70年代迅速发展起来的一门多学科互相渗透的综合性技术学科。这些技术包括以节约 能源、提高照明质量为目的的绿色照明技术;以节约能源、提高运行可靠性并更好地 满足产要求为目的的交流变频调速技术,以提高电力系统运行的稳定性、可控制性为

目的,并可有效节能的灵括(柔性)交流输电技术等等。随着电力半导体制造技求、徽电子技术、汁算机技术,以及控制理论的不断进步。电力电子技求向着大功率、高频化及智能化方向发展,应用的领域将更加广阔。 交流调压电路广泛应用于灯光控制,如调光台灯和舞台灯光控制及其异步电动机的软启动,也应用于异步电机调速。在电力系统中,这种电路也用于对无功功率的调节。 目录

1 单相交流调压电路的设计 设计目的和要求分析 =210伏。要求分设计一个单相交流调压电路,要求触发角为60度。输入交流U 2 析: 1. 单相交流调压主电路设计,原理说明; 2.触发电路设计,每个开关器件触发次序与相位分析; 3.保护电路设计,过电流保护,过电压保护原理分析; 4.参数设定与计算(包括触发角的选择,输出平均电压,输出平均电流,输出有功功率计算,输出波形分析,器件额定参数确定等可自己添加分析的参数); 5. 相关仿真结果。 由以上要求可知该系统设计可分为四个部分:交流调压主电路设计、触发电路设计、保护电路设计及相关计算和波形分析部分。 2 设计方案选择 本系统主要设计思想是:采用两个晶闸管反向并联加负载为主电路,外加触发电路;触发电路控制晶闸管的导通,从而控制输出。其系统框图如下所示: 3 控制电路。在每半个周波内通过对晶间管开通相位的控制,以方便地调节输出电压的有效值,这种电路称为交流调压电路。这种电路还用干对无功功率的连续调节。此外,在高电压小电流或低电压大电流直流电源中,也常采用交流调压电路调节变压器一次电压。采用晶闸管相控整流电路,高电压小电流可控直流电源就需要很多晶闸管串联;同样,低电压大电流直流电源需要很多晶闸管并联,这都是十分不经济的。采用交流调压电路在变压器一次侧调压,其电压电流值都不太大也不太小,在变压器二次侧只要用二极管整流就可以了。但这种交流调压电路控制方便,体积小、投资省计制造简单。因此广泛应用于需调温的工频加热、灯光调节及风机、泵类负载的异步电

单相桥式整流电路设计..

1 单相桥式整流电路设计 单相桥式整流电路可分为单相桥式相控整流电路和单相桥式半控整流电路,它们所连接的负载性质不同就会有不同的特点。下面分析两种单相桥式整流电路在带电感性负载的工作情况。 单相半控整流电路的优点是:线路简单、调整方便。弱点是:输出电压脉动冲大,负载电流脉冲大(电阻性负载时),且整流变压器二次绕组中存在直流分量,使铁心磁化,变压器不能充分利用。而单相全控式整流电路具有输出电流脉动小,功率因数高,变压器二次电流为两个等大反向的半波,没有直流磁化问题,变压器利用率高的优点。 单相全控式整流电路其输出平均电压是半波整流电路2 倍,在相同的负载下流过晶闸管的平均电流减小一半;且功率因数提高了一半。 单相半波相控整流电路因其性能较差,实际中很少采用,在中小功率场合采用更多的是单相全控桥式整流电路。 根据以上的比较分析因此选择的方案为单相全控桥式整流电路(负载为阻感性负载)。 1.1 元器件的选择 1.1.1 晶闸管的介绍 晶管又称为晶体闸流管,可控硅整流(Silico n Con trolled Rectifier--SCR ), 开辟了电力电子技术迅速发展和广泛应用的崭新时代; 20 世纪80 年代以来,开始被性能更好的全控型器件取代。能承受的电压和电流容量最高,工作可靠,以被广泛应用于相控整流、逆变、交流调压、直流变换等领域,成为功率低频(200Hz 以下)装置中的主要器件。晶闸管往往专指晶闸管的一种基本类型--普通晶闸管。广义上讲,晶闸管还包括其许多类型的派生器件 1)晶闸管的结构晶闸管是大功率器件,工作时产生大量的热,因此必须安装散热器。 晶闸管有螺栓型和平板型两种封装 引出阳极A、阴极K和门极(或称栅极)G三个联接端。 对于螺栓型封装,通常螺栓是其阳极,能与散热器紧密联接且安装方便

