当前位置:文档之家› 数学物理方程试卷及答案

数学物理方程试卷及答案

数学物理方程试卷及答案
数学物理方程试卷及答案

参考解答: 一、 填空题

1. A 定解 B 初值(或Cauchy 问题) C 存在性、唯一性和稳定性

2. D 双曲

3. E (1)(2)(4)

4. F [x-3t,x+t] ,G 决定区域

5. H 22

2(21)(1,2,)4n n L πλ-==L I

(21)cos (1,2,)2n x X n L

π-==L 二、解:无界区域上波动方程2

00,,0

|(),|()

tt tt t t t u a u x t u x u x ?ψ==?=-∞<<+∞>??==?? 的达朗贝尔公式为:

22

()()1(,)()2

2x at

x at x at x at u x t d a

??ψξξ+--++=

+

? 对于本题所给半无界区域上的自由端点定解问题,只需对初始条件作偶延拓,即令:

2(),()||x x x x ?ψ==即可,2a = ,代入达朗贝尔公式得

2222222

2(2)(2)1()||2224,25(4)

,24

x t

x t

x t x t u x d x xt t x t

x t x t ξξ

+--++=+??++≥?=?+

?? 二、

解:设(,)()()u x t X x T t =,则()''()4''()()X x T t X x T t =,

分离变量成为''()''()

4()()T t X x T t X x λ==-,则''()()0,'(0)'(1)0''()4()0X x X x X X T t T t λλ+===??+=?

, 解前一方程,得固有值22(0,1,2,)n n n λπ==L 和固有函数()cos X x n x π=,

代入方程''()4()0T t T t λ+=中可得()cos 2sin 2T t A n t B n t ππ=+,

1,2,3,)n =L ( 由叠加原理,原方程有解1

(,)(cos 2sin 2)cos n

n

n u x t A n t B

n t n x πππ∞

==

+∑。

考虑所给初值条件,有:0

1sin cos 02cos n n n

n x A n x B n n x

ππππ∞

=∞

=?

=????=??

∑∑ ,

则1

002sin A xdx ππ==?,1

0202sin cos 4

(1)n n A x n xdx n n πππ

?

?

==-??-?

?为奇数为偶数

,0n B =

故,原问题的定解为2

1

2

4

(,)cos 4cos 2(41)n u x t n t n x n πππ

π∞

==

--∑

。 四、解:首先,作变换(,)(,)(,)u x t v x t w x t =+,将边界齐次化,只需令(,)(1)w x t x t α

α=≥ 原定解问题就可化为

函数(,)v x t 的定解问题:22010(1)2|0,|0,|0

t t xx x x x t v x v tx x t e v v v αααα-===?+---=-+?

?===??,特别地,当2α=时泛定方程可进一步化为

更简单的形式t t xx v v e -=。

然后,对上述方程求由齐次泛定方程导出的方程''()()0X x X x λ+=在边界'(0)(1)0X X ==时的固有值

221

()(1,2,)2n n λπ=-=L 和固有函数1()cos()2

X x n x π=-,(1,2,)n =L 利用常数变易法构造满足原泛定方程

的解11(,)()cos()2n n v x t T t n x π∞

==-∑ 代入得:221

11

('()()())cos()22t n n n T t n T t n x e ππ∞

=+--=∑。

由于1

14(1)11cos()(21)2n n n x n ππ-+∞

=-=--∑,可令12214(1)'()()()2(21)(0)0

n t

n n n

e T t n T t n T ππ-?-+-=

?-??=?

解得221

()12

22

32(1)()

()(21)(4(21))

n t

n t

n e e T t n n πππ-----=

-+-, 故原方程的解为:221

()12

222

1

32(1)()1

(,)cos()(21)(4(21))2n t

n t

n e e u x t x t n x n n ππππ---+∞=--=+

--+-∑ 五、解:

I 22

22

4()42

1

11()()222x x jx j x

j x

f x F e

d e

e

d e

e

d β

βωωβωωβ

ωωωωπ

π

π

-

-

+∞

+∞

+∞

--

--∞

-∞

-∞

=

=

=

=

?

?

?

II 对所给初值问题关于变量x 作Fourier 变换,记(,)[(,)](,)i x U y F u x t u x t e dx ωω+∞

--∞

==

?

并设(,)f x t 的Fourier 变换为(,)F t ω ,()x ?的Fourier 变换为()ωΦ,得:220[,]|[]

t dU

a U F t dt U ωωω=?=-+?

??=Φ? ,

对其求解可得2

2

2

2

22

22

4()4()

(,)()(,)[()](,)x x a t a t t

t a t

a t U t e

F t e d F x F F F d ξωω

ξωωξξ?ωξξ-

-

---=Φ+=+??.

