当前位置:文档之家› 现代雷达技术

现代雷达技术

现代雷达技术
现代雷达技术

现代雷达技术

6个基本问题

1,雷达的任务和特点是什么?

答:传统雷达的任务仅要求对目标距离、方位、高度进行测量,而高性能雷达则还需要测量目标的速度、加速度、目标回波特性起伏、极化特性、尺寸形状,甚至要求对目标进行微波成像;需要增大雷达作用距离,改善雷达分辨率,提高雷达数据率;并且要求雷达能对目标进行跟踪、识别和分类。

现代雷达系统采用最先进的微电子技术、计算机技术、现代信号处理技术等,使系统具有体积小,质量轻,功能丰富,具有数字化、信号多样化,调制方式复杂化、频带宽带化、网络化、智能化等特点,较传统雷达有着更远的探测距离,更好的分辨率、数据率、资源利用率,更强的自适应能力,更高的抗干扰能力和可靠性。

2,雷达的基本组成有哪些?

答:(一)半波振子

雷达想要探测目标,就要有无线电波。雷达中能在空间激起无线电波的工具就是振子,其实就是一根金属棒。

电子在金属棒中来回反弹的过程叫做电振荡,如果反弹的过程中没有任何阻力的话,这种反弹会一直持续下去。金属越长,电子流来回振荡一周所需要的时间也就越长,振荡频率也就越低了。在振荡一周的时间内,电子流走过的距离就是波长。显然,电子流在这段时间内,走过的距离恰好是金属棒长度的两倍。所以,这种金属棒常称为半波振子。半波振子上电子流的很高频率的电振荡,会在空间激发出频率相同的无线电波,它以光速飞快地离开振子向四面八方飞逝而去;半波振子是雷达向空间发射无线电波的器件。因为半波振子能向空间发射无线电波,所以有时把它称为辐射器。

(二)发射机

半波振子中电子流的来回振荡会遇到阻力,要是不给它供给能量,使其克服各种阻力,这种振荡很快就会停止下来。所以雷达中有一部机器,它能驱使半波振子上电子流的振荡按照我们的需要,强有力进行,这种机器叫雷达发射机,是半波振子的能源。

雷达发射机供给半波振子以高频率电振荡的能量,半波振子在空间激起无线电波。一旦关断雷达发射机,半波振子也就停止向空间发射无线电波了。所以控制发射机通断,就可以控制向空间发射无线电波。

(三)雷达天线

有了发射机和半波振子,就可以向空间发射无线电波了。但这样发射出去的无线电波是不能用来搜索和探测目标的。因为它向空间所有的方向都发射出无线电波。

雷达使无线电波定向发射的方法就是,不让半波振子直接向空间发射无线电波,而是让它把无线电波先发射到一个象大锅一样的反射器上,从反射器反射出来的无线电波就只朝一个方向发射了。这种象大锅一样的反射器,叫做抛物面反射器。

反射器的大小,与无线电波的波长很有关系。波长短,反射器就可以做得小一点;波长长,反射器就要做得大些。在相同波长下,反射器越大,对电波的集聚作用就越好。

把半波振子(辐射器)和大锅样的反射器合在一起,看作一个整体,叫做雷达天线。这种样子的雷达天线又特地叫做抛物面天线。对米波雷达来说,把几十个甚至几百个半波振子按照一定的规律排起队来,也可以实现定向发射。而且半波振子数目越多,定向性就越好。

在相同定向发射性能的条件下,雷达工作波长愈短,雷达天线的尺寸也就可以做的小一些。但是不能说雷达的工作波长愈短愈好。波长太短的无线电波在大气中传播时,会受到很大的损耗。所以雷达工作的波长既不能太长也不能太短,它通常工作在超短波或微波波段。

(四)雷达接收机

从目标发射回来的无线电波,在雷达天线还没有来得及从一个方位转到另一个方位以前,就已经返回到它上面来了。为了要从这些反射回来的无线电波身上了解到目标的情报(它的方位、高度、距离等),就必须要有一个象蝙蝠的耳朵那样的东西。在雷达上,这一部分叫做雷达接收机。为使雷达的探测距离尽量远,雷达发射机的功率是很大的。但是从远距离目标上反射回来的无线电波的功率,却是极其微小的。

远距离目标反射回来的无线电波信号这么微弱,一般都要把它放大几百万倍以上,才能在雷达显示器上观察到。这个放大几百万倍的任务就要由雷达接收机来完成。

雷达接收机与普通的超外差式无线电收音机在原理上是完全一样的。但是它接收的是从目标反射回来的超短波或微波。

由于雷达的工作频率太高,要把这么高频率的信号直接放大几百万倍,是不大容易的。因此,在信号进入接收机后,首先要把它的频率从较高的超短波或微波波段降低到一个较低的中频频率上,这就叫变频。把这个频率降低了的信号,再经过许多级由晶体管或电子管构成的放大器一次次的放大,这样就能够比较容易地达到放大几百万倍地目的。这种经变频后再放大地接收机就叫做超外差式接收机。

(五)雷达显示器

它是用于自动实时显示雷达信息的终端设备,是人机联系的一个接口。雷达显示器通常以操纵员易于理解和便于操纵的雷达图像的形式表示雷达回波所包含的信息。传统的雷达图像是接收机直接输出的原始雷达视频或者经过信号处理的雷达视频图像。这称为一次显示。经计算机处理的雷达数据或综合视频显示的雷达图像,称为二次显示。雷达图像可插入各种标志信号,如距离标志、角度标志和选通波门等,甚至可插入或投影叠加地图背景,作为辅助观测手段。为了录取目标信号或选择数据,雷达图像上可插入数字式数据、标记或符号。雷达显示器还能综合显示其他雷达站或信息源来的情报并加注其他状态和指挥命令等,作为指挥控制显示。与计算机相联系的显示控制台常采用键盘、光笔和跟踪球,甚至话音输入装置等,以这些来作为人机对话的输入装置。

3,雷达工作在什么频段?

答:雷达波段(radar frequency band) 雷达发射电波的频率范围。其度量单位是赫兹(Hz)或周/秒(C/S)。大多数雷达工作在超短波及微波波段,其频率范围在30~300000MHz,相应波长为10m至1mm,包括甚高频(VHF)、特高频(UHF)、超高频(SHF)、极高频(EHF)4个波段。

第二次世界大战期间,为了保密,用大写英文字母表示雷达波段。将

不同频段的电磁波的传播方式和特点各不相同,所以它们的用途也就不同。在无线电频率分配上有一点需要特别注意的,就是干扰问题。因为电磁波是按照其频段的特点传播的,此外再无什么规律来约束它。因此,如果两个电台用相同的频率(F)或极其相近的频率工作于同一地区(S)、同一时段(T),就必然会造成干扰。因为现代无线电频率可供使用的范围是有限的,不能无秩序地随意占用,而需要仔细地计划加以利用。

4,雷达发射机的任务和组成分别是什么?