单相桥式全控整流电路课程设计

南京工程学院 课程设计说明书(论文) 题目单相桥式全控整流电路 , 课程名称电力电子技术课程设计 院 (系、部、中心)电力工程学院 专业电气工程与自动化 (智能建筑电气) 班级智能081 学生姓名朱玲丽 学号 07 ^ 设计地点 指导教师李先允廖德利 设计起止时间:2010 年12月27日至2011年1月7日

目录 任务书........................................................错误!未定义书签。第1章课程设计目的与要求.....................................错误!未定义书签。课程设计目的..................................................错误!未定义书签。课程设计的预备知识............................................错误!未定义书签。课程设计要求.................................................错误!未定义书签。第2章课程设计方案的选择.....................................错误!未定义书签。整流电路......................................................错误!未定义书签。元器件的选择..................................................错误!未定义书签。 晶闸管....................................................错误!未定义书签。 可关断晶闸管.............................................错误!未定义书签。第3章主电路的设计...........................................错误!未定义书签。系统总设计框图................................................错误!未定义书签。系统主体电路原理及说明........................................错误!未定义书签。原理图的分析..................................................错误!未定义书签。第4章辅助电路的设计.........................................错误!未定义书签。驱动电路的设计................................................错误!未定义书签。 触发电路..................................................错误!未定义书签。保护电路的设计................................................错误!未定义书签。 主电路的过电压保护电路设计...............................错误!未定义书签。 主电路的过电流保护电路设计................................错误!未定义书签。 电流上升率、电压上升率的抑制保护..........................错误!未定义书签。第五章元器件和电路参数计算...................................错误!未定义书签。. 晶闸管的基本特性............................................错误!未定义书签。 静态特性..................................................错误!未定义书签。 动态特性..................................................错误!未定义书签。晶闸管基本参数................................................错误!未定义书签。 晶闸管的主要参数说明......................................错误!未定义书签。 晶闸管的选型..............................................错误!未定义书签。 变压器的选取..............................................错误!未定义书签。性能指标分析:................................................错误!未定义书签。元器件清单....................................................错误!未定义书签。第六章系统仿真...............................................错误!未定义书签。第七章设计总结...............................................错误!未定义书签。

单相半波晶闸管整流电路

电力电子技术课程设计说明书单相半波晶闸管整流电路 院部:电气与信息工程学院 学生姓名:李忠 指导教师:王翠职称副教授 专业:自动化 班级:自本1001班 完成时间:2013年5月20日

摘要 电力电子学,又称功率电子学(Power Electronics)。它主要研究各种电力电子器件,以及由这些电力电子器件所构成的各式各样的电路或装置,以完成对电能的变换和控制。它既是电子学在强电(高电压、大电流)或电工领域的一个分支,又是电工学在弱电(低电压、小电流)或电子领域的一个分支,或者说是强弱电相结合的新科学。电力电子学是横跨“电子”、“电力”和“控制”三个领域的一个新兴工程技术学科。 随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。 由于电力电子技术是将电子技术和控制技术引入传统的电力技术领域,利用半导体电力开关器件组成各种电力变换电路实现电能和变换和控制,而构成的一门完整的学科。故其学习方法与电子技术和控制技术有很多相似之处,因此要学好这门课就必须做好课程设计,因而我们进行了此次课程设计。因为整流电路非常重要,所以我此次课程设计做的是单相半波整流电路。 关键字电子学;整流器;开关器件

ABSTRACT Power electronics, and power electronics (Power Electronics). It is mainly on the various power electronic devices, and is composed , and is composed of the power electronic devices of every kind of circuit or device, to complete the transfer and control of electric power. It is not only in power electronics (high voltage, high current) to a branch or electrical engineering, and electrical engineering in a weak (low voltage, low current) to a branch or electronic field, or is a new scientific power combining. Power electronics is across the "electronic", "power" and "control" three areas of an emerging engineering discipline. With the development of science and technology, people on the circuit is also more and more high, due to the need of DC power supply with adjustable size in the actual production, and phase controlled rectifier circuit is simple in structure, convenient control, stable performance, it can be easily obtained in large and medium-sized, small capacity of various DC power, is currently the main method of DC electric energy, has been widely applied. Because the power electronic technology is the technology of power electronic technology and control technology into the traditional, composed of a variety of power conversion circuits to achieve energy and transform and control using semiconductor power switch device, consisting of an integrated discipline. The learning method and electronic technology and control technology has many similarities, so to learn this course we must do a good job in curriculum design, we carried out the curriculum design. Because the rectifier circuit is very important, so I designed a single-phase half-wave rectifier circuit this curriculum. Keywords electronics; rectifier; switching device

