当前位置:文档之家› 振荡电路的原理

振荡电路的原理

振荡电路的原理
振荡电路的原理

高频放大器

使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。

高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。

原理

放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。

高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。

本级振荡电路

本级振荡电路图

本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。

混频器

工作频率

混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

噪声系数

混频器的噪声定义为:NF=Pno/Pso Pno是当输入端口噪声温度在所有频率上都是标

准温度即T0=290K时,传输到输出端口的总噪声资用功率。Pno主要包括信号源热噪声,内部损耗电阻热噪声,混频器件电流散弹噪声及本振相位噪声。Pso为仅有有用信号输入在输出端产生的噪声资用功率。

变频损耗

混频器的变频损耗定义为混频器射频输入端口的微波信号功率与中频输出端信号功率之比。主要由电路失配损耗,二极管的固有结损耗及非线性电导净变频损耗等引起。1dB压缩点

在正常工作情况下,射频输入电平远低于本振电平,此时中频输出将随射频输入线性变化,当射频电平增加到一定程度时,中频输出随射频输入增加的速度减慢,混频器出现饱和。当中频输出偏离线性1dB时的射频输入功率为混频器的1dB压缩点。对于结构相同的混频器,1dB压缩点取决于本振功率大小和二极管特性,一般比本振功率低6dB。动态范围

动态范围是指混频器正常工作时的微波输入功率范围。其下限因混频器的应用环境不同而异,其上限受射频输入功率饱和所限,通常对应混频器的1dB压缩点。

中频放大电路

中频放大电路的任务是把变频得到的

中频信号加以放大,然后送到检波器检

波。中频放大电路对超外差收音机的灵

敏度、选择性和通频带等性能指标起着

极其重要的作用。

图Z1008(a)是LC单调谐中频放大

电路,图Z1008(b)为它的交流等效电

路。图中B1、B2为中频变压器,它们

分别与C1、C2组成输入和输出选频网络,同时还起阻抗变换的作用,因此,中频变压器是中放电路的关键元件。

中频变压器的初级线圈与电容组成LC并联谐振回路,它谐振于中频465kHz。由于并联谐振回路对诣振频率的信号阻抗很大,对非谐振频率的信号阻抗较小。所以中频信号在中频变压器的初级线圈上产生很大的压降,并且耦合到下一级放大,对非谐振频率信号压降很小,几乎被短路(通常说它只能通过中频信号),从而完成选频作用,提高了收音机的选择性。

由LC调谐回路特性知,中频选频回路的通频带B=f2-f1=,见图Z1009。式中Q L是回路的有载品质因数。Q L值愈高,选择性愈好,通频带愈窄;反之,

通频带愈宽,选择性愈差。

中频变压器的另一作用是阻

抗变换。因为晶体管共射极电路

输入阻抗低,输出阻抗高,所以

一般用变压器耦合,使前后级之

间实现阻抗匹配。

一般收音机采用两级中放,

有3个中频变压器(常称中周)。第一个中频变

压器要求有较好的选择性,第二个中频变压器要

求有适当的通频带和选择性,第三个中频变压器

要求有足够的通频带和电压传输系数,由于各中

频变压器的要求不同,匝数比不一样,通常磁帽

用不同颜色标志,以示区别,所以不能互换使用。

实际电路中常采用具有中间抽头的并联谐振

回路,如图Z1010(a)所示。(b)是它的等效电

路,可以看出,它是由两个阻抗性质不同的支路组成。由于L1、L2都绕在同一

磁芯上,实际上是一个自耦变压器。

利用变压器的阻抗变换关系,可求得等效谐振电路的谐振阻抗:

Z OB0=()2Z AB0=()2Z AB0

(式中N=N1+N2为电感线圈的总匝数)。

即具有抽头并联谐振电路的谐振阻抗Z OB0等于没有抽头的谐振阻抗Z AB0的

倍。由于<1,所以Z OB0<Z AB0,适当选择变比可取得所需求的Z OB0,

从而实现阻抗匹配。

上述中放电路结构简单,回路损耗小,调试方便,所以应用广泛。但很难同时满足选择性和通频带两方面的要求,所以只能用在要求不太高的收音机上。

解调电路

解调是调制的逆过程,是从高频已调波中恢复出原低频调制信号的过程。调幅波的解调也称为检波,而完成调幅波解调作用的电路称为检波器。从频谱上看,解调也是一种信号频谱的线性搬移过程,是将高频载波端边带信号的频谱线性搬移到低频端,因此,广义地说,凡是具有频谱线性搬移功能的实用电路均可用于调幅波的解调。DSB信号的包络不同于调制信号,不能简单地采用包络检波器解调,必须使用同步检波器。同步检波器是一个三端口的

网络,两个输入端口一个输出端口。其中两个输入端口的电压,一个是DSB信号,另外一个是外加的解调载波电压。同步检波过程为了正常解调必须使所恢复的载波与原调制载波同步。

如图A所示,是DSB信号的解调电路,经过天线接收的信号,经过3.7节中的放大器分成两路,一路直接输入模拟乘法器MC1496第1脚,另一路经过锁相环同步电路后,相移90°输入到模拟乘法器第10脚,最后解调后的信号由第6脚输出。

图A 解调电路

高频调谐放大器电路的组成和原理

高频调谐器又称高频头。用以接收来自天线(ATV)或闭路电视(CATV)的射频TV(RF)信号,进行放大、变频,转变为固定载频的中频TV(IF)信号。因为本振频率高于射频,故称超补差接收方式,具有调谐范围宽、灵敏度高等特点。 1.高频头的一般电路结构高频头的电路结构如图1所示。由于受压控变容二极管容量变化范围的限制,我国将TV分为三个频段:高(UHF)、中(VHF-H)和低(VHF-L)频段。电路包含:三套独立的高放(包括输入调谐电路、高频放大器和输出调谐器)、本机振荡器、混(变)频器和前置中频BPF等电路。由频段开关选择切换;输入回路单调谐,Q质低,带宽约12MHz;输出回路双调谐,矩形系数好,带宽约12MHz;双栅场效应低噪声放大管,G1为TVRF信号输入端,G2是放大器增益控制端,电压高时增益大,最大增益约20dB。增益大有利于在接收小信号的TV时提高整机的信噪比,接收灵敏度好。由于我国TV中频规定38MHz,在输入/输出回路与本振统调情况下,本振频率始终比RF信号频率高38MHz。混频器如同模拟乘法器,两个不同频率的信号相乘将产生“和频”和“差频”信号,其中“差频”就是所指的中频TV信号。“和频’将被中频带通滤波器滤除。由于本振的频率稳定度较差,因此中频信号时常偏离38MHz,形成“跑台”的故障现象。

图1高频头的电路结构图

小信号调谐放大器是各种电子设备、发射和接收机中广泛应用的一种电压放大器。其主要特点是晶体管的输入输出回路(即负载)不是纯电阻,而是由L、C元件组成的并联谐振回路。小信号调谐放大器的类型很多,按调谐回路区分:有单调谐回路,双调谐回路和参差调谐回路放大器。按晶体管连接方法区分:有共基极、共发射极和共集电极放大器。高频小信号调谐放大器与低频放大器的电路基本相同(如图3.1所示)。其中变压器T2的初级线圈为接收机前端选频网络的一部分,经次级线圈耦合后作为放大器的输入信号,输出端也采用变压器耦合方式来实现选频和输出阻抗匹配。