答:雷达是利用物体反射电磁波的特性来发现目标并确定目标的距离、方位、高度和速度等参数的。因此, 雷达工作时要求发射一种特定的大功率无线电信号。发射机在雷达中就是起这一作用,它为雷达提供一个载波受到调制的大功率射频信号, 经馈线和收发开关由天线辐射出去。

发射机按工作方式分单级振荡式发射机和主振放大式发射机。

单级振荡式发射机只由一级大功率振荡器产生发射信号,其输出功率取决于振荡管的功率容量。性能特点:1. 简单;经济;轻便2. 质量技术指标低3. 产生简单发射波形。主振放大式发射机先由高稳固体微波源产生,再经级联的放大电路,形成满足功率要求

的发射信号,其输出功率取决于输出级发射管的功率容量。性能特点:1. 复杂;昂贵;笨重2. 质量技术指标高3. 产生各种复杂发射波形。

单级振荡式发射机和主振放大式发射机的组成框图如下所示

单级振荡式发射机

主振放大式发射机

5, 雷达接收机的任务和组成分别是什么?

答:雷达接收机的任务:不失真的放大所需的微弱信号,抑制不需要的其他信号(噪声、干扰等)。超外差式雷达接收机的优点是灵敏度高、增益高、选择性好、适应性广。其简化方框图如下。

它的主要组成部分:

1.高频部分:

(1)T/R 及接收机保护器:发射机工作时,使接收机输入端短路,并对大信号限幅保护。

(2)低噪声高频放大器:提高灵敏度,降低接收机噪声系数,热噪声增益。

(3)Mixer,LD,AFC:保证本振频率与发射频率差频为中频,实现变频。

2.中频部分及AGC:

(1)匹配滤波:( / ) max o S N

(2)AGC:auto gain control.

3.视频部分:

(1)检波器:包络检波,同步(频)检波(正交两路),相位检波。

(2)视频放大器:线形放大,对数放大,动态范围。

6,影响雷达测量精度的因素有哪些?

答:雷达所测量的目标参数通常包括目标距离(回波时延)、距离变化率(多普勒频移)、方位角和俯仰角(回波到达角)等。现代雷达还能测量目标尺寸、形状和其他参数。测量精度的根本限制因素是噪声。仔细说来,主要有六个影响因素:

(1)同步误差。由于发射机电路及波导系统对发射脉冲的延时作用,造成扫描起始时刻超前于天线口辐射的时刻,势必造成显示屏上显示的目标距离将比天线口到目标的实际距离大,形成一固定的测距误差,此即同步误差。

(2)因固定距标和活动距标的不精确引起的测距误差。固定距标和活动距标本身均有误差,用它们测量目标的距离必然也会有误差。固定距标通常在雷达厂内已校准至误差为所用量程的0.25%以内。活动距标的误差约为所用量程距离的1%~1.5%,使用中,应定期将它与固定距标进行对比。

(3)扫描锯齿波的非线性。理想的扫描锯齿波应是直线上升的,但实际上往往是非线性的,这样,即使固定距标在时间上是等间隔的,但在荧光屏上出现的固定距标圈之间的间隔是不等的。此时,利用固定距标测量目标距离,在内插时将会产生较大误差。

(4)因光点重合不准导致的误差。因为雷达荧光屏上的光点是有一定尺寸的,若光点直径为d,则它会使回波尺寸在各个方向均增大d/2,所以回波的边缘并不恰好代表物标的边缘。测距时用距标圈与回波前缘重合会由于重合不准而导致测距误差。

(5)雷达天线高度引起的误差。雷达测定的物标距离是天线至物标的距离,而不是船舷至物标的水平距离。天线高度越高,影响越大;物标距离越远,影响越小。

(6)脉冲宽度造成回波图像外侧扩大引起的测距误差。由于脉冲宽度会造成雷达回波图像外侧扩大C·τ/2这是雷达回波图像的固有失真,倘若我们选择回波外侧边缘测距,必

然会引起C· τ /2的测距误差。

雷达系统原理考纲及详解

雷达原理与系统(必修)知识要点整理 第一章: 1、雷达基本工作原理框图认知。 测距:利用发射信号回波时延 测速:动目标的多普勒效应 测角:电磁波的直线传播、天线波束具有方向性 2、雷达面临的四大威胁 电子侦察电子干扰、低空超低空飞行器、隐身飞行器、反辐射导弹3、距离和延时对应关系 4、速度与多普勒关系(径向速度与线速度) 5、距离分辨力,角分辨力 6、基本雷达方程(物理过程,各参数意义,相互关系,基本推导)

7、雷达的基本组成(几个主要部分),及各部分作用 第二章雷达发射机 1、单级振荡与主振放大式发射机区别 2、基本任务和组成框图

3、峰值功率、平均功率,工作比(占空比),脉宽、PRI(Tr),PRF(fr)的关系。 第三章接收机 1、超外差技术和超外差接收机基本结构(关键在混频)

2、灵敏度的定义,识别系数定义 3、接收机动态范围的定义 4、额定噪声功率N=KTB N、噪声系数计算及其物理意义

5、级联电路的噪声系数计算 6、习题 7、AGC,AFC,STC的含意和作用 AFC:自动频率控制,根据频率偏差产生误差电压调整本振的混频频率,保证中频稳定不变

AGC:自动增益控制,调整接收机动态范围 STC:近程增益控制,防止近程杂波干扰引起的中放过载 第四章显示器 1、雷达显示器类型及其坐标含义; 距离显示器、平面显示器、高度显示器 2、A型、B型、P型、J型 第五章作用距离 1、雷达作用距离方程,多种形式,各参数意义,PX=?Rmax=?(灵敏度表示的、检测因子表示的等) 2、增益G和雷达截面A的关系 2、雷达目标截面积定义 3、习题 4、最小可检测信噪比、检测因子表示的距离方程

