当前位置:文档之家› 高分子材料的主要物理性能

高分子材料的主要物理性能

高分子材料的主要物理性能
高分子材料的主要物理性能

第四章高分子材料的主要物理性能

高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性和复杂性。联系材料微观结构和宏观性质的桥梁是材料内部分子运动的状态。一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。例如天然橡胶在常温下是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。聚甲基丙烯酸甲酯(PMMA)在常温下是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。

本着“结构?分子运动?物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性和粘弹性、溶液性质、流变性质、电学性能等。同时通过介绍结构与性能的关系,帮助我们根据使用环境和要求,有目的地选择、使用、改进和设计高分子材料,设计和改进加工工艺和设备,扩大高分子材料使用范围。

第一节高分子材料的分子运动、力学状态转变及热性能

一、高分子运动的特点

与低分子材料相比,高分子材料的分子热运动主要有以下特点:

(一)运动单元和模式的多重性

高分子的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。

在各种运动单元和模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运

动有直接关系。链段运动状态是判断材料处于玻璃态或高弹态的关键结构因素;链段运动既可以引起大分子构象变化,也可以引起分子整链重心位移,使材料发生塑性形变和流动。

(二)分子运动的时间依赖性

在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。例如将一根橡胶条一端固定,另一端施以拉力使其发生一定量变形。保持该形变量不变,但可以测出橡胶条内的应力随拉伸时间仍在变化。相当长时间后,内应力才趋于稳定,橡胶条达到新的平衡。

设材料在初始平衡态的某物理量(例如形变量、体积、模量、介电系数等)的值为x 0,在外场作用下,到t 时刻该物理量变为x (t ),许多情况下x (t )与x 0满足如下关系: ()τ/0t e x t x -= (4-1)

公式(4-1)实质上描述了一种松弛过程,式中τ称松弛时间。当t =τ时,()e x x /0=τ,可见松弛时间相当于x 0变化到x 0/e 时所需要的时间。

低分子物质对外场的响应往往是瞬时完成的,因此松弛时间很短,而高分子材料的松弛时间可能很长。高分子的这种松弛特性来源于其结构特性,由于分子链的分子量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此其松弛过程进行得较慢。

不同运动单元的松弛时间不同。运动单元越大,运动中所受阻力越大,松弛时间越长。比如键长、键角的变化与小分子运动相仿,其松弛时间与小分子相当,约10-8

-10-10

s ;链段运动的松弛时间较长,可达到分钟的数量级;分子整链的松弛时间更长,可长达几分、几小时,甚至几天、几个月。由于高分子材料结构具有多重性,因此其总的运动模式具有一个广阔的松弛时间谱。

了解材料的松弛时间谱十分重要,因为材料的不同性质是在不同的松弛过程(它们具有不同的松弛时间)中表现出来的。在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式(或性质)最早和最明显地被测试或表现出来。例如要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。如果要研究分子整链的运动(如材料的流动),实验时间必须长得多。换句话说,

高分子材料的松弛特性使得其物理和力学性能与观察和测量的速度(或时间)相关。

(三)分子运动的温度依赖性

温度是分子运动激烈程度的描述,高分子材料的分子运动也强烈地依赖于温度的高低。一般规律是温度升高,各运动单元热运动能力增强,同时由于热膨胀,分子间距增加,材料内部自由体积增加,有利于分子运动,使松弛时间缩短。松弛时间与温度的关系可用Eyring 公式表示:

RT E o e /?=ττ (4-2)

式中τ0是常数,△E 是运动活化能,R 是气体常数,T 是绝对温度。由(4-2)式可见,温度升高,τ变小,松弛过程加快。

由于高分子材料的分子运动既与温度有关,也与时间有关,因此,观察同一个松弛现象,升高温度和延长外场作用时间得到的效果是等同的,在后面章节中将详细介绍这个十分重要的“时—温等效原理”。这一性质也决定了我们在研究测量高分子材料物理性能时,或者规定好测量温度,或者规定好测量时间或速度,否则不易得到正确可靠的结果。

二、高分子材料的力学状态及转变

不同类型高分子材料的力学状态不同,下面按非晶态(无定型)聚合物、结晶聚合物、体型聚合物分别介绍。

(一) 非晶态线型聚合物的力学状态及转变

对尺寸确定的非晶态线型聚合物试样施加一定的外力,并以一定的速度升温,测定试样发生的形变随温度的变化,得到材料的温度-形变曲线,又称热机曲线,如图4-1所示。整条曲线按温度高低可分为五个区,特点如下:

A 区:该区温度低,分子热运动能力小,链段运动处于冻结状态,只有侧基、链节、短支链等小运动单元的局部振动发生,因此材料弹性模量高(~1010

N/m 2

),形变小(~%-1%),外力撤去后,形变立即消失、恢复原状。材料无论在内部结构还是力学性质方面都类似于低分子玻璃,这种状态称玻璃态。

B 区:该区称玻璃化转变区,是一个对温度变化十分敏感的区域。在此区间内,随温度升高,链段活动能力增加,链段可以通过绕主链上的单键内旋转而改变分子链构象,使形变

迅速增加,模量下降3~4个数量级。该区域对应的转变温度称玻璃化转变温度,记为g T 。

C 区:温度进一步升高,链段具有充分的运动能力。在外力作用下,一方面通过链段运动使分子链呈现局部伸展的构象,材料可以发生大形变(~100%-1000%);另一方面此时的热能还不足以使分子整链运动,分子链相互缠结形成网络,链段又有回复卷曲的趋势。这两种作用相互平衡,使温度-形变曲线出现一个平台区。处于该区间的高分子材料,模量低,仅为106

N ·m -2

左右,形变大,外力去除后,形变可以恢复。这种力学状态称高弹态。

D 区:这也是一个对温度十分敏感的转变区,称粘流转变区。由于温度升高,链段的热运动进一步加剧。链段沿外力方向的协同运动,不仅使分子链形态发生改变,而且导致分子链解缠结,分子重心发生相对位移,宏观上表现为出现塑性形变和粘性流动。形变迅速增加,弹性模量下降到104

N ·m -2

以下。该区间对应的转变温度称粘流温度,记为f T 。

E 区:温度高于f T 后,大分子链重心发生相对位移的运动占绝对优势,形变继续发展,高分子材料呈熔体(液体)状,这种状态称粘流态。高分子制品的加工成型多在该区域内进行。

图4-1 非晶态线型聚合物的温度-形变曲线

由上可见,在不同外部条件下,非晶态线型聚合物可以存在三种不同的力学状态—玻璃态、高弹态、粘流态,三态之间有两种状态转变过程—玻璃化转变、粘流转变。

与转变过程对应的两个转变温度——玻璃化转变温度g T 、粘流温度f T 是两个十分重要的物理量。从分子运动的观点看,玻璃化转变温度g T 对应着链段的运动状态,温度小于g T 时链段运动被冻结,大于g T 时链段开始运动。粘流温度f T 对应着分子整链的运动状态,温度小于f T 时分子链重心不发生相对位移,大于f T 时分子链解缠结,出现整链滑移。

不同高分子材料具有不同的转变温度,在常温下处于不同的力学状态。如橡胶的g T 较低,一般是零下几十度,如天然橡胶g T = -73℃,顺丁橡胶g T = -108℃。常温下橡胶处于高

弹态,表现出高弹性,g T 规定为其最低使用温度,即耐寒温度。塑料的g T 较高,如聚氯乙烯g T =87℃,聚苯乙烯g T =100℃,常温下处于硬而脆的玻璃态,g T 为其最高使用温度,也即耐热温度。

另须指出,从热力学相态角度看,玻璃态、高弹态和粘流态均属液相,非晶态线型聚合物处于这三态时,分子排列均是无序的。三态之间的差别主要是变形能力不同,即模量不同。从分子热运动角度来看,三态的差别只不过是分子运动能力不同而已,因此从玻璃态到高弹态到粘流态的转变均不是热力学相变。

(二) 结晶聚合物的力学状态及转变

结晶聚合物的力学状态与结晶度和聚合物分子量大小有关。

低结晶度聚合物中结晶区小,非晶区大,非晶部分有玻璃化转变温度g T 决定其力学状态,结晶部分则有熔点m T 决定其力学状态。当温度高于g T 而低于m T 时(g T < T f T ),材料才进入粘流态。

高结晶度聚合物中(结晶度>40%)结晶相形成连续相,低温时处于类玻璃态,材料可作为塑料、纤维使用。温度升高,玻璃化转变不明显,而晶区熔融为主要的状态转变。晶区熔融后或者直接进入粘流态(若材料分子量低,f T m T ),见图4-2。

图4-2 结晶聚合物的温度-形变曲线

(三) 体型聚合物的力学状态

体型聚合物由于分子链间存在交联化学键,限制了整链运动,因此其特点是不溶、不熔。尽管如此,在合适条件下,链段仍能运动,根据链段运动与否可判断其处于玻璃态或是高弹态。

当交联度较小时,网链较长,网链构象的变化仍可按高斯链处理。此时材料仍有玻璃

化转变温度g T 。根据环境温度高或低于g T ,可判断材料处于高弹态或玻璃态。当交联度大时,链段运动困难,玻璃化转变难以发生,材料始终处于玻璃态。通常热固性树脂,如酚醛树脂、环氧树脂等,其交联度(固化程度)高,它们是一类强度高、硬而脆的塑料。硫化橡胶作弹性体用,要求其处于高弹态,交联度必需恰当控制。