图接受天线端及高频小信号放大器

2 调频接收机设计

2.1 工作原理

一般调频接收机的组成框图如图2-1所示。其工作原理是:天线接受到的高频信号,经输入调谐回路选频为f1,再经高频放大级放大进入混频级。本机振荡器输出的另一高频f2亦进入混频级,则混频级的输出为含有f1、f2、(f1 + f2)、(f2 - f1)等频率分量的信号。混频级的输出接调频回路选出中频信号(f2 - f1),再经中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。

2.2 单元电路设计

图2-1 超外差式调频接收机组成框图

2.2.1 高频小信号放大电路

如下图2-2所示为共射级接法的晶体管高频小信号放大器。它不仅要放大高频信号,而且还要有一定的选频作用,因此晶体管的负载为LC并联谐振回路。

在高频情况下,晶体管本身的极间电容及连接导线的分布参数等会影响的频率和相位。晶体管的静态工作点由电阻RA2,RA3,RA4及RA6决定,其计算方法与低频单管放大器相同。从天线ANTA1接收到的高频信号经过CA1、CCA1、LA1组成的选频回路,选取信号为fs=10.7MHZ的有用信号,经晶体管QA1进行放大,由CA3、TA1初级组成的调谐回路,进一步滤除无用信号,将有用信号经变压器和CB1耦合进入FS2204。

图2-2 晶体管高频小信号放大器

2.2.2 混频电路

因为中频比外来信号频率低且固定不变,中频放大器容易获得比较大的增益,从而提高收音机的灵敏度。在较低而又固定的中频上,还可以用较复杂的回路系统或滤波器进行选频。它们具有接近理想矩形的选择性曲线,因此有较高的邻道选择性。如果器件仅实现变频,振荡信号由其它器件产生则称之为混频器。

(a)原理电路

(b)等效电路

图2-3 二极管环形混频器

A、原理电路及其等效电路

四个二极管组成平衡电路如图2-3所示。构成的二极管环形混频电路中,各二极管均工作在受参考信号控制的开关的状态,它是另一类开关工作的乘法器。

对于图2-3(a)原理电路所示,通常将信号输入端口称之为R端口,本振电压输入端口称之为L端口,中频输出信号端口称之为I端口。

二极管环形混频器产品已形成完整的系列,它用保证二极管开关工作所需本振功率电平的高低进行分类,其中常用的是Level 7,Level 17,Level 23三种系列,它们所需的本振功率分别为7dBm(5mW),17dBm(50mW)和23dBm(200mW),显然,本振功率电平越高,相应的1dB压缩电平也就越高,混频器的动态范围也就越大。对应于上述三种系列,1dB压缩电平所对应的最大输入信号功率分别为1dBm(1.25mW)、10dBm(10mW)、15dBm(32mW) 。二极管环形混频器具有工作频带宽(从几十千赫到几千兆赫)、噪声系数低(约6dB)、混频失真小、动态范围大等优点。

二极管环形混频器的主要缺点是没有混频增益,端口之间的隔离度较低,其中L端口到R端口的隔离度一般小于40dB,且随着工作频率的提高而下降。实验表明,工作频率提高一倍,隔离度下降5dB。

综述

带发射机收音机的工作电压:3V(5号2节电池)有效距离:50~100米频率带宽:88-108MHz 本机收音用D1800为收音集成电路,功放选用D2822,对

讲的发射部分采用两级放大电路,第一级为振荡兼放大电路;第二级为发射部分,采用专用的发射管使发射效率和对讲距离大大提高。它具有性能稳定、耗电省、输出功率大、制作简单等优点。装好后稍加调试即可收到电台。它既能收到电台又能发射。

主要技术参数:调频波段88MHz-108MHz;工作电源电压范围2.5V-5V;静态电流13.5mA;信噪比>80dB;谐波失真<0.8%;输出功率≥350mA。发射机工作电流:18mA,发射距离50-100米。

本带发射机的收音机用的核心芯片为D1800,它作为收音接收专用集成电路,功放部分选用D2822,对讲卫生发射部分采用两级放大电路。第一级为振荡兼放大电路;第二级为发射部分,采用专用的发射管使发射效率和对讲距离大大提高。它

1.收音(或接收)部分原理

调频信号由TX接收,经C9耦合到IC1的19脚内的混频电路。IC1第1脚内部为本机振荡电路,1脚为本振信号输入端,L4、C、C10、C11等元件构成本振的调谐回路。在IC1内部混频后的信号经低通滤波器后得到10.7MHz的中频信号,中频信号由IC1的7、8、9脚内电路进行中频放大、检波。7、8、9脚外接的电容为高频滤波电容。此时,中频信号频率仍然是变化的,经过静噪的音频信号从14脚输出耦合至12脚内的功放电路,第一次功率放大后的音频信号从11脚输出,经过R10、C25、RP,耦合至IC2进行第二次功率放大,推动扬声器发出声音。

2.发射原理

变化着的声波被驻极体转换为变化着的电信号,经过R1,R2、C1阻抗均衡后,由VT1进行调制放大。C2、C3、C4、C5、L1以及VT1集电极与发射极间的结电容Cce构成一个LC振荡电路,在调频电路中,很小的电容变化也会引起很大的频率变化。当电信号变化时,相应的Cce也会有变化,这样频率就会有变化,就达到了调频的目的。经过VT1调制放大的信号经C6耦合至发射管VT2通过TX、C7向外发射调频信号。VT1为9018是振荡放大三极管,VT2为D40是专用发射管。

3.焊接与安装

一般先装低矮、耐热的元件,最后装集成电路。应按如下步骤进地焊接:(1)清查元器件的质量,并及时更换不合格元件;

(2)确定元件的安装方法,由孔距决定,并对照电路图核对电路板;

(3)将元器件弯曲成形,本电路所有的电阻(除R12外)均采用立式插装,尽量将字符置于易观察的位置,字符应从左到右、从上到下。以便于以后检查,将元件脚上锡,以便于焊接;

(4)插装:对照电路板对号插装,有极性的元件要注意极性,如集成电路的脚位等;

(5)焊接:各焊点加热时间及用锡量要适当,防止虚焊、错焊、短路,其中耳机插座、三极管等焊接时要快,以免烫坏;

(6)焊后剪去多余引脚,检查所有焊点,并对照电路图仔细检查,并确认无误后方可通电。

4.安装提示

(1)发光二极管应焊在印制板反面,对比好高度和孔位再焊接;

(2)由于本电路工作频率较高,安装时请尽量紧贴线路板,以免高频衰减而

造成对讲距离缩短;

(3)焊接前应先将双联用螺丝上好,并剪去双联拔盘圆周内多余高出的引脚再焊接;

(4)J1可以用剪下的多余元件脚代替,TX的引线用粗软线连接;

(5)为了防止集成电路被烫坏,套件中配备了集成电路插座,22脚插座由一个14脚插座和一个8脚插座组成,请务必要焊上;

(6)耳机插座上的脚要插好,否则后盖可能会盖不紧;

(7)线路板请用两粒Ф2*5的自功螺丝固定;

(8)按钮开关K1外壳上端的脚要焊接起来,以保证VD的正极与地可靠的接触。

5.测试与调整

元器件以及连接导线全部焊接完后,经过认真仔细检查后即可通电调试(注意最好不要用充电电池)