进行Fourier 逆变换,并利用卷积性质,有:

2

2222

2

222

2

()4()

40440

(,)((,()(,)(2)(2,)x a t a t

t

t

a a t

t

u x t d f x x e d f x t e

d x

e d d

f x t e d ηηξηηξ

ηη?ηηξηξη

?ηηηξη?ηξξη

--

-

-+∞

+∞

-∞

-∞

-

-

+∞

+∞

-∞

-∞

+∞+∞

---∞

-∞

=+-=---=

-+

--????

?

?

?

?

六、I

证:令取x t =

,()()(/(/()y x x P x t P t t Y t ααα===,

则112'()('()(''()(''()2'()(1)())y x t Y t t Y t y x t Y t t Y t t Y t q ααααααααα---=+=++-

代入方程2

2

'''()0x y pxy q x r y ++-=中,变形为2

2

''()(2)'()((1))()0t Y t p tY t x qr p Y t αααα+++-++-= 若令121,2p p αα-+==

,方程成为:222

1''()'()((1))()04

x Y x xY x x qr p Y x ++---= 这是一个n 阶Bessel

方程(2)n =

II 解:对所给方程,取3,4,6p q r ===

得11,252

p

n α-=

=-== 知所给方程化成的Bessel 方程是5阶的,有通解12()()()n n Y t c J t c Y t =+,

因此,原方程的通解为1

1525()((2)(2))y x x c J x c Y x -=+。

成都理工大学数学物理方程试题

《数学物理方程》模拟试题 一、填空题(3分10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 是第 ( )类边界条件,其中为边界. 5.设函数的傅立叶变换式为,则方程的傅立叶变换 为 ( ) . 6.由贝塞尔函数的递推公式有 ( ) . 7.根据勒让德多项式的表达式有= ( ). 8.计算积分 ( ) . 9.勒让德多项式的微分表达式为( ) . ?f u n u S =+??)(σS ),(t x u ),(t U ω2 2 222x u a t u ??=??=)(0x J dx d )(3 1)(3202x P x P +=?-dx x P 2 1 12)]([)(1x P

10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分):1. 2.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u ? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ???? ? ????<<=??===><<+??=??====20,0,8,00,20,162002022 222x t u t x x u t u t t x x u u u

数学物理方程模拟试卷

数学物理方程模拟试卷 一、写出定解问题(10分) 设枢轴长为l ,建立枢轴纵振动在下列情形下的运动方程: (a ) 在x=0固定,在x=l 作用力F ,在t=0时刻作用力突然停止 (b ) 在x=l 一端是平衡位置,而从t=0时刻作用力 F(t) 解:(a )() ()()() ???? ?????≥='=≤≤==><<

,13c x y dx dy +-=→= 令???-=+=y x y x 3ηξ ???===-=======∴0,1,30,1,1yy xy xx y x yy xy xx y x ηηηηηξξξξξ (2) ??? ????++++=+++++=++++=+=+=yy yy y y y y yy xy xy y x x y y x y x xy xx xx x x x xx y y y x x x u u u u u u u u u u u u u u u u u u u u u u u u ηξηηξξηξηηηξηξξξηξηηξξηξηξηξηηξηξξηξηηξηξξηξηηξηξξηξηξ22222)(2, (3) 将(2)代入(3),可得 ?????????+-=-+=++=-=+=ηη ξηξξηηξηξξηηξηξξηξηξu u u u u u u u u u u u u u u u u u yy xy xx y 2329632 (4) 把(4)代入(1),可得 0666236364296=-+++-+--++++ηξηξηηξηξξηηξηξξηηξηξξu u u u u u u u u u u u u 0816=+∴ξξηu u 即 02 1=+ξξηu u 这就是我们所求的标准的双曲型方程。 三、(每小题10分,共20分) ①证明:)52()52(),(t x G t x F t x y -++=为方程2222254x y t y ??=??的通解。 ②求满足条件:0),(),0(==t y t y π,x x y 2sin )0,(=,0)0,(=x y t 的特解。 解:①设v t x u t x =-=+52,52,得 )()(v G u F y +=, )5()('5)('-?+?=????+????=??v G u F t v v G t u u F t y )('5)('5v G u F -=, (1)

最新数学物理方程期末试卷

最新数学物理方程期末试卷 出卷人:欧峥 1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为 k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题.(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进 入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2x l x -,试 写出其定解问题.(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 222200, y 0, () , .y u u x y u f x x =???+=

数学物理方程第二版答案解析(平时课后知识题作业任务)

