当前位置:文档之家› 数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案
数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案

一、求解方程(15分)

???

??===-=+=-.

)()(0002x u

x u u a u at x at x xx tt ψ?

其中)0()0(ψ?=。

解:设??

?+=-at

x at

x ηξ=则方程变为:

0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得:

)()0()2(),()2()0(x G x F x x G F ψ?=+=+

由)0()0(ψ?=即得:

)0()2

()2(

),(?ψ?--++=at

x at x t x u 。

二、利用变量分离法求解方程。(15分)

???

??==≥==∈=-====)(,)(,

0,0,

),(,000

02x u

x u t u u Q t x u a u t t t l x x xx tt ψ?

其中l x ≤≤0。0>a 为常数

解:设)()(t T x X u =代于方程得:

0''=+X X λ,0''2=+T a T λ(8’)

x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+=

由边值条件得: 2

1)(

,0l

n C πλ== l

x

n at A at B u n n n πλλsin

)sin cos (1

+=

∑∞

=

?=

l n dx l x n x l B 0sin )(2π?,?=l

n dx l

x

n x an A 0

sin

)(2πψπ

三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与稳定性. (15分)

证明:设u e

v ct

-=代入方程:

??

?

??====-=).

(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ?

设21,v v 都是方程的解设21v v v -=代入方程得:

??

?

??====-=0),(,),0(00

02t l v t v v v a v t xx t

由极值原理得0=v 唯一性得证。(8’)由

≤-21v v ετ

≤-2

1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性

得证。

四.求解二维调和方程在半平面上的狄利克雷问题(15分).

,0,0>=++=?z u u u u zz yy xx

).(0

x f u

z ==

解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点

),,(?ηξ-p 格林函数:

2

2

2

)

()()(1

41),,,(?ηξπηξ-+-+--

=z y x y x G

2

2

2

)

()()(1

41?ηξπ

++-+-+

z y x

2

/32220

])()[(2?ηξπ?

+-+-=

??-=??=y x z

G

n G z

方程的解:dx y x y x u R

?+-+-=

2

2/3222])()[()

,(2),(?ηξ?π

?

ηξ

五、证明下列初边值问题解的唯一性.(20分)

),,()(2t y x f u u a u yy xx tt =+-

),,(0

y x u

t ?== ),,(0

y x u t t

ψ==

).,,(t y x g u =Γ

其中,),(,0Ω∈>y x t Γ为Ω的边界.

解:设21,u u 都是方程的解设21u u u -=代入方程得:

0)(2=+-yy xx tt u u a u

00

==t u 00

==t t

u

.0=Γu

设??Ω

=

[21)(t E dxdy u u a u y x t ](222

2++

=dt t dE )

(??Ω

[2dxdy u u u u a u u yt y xt x tt t )](2++ ??

Ω

=[2dxdy u u a u u yy xx tt t )]([2

+-

0=(10’)

0)0()(==E t E ,C u =,由边值条件得:0=u 。(20’)

六 考察边值问题

∑==++

?n

i x i f u x c u

x b u i

1

)()(

.0=??Γ

n

u

试证)(x c 当充分负时,其解具有唯一性及在能量模意义下的稳定性.(20分) 证明:在原方程两边同乘以u 然后在Ω上积分:

?u u ∑?=Ω

=++n

i x i dx fu dx u x c u u

x b i

1

2)()(

由格林公式dx u u ?Ω

??Ω?-

??=ds n u

dx Du

2

dx Du 2

-=

由Young 不等式

?∑=dx u u n

i x i 1

dx u n

i x i 2

1

2

?∑=ε

dx u n ?+

2

?

?

?+≤

dx u dx f fudx 22

2121故得

??∑≤+=dx f C dx u u

n

i x i

2221

)((10’)

设21,u u 都是方程的解设21u u u -=代入方程并由估计式得:0=u 唯一性得证

≤-21u u ετ

≤-2

1f f ,稳定性得证。

最新数学物理方程期末试卷

最新数学物理方程期末试卷 出卷人:欧峥 1、长度为 l 数学物理方程期末试卷sin A t ω的力的作用,右端系在弹性系数为 k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题.(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进 入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2x l x -,试 写出其定解问题.(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???? ???==??=??=+=-).()(002 22 22x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 222200, y 0, () , .y u u x y u f x x =???+=