(1)收音(或接收)部分的调整:首先用万用表100mA电流档(其它档也行,只要≥50aA档即可)的正负表笔分别跨接在地和K的GB之间,这时的读数应在10~15mA左右,这时打开电源开关K,并将音量开至最大,再细调双联,这时应收得到广播电台,若还收不到应检查有没有元件装错,印刷电路板有没有短距或开路,有没有焊接质量不高,而导致短路或开路等,还可以试换一下IC1,本机只要装配无误可实现一装响。排除故障后找一台标准的调频收音机,分别在低端和高端收一个电台,并调整被调收音机L4的松紧度,使被调收音机了能收到这两个电台,那么这台被调收音机的频率覆盖就调好了。如果在低端收不到这个电台,说明应减少L4的匝数,在高端收不到这个电台,说明应增加L4的匝数,直至这两个电台都能收到为止,调整时注意用无感起子或牙牙、牙刷柄(处理后)拔动L4的松紧度。当L4拔松时,这时的频率就增高,反之则聊低,注意调整前请将频率指示牌贴好,使整个圆弧数值都能在前盖的小孔内看得见(旋转调台拔盘)。

(2)发射(或对讲)部分的调整:首先将一台标准的调频收音机的频率指示调在100MHz左右,然后将被调的发射部分和开关K1按下,并调节L1的松紧度,使标准收音机有啸叫,若没有啸叫则可将距离拉开0.2—0.5米左右,直到有啸叫声为止,然后再拉开距离对着驻极体讲话,若有失真,则可调整标准收音机的调台旋钮,直到消除失真。还可以调整L2和L3的松紧度,使距离拉得更开,信号更稳定。若要实现发射,请再装一台本套件并按同样的方法进行调整,发射频率可以自己定,如88MHz、98MHz、108MHz……这样可以实现互相保密也不至相互干扰。

5.3.2 三点式振荡电路

5.3.2 三点式振荡电路 定义:三点式振荡器是指LC回路的三个端点与晶体管的三个电极分别连接而组成的反馈型振荡器。 三点式振荡电路用电感耦合或电容耦合代替变压器耦合,可以克服变压器耦合振荡器只适宜于低频振荡的缺点,是一种广泛应用的振荡电路,其工作频率可从几兆赫到几百兆赫。 1、三点式振荡器的构成原则 图5 —20 三点式振荡器的原理图 图5 —20是三点式振荡器的原理电路(交流通路)为了便于分析,图中忽略了回路损耗,三个电抗元件

be ce bc X X X 、和构成了决定振荡频率的并联谐振回路。 要产生振荡,对谐振网络的要求:? 必须满足谐振回路的总电抗0be ce bc X X X ++=,回路呈现纯阻 性。 反馈电压f u 作为输入加在晶体管的b 、e 极,输出o u 加在晶体管的c 、e 之间,共射组态为反相放大器,放大 器的的输出电压o u 与输入电压i u (即f u )反相,而反馈 电压f u 又是o u 在bc X 、be X 支路中分配在be X 上的电压。 要满足正反馈,必须有 ()be be f o o be bc ce X X X X X u u u ==-+ (5.3.1) 为了满足相位平衡条件,f u 和o u 必须反相,由式(5.3.1)可知必有0be ce X X >成立,即 be X 和ce X 必须是同性质电抗,而 ()bc be ce X X X =-+必为异性电抗。 综上所述,三点式振荡器构成的一般原则: (1) 为满足相位平衡条件,与晶体管发射极相连

的两个电抗元件be X 、ce X 必须为同性, 而不与发射极相连的电抗元件bc X 的电 抗性质与前者相反,概括起来“射同基 反”。此构成原则同样适用于场效应管电路,对应 的有“源同栅反”。 (2) 振荡器的振荡频率可利用谐振回路的谐振频率来估 算。 若与发射极相连的两个电抗元件be X 、ce X 为容性的,称为电容三点式振荡器,也称为考比兹振荡器(Colpitts),如图5 —21(a )所示; 若与发射极相连的两个电抗元件be X 、ce X 为 感性的,称为电感三点式振荡器,也称为哈特莱振荡器(Hartley),如图5 —21(b )所示。 图5 —21 电容三点式与电感三点式振荡器电路原理图

占空比可调的方波振荡电路工作原理及案例分析

占空比可调的方波振荡电路工作原理及案例分析 参考电路图5.12所示,测试电路,计算波形出差频率。 电容 图5.12 方波发生电路(multisim) 通过上述电路调试,发现为方波发生器。 一、电路组成 如图5.13,运算放大器按照滞回比较器电路进行链接,其输出只有两种可能的状态:高电平或低电平,所以电压比较器是它的重要组成部分;因为产生振荡,就是要求输出的两种状态自动的产生相互变换,所以电路中必须引入反馈;因为输出状态应按一定的时间,间隔交替变化,即产生周期性的变化,所以电路中要有延迟环节来确定每种状态维持的时间。 电路组成:如图所示为矩形波发生电路,它由反相输入的滞回比较器和RC 电路组成。RC 回路既作为延迟环节,又作为反馈网络,通过RC 充、放电实现输出状态的自动转换。电压传输特性如图6.8所示: U 0 U N U P U z U c R 3 R 2 R 1 R 图5.13方波发生电路 二、工作原理 从图5.13可知,设某一时刻输出电压U O =+U Z ,则同相输入端电位U P =+U T 。U O 通过R 对电容C 正向充电。反相输入端电位U N 随时间t 增长而逐渐升高,当t 趋近于无穷时,U N 趋于+U z ;

当U N =+U T ,再稍增大,U O 就从+U Z 越变为-U Z ,与此同时U p 从+U T 越变为-U T 。随后,U O 又通过R 对电容C 放电。 反相输入端电位U N 随时间t 增长而逐渐降低,当t 趋近于无穷时,U N 趋于-U Z ;当U N =-U T ,稍减小,U O 就从-U Z ,于此同时,U p 从-U T 跃变为+U T ,电容又开始正向充电。 上述过程周而复始,电路产生了自激振荡。 三、波形分析及主要参数 由于矩形波发生电路中电容正向充电与反向充电的时间常数均等于R3C,而且充电的总幅值也相等因而在一个周期内U O =+U Z 的时间与U O =-U Z 的时间相等,U O 对称的方波,所以也称该电路为对称方波发生电路。电容上电压U C 和电路输出电压U O 波形如图所示。矩形波的宽度T k 与周期T 之比称为占空比,因此U O 是占空比为1/2的矩形波。 利用一阶RC 电路的三要素法可列出方程,求出振荡周期。 3122(12/)T R C R R =+ 振荡频率为: 1/f T = 调整电压比较器的电路参数R 1,R 2和U Z 可以改变方波发生电路的振荡幅值,调整电阻R 1,R 2,R 3和电容C 的数值可以改变电路的振荡频率。 四、占空比可调电路 占空比的改变方法:使电容的反向和正向充电时间常数不同。利用二极管的单向导电性可以引导电流流经不同的通路,占空比可调的矩形波发生电路如图2-5所示,电容上电压和输出波形的如图 6.19 Z U ±O 图 5.14占空比可调电路 电路工作原理:当U O =+U Z 时,通过RW1,D1,和R3对电容C 正向充电,若忽略二极管导通时的等效电阻,则时间常数为:

多谐振荡器双闪灯电路设计与制作

多谐振荡器双闪灯电路设计与制作 南昌理工学院张呈张海峰 我们主张,电子初学者要采用万能板焊接电子制作作品,因为这种电子制作方法,不仅能培养电子爱好者的焊接技术,还能提高他们识别电路图和分析原理图的能力,为日后维修、设计电子产品打下坚实的基础。 上一篇文章《电路模型设计与制作》我们重点介绍了电路模型的概念以及电流、电压、电阻、发光二极管、轻触开关等基本知识,并完成了电路模型的设计与制作,通过成功调试与测试产品参数,进一步掌握了电子基础知识。 本文将通过设计与制作多谐振荡器双闪灯,掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。