《现代雷达技术》word版

现代雷达技术 6个基本问题 1,雷达的任务和特点是什么? 答:传统雷达的任务仅要求对目标距离、方位、高度进行测量,而高性能雷达则还需要测量目标的速度、加速度、目标回波特性起伏、极化特性、尺寸形状,甚至要求对目标进行微波成像;需要增大雷达作用距离,改善雷达分辨率,提高雷达数据率;并且要求雷达能对目标进行跟踪、识别和分类。 现代雷达系统采用最先进的微电子技术、计算机技术、现代信号处理技术等,使系统具有体积小,质量轻,功能丰富,具有数字化、信号多样化,调制方式复杂化、频带宽带化、网络化、智能化等特点,较传统雷达有着更远的探测距离,更好的分辨率、数据率、资源利用率,更强的自适应能力,更高的抗干扰能力和可靠性。 2,雷达的基本组成有哪些? 答:(一)半波振子 雷达想要探测目标,就要有无线电波。雷达中能在空间激起无线电波的工具就是振子,其实就是一根金属棒。 电子在金属棒中来回反弹的过程叫做电振荡,如果反弹的过程中没有任何阻力的话,这种反弹会一直持续下去。金属越长,电子流来回振荡一周所需要的时间也就越长,振荡频率也就越低了。在振荡一周的时间内,电子流走过的距离就是波长。显然,电子流在这段时间内,走过的距离恰好是金属棒长度的两倍。所以,这种金属棒常称为半波振子。半波振子上电子流的很高频率的电振荡,会在空间激发出频率相同的无线电波,它以光速飞快地离开振子向四面八方飞逝而去;半波振子是雷达向空间发射无线电波的器件。因为半波振子能向空间发射无线电波,所以有时把它称为辐射器。 (二)发射机 半波振子中电子流的来回振荡会遇到阻力,要是不给它供给能量,使其克服各种阻力,这种振荡很快就会停止下来。所以雷达中有一部机器,它能驱使半波振子上电子流的振荡按照我们的需要,强有力进行,这种机器叫雷达发射机,是半波振子的能源。 雷达发射机供给半波振子以高频率电振荡的能量,半波振子在空间激起无线电波。一旦关断雷达发射机,半波振子也就停止向空间发射无线电波了。所以控制发射机通断,就可以控制向空间发射无线电波。 (三)雷达天线 有了发射机和半波振子,就可以向空间发射无线电波了。但这样发射出去的无线电波是不能用来搜索和探测目标的。因为它向空间所有的方向都发射出无线电波。 雷达使无线电波定向发射的方法就是,不让半波振子直接向空间发射无线电波,而是让它把无线电波先发射到一个象大锅一样的反射器上,从反射器反射出来的无线电波就只朝一个方向发射了。这种象大锅一样的反射器,叫做抛物面反射器。 反射器的大小,与无线电波的波长很有关系。波长短,反射器就可以做得小一点;波长长,反射器就要做得大些。在相同波长下,反射器越大,对电波的集聚作用就越好。 把半波振子(辐射器)和大锅样的反射器合在一起,看作一个整体,叫做雷达天线。这种样子的雷达天线又特地叫做抛物面天线。对米波雷达来说,把几十个甚至几百个半波

雷达原理

一、绪论 雷达:无线电探测与测距。利用电磁波对目标检测、定位、跟踪、成像和识别。 雷达利用目标对电磁波的反射或散射现象来发现目标并测定其位置的。 组成框图 雷达测量原理 雷达发射信号: 雷达接收信号: 雷达利用收发信号之间的相关性获取目标信息 雷达组成: 天线:向确定的方向发射和接收特定频段的电磁波 收发开关: 发射状态将发射机输出功率接到天线,保护接收机输入端 接收状态将天线接收信号接到接收机,防止发射机旁路信号 发射机:在特定的时间、以特定的频率和相位产生大功率电磁波 接收机:放大微弱的回波信号,解调目标信息 雷达的工作频率: 工作频率范围:22mhz--35ghz 扩展范围:2mhz--94ghz 绝大部分雷达工作在:200mhz--10000ghz 雷达的威力范围:最大作用距离、最小作用距离、最大仰角、最小仰角、方位角范围 分辨力:区分点目标在位置上靠近的能力 距离分辨力:同一方向上两个目标之间最小可区别的距离 角度分辨力:在同一距离上的两个不同方向的点目标之间最小能区别的角度 数据率:雷达对整个威力范围内完成一次搜索所需要的时间倒数,也就是单位时间内雷达所能提供对一个目标数据的次数。 跟踪速度:自动跟踪雷达连续跟踪运动目标的最大可能速度 发射功率的和调制波形: 发射功率的大小直接影响雷达的作用距离

发射信号的调制波形: 早期简单脉冲波形,近代采用复杂波形 脉冲宽度:脉冲雷达发射信号所占的时间。影响探测能力和距离分辨力 重复频率:发射机每秒发射的脉冲个数,其倒数是重复周期。决定单值测距的范围,影响不模糊速区域大小 天线波束形状天线:一般用水平面和垂直面内的波束宽度来表示 天线的扫描方式:搜索和跟踪目标时,天线的主瓣按照一定规律在空间所作的反复运动。机械性扫描和电扫描 接收机的灵敏度:通常规定在保证50%、90%的发现概率条件下,接收机输入端回波信号的功率作为接收机的最小可检测信号功率。这个功率越小接收机的灵敏度越高,雷达的作用距离越远。 显示器的形式和数量:雷达显示器是向操纵人员提供雷达信息的一种终端设备,是人际联系的一个环节。 电子战对抗中的雷达: 电子战(EW ):敌我双方利用无线电电子装备或器材所进行的电磁信息斗争,包括电子对抗和电子反对抗。 电子对抗(ECM ):为了探测敌方无线电电子装备的电磁信息(电磁侦察),削弱或破坏其使用效能所采取的一切战术、技术措施(电子干扰、伪装、隐身和摧毁) 电子反对抗(ECCM ):在敌方实施电子对抗的条件下,保证我方有效采用电磁信息所采取的一切战术、技术措施(反侦察、抗干扰、反伪装、反隐身、反摧毁) 雷达反干扰 天线抗干扰:低旁瓣、旁瓣对消、波束控制、随机扫描 发射机抗干扰:提高有效辐射功率、频率捷变、频率编码、频率分集、脉冲压缩、波形隐蔽、窄脉冲、重频时变 接收机、信号处理机抗干扰:接收机抗饱和、重频、脉宽鉴别、MTI 、MTD 、积累检测 二、发射机 发射机任务:产生大功率高频振荡发射信号。脉冲雷达要求发射机产生一定宽度、一定重复频率、一定波形的大功率射频脉冲列 基本类型:连续波发射机、脉冲调制发射机(单极振荡式发射机、主振荡式发射机) 输出功率:发射机送到天线输入端的功率 峰值功率:脉冲期间发射机输出功率的平均值(不要过分增大法设计的峰值功率) 平均功率:脉冲重复周期内输出功率的平均值: 工作比D: 常规脉冲雷达工作比0.001 脉冲多普勒雷达工作比10-2 ~10-1量级 连续波雷达工作比100% 总功率:发射机输出功率与输入功率之比 主振放大式发射机特别注意改善输出级效率 信号形式: 信号形式由雷达体制决定 常规脉冲雷达为简单脉冲波形,特殊体制雷达为复杂调制波形 t r av P T P τ=r r T F D ττ= =

现代雷达信号处理技术及发展趋势..