研究生数理方程期末试题-10-11-1-A-答案

北京交通大学硕士研究生2010-2011学年第一学期 《数学物理方程》期末试题(A 卷) (参考答案) 学院__________ 专业___________ 学号 __________ 姓名____________ 1、( 10分)试证明:圆锥形枢轴的纵振动方程为: 玫[I h .丿&」V h .丿& 其中E是圆锥体的杨氏模量,「是质量密度,h是圆锥的高(如下图所示) 【提示:已知振动过程中,在x处受力大小为ES ,S为x处截面面积。】 ex 【证明】在圆锥体中任取一小段,截面园的半径分别是r1和r2,如图所示。于是,我们有 2、::u(x dx,t) 2 u(x,t) — 2 u2(x,t) E( D) E( * ) ( A )dx 于 x x t r1 = (h「x)tan : r2= (h _(x dx)) tan : 上式化简后可写成

2 2 ::U(X,t) 2 ::u(x,t) 2, ;u (x,t) E[(h -x) 卜亠 & -(h -'X) 〔x J - - (h -'X)dx 2 从而有 E ::[(^x)2;:U(x ,t)H-(^x)2::u2(x,t) .x :X :t 或成 2 ::[(1「)2汽("]“2(1「)小叩) .x h ::x h ;:t 其中a^E ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片, 它的一边y=b 处于较高温度U ,其它三边y=0. x = 0和x = a 则处于冷却介质中,因而保持较低的温度 u o 。试求该截面上的稳定温度 分布u(x,y),即求解以下定解问题: u|y 卫二 %, u|y 生二 U, 0 x a. 【提示:可以令u(x, y)二u 0 v(x, y),然后再用分离变量方法求解。】 【解】令u(x, y) v(x, y),则原定解问题变为 Wl x£=0, V=0, 0cy

武大期末复习-数理方程教学指导纲要

第九章定解问题的物理意义 基本要求与教学内容: 1、理解波动方程、热传导方程、Poison方程和Laplace方程的物理意 义, 根据物理问题写出其相应的方程(不需要推导方程)。 2、第一、第二类边界条件的物理意义。根据具体物理问题,掌握确 定这两类边界条件的方法。 3、初始条件的意义及确定。 本章重点: 掌握由具体的物理问题写出其相应的定解问题方法,即泛定方程和定解条件。

第十章利用积分变换解无界问题 基本要求与教学内容: 1、熟练掌握利用d'Alembert公式计算一维无界的齐次波动方程,理 解其解的物理意义。 2、了解一维无界非齐次波动方程的通解形式及计算。 本章重点: 利用d'Alembert公式计算一维无界的齐次波动方程

第十一章一维有界问题的分离变量 基本要求与教学内容: 1、理解分离变量法的基本概念:方法、条件、不同定解问题的通解 形式。 2、熟练准确写出第一、第二类齐次边界条件的本征值和本征函数。 3、熟练掌握用分离变量法求解一维有界问题的解:1)分离变量得到 的两个方程;2)由本征值问题确定相应的本征值和本征函数;3)确定关于)(t T方程的解(或者与其对应变量方程的解);4)定解问题的通解;5)由定解条件确定待定系数(通过系数比较方法确定系数是一种重要的方法)。 4、熟练掌握利用本征函数展开解一维有界非齐次方程:1)对应齐次 方程和齐次边界条件的本征函数的确定;2)非齐次项和初始条件按本征函数的展开, 方程的解按本征函数的展开;3)求解关于)(t T 方程的解;4)定解问题的解。 5、掌握非齐次边界条件的齐次化。 本章重点: ?第二类齐次边界条件的本征值和本征函数 ?用分离变量法求解一维有界问题的解 ?利用本征函数展开解一维有界非齐次方程 ?非齐次边界条件的齐次化

数学物理方法期末考试规范标准答案

天津工业大学(2009—2010学年第一学期) 《数学物理方法》(A)试卷解答2009.12 理学院) 特别提示:请考生在密封线左侧的指定位置按照要求填写个人信息,若写在其它处视为作弊。本试卷共有四道大题,请认真核对后做答,若有疑问请与监考教师联系。 一 填空题(每题3分,共10小题) 1. 复数 i e +1 的指数式为:i ee ; 三角形式为:)1sin 1(cos i e + . 2. 以复数 0z 为圆心,以任意小正实数ε 为半径作一圆,则圆内所有点的集合称为0z 点的 邻域 . 3. 函数在一点可导与解析是 不等价的 (什么关系?). 4. 给出矢量场旋度的散度值,即=????f ? 0 . 5. 一般说来,在区域内,只要有一个简单的闭合曲线其内有不属 ------------------------------- 密封线 ---------------------------------------- 密封线 ---------------------------------------- 密封线--------------------------------------- 学院 专业班 学号 姓名 装订线 装订线 装订线