一、多谐振荡器双闪灯电路功能介绍 图1 多谐振荡器双闪灯成品图

多谐振荡器双闪灯电路,来源于汽车的双闪灯电路,是经典的互推互挽电路,通电后LED1和LED2交替闪烁,也就是两个发光二极管轮流导通。 完成本作品的目的是为了掌握识别与检测电阻、电容、二极管、三极管。掌握识别简单的电路原理图,能够将原理图上的符号与实际元件一一对应,能准确判断上述元件的属性、极性。。 该电路是一个典型的自激多谐振荡电路,电路设计简单、易懂、趣味性强、理论知识丰富,特别适合初学者制作。 二、原理图 图2 多谐振荡器双闪灯原理图 三、工作原理 本电路由电阻、电容、发光二极管、三极管构成典型的自激多谐振荡电路。在上篇文章中介绍了电阻、和发光二极管,本文只介绍电容和三极管。 1、电容器的识别

电容器,简称电容,用字母C表示,国际单位是法拉,简称法,用F表示,在实际应用中,电容器的电容量往往比1法拉小得多,常用较小的单位,如微法(μF)、皮法(pF)等,它们的关系是: 1法拉(F)=1000000微法(μF),1微法(μF)=1000000皮法(pF)。 本的套件中使用了2个10μF的电解电容,引脚长的为正,短的为负;旁边有一条白色的为负,另一引脚为正。电容上标有耐压值上25V,容量是10μF。 2、三极管的识别 三极管,全称应为半导体三极管,也称双极型晶体管,晶体三极管,是一种电流控制电流的半导体器件。其作用是把微弱信号放大成幅值较大的电信号, 也用作无触点开关,俗称开关管。套件中使用的是NPN型的三极管9013,当把有字的面向自己,引脚朝下,总左往右排列是发射极E,基极B,集电极C。如图3所示。 图3 三极管的引脚图 晶体三极管具有电流放大作用,其实质是三极管能以基极电流微小的变化量来控制集电极电流较大的变化量。这是三极管最基本的和最重要的特性。我们将ΔIc/ΔIb的比值称为晶体三极管的电流放大倍数,用符号“β”表示。电流放大倍数对于某一只三极管来说是一个定值,但随着三极管工作时基极电流的变化也会有一定的改变。 晶体三极管的三种工作状态: (1)截止状态 当加在三极管发射结的电压小于PN结的导通电压,基极电流为零,集电极电流和发射极电流都为零,三极管这时失去了电流放大作用,集电极和发射极之间相当于开关的断开状态,我们称三极管处于截止状态。

电感三点式振荡器设计

目录 引言 (1) 1设计要求 (1) 2设计构思及理论 (1) 2.1设计思路 (1) 2.2设计构思的理论依据 (3) 3系统电路的设计及原理说明 (4) 3.1系统框图及说明 (4) 3.2电路设计说明 (5) 3.3关键元器件的介绍 (5) 4仿真验证叙述及效果分析 (5) 4.1仿真电路 (5) 4.2仿真运行结果 (6) 5工程设计 (6) 6制作(特点)叙述 (7) 7调试测试分析 (7) 8结束语 (7) 谢辞 (9) 参考文献 (10) 附图 (11)

引言 三点式振荡电路是指电容或电感(反馈部分)的3个段分别接晶体管的三个极,故称为三点式振荡电路。目前三点式振荡电路主要分为电感三点式和电容三点式振荡电路。电感三点式振荡电路是指原边线圈的3个段分别接在晶体管的3个极。又称为电感反馈式振荡电路或哈特莱振荡电路。本次试验采用共基放大电路与电感三点式震荡回路结合成基本振荡器,再在后级加个共基放大电路来带动负载,并利用电容和电感的特性来改善输出波形。其特点是: 1.易起振。 2.调节频率方便。采用可变电容可获得较宽的频率调节范围,一般用于产生几十兆赫兹以下的正弦波。 3.输出波形较差。 1 设计要求 (1)要实现的功能:设计一个电感三点式振荡器,产生10MHz的震荡频率,并能带动620欧的负载。 (2)要求达到的技术指标:振荡频率f 0=10MHz,输出频率电压U ≥0.5V pp /620欧; 输出波形为正弦波(无明显失真);供电电压V cc =12V。 (3)完成要求:设计与制作可供实际检测的实物样品,并且按要求完成课程设计报告。 2 设计构思及理论 2.1 设计思路 要设计一个电感三点式振荡电路,可以有几个电容和电感还有一个三极管和一个后级放大电路来达到要求。用改变电容的方法来调整震荡频率,方便调试而不会影响反馈系数,可以是波形输出更加稳定而没有明显的失真现象。但是为了达到输出频率电压技术指标,加一个共基放大电路,提高输出电压幅度。 1.电路组成 如图所示为电感三点式振荡电路的原理图。这种电路的LC并联谐振电路中的电感有首端、中间抽头和尾端三个端点,分别与放大器件的集电极、发射极(地)和基极相 连,反馈信号取自电感L 2 上的电压,因此,习惯上将图1所示电路称为电感三点式LC 振荡电路。

电容三点式振荡电路

电容三点式振荡电路的分析与仿真 摘要:自激式振荡器是在无需外加激励信号的情况下,能将直流电能转换成具有一定波形、一定频率和一定幅值的交变能量电路。正弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器。 关键词:电容三点式、multisim、振荡器 引言:不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路。

设计原理: 1、电容三点式振荡电路 (1)线路特点 电容三点式振荡器的基本电路如图(1)所示。与发射极连接的两个电抗元件为同性质的容抗元件C2和C3;与基极和集电极连接的为异性质的电抗元件L。它的反馈电压是由电容C3上获得,晶体管的三个电极分别与回路电容的三个端点相连接,故称之为电容反馈三端式振荡器。电路中集电极和基极均采取并联馈电方式。C7为隔直电容。 图(1) (2)起振条件和振荡频率 由图可以看出,反馈电压与输入电压同相,满足相位起振条件,这时可以调整反馈系数F,使之满足A0F>1就可以起振。

环形振荡器的工作原理

环形振荡器的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

环形振荡器的工作原理 环形振荡器是利用门电路的固有传输延迟时间将奇数个反相器首尾相接而成,该电路没有稳态。因为在静态(假定没有振荡时)下任何一个反相器的输入和输出都不可能稳定在高电平或低电平,只能处于高、低电平之间,处于放大状态。 假定由于某种原因v11产生了微小的正跳变,经G1的传输延迟时间tpd后,v12产生了一个幅度更大的负跳变,在经过G2的传输延迟时间tpd后,使v13产生更大的正跳变,经G3的传输延迟时间tpd后,在vo产生一个更大的负跳变并反馈到G1输入端。可见,在经过3tpd后,v11又自动跳变为低电平,再经过3tpd之后,v11又将跳变为高电平。如此周而复始,便产生自激振荡。如图2所示,可见振荡周期为 T=6tpd 环形振荡器的改进原因 环形振荡器的突出优点是电路极为简单,但由于门电路的传输延迟时间极短,TTL门电路只有几十纳秒,CMOS电路也不过一二百纳秒,难以获得较低的振荡频率,而且频率不易调节,为克服这个缺点,有几种改进电路,下面给出对照图。如图3和图4所示。 环形振荡器的改进原理 接入RC 电路以后,不仅增大了门G2的传输延迟时间tpd2有助于获得较低的振荡频率。而且通过改变R 和C 的数值可以很方便地实现对频率的调节。 环形振荡器的实用电路 如图4,为了进一步加大RC和G2的传输延迟时间,在实用电路中将电容C 的接地端改接G1的输出端。如图10.3.5所示。例如当v12处发生负跳变时,经过电容C使v13首先跳变到一个负电平,然后再从这