现代雷达信号处理技术及发展趋势 摘要:自二战以来,雷达就广泛应用于地对空、空中搜索、空中拦截、敌我识别等领域,后又发展了脉冲多普勒信号处理、结合计算机的自动火控系统、多目标探测与跟踪等新的雷达体制。随着科技的不断进步,雷达技术也在不断发展,现代雷达已经具备了多种功能,如反隐身、反干扰、反辐射、反低空突防等能力,尤其是在复杂的工作环境中提取目标信息的能力不断得到加强。例如,利用雷达系统中的信号处理技术对接收数据进行处理不仅可以实现高精度的目标定位与跟踪, 还能够在目标识别和目标成像、电子对抗、制导等功能方面进行拓展, 实现综合业务的一体化。 一、雷达的起源及应用 雷达,是英文Radar的音译,源于radio detection and ranging的缩写,意思为"无线电探测和测距",即用无线电的方法发现目标并测定它们的空间位置。因此,雷达也被称为“无线电定位”。雷达是利用电磁波探测目标的电子设备。雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。雷达最为一种重要的电磁传感器,在国防和国民经济中应用广泛,最大特点是全天时、全天候工作。雷达由天线、发射机、接收机、信号处理机、终端显示等部分组成。 雷达的出现,是由于二战期间当时英国和德国交战时,英国急需一种能探测空中金属物体的雷达(技术)能在反空袭战中帮助搜寻德国飞机。二战期间,雷达就已经出现了地对空、空对地(搜索)轰炸、空对空(截击)火控、敌我识别功能的雷达技术。二战以后,雷达发展了单脉冲角度跟踪、脉冲多普勒信号处理、合成孔径和脉冲压缩的高分辨率、结合敌我识别的组合系统、结合计算机的自动火控系统、地形回避和地形跟随、无源或有源的相位阵列、频率捷变、多目标探测与跟踪等新的雷达体制。后来随着微电子等各个领域科学进步,雷达技术的不断发展,其内涵和研究内容都在不断地拓展。雷达的探测手段已经由从前的只有雷达一种探测器发展到了红外光、紫外光、激光以及其他光学探测手段融合协作。

现代雷达信号检测及处理

现代雷达信号检测报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0)()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞ -=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞ ∞ -= = 2 02 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

现代机载火控雷达功能模式

现代机载火控雷达功能模式 机载火控雷达的功能发展历程 机载火控雷达诞生于第二次世界大战,到现在已经走过了六十多年的历程,它是现代战斗机火控系统的关健设备之一。1941年10月,美国辐射试验室开始着手世界上第一部机载火控雷达的研制工作,并于1944年将其装备在美国海军战斗机F-6F、F-7F上,这部雷达具有空-空上视搜索、测距和跟踪等机载火控雷达的最基本功能。 二战后,随着航空电子技术的快速发展,机载火控雷达的功能和性能不断得到提升,其作用越来越受到重视,但是早期的机载火控雷达在进行下视搜索时,会遇到很强的地面杂波而难以搜索到目标,作战效能受到严重制约。对机载火控雷达下视功能的迫切需求催生了脉冲多普勒体制的机载火控雷达。70年代初,第一部实用型机载脉冲多普勒火控雷达AWG-9由美国休斯公司研制成功,并装备在美国海军的F-14战机上。随后,机载脉冲多普照勒火控雷达得到迅速发展,几乎成为先进战斗机火控雷达的惟一选择,是第三代战斗机的重要指标之一,它使现代先进战斗机真正具有了远程、全天候、全方位和全高度攻击能力。

20世纪90年代以来,在数字技术和微电子技术的推动下,对机载雷达多目标攻击、抗干扰以及一体化等功能和性能的更高要求使得相控阵技术开始应用于机载火控雷达,又进一步促使了机载火控雷达更多功能的开发,现代机载火控雷达的发展已经步入了相控阵时代。 现代机载火控雷达的多功能 机载火控雷达功能从最初的只具有简单的空-空搜索、测距和跟踪等简单功能开始,发展到了现在的空-空、空-地、空-海、导航等四大类共几十种子功能(有些文献将空-地、空-海等功能统称为空-面功能),所制导的武器由原来的机炮发展到各种导弹和精确制导炸弹,使战斗机真正具有了远程、全天候、全方位和全高度的攻击能力。 一、空-空功能(A-A) 空-空功能是机载火控雷达的基本功能,主要针对的是各类空中目标,典型的目标是战斗机、轰炸机、运输机、无人机等以螺旋桨或喷气发动机推进的飞机。随着现代战争形式的不演化,先进的空-空功能已开始将悬翼直升机、巡航导弹、气球或飞艇等威胁已方平台或设施安全的新旧威胁都

(完整版)雷达系统原理框图及编程思想

雷达系统原理框图及编程思想 图1 雷达系统原理图 1、回波信号 回波信号由目标回波(动目标),地物杂波(静目标),及系统高斯白噪声组成。 线性调频信号:x=rect(t/mk)exp(jπkt2) (k=B/mk) 目标回波:y=rect(t/mk)*exp(j*2*pi*((f1+k*t/2).*t+fd*i*T)) 地物杂波(静目标):y=rect(t/mk)*exp(j*2*pi*((f1+k*t/2).*t)) 系统噪声(高斯白噪声):z=0.2*randn(1,N)。 参数: 载频f0=30MHz,线性调频信号带宽B=4MHz,脉宽mk=5us,周期Tr=30us;多普勒频移fd=1000,选取回波数:n=5 其波形如图:

图2 回波 2、高放 高放采用50阶FIR滤波器,中心频率为30MHz,通带为20MHz。 高放后的波形图:

图3 高放后时域频域图形 3、混频+中放 混频的参考频率为20MHz 中放采用50阶FIR滤波器,中心频率为10MHz,通带为4MHz。 图4 混频+中放后时域频域图形 4、相干检波 参考源的时钟频率f0=10MHz; I 路:I=0.5*X*cos(Φ(t));Q路:Q=0.5*X*sin(Φ(t)); 原理图: 中放之后 的信号 sin2πf0t cos2πf0t LDF LDF I路 Q路 波形图:

图5 相位检波后I、Q两路时域图 5、A/D转换 采样频率为5MHz。 x0=(Vmax/2a)*int{xi*2a / Vmax };其中,a为AD位数

图6 AD采样后后I、Q两路时域图 6、脉冲压缩 采用发射信号作为匹配滤波。 匹配滤波的脉冲响应: H(k)=X*(k)exp(-j2πkN), k=0,1,2…N 线性调频信号: x(n)=rect(n/N)exp(jπkn2) (k=B/tao); 图7 脉冲压缩时域图8、MTI MTI采用一次对消: y(n)=x(n)-x(n-1); n=1,2,3…N

雷达工作原理

一、雷达工作原理、专业术语解释 雷达是军事电子对抗的尖端技术和设备,是作为21世纪反恐和安保的技术新标准(家庭安全警戒网) 幕帘技术同红外技术相似,只是它的防范区域与普通红外不同,顾名思义就是象一道帘子一样,适合于整个平面防范。 A)幕帘夹角 幕帘的两道之间的夹角。 B)幕帘张角 每道幕帘展开扇形的两条边之间的夹角。 C)探测范围