数学物理方程第二版答案 第一章. 波动方程 §1 方程的导出。定解条件 4. 绝对柔软逐条而均匀的弦线有一端固定,在它本身重力作用下,此线处于铅垂平衡位置,试导出此线的微小横振动方程。 解:如图2,设弦长为l ,弦的线密度为ρ,则x 点处的张力)(x T 为 )()(x l g x T -=ρ 且)(x T 的方向总是沿着弦在x 点处的切线方向。仍以),(t x u 表示弦上各点在时刻t 沿垂直于x 轴方向的位移,取弦段),,(x x x ?+则弦段两端张力在u 轴方向的投影分别为 )(sin ))(();(sin )(x x x x l g x x l g ?+?+--θρθρ 其中)(x θ表示)(x T 方向与x 轴的夹角 又 . sin x u tg ??=≈θθ 于是得运动方程 x u x x l t u x ???+-=???)]([22ρ∣x u x l g x x ??--?+][ρ∣g x ρ 利用微分中值定理,消去x ?,再令0→?x 得 ])[(2 2x u x l x g t u ??-??=??。 5. 验证 2 221),,(y x t t y x u --= 在锥2 22y x t -->0中都满足波动方程 222222y u x u t u ??+??=??证:函数2221),,(y x t t y x u --=在锥2 22y x t -->0内对变量t y x ,,有

二阶连续偏导数。且 t y x t t u ?---=??-2 3 222)( 22 52222 32222 2) (3) (t y x t y x t t u ?--+---=??- - )2()(2 2223 222y x t y x t ++?--=- x y x t x u ?--=??- 23 222)( ()() 225222232222 23x y x t y x t x u - ---+--=?? ( )()222 252222y x t y x t -+- -=- 同理 ()()222 25 2222 22y x t y x t y u +---=??- 所以 ()() .22 22 2225222222 2t u y x t y x t y u x u ??=++--=??+ ??- 即得所证。 §2 达朗贝尔公式、 波的传抪 3.利用传播波法,求解波动方程的特征问题(又称古尔沙问题) ??? ? ???==??=??=+=-).()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 解:u(x,t)=F(x-at)+G(x+at) 令 x-at=0 得 )(x ?=F (0)+G (2x ) 令 x+at=0 得 )(x ψ=F (2x )+G(0)

数学物理方程试卷(B)

2011-2012 一、选择题(本题共5小题,每小题3分,共15分) 在下列每小题的4个备选项中,只有一项是最符合题意的,请将代码 (A 、B 、C 、D )填在题后相应的括号内。 1、偏微分方程与( )结合在一起,统称为定解问题. (A)定解条件; (B)初始条件; (C)边界条件; (D)以上均不正确. 2、下列偏微分方程中,属于二阶、线性、齐次的是( ). (A) 2260u u u u t x ??++-=??; (B) 2222cos 40?+-?-=?u t t u x x ; (C) 2 90???+-= ???? u xu t t ; (D) 22 60??+?-?=??t u u e xt u x t . 3、以下说法中错误的是( ). (A) Bessel 方程222'''()0x y xy x n y ++-=通解为()(),n n y AJ x BJ x -=+其中A, B 为任意常数; (B) n 阶Bessel 函数()x J n 的实零点关于原点是对称分布的; (C) 半奇数阶的第一类Bessel 函数都是初等函数; (D) 当0x =时,n 阶Bessel 函数()x J n 为有限值,而()x Y n 为无穷大. 4、定解问题的适定性是指解的( ). (A) 存在性、唯一性、收敛性; (B) 存在性、稳定性、收敛性; (C) 存在性、唯一性、稳定性; (D)唯一性、稳定性、收敛性. 5、设3 R Ω?为有界区域,边界Γ为光滑的封闭曲面,则下面说法错误的是( ). (A) 若2 ()()u C C ∈ΩΩ,则狄氏问题20,|u u f Γ??=Ω?=?在内 的解是唯一确定的; (B) 若2 1() ()u C C ∈ΩΩ,则2u u dV dS n Ω Γ??=?????? ; (C) 牛曼内问题20,|1u u n Γ??=Ω? ??=???在内有解且不唯一;

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 、长度为 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。 分 、长为l 的均匀杆,侧面绝热,一端温度为 度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是 ()2 x l x -,试写出其定解问题。 分 、试用分离变量法求定解问题 分 : ?????????===><