双三极管多谐振荡器电路工作原理

双三极管多谐振荡器电路工作原理 双三极管多谐振荡器 电路工作原理 多谐振荡器电路是一种矩形波产生电路.这种电路不需要外加触发信号,便能连续地, 周期性地自行产生矩形脉冲.该脉冲是由基波和多次谐波构成,因此称为多谐振 荡器电路. 电路结构 1.路图 2.把双稳态触发器电路的两支电阻耦合支路改为电容耦合支路.那么电路就没有稳 定状态,而成为无稳电路 3.开机:由于电路参数的微小差异,和正反馈使一支管子饱和另一支截止.出现一个暂 稳态.设Q1饱和,Q2截止. 工作原理 正反馈: Q1饱和瞬间,VC1由+VCC 突变到接近于零,迫使Q2的基极电位VB2瞬间下 降到接近 —VCC,于是Q2可靠截止. 注:为什么Q2的基极产生负压,因为Q1导通使Q1 集电极的电压瞬间接近于零,电容C1的

正极也接近于零,由于电容两边电压不能突变使得电容的负端为—VCC。 2.第一个暂稳态: C1放电: C2充电: 3.翻转:当VB2随着C1放电而升高到+0.5V时,Q2开始导通,通过正反馈使Q1截止,Q2饱和. 正反馈: 4.第二个暂稳态: C2放电: C1充电: 5.不断循环往复,便形成了自激振荡 6.振荡周期: T=T1+T2=0.7(R2*C1+R1*C2)=1.4R2*C 7.振荡频率: F=1/T=0.7/R2*C 8..波形的改善: 可以同单稳态电路,采用校正二极管电路 下面我们来做一个实验:如图 振荡周期: T=1.4R2*C=1.4*10000Ω*0.00001F=0.14s=140ms 此图利用Multisim仿真软件去求出时间与实际的偏差 数据测量图:此图测量了Q2的基极和集电极极,集电极的波形相当于图的矩形波,基极波形相当于图的锯齿波。

三点式正弦波振荡器(高频电子线路实验报告)

三点式正弦波振荡器 一、实验目的 1、 掌握三点式正弦波振荡器电路的基本原理,起振条件,振荡电路设计及电路参数计 算。 2、 通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影 响。 3、 研究外界条件(温度、电源电压、负载变化)对振荡器频率稳定度的影响。 二、实验内容 1、 熟悉振荡器模块各元件及其作用。 2、 进行LC 振荡器波段工作研究。 3、 研究LC 振荡器中静态工作点、反馈系数以及负载对振荡器的影响。 4、 测试LC 振荡器的频率稳定度。 三、实验仪器 1、模块 3 1块 2、频率计模块 1块 3、双踪示波器 1台 4、万用表 1块 四、基本原理 实验原理图见下页图1。 将开关S 1的1拨下2拨上, S2全部断开,由晶体管N1和C 3、C 10、C 11、C4、CC1、L1构成电容反馈三点式振荡器的改进型振荡器——西勒振荡器,电容CCI 可用来改变振荡频率。 ) 14(121 0CC C L f += π 振荡器的频率约为4.5MHz (计算振荡频率可调范围) 振荡电路反馈系数 F= 32.0470 220220 3311≈+=+C C C 振荡器输出通过耦合电容C 5(10P )加到由N2组成的射极跟随器的输入端,因C 5容量很小,再加上射随器的输入阻抗很高,可以减小负载对振荡器的影响。射随器输出信号经

N3调谐放大,再经变压器耦合从P1输出。 图1 正弦波振荡器(4.5MHz ) 五、实验步骤 1、根据图1在实验板上找到振荡器各零件的位置并熟悉各元件的作用。 2、研究振荡器静态工作点对振荡幅度的影响。 (1)将开关S1拨为“01”,S2拨为“00”,构成LC 振荡器。 (2)改变上偏置电位器W1,记下N1发射极电流I eo (=11 R V e ,R11=1K)(将万用表红 表笔接TP2,黑表笔接地测量V e ),并用示波测量对应点TP4的振荡幅度V P-P ,填于表1中,分析输出振荡电压和振荡管静态工作点的关系,测量值记于表2中。 3、测量振荡器输出频率范围 将频率计接于P1处,改变CC1,用示波器从TP8观察波形及输出频率的变化情况,记录最高频率和最低频率填于表3中。 六、实验结果 1、步骤2振荡幅度V P-P 见表1.

振荡电路的原理

高频放大器 使用高频功率放大器的目的是放大高频大信号使发射机末级获得足够大的发射功率。 高频放大器的工作状态是由负载阻抗Rp、激励电压vb、供电电压VCC、VBB等4个参量决定的。如果VCC、VBB、vb 3个参变量不变,则放大器的工作状态就由负载电阻Rp决定。此时,放大器的电流、输出电压、功率、效率等随Rp而变化的特性,就叫做放大器的负载特性。 原理 放大电路所需的通频带由输入信号的频带来确定,为了不失真地放大信号,要求放大电路的通频带应大于信号的频带。如果放大电路的通频带小于信号的频带,由于信号的低频段或高频段的放大倍数下降过多,放大后的信号不能重现原来的形状,也就是输出信号产生了失真。这种失真称为放大电路的频率失真,由于它是线性的电抗元件引起的,在输出信号中并不产生新的频率成分,仅是原有各频率分量的相对大小和相位发生了变化,故这种失真是一种线性失真。 For personal use only in study and research; not for commercial use 高频小信号放大器的功用就是无失真的放大某一频率范围内的信号。按其频带宽度可以为窄带和宽带放大器,而最常用的是窄带放大器,它是以各种选频电路作负载,兼具阻变换和选频滤波功能。高频小信号放大器是通信设备中常用的功能电路,它所放大的信号频率在数百千赫至数百兆赫。高频小信号放大器的功能是实现对微弱的高频信号进行不失真的放大,从信号所含频谱来看,输入信号频谱与放大后输出信号的频谱是相同的。 本级振荡电路 本级振荡电路图 本级振荡电路采用改进型晶体振荡电路(克拉伯振荡电路),振荡频率由晶振决定,为6MHz,三极管的静态工作点由RP0控制,集电极电流ICQ,一般取0.5mA~4mA,ICQ过大会产生高次谐波,导致输出波形失真。调节RP1可使输出波形失真较小、波形较清晰,RP2用来调节本振信号的幅值,以便得到适当幅值的本振信号作为载波。 混频器 工作频率 混频器是多频工作器件,除指明射频信号工作频率外,还应注意本振和中频频率应用范围。

电容三点式震荡电路

摘要 弦波振荡器的作用是产生频率稳定、幅度不变的正弦波输出。基于频率稳定度、反馈系数、输出波形、起振等因素的综合考虑,本设计采用的是电容三点式振荡器的两种改进型振荡器之一的西勒振荡器。其具有输出波形好、工作频率高、改变电容调节频率时不影响反馈系数等优点,适用于宽波段、频率可调的场合。西勒振荡器由起能量控制作用的放大器、将输出信号送回到输入端的正反馈网络以及决定振荡频率的选频网络组成。但没有输入激励信号,而是由本身的正反馈信号来代替。当振荡器接通电源后,即开始有瞬变电流产生,经不断地对它进行放大、选频、反馈、再放大等多次循环,最终形成自激振荡,把输出信号的一部分再回送到输入端做输入信号,从而就会产生一定频率的正弦波信号输出。西勒振荡器广泛应用于各种电子设备中,特别是在通信系统中起着重要作用。它是无线电发送设备的心脏部分,也是超外差式接收机的主要部分;各种电子测试仪器如信号发生器、数字式频率计等,其核心部分都离不开正弦波振荡器;并在自动控制装置和医疗设备等许多技术领域也得到了广泛的应用 关键词:电容三点式、西勒电路、mulsitis