三、高分子材料的玻璃化转变

(一)玻璃化转变现象

玻璃化转变是高分子材料力学状态变化中的普遍现象,玻璃化转变温度g T 是高分子材料最重要的特征温度。玻璃化转变的实质是链段运动被“冻结”或“解冻”的状态变化。在玻璃化转变前后,材料的比容、热力学性质、力学及电学性质都发生明显变化。测量这些性质随温度的变化可确定玻璃化转变温度的大小(图4-3)。

图4-3 聚醋酸乙烯酯的比容-温度曲线

按照热力学相变定义,当材料力学状态出现转变时,若体系Gibbs 自由能G 连续变化,而G 的一阶导数,如焓H 、熵S 或体积V 出现不连续突变,此类转变称热力学一级相转变。若Gibbs 自由能G 的一阶导数在转变点连续,而二阶导数,如比热容C p 、体积膨胀系数α和等温压缩系数k 出现不连续突变,此类转变称热力学二级相转变。

由于高分子材料在玻璃化转变时,具有热力学二级转变的特征,早期曾被认为是二级相转变。实际上高分子材料的玻璃化转变并非真正的热力学二级转变,一个真正的二级转变应是热力学平衡过程,与加热的速度和测量方法无关,而聚合物的玻璃化温度的确定却强烈地依赖加热的速度和测量方法。图4-3中,聚醋酸乙烯酯的比容-温度曲线上转折点的位置与冷却(或升温)速度有关。冷却快时测得的g T 高,冷却慢时测得g T 低,这表明高分子材料的玻璃化转变不是真正的二级相转变,而是高分子链段运动的一种松弛过程。

(二)玻璃化转变的机理

关于说明玻璃化转变的机理,曾从不同角度提出了几种理论,其中影响最大的是自由体积理论,由Fox 和Flory 于1950年提出。

Fox 和Flory 认为,液体、固体的宏观体积从微观看可分成两部分:一是分子本身占有体积,是体积的主要部分,二是分子堆砌形成的空隙或未占有的“自由体积”,如具有分子尺寸的空穴和堆砌缺陷等。这种未被占据的自由体积,是分子赖以移动和构象重排的场所,其大小或占据百分率决定着分子(对高分子材料而言是链段)运动的状态。

在玻璃化温度以上,自由体积较大,为链段运动提供了空间保证,材料处于高弹态。温度变化时,材料体积的变化由分子占有体积和自由体积的共同变化组成。温度降低,自由体积减小。降至玻璃化转变温度时,自由体积降到最低值。此时的自由体积已不足以提供链段运动的空间,使链段运动被冻结,材料处于玻璃态。在玻璃态中,材料体积随温度的变化将只取决于分子占有体积的变化,自由体积处于冻结状态,保持不变。这种观点是玻璃化转变的等自由体积理论的基础。

图4-4 自由体积理论示意图

考察非晶态线型聚合物的体积膨胀曲线(图4-4)。设V 0是玻璃态聚合物在绝对零度(0K )时的分子占有体积,V f 是玻璃态自由体积,V g 是玻璃化温度g T 时材料总体积,按照体积的热膨胀规律,应有:

g g f g T dT

dV

V V V )(

0++= (4-3) 式中g dT dV )(为玻璃态聚合物的膨胀率,即分子占有体积的膨胀率(注意在玻璃态范围内,V f

是不变的)。当T >g T 材料变为高弹态(或液态)时,聚合物的总体积V l 等于:

)()(g l g l T T dT

dV V V -+= (4-4)

式中l dT dV )(为高弹态聚合物的膨胀率(包括分子占有体积和自由体积两部分的膨胀)。可见,

自由体积的膨胀率应为高弹态膨胀率和玻璃态膨胀率之差g l dT

dV dT

dV )()(-,且仅在高弹态才有

自由体积的膨胀。

在g T 附近,定义玻璃态和高弹态聚合物的膨胀系数分别为:

g g g dT

dV V )(

1-=α (4-5) l g l dT dV V )(1-=α (4-6)

自由体积在g T 附近的膨胀系数则应为两者之差:

g l f αααα-=?= (4-7)

若以f 表示自由体积与实际体积之比,称为自由体积分数,则发生玻璃化转变时的自由体积分数为:

g f g V V f /= (4-8)

在温度高于g T 不多时,高弹态聚合物的自由体积分数近似为:

)(g f g T T f f -+=α (4-9)

当聚合物从较高温度冷却时,温度降到g T 附近,聚合物的膨胀系数发生变化,由l α变为g α,根据此变化可确定玻璃化转变是否发生。同理在g T 附近,自由体积分数也发生变化,由f 变为g f 。有趣的是,实验发现许多高分子材料在玻璃化温度附近的自由体积分数相差不大,均接近于(表4-1),这从一个方面支持了玻璃化转变的等自由体积理论。

表4-1 几种无定形高聚物在T g 时的自由体积分数

根据自由体积理论,高分子材料的玻璃化转变可以理解成一种体积松弛过程。当聚合物从较高温度(高于g T )冷却时,材料内链段占有体积不断缩小,自由体积也通过链段的运

动,逐步转移到材料表面而释出,自由体积缩小。这种缩小与链段运动的松弛速度有关。若冷却速度较慢,链段运动有充分时间松弛,占有体积缩小得多,自由体积释放得也多,则由体积-温度曲线测得的g T 较低。若冷却速度快,由于体系粘度大,链段运动慢,链段占有体积缩小得慢,自由体积也不能及时释出,测得的g T 就高。冷却速度越快,所测得g T 也越高,表明高分子材料的玻璃化转变是一种体积松弛过程。同样在升温过程中测玻璃化转变温度,升温速度越快,测得的g T 也越高。

(三)影响玻璃化温度的因素

玻璃化转变温度g T 定义为高分子链段开始冻结(或运动)的温度,因此凡是(1)使分子链柔性增加(从而链段体积小),使分子间作用力降低(由此链段活动能力增大)的结构因素均会导致g T 下降;反之,凡导致链段活动能力下降的因素均使g T 升高。掌握影响玻璃化温度的因素及其规律十分重要,因为这提供了改变材料玻璃化温度从而改善材料耐热性和耐寒性的方法。

1、主链结构的影响 主链结构为—C —C —、—C —N —、—Si —O —、—C —O —等单键的非晶态聚合物,内旋转势垒小,分子链柔性大,其g T 较低;尤其主链含有醚键及孤立双键的高分子,其单键内旋转更加容易,柔性比纯—C —C —链高分子大,g T 更低。例如聚二甲基硅氧烷的g T = -123℃,是耐低温性能好的合成橡胶。

主链中含有苯环、萘环等杂环时,分子链柔顺性下降,刚性增大,因而g T 升高。例如聚碳酸酯的g T =150℃,聚苯醚的g T =220℃,见表4-2。提高玻璃化温度是设计合成耐热高分子的主要指导思想。

2、侧基、侧链的影响 侧基对g T 的影响包括侧基极性、侧基体积及侧基对称性的影响

等。以乙烯基类

CH 2CH

n

X

聚合物为例,当侧基X 为极性基团时,由于内旋转活化能及分子

间作用力增加,使g T 升高。如聚丙烯(X 为CH 3)的g T =-10℃;聚氯乙烯(X 为Cl )极性较

大,玻璃化温度也较高,g T =87℃;聚乙烯醇(X 为OH ,g T =85℃)、聚丙烯腈(X 为CN ,

g T =104℃)侧基的极性大,玻璃化温度也高。

若X 为非极性侧基,其对g T 的影响主要看空间阻碍效应。侧基体积越大,对单键内旋转阻碍越大,分子链柔性下降,g T 升高。例如聚苯乙烯的侧基为一个大苯环,g T 上升到100℃;聚乙烯基咔唑的侧基更大(见表4-2),其g T 为208℃。

当侧基在分子链上对称分布时,无论侧基是极性还是非极性的,其g T 均低于不对称取代的高分子。这是因为对称取代基的偶极矩相互抵消,使分子链柔性提高的结果。聚异丁烯与聚丙烯相比,聚异丁烯的两个甲基取代基对称分布,其玻璃化温度(g T =-70℃)低于聚丙烯(g T =-10℃);聚偏二氯乙烯与聚氯乙烯相比,前者分子链上的氯原子对称分布,偶极矩抵消,玻璃化温度低(g T =-19℃)。

表4-2 部分高分子材料的玻璃化转变温度

另一方面,若侧基本身的内旋转势垒小,侧基的存在不会使分子链柔性下降,此时随侧

基长度增加,材料的g T 反而更低。以聚丙烯酸酯类

CH 2 CH n

为例,取代基R 分别为甲

基(CH 3)、乙基(C 2H 5)、丁基(C 4H 9)时,材料的玻璃化温度依此降低,分别为g T =3℃、-24℃、-56℃。

3、分子量的影响 一般规律是分子量较低时,聚合物的g T 随分子量增加而升高;当分

子量超过某一临界值后,g T 与分子量无关,经验公式为:

()n

g g M K

T T -

∞= (4-10) 式中()∞g T 为分子量无限大时聚合物的玻璃化温度,n M 为数均分子量,K 为常数。

4、分子间作用力的影响 分子间作用力越强,材料的内聚能越高,链段运动所需的热能越大,使材料玻璃化温度增高。比如当分子链间形成强氢键时,由于分子间作用增强,g T 升高。尼龙类材料与聚己二酸乙二酯分子链的柔顺性相当,后者的玻璃化温度仅为-70℃,而尼龙类材料由于分子链间有强氢键存在,其g T 升高,尼龙-6,尼龙-66的玻璃化温度均为50℃左右。

5、共聚、共混的影响 共聚和共混是改变聚合物玻璃化温度的重要方法。无规共聚物的玻璃化温度一般介于两种均聚物的玻璃化温度之间,并随其中某一组分含量的增加呈线性或非线性变化。曾提出许多计算无规共聚物g T 的方程,较常用的Fox 方程为: B g B A g A g T w T w T ,,///1+= (4-11)

式中g T 为共聚物的玻璃化温度;T g ,A 、T g ,B 分别为均聚物组分A 、B 的玻璃化温度;w A 、w B 为组分A 及B 在共聚物中的重量分数。

对嵌段或接枝共聚物,若两组分A 和B 的相溶性差且形成的微相区较大,则共聚物会出现两个g T ,各相当于A 、B 两个均聚物的g T ;若A 和B 相溶性好,可能只出现一个g T 。

两种聚合物共混时,一般出现两个g T 。随着两相相溶性的改善,两个g T 有靠近的趋势。 对于由A 和B 两个各自交联的网络互相穿插在一起而形成的互穿聚合物网络(IPN ),也会出现两个分别代表A 、B 特征的g T 。

6、增塑剂的影响 增塑剂是一种具有低挥发性的小分子液体,加入聚合物中能有效降低材料的玻璃化温度。增塑剂分子与高分子间具有较强的亲和力,它的加入使分子链间的作用力减弱,玻璃化温度g T 和流动温度f T 均降低,材料的使用性能及加工性能改变。例如纯聚氯乙烯室温下为硬塑料,可制成板材、管材等硬制品,若加入20%~40%的邻苯二甲酸二辛酯,玻璃化温度可降至-30℃,室温下呈高弹态,可用作橡胶代用品。

关于增塑剂使聚合物g T 降低的估算可仿照无规共聚物进行。除(4-11)式外,另一个常用公式为:

d g d p g p g T T T ,,φφ+= (4-12)

式中T g ,p 、T g ,d 分别为聚合物与增塑剂的玻璃化温度;φp 、φd 为聚合物与增塑剂的体积分数,φp +φd =1。实际材料中,增塑剂的用量一般为10%~40%,用量过大会降低产品的力学性能。

除上述影响聚合物玻璃化温度的主要因素之外,还有其他结构因素如交联、结晶、立构规整度以及外界条件如外力作用时间、外力类型、升温速率等也对聚合物玻璃化温度有影响,可参看有关书籍。需要指出的是,不同文献给出的一些聚合物的g T ,有时略有差异,有时多于一个以上,这与不同作者采用不同的测定方法有关。

四、玻璃态和结晶态聚合物的次级转变(次级松弛)

从分子运动的观点看,玻璃化转变及结晶熔融都是由链段运动状态改变引起的,通常称高分子材料的主转变,或α转变。玻璃化转变温度及结晶熔融温度在松弛谱图上的位置分别用a α、c α表示。转变温度低于g T (或m T )的转变称作次级转变,或次级松弛。次级转变是由小于链段的小尺寸结构单元(如链节、侧基、键长键角等)运动状态改变引起的松弛过程。这些松弛过程的松弛时间较短,活化能较低,因而发生的温度较低。通常按照转变出现的温度由高到低命名各次级转变为β、γ、δ……转变,这种命名并非严格的指明何种次级转变一定对应着何种结构单元的分子运动,有时在这种聚合物的β松弛与另一种聚合物的β松弛有完全不同的分子机理。

研究高分子材料的次级转变有重要的实际意义和理论意义。由于次级转变反映了材料在低温区的分子运动状态,故藉此可研究材料的低温物理性能,如低温韧性及耐寒性等。对塑料而言,只有具备良好的低温韧性,才有更高的使用价值。现代科学技术的发展要求高分子材料在低温甚至超低温领域也能适用,而研制和开发耐低温材料需要研究高分子次级转变。另外,研究次级转变无疑也有助于了解高分子细微结构及运动状态与材料性能的关系。

次级松弛现象通常用动态粘弹谱或动态介电谱实验来研究。用动态粘弹谱仪是测量在一

定频率下材料的损耗模量E ''~温度谱或损耗正切tg δ~温度谱;用介电损耗实验是测量材料的介电损耗tg δ~温度谱。图4-5给出典型的聚合物力学损耗~温度谱图,图中除给出玻璃化转变峰和熔融峰a α、c α外,还给出低温区的次级转变β、γ、δ峰。

图4-5 典型的聚合物动态力学损耗-温度谱

不同材料发生次级转变的分子运动模式不同。对于非晶高分子,主要有小于链段的小范围主链运动和侧基、侧链的运动。小范围主链运动包括碳-碳链上键长的伸缩振动,键角的变形振动,链节围绕单键的扭曲振动,以及杂链高分子中杂原子部分的运动,如聚碳酸酯的

酯基运动、聚酰胺中O C N H

的运动等。这些运动产生β转变。侧基、侧链的运动包括侧基的转动,侧基中基团的运动,以及较长侧链中的曲柄运动等,其运动状况与侧基、侧链的体积及在分子链的位置有关。如聚苯乙烯中苯环的内旋转、聚甲基丙烯酸甲酯中酯甲基的旋转都产生β转变;在—COOR 中的R 基转动时,若R 为—C 3H 7或—C 4H 9,将引起γ转变,若R 为—CH 3,引起δ转变。

结晶高分子的情况更复杂些。一方面结晶高分子的非晶区部分也有上述各种小范围分子运动模式,其运动还受到晶区的牵制;另一方面晶区部分尚有多种分子运动,例如晶型的转变、晶区的链段运动、晶区内部侧基和链端的运动、晶区缺陷的局部运动等。图4-6给出聚乙烯的动态力学损耗-温度谱。可以看到,低密度聚乙烯谱图中有α、β、γ松弛峰,而高密度聚乙烯没有β峰,其α峰则分裂成α、α’两个峰。实验已证实,聚乙烯的α峰相应于晶区的分子运动,如晶区的预熔(晶区中分子链扭转和平移)、结晶片层的滑移及片晶表面分子链的运动,α转变为主转变;β峰由非晶区内分子链支化点的运动引起,高密度聚乙烯没有长支链,所以支化点运动的影响不明显;γ松弛峰相应于更小结构单元的运动,如非晶区内局部链节的曲轴运动、晶区缺陷处链的扭曲运动等。高密度聚乙烯结晶度高,晶区分子运动的影响更显著,α’峰则可能由于晶片边界的滑动引起的。

图4-6 聚乙烯的动态力学损耗-温度谱

五、高分子材料的耐热和耐寒性能

有机高分子材料在长期高温环境中,会发生两种变化。一是物理变化,如软化、熔融等,破坏尺寸稳定性;另一种是化学变化,如发生分解、氧化、环化、交联、降解等反应,破坏成分稳定性。在低温或超低温环境中,高分子材料则可能出现硬化、脆化等现象。材料发生这些变化将导致性能下降,寿命缩短,乃至失去使用价值。评价高分子材料的耐热性和耐寒性,即要求在使用的温度环境中,材料在相对长时间内不发生上述变化。

对于结晶度高的材料,其使用温度主要由熔点m T 决定;对于无定型高分子材料,使用温度主要由玻璃化温度g T 决定。对于塑料来讲,g T 是其耐热性的标志,对于橡胶而言,g T 则是耐寒性的标志。此外,表征材料热性能的参数还有:分解温度d T (通常d T >m T 或f T )和脆化温度b T (b T

提高材料耐热性的关键是提高材料的g T 、m T 和d T ,主要方法为:1)提高分子链的刚性,在主链中减少单键,引入共轭双键或环状结构。大部分耐热高分子主链上有此类结构,如聚砜,g T =190℃,结构式为:

CH 3 O

—O — —C — —O — —S — — CH 3 O

2)提高分子链的规整性,提高结晶度;或引入极性基团,使分子间产生氢键,增强分子间作用力,提高g T 。如普通的无规聚苯乙烯(a-PS )的g T =100℃,而全同立构聚苯乙烯(i-PS )可以结晶,其熔点m T =240℃。3)采用交联方法,限制分子链运动,既提高耐热性,又提高物理、力学性能。如辐射交联的聚乙烯,耐热温度达250℃,远高于聚乙烯的熔点;又如具

有交联结构的热固性树脂,其耐热性一般都较好。4)采用复合方法,如尼龙-66的热变形温度约80℃,将其与30%的玻璃纤维复合后,不仅强度提高,热变形温度也升高到250℃。5)关于橡胶材料的耐热性。为了保证橡胶高弹性不受损,不能采用提高分子链刚性、或结晶、交联等方法,原则上只能从提高分子化学键键能着手(选用耐热橡胶品种),使之不易发生热降解或热交联。