于该区域的点,这样的区域称为 复通区域 . 6. 若函数)(z f 在某点0z 不可导,而在0z 的任意小邻域内除0z 外处处可导,则称0z 为)(z f 的 孤立奇点 . 7. δ函数的挑选性为 ? ∞ ∞ -=-)()()(00t f d t f ττδτ. 8. 在数学上,定解条件是指 边界条件 和 初始条件 . 9. 常见的三种类型的数学物理方程分别为 波动方程 、 输运方程 和 稳定场方程 . 10. 写出l 阶勒让德方程: 0)1(2)1(222 =Θ++Θ -Θ-l l dx d x dx d x . 二 计算题(每小题7分,共6小题) 1. )(z 的实部xy y x y x u +-=22),(,求该解析函数

数理方程期末考试试题

2013-2014学年度第二学期数理方程(B )期末考试试题 考后回忆版本 一、求下列偏微分方程的通解),(y x u u =(16分) (1)y x y x u 22=???(2)xy x u y x u y =??+???2二、求下列固有之问题的解。要求明确指出固有值及其所对应的固有函数(10分) ?????=′+∞<<<=+′+′′.0)2(,)0()20(,022y y x y x y x y x λ三、求第一象限}0,0|),{(2 >>∈=y x R y x D 的第一边值问题的Green 函数。(12分) 四、用积分变换法求解下列方程。(12分)???=>+∞<<<=).21(),0(,)(),0(. 1)1,(,0)0,()0,10(,4x x u x x x u t u t u t x u u t xx tt δ?七、用分离变量法求解下列方程。(15分) ?????=<++=++=++0|)1(,1 222222z y x zz yy xx u z y x z u u u 八、求解下列定解问题。(5分) ?????==>+∞<

数学物理方程期末考试试题(A)答案

孝感学院

解:设)()(t T x X u =代于方程得: 0''=+X X λ,0)1(''2=++T a T λ(8’) x C x C X λλsin cos 21+=,t a C t a C T 22211sin 1cos λλ+++= 由边值条件得: 22)( ,0l n C πλ== l x n t a A t a B u n n n πλλcos )1sin 1cos (221+++=∑∞= ?= l n dx l x n x l B 0cos )(2π?,?+=l n dx l x n x a l A 02cos )(12πψλ(15’) 证明:设代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。(15’)

解:设),(ηξp 是第一象限内一点,在该点放置单位点电荷,其对称点),(ηξ-p 格林函数: 22)()(1ln 21),,,(ηξπηξ-+-= y x y x G 22)()(1ln 21ηξπ++--y x (8’) ] )[(22220ηξπη+-=??-=??=x y G n G y 方程的解:dx x x f u ?+∞∞-+-=22)()(),(ηξπ ηηξ(15’) 五、证明下列初边值问题解的唯一性.(20分) ),,,()(2t z y x f u u u a u zz yy xx tt =++- ),,,(0z y x u t ?== ),,,(0 z y x u t t ψ== ).,,,(t z y x g u =Γ 其中,),,(,0Ω∈>z y x t Γ为Ω的边界. 解:设21,u u 都是方程的解设21u u u -=代入方程得: 0)(2=++-zz yy xx tt u u u a u 00==t u 00 ==t t u .0=Γu 设dxdydz u u u a u t E z y x t ])([21)(22222???Ω +++= =dt t dE )(dxdydz u u u u u u a u u zt z yt y xt x tt t ])([22???Ω +++ dxdydz u u u a u u zz yy xx tt t ])([[2 2??? Ω++-= 0=(10’)