单相交流调压电路课程设计

新疆工业高等专科学校电气系课程设计说明书 题目:单项交流调压电路(反并联)设计(纯电阻负载) 专业班级: 学生姓名: 指导教师: 完成日期:2012-6-8

新疆工业高等专科学校 电气系课程设计任务书 2012学年2学期2012年6月6日专业供用电技术班级课程名称电力电子应用技术 设计题目单项交流调压电路(反并联)设计(纯电阻 负载) 指导教师 起止时间2012-6-4至2012-6-8周数一周设计地点新疆工程学校设计目的: 设计任务或主要技术指标: 设计进度与要求: 主要参考书及参考资料: 教研室主任(签名)系(部)主任(签名)年月日

新疆工业高等专科学校电气系 课程设计评定意见 设计题目:单相交流调压(反并联)设计(纯电阻负载) 学生姓名:专业班级供电 评定意见: 评定成绩: 指导教师(签名):年月日 评定意见参考提纲: 1.学生完成的工作量与内容是否符合任务书的要求。 2.学生的勤勉态度。 3.设计或说明书的优缺点,包括:学生对理论知识的掌握程度、实践工作能力、表现出的创造性和综合应用能力等。

前言 电力电子线路的基本形式之一,即交流—交流变换电路,它是将一种形式的交流电能变换成另一种形式交流电能电路。在进行交流—交流变换时,可以改变交流电的电压、电流、频率或相位等。用晶闸管组成的交流电压控制电路,可以方便的调节输出电压有效值。可用于电炉温控、灯光调节、异步电动机的启动和调速等,也可用作调节整流变压器一次侧电压,其二次侧为低压大电流或高压小电流负载常用这种方法。采用这种方法,可使变压器二次侧的整流装置避免采用晶闸管,只需要二极管,而且可控级仅在一侧,从而简化结构,降低成本。交流调压器与常规的交流调压变压器相比,它的体积和重量都要小得多。交流调压器的输出仍是交流电压,它不是正弦波,其谐波分量较大,功率因数也较低。

整流电路驱动课程设计

《电力电子技术》 课程设计报告 题目:整流电路驱动设计与实现 学院:机电与自动化学院 专业班级:电气自动化技术1201班 学生姓名:xxxxxxx 学号:20122822013 指导老师:xxxxxxxx 2014年6月3日至2014年6月13日 华中科技大学

《电力电子技术》课程设计任务书

目录 1.触发电路的定义与功能 (1) 1.1脉冲形成 (1) 1.2 脉冲移相 (2) 2.同步锯齿波触发电路的设计 (3) 2.1电路原理 (3) 2.2电路图的设计 (3) 2.3脉冲的形成与放大环节 (4) 2.4锯齿波形成与移相环节 (4) 2.5同步环节 (4) 2.6强触发环节 (8) 2.7双窄脉冲环节 (8) 2.8触发电路的工作状态及波形图 (10) 3.常用控制触发驱动器件 (11) 3.1 KJ004晶闸管移相触发器集成电路特点及应用 (11) 3.2 结构及工作原理 (11) 4.数字触发电路 (13) 结论 (15) 参考文献 (17) 附录:组成员分工表 (18)

1.触发电路的定义与功能 在实际的生产与实践中,当采用晶闸管相控方式的时候,叫做相控电路。为了保证相控电路的正常工作,很重要的一点是应保证按触发角?的大小在正确的时刻向电路中的晶闸管施加有效的触发脉冲,这就是如何实现对相控电路电路的相位控制。由于相控电路都使用晶闸管器件,因此,习惯上也将相控电路相位控制的电路总称为触发电路。 1.1脉冲形成 我们可以建模如下: 如上图,是一个简单的晶体管控制开关。我们假设该晶体管压降为0.7V,那么就是一个简单的控制开关,即是:当Ub>0.7V时,开关导通;当Ub<0.7V时,开关闭合。 由此可见脉冲形成,如下所示 脉冲宽度由导通时间决定,通过对巨星图像的分析,可以直观的表现出脉冲的导通时间,脉冲出现的劣频率。

单相双半波晶闸管整流电路主电路设计..