改善橡胶材料的耐寒性。原则上应考虑增大分子链柔顺性,减少分子间作用力,削弱

T,降低结晶能力。主要方法有1)增塑法。分子链中规整部分的化学结构和组成,降低

g

T。2)改性法。改变橡胶分子采用凝固点低、粘度大、沸点高、蒸汽压低的增塑剂,降低

g

链结构(如顺式、反式结构比例),降低结晶速度。硅橡胶(聚二甲基硅氧烷)是一种既耐热又耐寒的优良橡胶。使用温度从-70℃到250℃,原因在于一则Si—O键的键能大(大于C—C键),不易热分解,二则其内旋转位垒低,分子链柔顺性好。

材料物理性能

第一章 1、应力:单位面积上所受的内力ζ=F/A 2、应变:描述物体内部质点之间的相对运动ε=△L/Lo 3、晶格滑移:晶体受力时,晶体的一部分相对另一部分发生平移滑动。条件:①移动较小 的距离即可恢复、②静电作用上移动中无大的斥力 4、塑性形变过程:①理论上剪切强度:克服化学键所产生的强度。当η>ηo时,发生滑移 (临界剪切应力),η=ηm sin(2πx/λ),x<<λ时,η=ηm(2πx/λ)。由虎克定律η0=Gx/λ.则Gx/λ=ηm(2πx/λ)→ηm=G/2π;②位错运动理论:实际晶体中存在错位缺陷,当受剪应力作用时,并不是晶体内两部分整体相互错动,而是位错在滑移面上沿滑移方向运动,使位错运动所需的力比是晶体两部分整体相互华东所需的力小的多,故实际晶体的滑移是位错运动的结果。位错是一种缺陷,位错的运动是接力式的;③位错增值理论:在时间t内不但比N个位错通过试样边界,而且还会引起位错增值,使通过便捷的位错数量增加到NS个,其中S位位错增值系数。过程机理画图 5、高温蠕变:在高温、恒定应力的作用下,随着时间的延长,应变不断增加。⑴起始阶段 0-a:在外力作用下瞬时发生弹性形变,与时间无关。⑵蠕变减速阶段a-b:应变速率随时间递减,即a-b段的斜率dε/dt随时间的增加而愈小,曲线愈来愈平缓。原因:受阻碍较小,容易运动的位错解放出来后,蠕变速率就会降低;⑶稳态蠕变阶段b-c:入编速率几乎保持不变,即dε/dt=K(常数)原因:容易运动的位错解放后,而受阻较大的位错未被解放。⑷加速入编阶段c-d:应变绿随时间增加而增加,曲线变陡。原因:继续增加温度或延长时间,受阻碍较大的位错也能进一步解放出来。影响入编的因素:⒈温度,温度升高,入编增加。⒉应力,拉应力增加,蠕变增加,压应力增加,蠕变减小⒊气孔率增加,蠕变增加,晶粒愈小,蠕变率愈小。⒋组成。⒌晶体结构。 6、弹性形变:外力移去后可以恢复的形变。塑性形变:外力移去后不可恢复的形变 第二章 7、突发性断裂(快速扩展):在临界状态下,断裂源处的裂纹尖端所受的横向拉应力正好 等于结合强度时,裂纹产生突发性扩展。(一旦扩展,引起周围盈利的再分配,导致裂纹的加速扩展,出现突出性断裂) 8、裂纹缓慢生长:当裂纹尖端处的横向拉应力尚不足以引起扩展,但在长期受应力的情况 下,特别是同时处于高温环境中时,还会出现裂纹的缓慢生长。 9、理论结合强度:无机材料的抗压强度大约是抗拉强度的10倍。δth=(EΥ/a)0.5→(Υ=aE/100) →δth=E/10(a:晶格常数,Υ:断裂表面能断裂表面能Υ比自由表面能大。这是因为储存的弹性应变能除消耗于形成新表面外,还有一部分要消耗在塑性形变、声能、热能等方面。 10、Griffith微裂纹理论:⑴Inglis尖端分析:孔洞两个端部的应力取决于孔洞的长度和 端部的曲率半径而与孔洞的形状无关。应用:修玻璃通过打孔增加曲率来减慢裂纹扩展。 ⑵Griffith能量分析:物体内储存的弹性应变能的降低大于等于开裂形成两个新表面所需 的表面能。(产生一条长度2C的裂纹,应变能降低为We,形成两个新断面所需表面能为Ws)。裂纹进一步扩展(2dc,单位面积所释放的能量为dWe/2dc,形成新的单位表面积所需的表面能为dWs/2dc。)当dWe/2dcdWs/2dc时,裂纹失稳,迅速扩展;当dWe/2dc=dWs/2dc时,为临界状态。 应用:尽数剪裁上通过反复折导致剪断。 11、选择材料的标准:δ<δc,即使用应力小于断裂应力;Ki

材料物理性能课后习题答案

材料物理性能习题与解答

目录 1 材料的力学性能 (2) 2 材料的热学性能 (12) 3 材料的光学性能 (17) 4 材料的电导性能 (20) 5 材料的磁学性能 (29) 6 材料的功能转换性能 (37)

1材料的力学性能 1-1一圆杆的直径为2.5 mm、长度为25cm并受到4500N的轴向拉力,若直径拉细至 2.4mm,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解:根据题意可得下表 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-2一试样长40cm,宽10cm,厚1cm,受到应力为1000N拉力,其氏模量为3.5×109 N/m2,能伸长多少厘米? 解: 拉伸前后圆杆相关参数表 ) ( 0114 .0 10 5.3 10 10 1 40 1000 9 4 0cm E A l F l E l l= ? ? ? ? ? = ? ? = ? = ? = ? - σ ε 10 909 .4 0? 0851 .0 1 = - = ? = A A l l ε 名义应变

1-3一材料在室温时的氏模量为3.5×108 N/m 2,泊松比为0.35,计算其剪切模量和体积模量。 解:根据 可知: 1-4试证明应力-应变曲线下的面积正比于拉伸试样所做的功。 证: 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: Voigt 模型可以较好地模拟应变蠕变过程: )21(3)1(2μμ-=+=B G E ) (130)(103.1)35.01(2105.3)1(288MPa Pa E G ≈?=+?=+=μ剪切模量) (390)(109.3) 7.01(3105.3)21(388 MPa Pa E B ≈?=-?=-=μ体积模量. ,.,1 1 2 1 212 12 1 2 1 21 S W VS d V ld A Fdl W W S W V Fdl V l dl A F d S l l l l l l ∝====∝= ===???? ? ?亦即做功或者: 亦即面积εεεεεεεσεσεσ)(2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量). 1()()(0)0() 1)(()1()(10 //0 ----= = ∞=-∞=-=e e e E t t t στεσεεεσεττ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ==∞==则有::其应力松弛曲线方程为

高分子化学与物理

中国科学院长春应用化学研究所 2011年招收攻读博士学位研究生入学考试试题 科目名称:高分子化学与物理 高分子化学部分(50分) 一、名词解释:(共10分,每题2分) 1.聚合上限温度 2.引发剂效率 3.链转移反应 4.元素有机聚合物 5.配位聚合 二、解释说明下列概念的含义与区别(共8分,每题2分) 1. 连锁聚合,逐步聚合 2.线性缩聚和体型缩聚 3.平均官能度和凝胶点 4.凝胶效应和沉淀效应 三.合成题(共12分,每题3分) 写出下列高分子材料的单体、反应式、注明引发剂、催化剂及聚合反应类型 1. 尼龙-6 2. 聚苯醚 3. 聚芳砜 4. 聚丙烯 四、简答题(共20分,每题5分) 1.下列单体适合于何种机理聚合:自由基聚合,阳离子聚合或阴离子聚合并说明理由. CH2=CHCl, CH2=CCl2, CH2=CHCN, CH2=C(CN)2, CH2=CHCH2, CH2=C(CH3)2, CH2=CHC6H5, CF2=CF2, CH2=C(CN)COOR, CH2=C(CH3)-CH=CH2. 2. 用氢氧离子或烷氧基负离子引发环氧化物的聚合反应常在醇的存在下进行,为什么醇是如何影响分子量的

3. 氯乙烯,苯乙烯,甲基丙烯酸甲酯聚合时,都存在自动加速现象,三者有何异同? 4. 举例说明自由基聚合时取代基的位阻效应,共轭效应,电负性,氢键和溶剂化对单体聚合热的影响 高分子物理部分(50分) 一.名词解释(共10分,每题1分) 1.高分子的构象 2.取向态 3.粘流态 4.自由结合链 5.附生结晶 6.高聚物驻极体 7.银纹 8.强迫高弹形变 9.缠结 10.凝胶纺丝 二.填空和判断题(共10分,每题1分) 1-5是填空题 1. 判断两种高分子共混物的相容性,可利用()表征(至少填两种)。 2. 当温度T=()时,第二维里系数A2= (),此时高分子溶液符合理想溶液性质。 3. 目前世界上产量最大的塑料品种是()、()、()(三种);合成纤维品种是()、()、()(三种);合成橡胶品种是()、()。 4. 高聚物加工的上限温度为(),下限温度为()。 5. 自由体积理论认为,高聚物在玻璃化温度以下时,体积随温度升高而发生的膨胀是由于()。