222sin cos ,(0,0)(0,)3,(,)6 4(,0)31,(,0)sin tt xx t u a u x x x l t l l u t u l t x u x u x x l l πππ?=+<<>???==?????=+= ????? 、利用行波法,求解波动方程的特征问题(又称古尔沙问题) 分 : ???????==??=??=+=-). ()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 、用达朗贝尔公式求解下列一维波动方程的初值问题( 分) ?????=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u 、用积分变换法求解定解问题( 分): ???????=+=>>=???==,1, 10 ,0,1002y x u y u y x y x u 、用积分变换法求解定解问题 分 :

数理方程试卷A

一. (10分)填空题 1.初始位移为)(x ?,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题: ?????==>+∞<<∞-===).(),(0,,00 2 x u x u t x u a u t t t xx tt ψ? 2.为使定解问题 ???? ???=======0 ,000 02t l x x x xx t u u u u u a u (0u 为常数) 中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w x u 0 3.方程0=xy u 的通解为)()(),(y G x F y x u += 4.只有初始条件而无边界条件的定解问题,称为柯西问题. 5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为 1cos 6 1),(22 3-++= y x y x y x u 二. (10分)判断方程 02=+yy xx u y u 的类型,并化成标准形式. 解:因为)0(02≠<-=?y y ,所以除x 轴外方程处处是椭圆型的。 ……2分 它的特征方程是 022 =+??? ??y dx dy …… 5分

即iy dx dy ±= 特征线为 21ln ,ln c ix y c ix y =+=- 作变换:???==x y ηξln …… 7分 求偏导数 ????? ???? ??-====)(1 1 2ξξξξ ηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式 ξηηξξu u u =+ …… 10分 三. (10分)求解初值问题 ?????==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020 解:x x x x a cos )(,)(,22===ψ? 利用达朗贝尔公式 ?+-+-++=at x at x d a at x at x t x u ξξψ??)(21)]()([21),( … …5分 得

数学物理方程习题解答案

数学物理方程习题解 习题一 1,验证下面两个函数: (,)(,)sin x u x y u x y e y == 都是方程 0xx yy u u += 的解。 证明:(1 )(,)u x y = 因为322 2 22 2222 2222 22 322 222 2222 2222 222222 222222 1 1()22 () 2()()11()22()2()()0()() x xx y yy xx yy x u x x y x y x y x x x y u x y x y y u y x y x y x y y y y x u x y x y x y y x u u x y x y =-? ?=- +++-?-=-=++=-??=-+++-?-=-=++--+=+=++ 所以(,)u x y =是方程0xx yy u u +=的解。 (2)(,)sin x u x y e y = 因为 sin ,sin cos ,sin x x x xx x x y yy u y e u y e u e y u e y =?=?=?=-? 所以 sin sin 0x x xx yy u u e y e y +=-= (,)sin x u x y e y =是方程0xx yy u u +=的解。 2,证明:()()u f x g y =满足方程 0xy x y uu u u -=

其中f 和g 都是任意的二次可微函数。 证明:因为 ()()u f x g y = 所以 ()(),()()()() ()()()()()()()()0 x y xy xy x y u g y f x u f x g y u f x g y uu u u f x g y f x g y g y f x f x g y ''=?=?''=?''''-=?-??= 得证。 3, 已知解的形式为(,)()u x y f x y λ=+,其中λ是一个待定的常数,求方程 430xx xy yy u u u -+= 的通解。 解:令x y ξλ=+则(,)()u x y f ξ= 所以2 (),()x xx u f u f ξλξλ'''=?=? (),(),()xy y yy u f u f u f λξξξ'''''=?== 将上式带入原方程得2 (43)()0f λλξ''-+= 因为f 是一个具有二阶连续可导的任意函数,所以2 -430 λλ+=从而12 =3,1λλ=, 故1122(,)(3),(,)()u x y f x y u x y f x y =+=+都是原方程的解,12,f f 为任意的二阶可微函数,根据迭加原理有 12(,)(3)()u x y f x y f x y =+++为通解。 4,试导出均匀等截面的弹性杆作微小纵振动的运动方程(略去空气的阻力和杆的重量)。 解:弹性杆的假设,垂直于杆的每一个截面上的每一点受力与位移的情形都是相 同的,取杆的左端截面的形心为原点,杆轴为x 轴。在杆上任意截取位于 [,]x x x +?的一段微元,杆的截面积为s ,由材料力学可知,微元两端处的相对伸长(应 变)分别是 (,)u x t x ??与(,)u x x t x ?+??,又由胡克定律,微元两端面受杆的截去部分的拉力分别为()(,)u SE x x t x ??与()(,)u SE x x x x t x ?+?+??,因此微元受杆的截去部分的作用力的合力为:()(,)()(,)u u SE x x x x t SE x x t x x ??+?+?-??