电力电子课程设计 班级: 学号: 姓名: 指导老师:

目录 摘要 (1) 1单相双半波晶闸管整流电路主电路设计 (2) 1.1晶闸管的介绍 (2) 1.1.1晶闸管的结构 (2) 1.1.2晶闸管的工作原理 (2) 1.1.3晶闸管的伏安特性 (4) 1.2总电路的设计 (5) 1.2.1 总电路的原理框图 (5) 1.2.2 主电路原理图 (6) 1.3 相控触发电路设计 (7) 1.3.1 相控触发电路工作原理 (7) 1.3.2相控触发芯片的选择 (8) 1.4保护电路设计 (9) 2电路参数及元件选择 (10) 2.1主电路电路参数计算 (10) 2.2电路元件的选择 (11) 2.2.1整流元件的选择 (11) 2.2.2保护元件的选择 (11) 3 MATLAB仿真 (12) 3.1 MATLAB软件介绍 (12) 3.2系统建模及电路仿真 (12) 3.3系统仿真结果及分析 (15) 4设计总结 (16) 参考文献 (17)

摘要 电力电子技术是一门新兴技术,它是由电力学、电子学和控制理论三个学科交叉而成的,在电气自动化专业中已成为一门专业基础性强且与生产紧密联系的不可缺少的专业基础课。本课程体现了弱电对强电的控制,又具有很强的实践性。它包括了晶闸管的结构和分类、晶闸管的过电压和过电流保护方法、可控整流电路、晶闸管有源逆变电路、晶闸管无源逆变电路、PWM控制技术、交流调压、直流斩波以及变频电路的工作原理。 晶闸管出现前的时期可称为电力电子技术的史前期或黎明时期。晶闸管由于其优越的电气性能和控制性能,使之很快就取代了水银整流器和旋转变流机组。并且,其应用范围也迅速扩大。电力电子技术的概念和基础就是由于晶闸管及晶闸管变流技术的发展而确立的。晶闸管是通过对门极的控制能够使其导通而不能使其关断的器件,属于半控型器件。对晶闸管电路的控制方式主要是相位控制式,简称相控方式。晶闸管的关断通常依靠电网电压等外部条件来实现。 整流电路按组成的器件不同,可分为不可控、半控与全控三种,利用晶闸管半导体器件构成的主要有半控和全控整流电路;按电路接线方式可分为桥式和零式整流电路;按交流输入相数又可分为单相、多相(主要是三相)整流电路。正是因为整流电路有着如此广泛的应用,因此整流电路的研究无论在是从经济角度,还是从科学研究角度上来讲都是很有价值的。本设计正是结合了Matlab仿真软件对单相双半波晶闸管整流电路在阻感负载下进行分析。 关键词:晶闸管,整流电路,Matlab,仿真,阻感负载,相控方式 1

三相桥式整流电路课设资料

1 绪论 电子技术包括信息电子技术和电力电子技术两大分支。通常所说的模拟电子技术和数字电子技术都属于信息电子技术。电力电子技术是应用于电力领域的电子技术。具体的说,就是使用电力电子器件对电能进行变换和控制的技术。所用的电力电子器件均用半导体制成,故也称为电力半导体器件。电力电子技术所变换的“电力”,功率可以大到数百MW甚至GW,也可以小到数W甚至1W以下。信息电子技术主要用于信息处理,而电力电子技术则主要用于电力变换。 电力电子涉及由半导体开关启动装置进行电源的控制与转换领域。半导体整流控制、半导体硅整的小型化等的出现,产生一个新的电力电子应用领域。半导体硅整流、汞弧整流器应用于控制电源,但是这样的整流回路只是工业电子的一部分,对于汞弧整流器应用范围而言是有局限的。半导体硅整流的应用涉及很多领域,如汽车、电站、航空电子、高频变频器等。 整流电路就是把交流电能转换成直流电能的电路,大多数整流电路由变压器、整流主电路和滤波器等组成,在直流电动机的调速、发电机励磁调节、电解及电镀等领域得到广泛地应用。整流电路由主电路、滤波器和变压器组成。 随着科学技术的日益发展人们对电路的要求越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可方便得到大、中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。在电能的生产和传输上,目前以交流电为主。电力网供给用户的是交流电,而在许多场合,例如电解、蓄电池的充电、直流电动机等,需要用直流电。要得到直流电,除了直流发电机外最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电性的器件,把方向和大小交变的电流变换为直流电。本设计主要是对三相桥式全控整流电路(带反电动势的负载)的研究。 三相桥式全控整流电路与三相半波电路相比,输出整流电压提高一倍,输出电压的脉动率高,基波频率为300HZ,在负载要求相同的直流电压下,晶闸管承受的最大正方向电压将比三相半波减少一半,变压器的容量也比较小,同时三相电流平衡,无须中线。所以,三相桥式全控整流电路多用于直流电动机或要求实现有源逆变的负载。