探测范围指雷达正常工作的感应范围,即雷达能够探测到在此范围以内的所有物体运 动从而产生报警状态。 D)探测距离 雷达在正常工作下所能探测到的最远距离,雷达分为四档;分别是2-3m、3-4m、5-6m、6-8m。 E)发射距离 报警系统中无线器件在被触发后将无线报警信号以电磁波的形式发射出去的最远距离,雷达在空旷地带为100M。 F)发射频率 电磁波发射的频率用HZ计算,国家电磁波管理委员会规定的公用波段频率是315/433MHZ G)关于护窗雷达的防宠物功能 护窗雷达发展到今天,在技术上已经比较成熟,防小宠物是护窗雷达的一种重要的功能,慑力护窗雷达对抗小宠物干扰的处理方式有两种: 一种是物理方式,即通过菲涅尔透镜的分割方式的改变来降低由于小宠物引起误报的概率,这种方式是表面的,效果也是有限的。第二种方式是采用对探测信号处理分析方式,主要是对探测的信号进行数据采集,然后分析其中的信号周期,幅度,极性。这些因素具体反应出移动物体的速度、热释红外能量的大小,以及单位时间内的位移。探测器中的微处理器将采集的数据进行分析比较,由此判断移动物体可能是人是小动物。 由此看来,我们要注意的是护窗雷达的防小宠物的功能是相对的。这种相对性包括两个方面,一个是防宠物是相对的,相对于没有防宠物功能的探测器其误报率是大大降低了,它对小宠物的数量和大小有一定限度的。第二方面是安装位置是要有一定要求的,并不是随意的安装就可以达到防小宠物功能。 效果 一旦整幢别墅设防,将形成无形的雷达警戒网,有效的将整幢别墅警戒起来,如果贼匪将在深夜靠近别墅时,男警立刻通通碟,紧接着高达95分贝的防恐警和国际反恐广播立刻炸响,十二束红眩捕俘灯和墙壁上太阳灯交替发射,同时雷达第一时间了射无线电信号给装在室内的主机,主机会告诉你哪个位置在报警,并第一时间拨打您

一种雷达信号处理模块的设计和实现

一种雷达信号处理模块的设计和实现 一种雷达信号处理模块的设计和实现 现代雷达特别是机载雷达数字信号处理机的特点是输入数据多,工作模式复杂,信息处理量大。因此,在一个实时信号处理系统中,雷达信号处理系统要同时进行高速数据分配、处理和大量的数据交换.而传统的雷达信号处理系统的设计思想是基于任务,设计者针对应用背景确定算法流程,确定相应的系统结构,再将结构划分为模块进行电路设计。这种方法存在一定的局限性。 首先,硬件平台的确定会使算法的升级受到制约,由此带来运算量加大、数据存储量增加甚至控制流程变化等问题。此外,雷达信号处理系统的任务往往不是单一的,目前很多原来由模拟电路完成的功能转由数字器件来处理。系统在不同工作阶段的处理任务不同,需要兼顾多种功能。这些问题都对通用性提出了进一步要求[2].随着大规模集成电路技术、高速串行处理及各种先进算法的飞速发展,利用高速DSP和FPGA相结合的系统结构是解决上述问题的有效途径。 1雷达信号处理机方案设计 1.1雷达信号处理的目的 现代机载雷达信号处理的任务繁重,主要功能是在空空方式下将AD 数据录取后进行数字脉压处理、数据格式转换和重排、加权降低频谱副瓣电平,然后进行匹配滤波或相参积累(FFT或DFT)、根据重复频率的方式进行一维或二维CFAR处理、跟踪时测角等运算后提取出点迹目标送给

数据处理机。空地方式下还要进行地图(如RBM和SAR)等相关图像成像处理,最后坐标转换成显示数据送给显控处理机。 上述任务需要基于百万门级可编程逻辑器件FPGA与高性能DSP芯片作为信号处理模块,以充分满足系统的实时性要求,同时为了缩短机载雷达系统的研制周期和减少开发经费,设计的基本指导思想是通用化的信号处理模块,可以根据不同要求,通过软件自由修改参数,方便用户使用。 1.2系统模块化设计方案 的功能模块,除了信号处理所必需的脉冲压缩模块、为MTD模块作准备的数据重排模块、FIR滤波器组模块、求模模块、恒虚警处理模块和显示数据存储模块外,还包括雷达同步信号和内部处理同步产生模块、自检数据产生模块以及不同测试点测试数据采样存储模块。这些模块更加丰富了系统的功能,使得雷达系统的研制者能够更方便地测试和观察信号处理各功能模块的工作情况。 主要功能模块的具体功能描述如下: (1)正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务,中频接收机输出的信号先通过A/D转换器进行采样,然后进行正交解调,以获得中频信号的基带信号(也称为中频信号的复包络)的I、Q两路正交信号,采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内。 (2)脉冲压缩模块是在发射峰值功率受限的情况下,使用匹配滤波器将接收到的宽脉冲信号变成窄脉冲且保持能量不变,以获得更高的距离