材料物理性能

材料物理性能 第一章、材料的热学性能 一、基本概念 1.热容:物体温度升高1K 所需要增加的能量。(热容是分子热运动的能量随温度变化的一个物理量)T Q c ??= 2.比热容:质量为1kg 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。[ 与 物质的本性有关,用c 表示,单位J/(kg ·K)]T Q m c ??=1 3.摩尔热容:1mol 的物质在没有相变和化学反应的条件下升高1K 所需要的热量。用Cm 表示。 4.定容热容:加热过程中,体积不变,则所供给的热量只需满足升高1K 时物体内能的增加,不必再以做功的形式传输,该条件下的热容: 5.定压热容:假定在加热过程中保持压力不变,而体积则自由向外膨胀,这时升高1K 时供 给 物体的能量,除满足内能的增加,还必须补充对外做功的损耗。 6.热膨胀:物质的体积或长度随温度的升高而增大的现象。 7.线膨胀系数αl :温度升高1K 时,物体的相对伸长。t l l l ?=?α0 8.体膨胀系数αv :温度升高1K 时,物体体积相对增长值。t V V t t V ??= 1α 9.热导率(导热系数)λ:在 单位温度梯度下,单位时间内通过单位截面积的热量。(标志 材 料热传导能力,适用于稳态各点温度不随时间变化。)q=-λ△T/△X 。 10.热扩散率(导温系数)α:单位面积上,温度随时间的变化率。α=λ/ρc 。α表示温度变化的速率(材料内部温度趋于一致的能力。α越大的材料各处的温度差越小。适用于非稳态不稳定的热传导过程。本质仍是材料传热能力。)。 二、基本理论

1.德拜理论及热容和温度变化关系。 答:⑴爱因斯坦没有考虑低频振动对热容的贡献。 ⑵模型假设:①固体中的原子振动频率不同;处于不同频率的振子数有确定的分布函数; ②固体可看做连续介质,能传播弹性振动波; ③固体中传播的弹性波分为纵波和横波两类; ④假定弹性波的振动能级量子化,振动能量只能是最小能量单位hν的整数倍。 ⑶结论:①当T》θD时,Cv,m=3R;在高温区,德拜理论的结果与杜隆-珀蒂定律相符。 ②当T《θD时,Cv,m∝3T。 ③当T→0时,Cv,m→0,与实验大体相符。 ⑷不足:①由于德拜把晶体看成连续介质,对于原子振动频率较高的部分不适用; ②晶体不是连续介质,德拜理论在低温下也不符; ③金属类的晶体,没有考虑自由电子的贡献。 2.热容的物理本质。 答:温度一定时,原子虽然振动,但它的平衡位置不变,物体体积就没变化。物体温度升高了,原子的振动激烈了,但如果每个原子的平均距离保持不变,物体也就不会因为温度升高而发生膨胀。 【⑴反映晶体受热后激发出的晶格波和温度的关系; ⑵对于N个原子构成的晶体,在热振动时形成3N个振子,各个振子的频率不同,激发出的声子能力也不同; ⑶温度升高,晶格的振幅增大,该频率的声子数目也增大; ⑷温度升高,在宏观上表现为吸热或放热,实质上是各个频率声子数发生变化。材料物理的解释】 3.热膨胀的物理本质。 答:由于原子之间存在着相互作用力,吸引力与斥力。力大小和原子之间的距离有关(是非线性关系,引力、斥力的变化是非对称的),两原子相互作用是不对称变化,当温度上升,势能增高,由于势能曲线的不对称性必然导致振动中心右移。即原子间距增大。 ⑴T↑原子间的平均距离↑r>r0吸引合力变化较慢 ⑵T↑晶体中热缺陷密度↑r<r0排斥合力变化较快 【材料质点间的平均距离随温度的升高而增大(微观),宏观表现为体积、线长的增大】 4.固体材料的导热机制。 答:⑴固体的导热包括:电子导热、声子导热和光子导热。 ①纯金属:电子导热是主要机制; ②合金:声子导热的作用增强; ③半金属或半导体:声子导热、电子导热; ④绝缘体:几乎只有声子导热一种形式,只有在极高温度下才可能有光子导热存在。 ⑵气体:分子间碰撞,可忽略彼此之间的相互作用力。 固体:质点间有很强的相互作用。 5.焓和热容与加热温度的关系。P11。图1.8 ⑴①有潜热,热容趋于无穷大;⑵①无潜热,热容有突变

《材料物理性能》课后习题答案

1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2)可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和t = τ时的纵坐标表达式。 解:Maxwell 模型可以较好地模拟应力松弛过程: V oigt 模型可以较好地模拟应变蠕变过程: ) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量 ) (1.323)84 05.038095.0()(112211GPa E V E V E L =+=+=--下限弹性模量 ). 1()()(0)0() 1)(()1()(1 //0 ----= = ∞=-∞=-=e E E e e E t t t στεσεεεσετ τ ;;则有:其蠕变曲线方程为:. /)0()(;0)();0()0((0)e (t)-t/e στσσσσσστ ==∞==则有::其应力松弛曲线方程为1.0 1.0 0816.04.25 .2ln ln ln 2 2 001====A A l l T ε真应变)(91710 909.44500 60MPa A F =?==-σ名义应力0851 .0100 =-=?=A A l l ε名义应变)(99510 524.445006MPa A F T =?==-σ真应力

工程材料的分类及性能

工程材料的分类及性能 字体: 小中大 | 打印发表于: 2006-11-09 15:38 作者: xlktiancai 来源: 中国机械资讯网 材料的分类 材料的种类繁多,用途广泛。工程方面使用的材料有机械工程材料、土建工程材料、电工材料、电子材料等。在工程材料领域中,用于机械结构和机械零件并且主要要求机械性能的工程材料,又可分为以下四大类: 金属材料具有许多优良的使用性能(如机械性能、物理性能、化学性能等)和加工工艺性能(如铸造性能、锻造性能、焊接性能、热处理性能、机械加工性能等)。特别可贵的是,金属材料可通过不同成分配制,不同工艺方法来改变其内部组织结构,从而改善性能。加之其矿藏丰富,因而在机械制造业中,金属材料仍然是应用最广泛、用量最多的材料。在机械设备中约占所用材料的百分之九十以上,其中又以钢铁材料占绝大多数。 随着科学技术的发展,非金属材料也得到迅速的发展。非金属材料除在某些机械性能上尚不如金属外,它具有金属所不具备的许多性能和特点,如耐腐蚀、绝缘、消声、质轻、加工成型容易、生产率高、成本低等。所以在工业中的应用日益广泛。作为高分子材料的主体——工程塑料(如聚乙烯、聚氯乙烯、聚苯乙烯、聚酰胺、ABS塑料、环氧塑料等)已逐渐替代一些金属零件,应用于机械工业领域中。古老的陶瓷材料也突破了传统的应用范围,成为高温结构材料和功能材料的重要组成部分。 金属材料和非金属材料在性能上各有其优缺点。近年来,金属基复合材料、树脂基复合材料和陶瓷基复合材料的出现,为集中各类材料的优异性能于一体开辟了新的途径,在机械工程中的应用将日益广泛。

9-1.gif 我也来说两句查看全部回复 最新回复 xlktiancai (2006-11-09 15:39:31) 材料的性能一、力学性能材料受力后就会产生变形,材料力学性能 是指材料在受力时的行为。描述材料变形行为的指标是应力ζ和应变ε,ζ是单位面积上的作用力,ε是单位长度的变形。描述材料力学性能的 主要指标是强度、延性和韧性。其中,强度是使材料破坏的应力大小的度 量;延性是材料在破坏前永久应变的数值;而韧性却是材料在破坏时所吸 收的能量的数值。设计师们对这些力学性能制订了各种各样的规范。例 如,对一种钢管,人们要求它有较高的强度,但也希望它有较高的延性,以增加韧性,由于在强度和延性二者之间往往是矛盾的,工程师们要做出 最佳设计常常需要在二者中权衡比较。同时,还有各种各样的方法确定材 料的强度和延性。当钢棒弯曲时就算破坏,还是必须发生断裂才算破坏? 答案当然取决于工程设计的需要。但是这种差别表明至少应有两种强度判 据:一种是开始屈服,另一种是材料所能承受的最大载荷,这说明仅仅描 述材料强度的指标至少就有两个以上。一般来说,描述材料力学性能的指 标有以下几项: 1.弹性和刚度图1-6是材料的应力—应变图(ζ—ε 图)。(a)无塑性变形的脆性材料(例如铸铁);(b)有明显屈服 点的延性材料(例如低碳钢);(c)没有明显屈服点的延性材料(例如纯铝)。在图中的ζ—ε曲线上,OA段为弹性阶段,在此阶段,如卸去 载荷,试样伸长量消失,试样恢复原状。材料的这种不产生永久残余变形 的能力称为弹性。A点对应的应力值称为弹性极限,记为ζe。材料在弹 性范围内,应力与应变成正比,其比值E=ζ/ε(MN/m2)称为弹性模量。