单相桥式全控整流电路纯电阻课程设计

1 引言 电力电子技术是利用电力电子器件实现工业规模电能变换的技术,有时也称为功率电子技术。一般情况下,它是将一种形式的工业电能转换成另一种形式的工业电能。是建立在电子学、电工原理和自动控制三大学科上的新兴学科。随着科学技术的日益发展,人们对电路的要求也越来越高,由于在生产实际中需要大小可调的直流电源,而相控整流电路结构简单、控制方便、性能稳定,利用它可以方便地得到大中、小各种容量的直流电能,是目前获得直流电能的主要方法,得到了广泛应用。 要得到直流电,除了直流发电机外,最普遍应用的是利用各种半导体元件产生直流电。这个方法中,整流是最基础的一步。整流,即利用具有单向导电特性的器件,把方向和大小交变的电流变换为直流电。整流的基础是整流电路。整流电路(Rectifier)是电力电子电路中出现最早的一种,它的作用是将交流电能变为直流电能供给直流用电设备。典型的单相可控整流电路包括单相半波可控整流电路、单相整流电路、单相全波可控整流电路及单相桥式半控整流电路等。单相可控整流电路的交流侧接单相电源。 这次课程设计我设计的是单相桥式全控整流电路电阻性负载,与单相半波可控整流电路相比,桥式全控的电源利用率更高一些,应用范围更广泛一些。 2 单相桥式全控整流电路 2.1 单相桥式全控整流电路带电阻负载的工作情况分析 单相桥式全控整流电路带电阻负载电路如图2-1: 图2.1 单相桥式全控整流电路原理图

在单相桥式全控整流电路,闸管VT1和VT4组成一对桥臂,VT2和VT3组成另一对桥臂。在u2正半周(即a 点电位高于b 点电位),若4个晶闸管均不导通,id=0,ud=0,VT1、VT4串联承受电压u2。在触发角a 处给VT1和VT4加触发脉冲,VT1和VT4即导通,电流从电源a 端经VT1、R 、VT4流回电源b 端。当u2过零时,流经晶闸管的电流也降到零,VT1和VT4关断。在u2负半周,仍在触发角a 处触发VT2和VT3,VT2和VT3导通,电流从电源b 端流出,经VT3、R 、VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。 在u2负半周,仍在触发延迟角a 处触发VT2和VT3(VT2和VT3的a=0处为ωt=Π),VT2和VT3导通,电流从电源b 端流出,经VT3,R,VT2流回电源a 端。到u2过零时,电流又降为零,VT2和VT3关断。晶闸管承受的最大正向电压和反向电压分别为22U2和2U2。由于在交流电源的正负半周都有整流输出电流流过负载,故该电路为全波整流。 整流电压平均值为: ?+=+==παααπωωπ2 cos 19.02cos 122)(d sin 21 222U U t t U U d 向负载输出的直流平均电流为: 2 cos 19.02cos 12222ααπ+=+==R U R U R U I d d 晶闸管VT 1、VT 4 和 VT 2、VT 3 轮流导电,流过晶闸管的电流平均值只有输出直流电流平均值的一半,即 2 cos 145.0212α+==R U I I d dT b c) d u V 图2.2单相桥式全控整流电路波形

相关主题
文本预览
相关文档 最新文档