1 设计原理 1.1电路选取 不需外加输入信号,便能自行产生输出信号的电路称为振荡器。按照产生的波形,振荡器可以分为正弦波振荡器和非正弦波振荡器。按照产生振荡的工作原理,振荡器分为反馈式振荡器和负阻式振荡器。所谓反馈式振荡器,就是利用正反馈原理构成的振荡器,是目前用的最广泛的一类振荡器。所谓负阻式振荡器,就是利用正反馈有负阻特性的器件构成的振荡器,在这种电路中,负阻所起的作用,是将振荡器回路的正阻抵消以维持等幅振荡。反馈式振荡电路,有变压器反馈式振荡电路,电感三点式振荡电路,电容三点式振荡电路和石英晶体振荡电路等。本次设计我们采用的是电容三点式振荡电路,有与电容三点式振荡电路有一些缺陷,通过改进,得到了西勒振荡器。 1.2 电容三点式振荡器 电容三点式振荡器的基本电路如图1-3所示 图1-1电容三点式振荡器 由图可见:与发射极连接的两个电抗元件为同性质的容抗元件C 1和C 2 ;与基极和集电极 连接的为异性质的电抗元件L,根据前面所述的判别准则,该电路满足相位条件。 其工作过程是:振荡器接通电源后,由于电路中的电流从无到有变化,将产生脉动信号,因任一脉冲信号包含有许多不同频率的谐波,因振荡器电路中有一个LC谐振回路,具有选频作用,当LC谐振回路的固有频率与某一谐波频率相等时,电路产生谐振。虽然脉动的信号很微小,通过电路放大及正反馈使振荡幅度不断增大。当增大到一定程度时,导致晶体管进入非线性区域,产生自给偏压,使放大器的放大倍数减小,最后达到平衡,即AF=1,振荡幅度就不再增大了。于是使振荡器只有在某一频率时才能满足振荡条件,于是得到单一频率的振 荡信号输出。该振荡器的振荡频率o f为:

石英晶体振荡器原理

石英晶体振荡器的基本工作原理及作用 (1)石英晶体振荡器(简称晶振)的结构石英晶体振荡器是利用石英晶体(二氧化矽的结晶体)的压电效应制成的一种谐振器件,它的基本构成大致是:从一块石英晶体上按一定方位角切下薄片(简称为晶片,它可以是正方形、矩形或圆形等),在它的两个对应面上涂敷银层作为电极,在每个电极上各焊一根引线接到管脚上,再加上封装外壳就构成了石英晶体谐振器,简称为石英晶体或晶体、晶振。其产品一般用金属外壳封装,也有用玻璃壳、陶瓷或塑胶封装的。(2)压电效应 若在石英晶体的两个电极上加一电场,晶片就会产生机械变形。反之,若在晶片的两侧施加机械压力,则在晶片相应的方向上将产生电场,这种物理现象称为压电效应。如果在晶片的两极上加交变电压,晶片就会产生机械振动,同时晶片的机械振动又会产生交变电场。在一般情况下,晶片机械振动的振幅和交变电场的振幅非常微小,但当外加交变电压的频率为某一特定值时,振幅明显加大,比其他频率下的振幅大得多,这种现象称为压电谐振,它与LC回路的谐 振现象十分相似。它的谐振频率与晶片的切割方式、几何形状、尺寸等有关。 (3)符号和等效电路石英晶体谐振器的符号和等效电路如图所示。当晶体不振动时,可把它看 成一个平板电容器称为静电电容C,它的大小与晶片的几何尺寸、电极面积有关,一般约几个pF到几十pF。当晶体振荡时,机械振动的惯性可用电感L來等效。一般L的值为几十mH到几 百mH。晶片的弹性可用电容C來等效,C的值很小,一般只有0.0002~0.1pF。晶片振动时因 摩擦而造成的损耗用R來等效,它的數值约为100Ω。由于晶片的等效电感很大,而C很小, R也小,因此回路的品质因數Q很大,可达1000~10000。加上晶片本身的谐振频率基本上只 与晶片的切割方式、几何形状、尺寸有关,而且可以做得精确,因此利用石英谐振器组成的振荡电路可获得很高的频率稳定性。

多谐振荡器

第八章 脉冲波形的产生与整形 在数字电路或系统中,常常需要各种脉冲波形,例如时钟脉冲、控制过程的定时信号等。这些脉冲波形的获取,通常采用两种方法:一种是利用脉冲信号产生器直接产生;另一种则是通过对已有信号进行变换,使之满足系统的要求。 本章以中规模集成电路555定时器为典型电路,主要讨论555定时器构成的施密特触发器、单稳态触发器、多谐振荡器以及555定时器的典型应用。 8.1 集成555定时器 555定时器是一种多用途的单片中规模集成电路。该电路使用灵活、方便,只需外接少量的阻容元件就可以构成单稳、多谐和施密特触发器。因而在波形的产生与变换、测量与控制、家用电器和电子玩具等许多领域中都得到了广泛的应用。 目前生产的定时器有双极型和CMOS 两种类型,其型号分别有NE555(或5G555)和C7555等多种。通常,双极型产品型号最后的三位数码都是555,CMOS 产品型号的最后四位数码都是7555,它们的结构、工作原理以及外部引脚排列基本相同。 一般双极型定时器具有较大的驱动能力,而CMOS 定时电路具有低功耗、输入阻抗高等优点。555定时器工作的电源电压很宽,并可承受较大的负载电流。双极型定时器电源电压范围为5~16V ,最大负载电流可达200mA ;CMOS 定时器电源电压变化范围为3~18V ,最大负载电流在4mA 以下。 一. 555定时器的电路结构与工作原理 1.555定时器内部结构: (1)由三个阻值为5k Ω的电阻组成的分压器; (2)两个电压比较器C 1和C 2: v +>v -,v o =1; v +<v -,v o =0。 (3)基本RS 触发器; (4)放电三极管T 及缓冲器G 。 2.工作原理。 当5脚悬空时,比较器C 1和C 2的比较电压分别为cc V 32和cc V 3 1 。 (1)当v I1>cc V 32,v I2>cc V 31 时,比较器 C 1输出低电平,C 2输出高电平,基本RS 触发 器被置0,放电三极管T 导通,输出端v O 为低电平。 (2)当v I1cc V 31 时,比较器 C 1输出高电平,C 2也输出高电平,即基本RS 触发器R =1,S =1,触发器状态不变,电路亦保持原状态不变。

通信电子线路课程设计报告_电感三点式正弦波振荡器

课程设计报告 课题名称 _____通信电子线路课程设计_ 学院电子信息学院 专业 班级 学号 姓名 指导教师

目录 摘要................................................... I 1绪论. (1) 2正弦波振荡器 (2) 2.1 反馈振荡器产生振荡的原因及其工作原理 (2) 2.2平衡条件 (3) 2.3起振条件 (3) 2.4稳定条件 (4) 3电感三点式振荡器 (5) 3.1三点式振荡器的组成原则 (5) 3.2电感三点式振荡器 (5) 3.3 振荡器设计的模块分析 (6) 4 仿真与制作 (11) 4.1仿真 . (11) 4.2分析调试 (13) 5 心得体会...................................13= 参考文献 (14)