一次雷达和二次雷达

1 一次雷达与二次雷达 二次雷达与一次雷达基本上是并行发展的。与一次雷达相比,二次雷达有回波强、无目标闪烁效应、询问波长与应答波长不等的特点,从而消除了地物杂波和气象杂波的干扰。单脉冲技术应用于二次雷达,可以方便地基于多个波束对目标测量,进而有效地增加数据冗余度,提高角度测量的精度。对应答处理而言,单脉冲技术的应用,大大提高了在混叠或交织情况下对应答码的解码能力,使单脉冲二次雷达与常规二次雷达相比实现了一次质的飞跃。 二次雷达与一次雷达的根本区别是工作方式不同。一次雷达依靠目标对雷达发射的电磁波的反射机理工作,它可以主动发现目标并对目标定位;二次雷达则是在地面站和目标应答机的合作下,采用问答模式工作。目前的航管二次雷达共有七种询问模式,分别称为1、2、3/A、B、C、D和S模式。根据询问脉冲P1与P3的间距决定(S模式除外)各种询问模式。 机载应答机发出的应答码由16个信息码位组成,这些码位的代号依次是 F1、C1、A1、C2、A2、C4、A4、X、B1、D1、B2、D2、B4、D4、F2 和SPI。每个码位都有两种状态,即有脉冲或无脉冲。有脉冲时为“1”,无脉冲时为“0”。F1与F2的0.5电平处的脉冲前沿间隔为20.3±0.1μs,称为框架脉冲,它们是二次雷达应答信号的标志脉冲,均恒为“1”状态。X位是备用状态,恒为“0”。两个框架脉冲(F1与F2)之间的12个信息码位,可以编成4 096个独立的应答码。SPI是特殊定位识别码,当两架飞机相互接近或者应答码相同时,调度员可以要求其中的一架飞机在已回答的12个码位基础上再增加一个SPI脉冲,以便准确识别。二次雷达应答信号组成如图1所示。 2 应答处理器系统组成 单脉冲二次雷达应答信号处理的基本流程如图2所示。 在视频预处理器中,和与差支路的∑、△视频信号,经A/D转换器进行数字化处理后,变成两组8位的数字信号传送给应答处理机;将∑接收单元与△接收单元的信号经相位鉴别器,生成表示目标在波束中心左侧或右侧的轴向指示信号BI(2位),送应答处理器;∑与ΩSLS(1位);接收信号 经6dB检测、反窄处理、二分层产生PSV(处理后的和视频,1位)。视频预处理器产生上述信号并输入给应答处理机,进行框架检测、和差比计算、码装配等处理,最终形成应答报告输出给点/航迹处理计算机。应答处理机系统的组成如图3。 在应答处理机中选用了Lattice公司的EPLD作为主处理芯片(ispLSI1032E)。该芯片有64个I/O端,8个指定输入端,6 000个逻辑门,192个寄存器,最大时延≤12ns,通过简单的5线接口,即可用PC机对线路板上菊花链结构的最多8个芯片进行编程。PC104是嵌入式计算机,其CPU是一片兼容的64位第六代处理器,运行速度可达300MHz,其图形处理器可支持各种LCD及TFT显示屏,同时支持PS/2键盘、PS/2鼠标、两串行接口、一并行接口、USB接口、声卡功能。 应答处理机的工作原理:1位PSV、8位和视频、8位差视频、2位轴向指示及1位接收旁瓣抑制信号,在经过输入缓冲并与系统时钟信号同步后,其中的PSV信号进入边沿产生电路,所产生的前沿延迟一个框架时间(20.3μs)后与未延迟的前沿信号相与给出目标框架,启动4个解码器中处于空闲状态的装配器开始解码工作,产生解码需要的定时脉冲序列。同时和视频、差视频、轴向指示、旁瓣抑制信号送入视频采样电路,经过视频采样产生的SVA(和视频幅度)和DVA(差视频幅度)经和差比计算电路产生SDR值,SVA、DVA、SDR送数字寄存器进行延迟,延迟及未延迟的SVA、SDR、轴向指示、接收旁瓣抑制和目标前沿信号一起送入代码装配器,在定时脉冲的作用下,对目标应答信息进行解码、去除幻影应答、解旁瓣应答和军事告急应答。经过进一步相关、确认和修正后,将目标的SVA和SDR代码、综合的代码置信度信息及一些标志信息送代码装配总线,在输出控制的情况

(完整版)雷达组成及原理.doc

雷达的组成及其原理 课程名称:现代阵列并行信号处理技术 姓名:杜凯洋 学号: 2015010904025 教师:王文钦教授

一.简介 雷达( Radar,即 radio detecting and ranging),意为无线电搜索和测距。它是运用各种无线电定位方法,探测、识别各种目标,测定目标坐标和其它情报的装置。在现代军事和生产中,雷达的作用越来越显示其重要性,特别是第二次世界大战,英国空军和纳粹德国空军的“不列颠”空战,使雷达的重要性显露的非常清楚。雷达由天线系统、发射装置、接收装置、防干扰设备、显示器、信号处理器、电源等组成。其中,天线是雷达实现大空域、多功能、多目标的技术关键 之一;信号处理器是雷达具有多功能能力的核心组件之雷达种类很多,可按多种方法分类: (1)按定位方法可分为:有源雷达、半有源雷达和无源雷达。 (2)按装设地点可分为;地面雷达、舰载雷达、航空雷达、卫星雷达等。 (3)按辐射种类可分为:脉冲雷达和连续波雷达。 (4)按工作被长波段可分:米波雷达、分米波雷达、厘米波雷达和其它波段 雷达。 (5)按用途可分为:目标探测雷达、侦察雷达、武器控制雷达、飞行保障雷达、气象雷达、导航雷达等。 二.雷达的组成 (一)概述 1、天线:辐射能量和接收回波(单基地脉冲雷达),(天线形状,波束形状,扫描方式)。 2、收发开关:收发隔离。 3、发射机:直接振荡式(如磁控管振荡器),功率放大式(如主振放大式),(稳定,产生复杂波形,可相参处理)。 4、接收机:超外差,高 频放大,混频,中频放大,检波,视频放大等。(接收机部分也进行一些信号处理,如匹配滤波等),接收机中的检波器通常是包络检波,对于多普勒处理则采用相位检波器。 5、信号处理:消除不需要的信号及干扰而通过或加强由目标产生的回波信号,通常在检测 判决之前完成( MTI,多普勒滤波器组,脉冲压缩),许多现代雷达也在检测判决之后完成。 6、显示器(终端):原始视频,或经过处理的信息。 7、同步设备(视频综合器):是雷达机的频率和时间标准(只有功率放大式(主振放大式) 才有)。 (二)雷达发射机 1、单级振荡式:大功率电磁振荡产生与调制同时完成(一个器件)

现代雷达技术外文翻译

一种亚太赫兹真实孔径成像雷达 摘要 对于频率在100MHz到10THz之间的电磁波,由于缺乏高功率源和由水蒸气产生的强电磁吸收,只有极少数的雷达系统和其他系统会在这个频段内工作。出于这个原因,它有时被称为太赫兹间隙。功率源的技术正在改善,从而有利于雷达系统在这个新的前沿电磁波谱的操作。在靠近毫米波/亚毫米波过渡这个频谱区域的下端,相对于更高的频率,该频段的器件更加容易获得,大气衰减也更适中。一个具有长达数百米的成像面的真实孔径雷达已经研制成功,它利用组件可以产生大约50mW的功率。它可以发送一个垂直方向的扇形波束扫描视场中的方位,并在两个垂直方向上接收,此时具有相同位移位置的扇形波束形成干涉,由此可以产生三维图像的表面形貌(排列,方位和高度)。本文介绍了该原型系统的设计,并提出了初步成果,扩展了之前的工作。 关键词:成像雷达,太赫兹,干涉,真实波束成像 一、简介 在太赫兹和亚太赫兹频率(0.14-1太赫兹)工作的有源成像系统已经被开发用于各种场合,主要用于隐藏的武器的检测和生物医学成像等非常狭窄的用途。造成这种范围限制是由于水蒸气对这个频段电磁能量的强吸收以及大多数源只能提供相对较低的功率。虽然已经开发出有合理输出功率的亚太赫兹系统,但是它们或者没有被应用与实验室和研究环境之外,或者不能持续输出,这是多普勒测速雷达的一个关键参数。继续研究亚太赫兹系统和传输将使许多长景的应用现在就开始变得可行,例如成像雷达,宽带通信和遥感。 成像雷达,包括合成孔径雷达(SAR)可以使用其中多个接收器位移在空间和时间的干涉,得到差分相位图算出表面高度估计来提供附加维度。但是也有极少数著名论证性干涉雷达的工作频率高于100GHz(可能同时有这方面的研究)。一个亚太赫兹干涉雷达将提供一个平台,以研究各种可利用短波长的优势产生高分辨率地形图,并且研究和验证后向散射雷达,地形连贯性和亚太赫兹传播理论模型的应用。