高分子材料化学与物理-复旦大学材料科学系

2016年高分子材料化学与物理考试大纲 一:高分子物理部分 参考书目录: 何曼君、陈维孝、董西侠编《高分子物理(修订版)》,复旦大学出版社,1990年10月 何曼君、张红东、陈维孝、董西侠编《高分子物理(第三版)》,复旦大学出版社,2007年3月 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为75分,考试时间为分钟. 二、答题方式 答题方式为闭卷、笔试. 三、试卷内容结构 四、试卷题型结构 名词解释及简答题 解答题(包括证明题) 考试内容 聚合物材料的结构特点 1. 掌握高分子链结构的特点 2. 理解高分子链结构的内容构造;构型;构象;结构单元;结构单元的键接结构;支化度;交联度;嵌段数;序列长度;旋光异构;几何异构等概念; 3. 理解高分子链的远程结构分子的大小;内旋转构象链段;静态柔顺性;动态柔顺性等概念; 4. 了解高分子链的构象统计方法;掌握末端距;均方末端距;均方根末端距;均方均方末端距;B条件;无扰尺寸A; Kuhn链段长度le;极限特征比C Y;均方旋转半径;无规线团的形状等概念; 了解和掌握高分子的聚集态结构内容,包括: 1. 高聚物分子间的作用力内聚能密度; 2. 高聚物结晶的结构和形态聚合物结晶模型;晶态结构模型;非晶态模型; 3. 高分子的结晶过程结晶度;结晶动力学;晶体生长;半结晶期; 4. 结晶热力学熔限; 5. 聚合物的取向态结构取向度; 6. 了解高分子液晶及应用性能,如热致型液晶;溶致型液晶;高分子液晶的结构;高分子液晶相变; 掌握高分子的分子运动特点及特点,包括: 1. 高聚物分子运动的特点高分子分子运动现象;运动单元的多样性;高分子运动的时间依 赖性;高分子运动的温度依赖性; 2. 高聚物的次级松弛 3. 高聚物的玻璃化转变聚合物的玻璃化转变理论;影响Tg的结构因素及改变Tg手段

材料物理性能.

※ 材料的导电性能 1、 霍尔效应 电子电导的特征是具有霍尔效应。 置于磁场中的静止载流导体,当它的电流方向与磁场方向不一致时,载流导体上平行于电流和磁场方向上的两 个面之间产生电动势差,这种现象称霍尔效应。 形成的电场E H ,称为霍尔场。表征霍尔场的物理参数称为霍尔系数,定义为: 霍尔系数R H 有如下表达式:e n R i H 1 ± = 表示霍尔效应的强弱。霍尔系数只与金属中自由电子密度有关 2、 金属的导电机制 只有在费密面附近能级的电子才能对导电做出贡献。 利用能带理论严格导出电导率表达式: 式中: nef 表示单位体积内实际参加传导过程的电子数; m *为电子的有效质量,它是考虑晶体点阵对电场作用的结果。 此式不仅适用于金属,也适用于非金属。能完整地反映晶体导电的物理本质。 量子力学可以证明,当电子波在绝对零度下通过一个完整的晶体点阵时,它将不受散射而无阻碍的传播,这时 电阻为零。只有在晶体点阵完整性遭到破坏的地方,电子波才受到散射(不相干散射),这就会产生电阻——金属产生电阻的根本原因。由于温度引起的离子运动(热振动)振幅的变化(通常用振幅的均方值表示),以及晶体中异类原子、位错、点缺陷等都会使理想晶体点阵的周期性遭到破坏。这样,电子波在这些地方发生散射而产生电阻,降低导电性。 3、 马西森定律 (P94题11) 试说明用电阻法研究金属的晶体缺陷(冷加工或高温淬火)时威慑年电阻测量要在低温下进行。 马西森(Matthissen )和沃格特(V ogt )早期根据对金属固溶体中的溶质原子的浓度较小,以致于可以略去它们 之间的相互影响,把金属的电阻看成由金属的基本电阻ρL(T)和残余电阻ρ?组成,这就是马西森定律( Matthissen Rule ),用下式表示: ρ?是与杂质的浓度、电缺陷和位错有关的电阻率。 ρL(T)是与温度有关的电阻率。 4、 电阻率与温度的关系 金属的温度愈高,电阻也愈大。 若以ρ0和ρt 表示金属在0 ℃和T ℃温度下的电阻率,则电阻与温度关系为: 在t 温度下金属的电阻温度系数: 5、 电阻率与压力的关系 在流体静压压缩时,大多数金属的电阻率降低。 在流体静压下金属的电阻率可用下式计算 式中:ρ0表示在真空条件下的电阻率;p 表示压力;φ是压力系数(负值10-5~10-6 )。 正常金属(铁、钴、镍、钯、铂等),压力增大,金属电阻率下降;反常金属(碱土金属和稀土金属的大部分) 6、 缺陷对电阻率的影响:不同类型的缺陷对电阻率的影响程度不同,空位和间隙原子对剩余电阻率的影响和金属 杂质原子的影响相似。点缺陷所引起的剩余电阻率变化远比线缺陷的影响大。

工程材料性能包括使用性能和工艺性能。使用性能是指材料

工程材料的性能包括使用性能和工艺性能。使用性能是指材料在使用条件下表现出来的性能如力学性能、物理性能和化学性能;工艺性能是指材料在加工过程中反映出的性能如切削加工性能、铸造性能、塑性加工性能、焊接性能和热处理性能等。其具体的分类如下: 一、强度、刚度、塑性、硬度 材料在静载荷的作用下所表现出的各种性能称为静态力学性能。材料的静态力学性能可以通过静载试验确定,该试验可以确定材料在静载荷作用下的变形(弹性变形、塑性变形)和断裂行为,这些数据广泛应用于结构载荷机件的强度和刚度设计中,也是材料加工工艺有关材料变形行为的重要资料。在生产金属材料的工厂,静载试验是检验材料质量的基本手段之一。此外,科学工作者也能够从材料的变形和断裂行为的分析中得到很多有关材料性能的重要资料,这些资料对于研究和改善材料的组织与性能十分必要。 一、拉伸试验 拉伸试验是工业上应用最广泛的金属力学性能试验方法之一。这种试验方法的特点是温度、应力状态和加载速率是确定的,并且常用标准的光滑圆柱试样进行试验。通过拉伸试验可以揭示材料在静载荷作用下常见的三种失效形式,即弹性变形、塑性变形和断裂。还可以标定出材料最基本的力学性能指标,如屈服强度σ0.2、抗拉强度σb、断后伸长率δ和断面

收缩率ψ。 1、拉伸试验曲线 拉伸试验曲线有以下几种表示方法: (1)载荷-伸长曲线(P-ΔL)这是拉伸试验机的记录器在试验过程中直接描画出的曲线。P是载荷的大小,ΔL指试样标距长度L0受力后的伸长量。 (2)工程应力-应变曲线(σ-ε曲线)令F0为试样原有的横截面面积,则拉伸应力σ=P / F0,拉伸应变ε=ΔL / L0。以σ-ε为坐标作图得到的曲线就是工程应力-应变曲线,它和P-ΔL曲线形状相似,仅在尺寸比例上有一些差异。图2-1为低碳钢的拉伸曲线。由图可见,低碳钢在拉伸过程中,可分为弹性变形、塑性变形和断裂三个阶段。 (3)真应力-应变曲线(S-e曲线)指试样在受载过程中任一瞬间的真应力(S = P / F)和真应变(e = ln L / L0)之间的关系曲线。 图2-1低碳钢的工程应力-应变曲线 2、弹性和刚度 (1)弹性:当外加应力σ小于σe(如图2-1)时,试样的变形能在卸载后(σ=0)立即消失,即试样恢复原状,这种不产生永久变形的性能称为弹性。σe为不产生永久变形的最大应力,称为弹性极限。 (2)刚度:在弹性范围内,应力与应变成正比,即σ=Eε,或E=σ/ε,比例常数E 称为弹性模量,它是衡量材料抵抗弹性变形能力的指标,亦称为刚度。它是一个对组织不敏感的参数,主要取决于材料本身,与合金化、热处理、冷热加工等关系不大。 3、强度 强度是指在外力作用下材料抵抗变形和断裂的能力,是材料最重要、最基本的力学性能指标之一。 (1)屈服点与屈服强度 屈服点σs与屈服强度σ0.2是材料开始产生明显塑性变形时的最低应力值,即

高分子材料物理化学实验复习资料

一、热塑性高聚物熔融指数的测定 熔融指数 (Melt Index 缩写为MI) 是在规定的温度、压力下,10min 内高聚物熔体通过规定尺寸毛细管的重量值,其单位为g 。 min)10/(600g t W MI ?= 影响高聚物熔体流动性的因素有内因和外因两个方面。内因主要指分子链的结构、分子量及其分布等;外因则主要指温度、压力、毛细管的内径与长度等因素。 为了使MI 值能相对地反映高聚物的分子量及分子结构等物理性质,必须将外界条件相对固定。在本实验中,按照标准试验条件,对于不同的高聚物须选取不同的测试温度与压力。因为各种高聚物的粘度对温度与剪切力的依赖关系不同,MI 值只能在同种高聚物间相对比较。一般说来,熔融指数小,即在10min 内从毛细管中压出的熔体克数少,样品的分子量大,如果平均分子量相同,粘度小,则表示物料流动性好,分子量分布较宽。 1、 测烯烃类。 2、聚酯(比如涤纶)不能测。3 聚丙烯的熔点为165℃,聚酯的熔点为265℃。熔融加工温度在熔点上30~50℃。 考:简述实验步骤: ① 选择适当的温度、压强和合适的毛细管。(聚丙烯230℃) ② 装上毛细管,预热2~3min 。 ③ 加原料,“少加压实”。平衡5min ,使其充分熔融。 ④ 加砝码,剪掉一段料头。1min 后,剪下一段。