摘要 反馈振荡器是一种常用的正弦波振荡器,主要由决定振荡频率的选频网络和维持振荡的正反馈放大器组成。按照选频网络所采用元件的不同,正弦波振荡器可分为LC振荡器、RC振荡器和晶体振荡器等类型。本文介绍了高频电感三点式振荡器电路的原理及设计,电感三点式容易起振,调整频率方便,变电容而不影响反馈系数。 正弦波振荡器在各种电子设备中有着广泛的应用。例如,无线发射机中的载波信号源,接收设备中的本地振荡信号源,各种测量仪器如信号发生器、频率计、fT测试仪中的核心部分以及自动控制环节,都离不开正弦波振荡器。根据所产生的波形不同,可将振荡器分成正弦波振荡器和非正弦波振荡器两大类。前者能产生正弦波,后者能产生矩形波、三角波、锯齿波等。 本文将简单介绍一种利用一款名为Multisim 11.0的软件作为电路设计的仿真软件,电容电感以及其他电子器件构成的高频电感三点式正弦波振荡器。电路中采用了晶体三极管作为电路的放大器,电路的额定电源电压为5.0 V,电流为1~3 mA,电路可输出输出频率为8 MHz(该频率具有较大的变化围)。 关键词:高频、电感、振荡器

RC正弦波振荡电路图文分析原理

RC正弦波振荡电路图文分析原理参考电路图5.7所示,搭建一个100KHz的正弦波振荡电路。 U O (a)测试电路(b)输出波形 图5.7 RC正弦波振荡电路(multisim) LC振荡电路的振荡频率过低时,所需的L和C就很大,这将使振荡电路结构不合理,经济不合算,而且性能也变坏,在几百千赫兹以下的振荡电路常采用RC振荡电路。由RC 元件组成的选频网络有RC称相型,RC串并联型,RC双T型等结构。这里主要介绍RC串并联型网络组成的振荡电路,即RC桥式正弦波振荡电路。 一、RC串并联型网络的选频特性 RC桥式电路如图5.8所示,设R1=R2=R,C1=C2=C, 11 1 2 1 2 11 1 2 11 2 j CR Z R j C j C R j C R Z j CR R j C ω ωω ω ω ω + =+= == + + 则反馈系数 2 12 1 1 3() f o U Z F U Z Z j CR CR ω ω === ++-

令 01C R ω= ,即 012f RC π= 则式(7-13)可写为 000 001 1 3( )3() F f f j j f f ωωωω = = +-+- 其频率特性曲线如图5.9(a )、(b )所示。 从图中可看出,当信号频率f =f 0时,u f 与u 0同相,且有反馈系数 01 3 f U F U = =为最大。 (a)幅频特性 (b)相频特性 图5.8 RC 串并联网络 图5.9RC 串并联网络的频率特性 二、RC 桥式振荡电路 1、电路组成 图5.9所示电路是文氏电桥振荡电路的原理图,它由同相放大器A 及反馈网络F 两部分组成。图中RC 串并联电路组成正反馈选频网络,电阻R f 、R 是同相放大器中的负反馈回路,由它决定放大器的放大倍数。 RC 桥式振荡电路的起振条件 同相放大器的输出电压0U 与输入电压i U 同相,即0a ?=,从分析RC 串并联网络的选频特性知,当输入RC 网络的信号频率f =f 0时,0U 与f U 同相,即0f ?=,整个电路的相移0f a ???=+=,即为正反馈,满足相位平衡条件。 放大器的放大倍数1f u R A R =+ ,从分析RC 串联网络的选频特性知,在R 1=R 2=R ,C 1=C 2=C 的条件下,当f=f 0时,反馈系数F=1/3达到最大,此时,只要放大器的电压放大倍数略大 于连(即R f ≥2R ),就能满足AF >1的条件,振荡电路能自行建立振荡。 R 1 C 1R 1 C 2 -U o + - + U f Z 1 Z 2

三点式振荡器

改进型电容三点式振荡电路的设计 摘要 高频信号发生器主要用来向各种电子设备和电路提供高频能量或高频标准信号,以便测试各种电子设备和电路的电气特性。 高频信号发生器主要是产生高频正弦振荡波,故电路主要是由高频振荡电路构成。振荡器的功能是产生标准的信号源,广泛应用于各类电 子设备中。为此,振荡器是电子技术领域中最基本的电子线路,也是从事电 子技术工作人员必须要熟练掌握的基本电路。 本次课设设计了改进型电容三点式高频振荡器,介绍了设计步骤,比较了各种设计方法的优缺点,总结了不同振荡器的性能特征。使用 Protel2004DXP制作PCB板,并使用环氧树脂铜箔板和FeCl3进行了制 板和焊接。使用实验要求的电源和频率计进行验证,实现了设计目标。 1 实验原理 1.1 振荡的原理 三点式LC正弦波振荡器的组成法则(相位条件)是:与晶体管发射极相连的两个电抗元件应为同性质的电抗,而与晶体管集电极—基极相连的电抗元件应与前者性质相反。图1-1所示为满足组成法则的基本电容反馈LC振荡器共基极接法的典型电路。当电路参数选取合适,满足振幅起振条件时,电路起振。当忽 f可近似认为等略负载电阻、晶体管参数及分布电容等因素影响时,振荡频率 osc f,即 于谐振回路的固有振荡频率 o f=(1)

式中 C 近似等于1C 与2C 的串联值 12 12 C C C C C ≈ + (2) 图1-1 电容反馈LC 振荡器 由图1-1所画出的分析起振条件的小信号等效电路如图1-2所示。 图1-2 分析起振条件的小信号等效电路 由图1-2分析可知,振荡器的起振条件为: e L e L m ng g n g g n g +=+>'''1 )(1 (3) 式中 '011 ,//L e L e e g g R R r = = 0e R 为LC 振荡回路的等效谐振电阻; 电路的反馈系数 1 12 f C k n C C =≈ + (4) 由式(3)看出,由于晶体管输入电阻e r 对回路的负载作用,反馈系数f k 并不是越大越容易起振,反馈系数太大会使增益A 降低,且会降低回路的有载Q 值,使回路的选择性变差,振荡波形产生失真,频率稳定性降低;所以,在晶体管参数一定的情况下,可以调节负载和反馈系数,保证电路起振。f k 的取值一般在0.1—0.5 之间。