现代雷达匹配滤波器报告

现代雷达信号匹配滤波器报告 一 报告的目的 1.学习匹配滤波器原理并加深理解 2.初步掌握匹配滤波器的实现方法 3.不同信噪比情况下实现匹配滤波器检测 二 报告的原理 匹配滤波器是白噪声下对已知信号的最优线性处理器,下面从实信号的角度 来说明匹配滤波器的形式。一个观测信号)(t r 是信号与干扰之和,或是单纯的干扰)(t n ,即 ? ??+=)()()()(0t n t n t u a t r (1) 匹配滤波器是白噪声下对已知信号的最优线性处理器,对线性处理采用最大信噪比准则。以)(t h 代表线性系统的脉冲响应,当输入为(1)所示时,根据线性系统理论,滤波器的输出为 ?∞ +=-=0 )()()()()(t t x d h t r t y ?τττ (2) 其中 ?∞-=0 0)()()(τττd h t u a t x , ?∞ -=0 )()()(τττ?d h t n t (3) 在任意时刻,输出噪声成分的平均功率正比于 [ ] ??∞∞=?? ? ???-=0 20202 |)(|2)()(|)(|τττττ?d h N d h t n E t E (4) 另一方面,假定滤波器输出的信号成分在0t t =时刻形成了一个峰值,输出信 号成分的峰值功率正比于 2 02 2 0)()()(? ∞ -=τττd h t u a t x (5) 滤波器的输出信噪比用ρ表示,则

[ ] ?? ∞∞ -= = 202 02 2 20|)(|2)()(| )(|) (τ ττ ττ?ρd h N d h t u a t E t x (6) 寻求)(τh 使得ρ达到最大,可以用Schwartz 不等式的方法来求解.根据Schwartz 不等式,有 ??? ∞ ∞ ∞ -≤-0 20 2 02 0|)(||)(|)()(τττττ ττd h d t u d h t u (7) 且等号只在 )()()(0*τττ-==t cu h h m (8) 时成立。由式(1)可知匹配滤波器的脉冲响应由待匹配的信号唯一确定,并且是该信号的共轭镜像。在0=t t 时刻,输出信噪比SNR 达到最大。 在频域方面,设信号的频谱为 ,根据傅里叶变换性质可知,匹配滤 波器的频率特性为 (9) 由式(9)可知除去复常数 c 和线性相位因子 之外,匹配滤波器的频率 特性恰好是输入信号频谱的复共轭。式 (2)可以写出如下形式: (10) (11) 匹配滤波器的幅频特性与输入信号的幅频特性一致,相频特性与信号的相位谱互补。匹配滤波器的作用之一是:对输入信号中较强的频率成分给予较大的加权,对较弱的频率成分给予较小的加权,这显然是从具有均匀功率谱的白噪声中过滤出信号的一种最有效的加权方式;式(11)说明不管输入信号有怎样复杂的非线性相位谱,经过匹配滤波器之后,这种非线性相位都被补偿掉了,输出信号仅保留保留线性相位谱。这意味着输出信号的各个频率分量在时刻达到同相位,同相相加形成输出信号的峰值,其他时刻做不到同相相加,输出低于峰值。 匹配滤波器的传输特性 ,当然还可用它的冲激响应 来表示,这时有:

《雷达原理》知识点总结

【雷达任务:测目标距离、方位、仰角、速度;从目标回波中获取信息 【雷达工作原理:发射机在定时器控制下,产生高频大功率的脉冲串,通过收发开关到达定向天线,以电磁波形式向外辐射。在天线控制设备的控制下,天线波束按照指定方向在空间扫描,当电磁波照射到目标上,二次散射电磁波的一部分到达雷达天线,经收发开关至接收机,进行放大、混频和检波处理后,送到雷达终端设备,能判断目标的存在、方位、距离、速度等。 【影响雷达性能指标:脉冲宽度(窄),天线尺寸(大),波束(窄),方向性。 【测角:根据接收回波最强时的天线波束指向 【雷达是如何获取目标信息的? 【雷达组成:天线,发射机,接收机,信号处理机,终端设备(电源,显示屏),收发转换开关【发射机工作原理:为雷达提供一个载波受到调制的大功率射频信号,经馈线和收发开关由天线辐射出去。 【发射机基本组成:单级振荡式:脉冲调制器,大频率射频振荡器,电源。 主振放大式:脉冲调制器,中间和输出射频功放,电源,定时器,固体微波源(主控振荡器,用来产生射频信号) 工作过程:(1)单级振荡式:信号由振荡器产生,受调制 (2)主振放大式:信号由固体微波源经过倍频后产生,经射频放大链进行放大,各级都需调制(脉冲调制器),定时器协调工作。 优缺点:单击振荡式:简单经济轻便,频率稳定度差,无复杂波形; 主振放大式:频率稳定度高,相位相参信号,有复杂波形,适用频率捷变雷达 【发射机质量指标:(1)工作频率(波段)(2)输出功率:影响威力和抗干扰能力。峰值功率(脉冲期间射频振荡的平均功率)和平均功率(脉冲重复周期内输出功率的平均值)。(3)总效率Pt/P。(4)调制形式:调制器的脉冲宽度,重复频率,波形。(5)信号稳定度/频谱纯度,即信号各项参数。 【调制器组成:电源,能量储存,脉冲形成 【调制器任务与作用:为发射机的射频各级提供合适脉冲,将一个信号载到一个比它高的信号上 【仿真线:由于雷达的工作脉冲宽度多半在微秒级别以上,用真实线长度太长,因此在实际中是用集总参数的网络代替长线,即仿真线 【刚/软性开关:刚性开关的电容储能部分放电式调制器,特点为部分放电,通电利索;软性开关的人工线性调制器,特点为完全放电,效率高,功率大。 【接收机指标:(1)灵敏度:表示接收机接受微弱信号的能力。提高灵敏度,减小噪声电平,提高接收机增益。(2)工作频率宽度:表示接收机瞬时工频范围,提高:高频部件性能 (3)动态范围:表示正常工作时接收信号强度的范围,提高:用对数放大器增益控制电路抗干扰(4)中频滤波特性:减小噪声,带宽>回波时,噪声大。(5)工作稳定度(6)频率稳度(7)抗干扰能力(8)噪声系数 【收发软换开关工作原理:脉冲雷达天线收发共用,需要一个收发软换开关TR,发射时,TR使天线与发射机接通,与接收机断开,以免高功率发射信号进入接收机使之烧毁;接收时,天线与接收机接通,与发射机断开,以免因发射机旁路而使微弱接收信号受损。 【收发开关组成及类型:高频传输线,气体放电管。分为分支线型和平衡式。 【显示器分类:距离,平面,高度,情况和综合,光栅扫描。 【显示器列举:距离(A型J型A/R型)平面(PPI)高度(E式RHI) 【A型显示器组成:扫掠形成电路,视频放大电路,距标形成电路。 【怎样读取目标方位距离等参数(P显):方位角以正北为零方位角,顺时针计量;距离沿半