⑤称量 ⑥重复10次,取平均值。 ⑦关闭,清洁仪器。 思考题: 1、影响熔融指数的外部因素是什么?(4个) 2、熔融指数单位:g/10min 3、测定热塑性高聚物熔融指数有何意义? 参考答案:热塑性高聚物制品大多在熔融状态加工成形,其熔体流动性对加工过程及成品性能有较大影响,为此必须了解热塑性高聚物熔体的流变性能,以确定最佳工艺条件。熔融指数是用来表征熔体在低剪切速率下流变性能的一种相对指标。 4、聚合物的熔融指数与其分子量有什么关系?为什么熔融指数值不能在结构不同的聚合物 之间进行比较? 答:见前文。 二、声速法测定纤维的取向度和模量 测定取向度的方法有X射线衍射法、双折射法、二色性法和声速法等。其中,声速法是通过对声波在纤维中传播速度的测定,来计算纤维的取向度。其原理是基于在纤维材料中因大分子链的取向而导致声波传播的各向异性。

《材料物理性能》测试题汇总(doc 8页)

《材料物理性能》测试题 1、利用热膨胀曲线确定组织转变临界点通常采取的两种方法是: 、 2、列举三种你所知道的热分析方法: 、 、 3、磁各向异性一般包括 、 、 等。 4、热电效应包括 效应、 效应、 效应,半导体制冷利用的是 效应。 5、产生非线性光学现象的三个条件是 、 、 。 6、激光材料由 和 组成,前者的主要作用是为后者提供一个合适的晶格场。 7、压电功能材料一般利用压电材料的 功能、 功能、 功能、 功能或 功能。 8、拉伸时弹性比功的计算式为 ,从该式看,提高弹性比功的途径有二: 或 ,作为减振或储能元件,应具有 弹性比功。 9、粘着磨损的形貌特征是 ,磨粒磨损的形貌特征是 。 10、材料在恒变形的条件下,随着时间的延长,弹性应力逐渐 的现象称为应力松弛,材料抵抗应力松弛的能力称为 。 1、导温系数反映的是温度变化过程中材料各部分温度趋于一致的能力。 ( ) 2、只有在高温且材料透明、半透明时,才有必要考虑光子热导的贡献。 ( ) 3、原子磁距不为零的必要条件是存在未排满的电子层。 ( ) 4、量子自由电子理论和能带理论均认为电子随能量的分布服从FD 分布。 ( ) 5、由于晶格热振动的加剧,金属和半导体的电阻率均随温度的升高而增大。 ( ) 6、直流电位差计法和四点探针法测量电阻率均可以消除接触电阻的影响。 ( ) 7、 由于严格的对应关系,材料的发射光谱等于其吸收光谱。 ( ) 8、 凡是铁电体一定同时具备压电效应和热释电效应。 ( ) 9、 硬度数值的物理意义取决于所采用的硬度实验方法。 ( ) 10、对于高温力学性能,所谓温度高低仅具有相对的意义。 ( ) 1、关于材料热容的影响因素,下列说法中不正确的是 ( ) A 热容是一个与温度相关的物理量,因此需要用微分来精确定义。 B 实验证明,高温下化合物的热容可由柯普定律描述。 C 德拜热容模型已经能够精确描述材料热容随温度的变化。 D 材料热容与温度的精确关系一般由实验来确定。 2、 关于热膨胀,下列说法中不正确的是 ( ) A 各向同性材料的体膨胀系数是线膨胀系数的三倍。 B 各向异性材料的体膨胀系数等于三个晶轴方向热膨胀系数的加和。 C 热膨胀的微观机理是由于温度升高,点缺陷密度增高引起晶格膨胀。 D 由于本质相同,热膨胀与热容随温度变化的趋势相同。 3、下面列举的磁性中属于强磁性的是 ( ) A 顺磁性 B 亚铁磁性 C 反铁磁性 D 抗磁性 4、关于影响材料铁磁性的因素,下列说法中正确的是 ( ) A 温度升高使得M S 、 B R 、H C 均降低。 B 温度升高使得M S 、B R 降低,H C 升高。 C 冷塑性变形使得C H μ和均升高。 D 冷塑性变形使得C H μ和均降低。 5、下面哪种效应不属于半导体敏感效应。 ( ) A 磁敏效应 B 热敏效应 C 巴克豪森效应 D 压敏效应 6、关于影响材料导电性的因素,下列说法中正确的是 ( ) A 由于晶格振动加剧散射增大,金属和半导体电阻率均随温度上升而升高。 B 冷塑性变形对金属电阻率的影响没有一定规律。 C “热塑性变形+退火态的电阻率”的电阻率高于“热塑性变形+淬火态” D 一般情况下,固溶体的电阻率高于组元的电阻率。 7、下面哪种器件利用了压电材料的热释电功能 ( ) A 电控光闸 B 红外探测器 C 铁电显示器件 D 晶体振荡器 8、下关于铁磁性和铁电性,下面说法中不正确的是 ( ) A 都以存在畴结构为必要条件 B 都存在矫顽场 C 都以存在畴结构为充分条件 D 都存在居里点 9、下列硬度实验方法中不属于静载压入法的是 ( )

《材料物理性能》课后习题答案

《材料物理性能》 第一章材料的力学性能 1-1一圆杆的直径为2.5 mm 、长度为25cm 并受到4500N 的轴向拉力,若直径拉细至 2.4mm ,且拉伸变形后圆杆的体积不变,求在此拉力下的真应力、真应变、名义应力和名义应变,并比较讨论这些计算结果。 解: 由计算结果可知:真应力大于名义应力,真应变小于名义应变。 1-5一陶瓷含体积百分比为95%的Al 2O 3 (E = 380 GPa)和5%的玻璃相(E = 84 GPa),试计算其上限和下限弹性模量。若该陶瓷含有5 %的气孔,再估算其上限和下限弹性模量。 解:令E 1=380GPa,E 2=84GPa,V 1=0.95,V 2=0.05。则有 当该陶瓷含有5%的气孔时,将P=0.05代入经验计算公式E=E 0(1-1.9P+0.9P 2) 可得,其上、下限弹性模量分别变为331.3 GPa 和293.1 GPa 。 1-6试分别画出应力松弛和应变蠕变与时间的关系示意图,并算出t = 0,t = ∞ 和 0816 .04.25.2ln ln ln 22 001====A A l l T ε真应变) (91710909.44500 60MPa A F =?==-σ名义应力0851 .010 0=-=?=A A l l ε名义应变) (99510524.445006MPa A F T =?== -σ真应力) (2.36505.08495.03802211GPa V E V E E H =?+?=+=上限弹性模量) (1.323)84 05.038095.0()(1 12211GPa E V E V E L =+=+=--下限弹性模量

高分子材料的基本物理性能

高分子材料的主要物理性能 高分子材料与小分子物质相比具有多方面的独特性能,其性能的复杂性源自于其结构的特殊性和复杂性。联系材料微观结构和宏观性质的桥梁是材料内部分子运动的状态。一种结构确定的材料,当分子运动形式确定,其性能也就确定;当改变外部环境使分子运动状态变化,其物理性能也将随之改变。这种从一种分子运动模式到另一种模式的改变,按照热力学的观点称作转变;按照动力学的观点称作松弛。例如天然橡胶在常温下是良好的弹性体,而在低温时(<-100℃)失去弹性变成玻璃态(转变)。在短时间内拉伸,形变可以恢复;而在长时间外力作用下,就会产生永久的残余形变(松弛)。聚甲基丙烯酸甲酯(PMMA )在常温下是模量高、硬而脆的固体,当温度高于玻璃化温度(~100℃)后,大分子链运动能力增强而变得如橡胶般柔软;温度进一步升高,分子链重心能发生位移,则变成具有良好可塑性的流体。 本着“结构?分子运动?物理性能”这样一条思维线路,本章有选择地介绍高分子材料的热性能、力学性能、高弹性和粘弹性、溶液性质、流变性质、电学性能等。同时通过介绍结构与性能的关系,帮助我们根据使用环境和要求,有目的地选择、使用、改进和设计高分子材料,设计和改进加工工艺和设备,扩大高分子材料使用范围。 第一节 高分子材料的分子运动、力学状态转变及热性能 一、高分子运动的特点 与低分子材料相比,高分子材料的分子热运动主要有以下特点: (一)运动单元和模式的多重性 高分子的结构是多层次、多类型的复杂结构,决定着其分子运动单元和运动模式也是多层次、多类型的,相应的转变和松弛也具有多重性。从运动单元来说,可以分为链节运动、链段运动、侧基运动、支链运动、晶区运动以及整个分子链运动等。从运动方式来说,有键长、键角的变化,有侧基、支链、链节的旋转和摇摆运动,有链段绕主链单键的旋转运动,有链段的跃迁和大分子的蠕动等。 在各种运动单元和模式中,链段的运动最为重要,高分子材料的许多特性均与链段的运动有直接关系。链段运动状态是判断材料处于玻璃态或高弹态的关键结构因素;链段运动既可以引起大分子构象变化,也可以引起分子整链重心位移,使材料发生塑性形变和流动。 (二)分子运动的时间依赖性 在外场作用下,高分子材料从一种平衡状态通过分子运动而转变到另一种平衡状态是需要时间的,这种时间演变过程称作松弛过程,所需时间称松弛时间。例如将一根橡胶条一端固定,另一端施以拉力使其发生一定量变形。保持该形变量不变,但可以测出橡胶条内的应力随拉伸时间仍在变化。相当长时间后,内应力才趋于稳定,橡胶条达到新的平衡。 设材料在初始平衡态的某物理量(例如形变量、体积、模量、介电系数等)的值为x 0,在外场作用下,到t 时刻该物理量变为x (t ),许多情况下x (t )与x 0满足如下关系: ()τ /0t e x t x -= (4-1) 公式(4-1)实质上描述了一种松弛过程,式中τ称松弛时间。当t =τ时,()e x x /0=τ,可见松弛时间相当于x 0变化到x 0/e 时所需要的时间。 低分子物质对外场的响应往往是瞬时完成的,因此松弛时间很短,而高分子材料的松弛时间可能很长。高分子的这种松弛特性来源于其结构特性,由于分子链的分子量巨大,几何构型具有明显不对称性,分子间相互作用很强,本体粘度很大,因此其松弛过程进行得较慢。 不同运动单元的松弛时间不同。运动单元越大,运动中所受阻力越大,松弛时间越长。比如键长、键 角的变化与小分子运动相仿,其松弛时间与小分子相当,约10-8-10-10 s ;链段运动的松弛时间较长,可达到分钟的数量级;分子整链的松弛时间更长,可长达几分、几小时,甚至几天、几个月。由于高分子材料结构具有多重性,因此其总的运动模式具有一个广阔的松弛时间谱。 了解材料的松弛时间谱十分重要,因为材料的不同性质是在不同的松弛过程(它们具有不同的松弛时间)中表现出来的。在实际测试或使用材料时,只有那些松弛时间与外场作用时间数量级相当的分子运动模式(或性质)最早和最明显地被测试或表现出来。例如要研究链段的运动,实验进行的速度应当掌握在分钟数量级,太快或太慢的实验都不能测到链段的运动。如果要研究分子整链的运动(如材料的流动),