LC振荡电路的工作原理及特点

简单介绍LC振荡电路的工作原理及特点 LC振荡电路,顾名思义就是用电感L和电容C组成的一个选频网络的振荡电路,这个振荡电路用来产生一种高频正弦波信号。常见的LC振荡电路有好多种,比如变压器反馈式、电感三点式及电容三点式,它们的选频网络一般都采用LC并联谐振回路。这种振荡电路的辐射功率跟振荡频率的四次方成正比,如果要想让这种电路向外辐射足够大的电磁波的话,就必须提高其振荡频率,而且还必须是电路具备开放的形式。 LC振荡电路之所以有振荡,是因为该电路通过运用电容跟电感的储能特性,使得电磁这两种能量在交替转化,简而言之,由于电能和磁能都有最大和最小值,所以才有了振荡。当然,这只是一个理想情况,现实中,所有的电子元件都有一些损耗,能量在电容和电感之间转化是会被损耗或者泄露到外部,导致能量不断减小。所以LC 振荡电路必须要有放大元件,这个放大元件可以是三极管,也可以是集成运放或者其他的东西。有了这个放大元件,这个不断被消耗的振荡信号就会被反馈放大,从而我们会得到一个幅值跟频率都比较稳定的信号。 开机瞬间产生的电扰动经三极管V组成的放大器放大,然后由LC选频回路从众多的频率中选出谐振频率F0。并通过线圈L1和L2之间的互感耦合把信号反馈至三极管基极。设基极的瞬间电压极性为正。经倒相集电压瞬时极性为负,按变压器同名端的符号可以看出,L2的上端电压极性为负,反馈回基极的电压极性为正,满足相位平衡条件,偏离F0的其它频率的信号因为附加相移而不满足相位平衡条件,只要三极管电流放大系数B和L1与L2的匝数比合适,满足振幅条件,就能产生频率F0的振荡信号。 LC振荡电路物理模型的满足条件 ①整个电路的电阻R=0(包括线圈、导线),从能量角度看没有其它形式的能向内能转化,即热损耗为零。 ②电感线圈L集中了全部电路的电感,电容器C集中了全部电路的电容,无潜布电容存在。 ③LC振荡电路在发生电磁振荡时不向外界空间辐射电磁波,是严格意义上的闭合电路,LC电路内部只发生线圈磁场能与电容器电场能之间的相互转化,即便是电容器内产生的变化电场,线圈内产生的变化磁场也没有按麦克斯韦的电磁场理论激发相应的磁场和电场,向周围空间辐射电磁波。 能产生大小和方向都随周期发生变化的电流叫振荡电流。能产生振荡电流的电路叫振荡电路。其中最简单的振荡电路叫LC回路。 振荡电流是一种交变电流,是一种频率很高的交变电流,它无法用线圈在磁场中转动产生,只能是由振荡电路产生。 充电完毕(放电开始):电场能达到最大,磁场能为零,回路中感应电流i=0。 放电完毕(充电开始):电场能为零,磁场能达到最大,回路中感应电流达到最大。 充电过程:电场能在增加,磁场能在减小,回路中电流在减小,电容器上电量在增加。从能量看:磁场能在向电场能转化。 放电过程:电场能在减少,磁场能在增加,回路中电流在增加,电容器上的电量在减少。从能量看:电场能在向磁场能转化。 在振荡电路中产生振荡电流的过程中,电容器极板上的电荷,通过线圈的电流,以及跟电流和电荷相联系的

555 振荡器 工作原理

555多谐振荡器工作原理FROM维库 集成555定时器多谐振荡器 1.多谐振荡器 的工作原理 多谐振荡器 是能产生矩形波的一种自激振荡器电路,由于矩形波中除基波外还含有丰富的高次谐波,故称为多谐振荡器。多谐振荡器没有稳态,只有两个暂稳态,在自身因素的作用下,电路就在两个暂稳态之间来回转换,故又称它为无稳态电路。 由555定时器 构成的多谐振荡器如图1所示,R1,R2和C是外接定时元件,电路中将高电平触发端(6脚)和低电平触发端(2脚)并接后接到R2和C的连接处,将放电端(7脚)接到R1,R2的连接处。 由于接通电源 瞬间,电容C来不及充电,电容器 两端电压uc为低电平,小于(1/3)Vcc,故高电平触发端与低电平触发端均为低电平,输出uo为高电平,放电管 VT截止。这时,电源经R1,R2对电容C充电,使电压uc按指数规律上升,当uc上升到(2/3)Vcc 时,输出uo为低电平,放电管VT导通,把uc从(1/3)Vcc 上升到(2/3)Vcc这段时间内电路的状态称为第一暂稳态,其维持时间TPH的长短与电容的充电时间有关。充电时间常数T充=(R1+R2)C。 由于放电管VT导通,电容C通过电阻 R2和放电管放电,电路进人第二暂稳态.其维持时间TPL的长短与电容的放电时间有关,放电时间常数T 放=R2C0随着C的放电,uc下降,当uc下降到(1/3)Vcc时,输出uo。为高电平,放电管VT截止,Vcc再次对电容c充电,电路又翻转到第一暂稳态。不难理解,接通电源后,电路就在两个暂稳态之间来回翻转,则输出可得矩形波。电路一旦起振后,uc电压总是在(1/3~2/3)Vcc 之间变化。图1(b)所示为工作波形。

电容三点式振荡器与变容二极管直接调频电路设计

咼频实验报告(二) --- 电容三点式振荡器与 变容二极管直接调频电路设计 组员 座位号16 __________________ i

实验时间__________ 周一上午 ________ 目录 一、实验目的 (3) 二、实验原理 (3) 2.1 电容三点式振荡器基本原理 (3) 2.2 变容二极管调频原理 (5) 2.3 寄生调制现象 (8) 2.4 主要性能参数及其测试方法 (9) 三、实验内容 (10) 四、实验参数设计 (11) 五、实验参数测试 (14) 六、思考题 (15) ii

实验目的 1. 掌握电容三点式LC 振荡电路的基本原理。 2. 掌握电容三点式LC 振荡电路的工程设计方法。 3. 了解高频电路中分布参数的影响及高频电路的测量方法。 4. 熟悉静态工作点、反馈系数、等效 Q 值对振荡器振荡幅度和频谱纯度的影响。 5. 掌握变容二极管调频电路基本原理、调频基本参数及特性曲线的测量方法。 实验原理 2.1电容三点式振荡器基本原理 电容三点式振荡器基本结构如图所示: 在谐振频率上,必有 X i + X 2 + X 3 =0,由于晶体管的 V b 与V c 反相,而根据振荡器的 振荡条件|T| = 1,要求V be = — V ce ,即i X i = i X 2,所以要求 X i 与X 2为同性质的电抗。 综合上述两个条件,可以得到晶体管 LC 振荡器的一般构成法则如下:在发射极上连 接的两个电抗为同性质电抗,另一个为异性质电抗。 原理电路如图3.2所示: 图3.2原理电路 共基极实际电路如图3.3所示: Xi ―I X 2 I — 图3.1电容三点式振荡器基本结构 C1 C2 图3.3共基极实际电路

振荡电路工作原理详细分析

振荡电路工作原理详细分析注:这只是我个人的理解,仅供参考,如不正确,请原谅! 1、电路图和波形图 2、工作原理:晶体管工作于共发射极方式。集电极电压通过变压器反馈回基级,而变压器绕组的接法实现正反馈。其工作过程根据三极管的工作状态分为三个阶段:t1、t2、t3(如上图): 说明:此分析过程是在电路稳定震荡后,以一个完整波形周期为例进行分析,即起始Uce=12v。而对于电路刚接通时,工作原理完全相同,只是做波形图时,起始电压Uce=0v。 1)、电路接通后,进入t1阶段(晶体管为饱和状态)。 在t1的初始阶段,电路接通,流过初级线圈的电流不能突变,使得集电极电压Uce急速减小,由于时间很短,在波形中表现为下降沿很陡。而经过线圈耦合,会使基极电压Ube急速增大。此时,三极

管工作在饱和状态(Ube>=Uce)。基极电流ib失去对集电极电流ic 的控制。之后,随着时间增加,Uce会逐渐增加,Ube通过基极与发射机之间的放电而逐渐减少。基极电压Ube下降使得ib减小。 2)、当ib减小到ic /β时, 晶体管又进入放大状态,即t2阶段。 于是,ib的减小引起ic的减小,造成变压器绕组上感应电动势方向的改变,这一改变的趋势进一步引起ib的减小。如此又开始强烈的循环,直到晶体管迅速改变为截止状态。这一过程也很快,对应于脉冲的下降沿。在此过程中,电流强烈的变化趋势使得感应线圈上出现一个很大的感应电动势,Ube变成一个很大的负值。 3)、当晶体管截止后(t3阶段),ic=0,Uce经初级线圈逐渐上升到12v(变压器线圈中储存有少量能量,逐渐释放)。此时,直流12v电源通过27欧电阻和反馈线圈对基极电压充电,Ube逐渐上升,当Ube上升到0.7v左右时,晶体管重新开始导通(硅管完全导通的电压大约是0.7v)。于是下一个周期开始,重复上述各个阶段。其震荡周期T=t1+t2+t3;

相关主题
文本预览
相关文档 最新文档