模拟试题及参考答案_数学物理方程

《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫(),说明边界上的约束情况的条件叫(),二者统称为(). 2.三维热传导齐次方程的一般形式是:(). 3 .在平面极坐标系下,拉普拉斯方程算符为() . 4.边界条件 f u n u S = + ? ? ) (σ 是第()类边界条件,其中S为边界. 5.设函数 ), (t x u的傅立叶变换式为), (t Uω,则方程2 2 2 2 2 x u a t u ? ? = ? ? 的傅立叶变换 为(). 6.由贝塞尔函数的递推公式有 = ) ( x J dx d () . 7.根据勒让德多项式的表达式有 ) ( 3 1 ) ( 3 2 2 x P x P+ = (). 8.计算积分 = ?-dx x P 2 1 12 )] ( [ (). 9.勒让德多项式 ) ( 1 x P的微分表达式为() . 10.二维拉普拉斯方程的基本解是() . 二、试用分离变量法求以下定解问题(30分): 1.? ? ? ? ?? ? ? ? < < = ? ? = = = > < < ? ? = ? ? = = = = 3 0,0 , 3 ,0 0 ,3 0, 2 3 2 2 2 2 2 ,0 x t u x x t x x u t u t t x u u u 2.? ? ? ? ?? ? ? ? = = = > < < ? ? = ? ? = = = x t x x u t u u u u t x x 2 ,0 ,0 ,4 0, 4 2 2

3. ????? ????<<=??===><<+??=??====20,0,8,00,20,1620020 22 222x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): ) (1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足θ2 1 cos ==r u ,即所提问题归 结为以下定解问题(10分): . 0,12cos 3,0,10,0)(sin sin 1)(11222 πθθπθθθθ θ≤≤+=≤≤<<=????+????=r u r u r r u r r r (本题的u 只与θ,r 有关,与?无关) 《数学物理方程》模拟试题参考答案

数学物理方程考试试题及解答

数学物理方程试题(一) 一、填空题(每小题5分,共20分) 1.长为π的两端固定的弦的自由振动,如果初始位移为x x 2sin ,初始速度为 x 2cos 。则其定解条件是 2. 方程 03=??-??x u t u 的通解为 3.已知边值问题???===+0 )()0(0 )()('"πλX X x X x X ,则其固有函数)(x X n = 4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分,共15分) 1. 拉普拉斯方程02222=??+??y u x u 的一个解是( ) (A )xy e y x u x sin ),(= (B )22),(y x y x u += (C )2 21),(y x y x u += (D )22ln ),(y x y x u += 2. 一细杆中每点都在发散热量,其热流密度为),(t x F ,热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是 ( ) (A )ρc t x F x u a t u ),(222 22+??=?? (B )ρc t x F x u a t u ),(222+??=?? (C ) ρc t x u x F a t F ),(22222+??=?? (D) ρc t x u x F a t F ),(22 2+??=?? (其中ρc k a =2) 3. 理想传输线上电压问题??? ??? ?=??=??=??=x aA t u x A x u x u a t u t ωωωsin ,cos )0,(0 2 2 222 ( 其中C L a 1 2 = )的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(= (C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω

数学物理方法考试模拟试题答案

一 1D 2B 3D 4C 5A 6C 7A 8D 9A 10D 二(10分)已知一个解析函数)(z f 的实部是y x sin e u =,求该解析函数。 .解: y e y u y e x u x x cos sin ==????(2分) 由C -R 条件,有x u y v ????=,y u x v ????-=,(2分) ∴. )(cos sin x y e ydy e dy x u dy y v v x x ?????+-====??? (2分) 再由y e y u x y e x v x x cos )(cos -=-='+-=?????, 得,)(,0)(C x x =='??于是 ∴C y e v x +-=cos (2分) )()cos (sin )(C e i C y e i y e z f z x x +-=+-+=(2分) 三 求解一维无界弦的自由振动,设弦的初始位移为φ(x ),初始速度为-a φ’(x)。 解:定解问题为: 分) (分)分)2)sin()]sin())[sin((21)]sin()[sin(212()(21)]()([21),(6() cos() sin(0002at x at x at x a a at x at x d a at x at x t x u x a u x u u a u at x at x t t t xx tt -=--+-+-++=+-++=?????-===-?+-==ξξψ?? 四 定解问题为 u tt -a 2u xx =0 u │x=0=0, u x │x=l =0 u │t=0=0 u t │t=0=v o (8分)

数学物理方程期末考试

数学物理方程期末考试

————————————————————————————————作者:————————————————————————————————日期:

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入, 设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出 其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分): ???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?=

6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

相关主题
文本预览
相关文档 最新文档