1.2 常工程材料的基本性质

1.2 常用工程材料的基本性质 1.何谓材料的实际密度,体积密度和堆积密度?如何计算? 答:实际密度是指材料在绝对密实状态下,单位体积所具有的质量,按下式计算:ρ=m/V 体积密度是指材料在自然状态下(含开口和闭口孔隙),单位体积所具有的质量,按下式计算:ρo=m/Vo 堆积密度是指散粒材料(粉末,粒状或纤维状材料)在自然堆积状态下,单位体积(包含颗粒内部的孔隙及颗粒之间的空隙)所具有的质算,按下式计算:ρo’=m/Vo’ 2.何谓材料的密实度和孔隙率?两者有什么关系? 答:密实度是指材料体积内被固体物质所充实的程度,也就是固体物质的体积占总体积的比例。用D表示。 孔隙率是指材料题体积内,孔隙体积(Vp)占材料总体积(Vo)的百分率,用P表示。 孔隙率与密实度的关系:P+D=1 4.建筑材料的亲水性与憎水性在建筑工程中有什么实际意义? 答:亲水性材料(如石材,砖,混凝土,木材等)表面均能被水润湿,且能通过毛细管作用将水吸入材料的毛细管内部。 憎水性材料(如石蜡,沥青,塑料,油漆等)不仅可用作防水防潮的材料,而且还可以用于亲水性材料的表面处理,以降低其吸水性。 6.何谓材料的吸水性,吸湿性,耐水性,抗渗性和抗冻性?各用什么指标表示? 答:材料在水中吸收水分的性质称为吸水性,其大小用吸水率表示:材料吸水饱和后的水质量占材料干燥质量的百分率称为质量吸水率Wm,材料吸收饱和后的水体积占材料干燥时自然体积的百分率称为体积吸水率Wv。 材料在潮湿空气中吸收水分的性质叫做吸湿性,其大小用含水率Wh表示。 材料在长期饱和水作用下不破坏,其强度也不显著降低的性质称为耐水性,用软化系数K 表示。 材料抵抗有压介质(水,油等液体)渗透的性质称为抗渗性,常用渗透系数Kp表示抗渗性好坏。 材料在水饱和状态下经多次冻融作用而不破坏,同时强度也不严重降低的性质称为抗冻性,用抗冻等级F表示。 8.材料的孔隙率与孔隙特征对材料的体积密度、吸水性、吸湿性、抗渗性、抗冻性、 强度及保温隔热等性能有何影响? 答:孔隙率与密实度有关,而材料的强度,吸水性,耐久性,导热性等均与其密实度有 关,所以孔隙率会影响材料的体积密度、吸水性、吸湿性、抗渗性、抗冻性、强度。 材料内部的孔隙有开口孔隙和闭合孔隙两种,开口孔隙之间可相互贯通且与外界 相通,在一般浸水条件下能水饱和。闭合孔隙彼此不相通且与界隔绝,其能提高材料的 隔热保温性能。 10.何谓材料强度,比强度?两者有什么关系?

816高分子化学与物理

2014年招收攻读硕士学位研究生入学考试试题(A卷) ******************************************************************************************** 招生专业与代码:生物医学工程007770 考试科目名称及代码:高分子化学与物理816 考生注意:所有答案必须写在答题纸(卷)上,写在本试题上一律不给分。 一、单项选择题(共20小题,每小题2分,共40分,将正确选项的字母填入括号内) 1、下列聚合物中,()是聚异戊二烯(PI)。 A. C CH2 n CH CH2 CH3 B. O C NH O C NH C6H4C 6 H4 n C. CH Cl CH2 n D. O C CH2CH2 O O n O C 2、热塑性弹性体SBS是苯乙烯和丁二烯的()。 A. 无规共聚物 B. 交替共聚物 C. 嵌段共聚物 D. 接枝共聚物 3、下列哪一项不是高分子的必备特征() A. 分子量大 B. 具有熔点 C.具有重复单元 D. 分子量具有多分散性 4、科学家Ziegle和Natta发明了()。 A. 离子聚合 B. 开环聚合 C. 逐步聚合 D. 配位聚合 5、偶氮类化学物质通常作为()的引发剂。 A. 逐步聚合 B. 变速聚合 C. 离子聚合 D. 自由基聚合 6、下列不能发生自由基聚合的单体是()。 A. 乙烯 B. 丁二烯 C. 苯乙烯 D. 环氧乙烷 7、自由基聚合实施方法中,使聚合物分子量和聚合速率同时提高,可采用()聚合方法。 A. 乳液聚合 B. 悬浮聚合 C.溶液聚合 D.本体聚合 8、共聚合中,影响单体或自由基反应活性的结构因素是单体取代基的共轭效应、()效应和位阻效应。 A. 空间 B. 溶剂 C. 极性 D. 单体 9、下面哪种组合可以制备无支链高分子线形缩聚物()。 A. 1-2官能度体系 B. 2-2官能度体系 C. 2-3官能度体系 D. 3-3官能度体系

《材料物理性能》王振廷版课后答案106页要点

1、试说明下列磁学参量的定义和概念:磁化强度、矫顽力、饱和磁化强度、磁导率、磁化率、剩余磁感应强度、磁各向异性常数、饱和磁致伸缩系数。 a、磁化强度:一个物体在外磁场中被磁化的程度,用单位体积内磁矩的多少来衡量,成为磁化强度M b、矫顽力Hc:一个试样磁化至饱和,如果要μ=0或B=0,则必须加上一个反向磁场Hc,成为矫顽力。 c、饱和磁化强度:磁化曲线中随着磁化场的增加,磁化强度M或磁感强度B开始增加较缓慢,然后迅速增加,再转而缓慢地增加,最后磁化至饱和。Ms成为饱和磁化强度,Bs成为饱和磁感应强度。 d、磁导率:μ=B/H,表征磁性介质的物理量,μ称为磁导率。 e、磁化率:从宏观上来看,物体在磁场中被磁化的程度与磁化场的磁场强度有关。 M=χ·H,χ称为单位体积磁化率。 f、剩余磁感应强度:将一个试样磁化至饱和,然后慢慢地减少H,则M也将减少,但M并不按照磁化曲线反方向进行,而是按另一条曲线改变,当H减少到零时,M=Mr或Br=4πMr。(Mr、Br分别为剩余磁化强度和剩余磁感应强度) g、磁滞消耗:磁滞回线所包围的面积表征磁化一周时所消耗的功,称为磁滞损耗Q(J/m3) h、磁晶各向异性常数:磁化强度矢量沿不同晶轴方向的能量差代表磁晶各向异性能,用Ek表示。磁晶各向异性能是磁化矢量方向的函数。 i、饱和磁致伸缩系数:随着外磁场的增强,致磁体的磁化强度增强,这时|λ|也随之增大。当H=Hs时,磁化强度M达到饱和值,此时λ=λs,称为饱和磁致伸缩所致。 2、计算Gd3+和Cr3+的自由离子磁矩?Gd3+的离子磁矩比Cr3+离子磁矩高的原因是什么?

Gd3+有7个未成对电子,Cr3+ 3个未成对电子. 所以, Gd3+的离子磁矩为7μB, Cr3+的离子磁矩为3μB. 3、过渡族金属晶体中的原子(或离子)磁矩比它们各自的自由离子磁矩低的原因是什么? 4、试绘图说明抗磁性、顺磁性、铁磁性物质在外场B=0的磁行为。

相关主题
文本预览
相关文档 最新文档