雷达系统中的信号处理技术

雷达系统中的信号处理技术 摘要本文介绍了雷达系统及雷达系统信号处理的主要内容,着重介绍与分析了雷达系统信号处理的正交采样、脉冲压缩、MTD和恒虚警检测几种现代雷达技术,雷达系统通过脉冲压缩解决解决雷达作用距离和距离分辨力之间的矛盾,通过MTD来探测动目标,通过恒虚警(CFAR)来实现整个系统对目标的检测。 关键词雷达系统正交采样脉冲压缩MTD 恒虚警检测 1雷达系统概述 雷达是Radar(Radio Detection And Ranging)的音译词,意为“无线电检测和测距”,即利用无线电波来检测目标并测定目标的位置,这也是雷达设备在最初阶段的功能。雷达的任务就是测量目标的距离、方位和仰角,还包括目标的速度,以及从目标回波中获取更多有关目标的信息。典型的雷达系统如图1,它主要由雷达发射机、天线、雷达接收机、收发转换开关、信号处理机、数据处理机、终端显示等设备组成。 图1雷达系统框图

随着现代电子技术的不断发展,特别是数字信号处理技术、超大规模集成数字电路技术、计算机技术和通信技术的告诉发展,现代雷达信号处理技术正在向着算法更先进、更快速、处理容量更大和算法硬件化方向飞速发展,可以对目标回波与各种干扰、噪声的混叠信号进行有效的加工处理,最大程度低剔除无用信号,而且在一定的条件下,保证以最大发现概率发现目标和提取目标的有用信息。 雷达发射机产生符合要求的雷达波形,然后经馈线和收发开关由发射天线辐射出去,遇到目标后,电磁波一部分反射,经接收天线和收发开关由雷达接收机接收,然后对雷达回波信号依次进行信号处理、数据处理,就可以获知目标的相关信息。 雷达信号处理的流程如下: 图 2 雷达信号处理流程 2雷达信号处理的主要内容 雷达信号处理是雷达系统的主要组成部分。信号处理消除不需要的杂波,通过所需要的目标信号,并提取目标信息。内容包括雷达信号处理的几个主要部分:正交采样、脉冲压缩、MTD和恒虚警检测。 正交采样是信号处理的第一步,担负着为后续处理提供高质量数据的任务。采样的速率和精度是需要考虑的首要问题,采样系统引起的失真应当被限定在后续信号处理任务所要求的误差范围内,直接中频数字正交采样是当代雷达的主要技术之一。脉冲压缩技术在现代雷达系统中得到了广泛的应用。脉冲压缩雷达既能保持窄脉冲雷达的高距离分辨力,又能获得脉冲雷达的高检测力,并且抗干扰能力强。现在,脉冲压缩雷达使用的波形正在从单一的线性调频发展到时间、频率、编码混合调制,在尽可能不增加整机复杂度的条件下实现雷达性能的提升。杂波抑制是雷达需要具备的重要功能之一。动目标指示与检测是通过回波多普勒频移的不同来区分动目标和固定目标,通过设计合理的滤波器(组),就可以把目标号和杂波分开。

二次雷达波束控制系统设计

第10卷 第3期 信息与电子工程Vo1.10,No.3 2012年6月 INFORMATION AND ELECTRONIC ENGINEERING Jun.,2012 文章编号:1672-2892(2012)03-0266-04 二次雷达波束控制系统设计 夏勇,张浩,李晓娟,尤路 (中国电子科技集团第38研究所,安徽合肥 230031) 摘 要:传统的二次雷达通常采用机械扫描的工作方式。基于无源相控阵天线体制的二次雷达作为一种新体制的雷达,是为了适应重点空域警戒功能而发展起来的。波束控制系统是该二次 雷达的重要组成部分,其基本功能包括:相位控制、同步控制、数据传输以及信号自检。二次雷 达波束控制系统采用了基于嵌入式计算机和网络的集中式波控方案设计。在波控处理流程中,作 者采取了软件和硬件的双重同步手段。在波控数据的布相方法上,采用二级缓存同步布相的方法。 在实践过程中证明,基于嵌入式计算机和网络的二次雷达波束控制系统具有工作方式灵活多样、 波束调度方便、可靠性高等优点。 关键词:二次雷达;波束控制;嵌入式计算机;网络;同步 中图分类号:TN958.96文献标识码:A Design of beam steering system for secondary surveillance radar XIA Yong,ZHANG Hao,LI Xiao-juan,YOU Lu (The 38th Research Institute,China Electronics Technology Group Corporation,Hefei Anhui 230031,China) Abstract:Mechanical scanning mode is often used in traditional secondary surveillance radar. As a new kind of radar concept, passive phased array based secondary surveillance radar is developed to suit the function of vital airspace surveillance. The basic function of the beam steering system, which is an important component of secondary surveillance radar, includes phase steering, synchronous processing, data transmission and signal self-checking. In this paper, the centralized design scheme based on embedded computer and network for beam steering system of secondary surveillance radar is adopted. Dual synchronous process method of software and hardware is employed in the flow of beam steering. The secondary cache is adopted for synchronous beam distribution. Proved in the course of practice, embedded computer and network-based secondary radar beam steering system features a flexible way of working, beam scheduling convenience, and higher reliability. Key words:secondary surveillance radar;beam steering;embedded computer;network; synchronization 二次雷达(Secondary Surveillance Radar,SSR)在航空交通管制、敌我识别等方面得到了广泛的应用,是大型雷达系统的重要组成部分。从工作原理来说,二次雷达是一种通过发射信号并接收应答信号以获得合作目标信息的电子设备[1]。传统的二次雷达通常采用机械扫描的工作方式。 相控阵体制的一次雷达通常具有重点空域监视功能,即在阵面天线不动的状态下,天线波束在方位及仰角上能够进行两维扫描[2]。因此需要设计一种新体制的二次雷达以适应一次雷达的这种要求。这种新体制的二次雷达,天线采用无源相控阵体制。在二次雷达天线静止的状态下,二次雷达波束可以在方位角上进行扫描,其方位扫描范围一般要求覆盖一次雷达波束的方位扫描范围。采用相控阵天线体制的二次雷达,其天线波束的控制具有很大的灵活性,波束在空间的扫描几乎是无惯性的。这种特性克服了机械扫描天线波束指向转换的惯性以及由此给雷达性能带来的限制[3]。 收稿日期:2011-08-22;修回日期:2011-10-10

相关主题
文本预览
相关文档 最新文档