研究生数理方程期末试题10111A答案

《数学物理方程》期末试题(A 卷) (参考答案) 学院 专业 学号 姓名 1、 (10分)试证明:圆锥形枢轴的纵振动方程为: 其中E 是圆锥体的杨氏模量,ρ是质量密度,h 是圆锥的高(如下图所示): 【提示:已知振动过程中,在x 处受力大小为u ES x ??,S 为x 处截面面积。】 【证明】在圆锥体中任取一小段,截面园的半径分别是1r 和2r ,如图所示。于是,我们有 上式化简后可写成 从而有 或成 其中2 E a ρ = ,证明完毕。 2、 (20分)考虑横截面为矩形的散热片,它的一边y b =处于较高温度U ,其它三边0y =, 0x =和x a =则处于冷却介质中,因而保持较低的温度0u 。试求该截面上的稳定温度 分布(,)u x y ,即求解以下定解问题: 【提示:可以令0(,)(,)u x y u v x y =+,然后再用分离变量方法求解。】 【解】令0(,)(,)u x y u v x y =+,则原定解问题变为 分离变量:

代入方程得到关于X 和Y 的常微分方程以及关于X 的定解条件: 可以判定,特征值 特征函数 利用特征值n λ可以求得 于是求得特征解 形式解为 由边界条件,有 得到 解得 最后得到原定解问题的解是 3、 (20分)试用行波法求解下列二维半无界问题 【解】方程两端对x 求积分,得 也即 对y 求积分,得 也即 由初始条件得 也即 再取0x =,于是又有 从而得 于是 将这里的()g x 和()h y 代入(,)u x y 的表达式中,即得 4、 (20分)用积分变换法及性质,求解无界弦的自由振动问题: 【提示:可利用逆Fourier 积分变换公式:11 ,||sin []20, ||x at a t F a a x at ωω-?

最新数学物理方程期末考试试题及答案

数学物理方程期末考试试题及答案 一、求解方程(15分) ?????===-=+=-. )()(0002x u x u u a u at x at x xx tt ψ? 其中)0()0(ψ?=。 解:设? ??+=-at x at x ηξ=则方程变为: 0=ξηu ,)()(at x G at x F u ++-=(8’)由边值条件可得: )()0()2(),()2()0(x G x F x x G F ψ?=+=+ 由)0()0(ψ?=即得: )0()2 ()2( ),(?ψ?--++=at x at x t x u 。 二、利用变量分离法求解方程。(15分) ?????==≥==∈=-====)(,)(, 0,0,),(,00002x u x u t u u Q t x u a u t t t l x x xx tt ψ? 其中l x ≤≤0。0>a 为常数 解:设)()(t T x X u =代于方程得: 0''=+X X λ,0''2=+T a T λ(8’) x C x C X λλsin cos 21+=,at C at C T λλsin cos 21+= 由边值条件得:

21)( ,0l n C πλ== l x n at A at B u n n n πλλsin )sin cos (1+=∑∞= ?=l n dx l x n x l B 0sin )(2π?,?=l n dx l x n x an A 0sin )(2πψπ 三.证明方程02=--cu u a u xx t )0(≥c 具有狄利克雷边界条件的初边值问题解的唯一性与 稳定性. (15分) 证明:设u e v ct -=代入方程: ?? ???====-=).(),(),(),0()(02102t g t l v t g t v x v v a v t xx t ? 设21,v v 都是方程的解设21v v v -=代入方程得: ?? ???====-=0),(,),0(0002t l v t v v v a v t xx t 由极值原理得0=v 唯一性得证。(8’)由 ≤-21v v ετ≤-2 1v v ,稳定性得证由u e v ct -=知u 的唯一性稳定性 得证。 四.求解二维调和方程在半平面上的狄利克雷问题(15分). ,0,0>=++=?z u u u u zz yy xx ).(0x f u z == 解:设),,(ζηξp 是上半平面内一点,在该点放置单位点电荷,其对称点 ),,(?ηξ-p 格林函数: 222)()()(141 ),,,(?ηξπ ηξ-+-+--=z y x y x G 222)()()(141 ?ηξπ++-+-+z y x

数学物理方法试卷(全答案).doc

嘉应学院物理系《数学物理方法》B课程考试题 一、简答题(共70 分) 1、试阐述解析延拓的含义。解析延拓的结果是否唯一( 6 分) 解析延拓就是通过函数的替换来扩大解析函数的定义域。替换函数在原定义域上与替换前的函数 相等。 无论用何种方法进行解析延拓,所得到的替换函数都完全等同。 2、奇点分为几类如何判别(6分) 在挖去孤立奇点Zo 而形成的环域上的解析函数F( z)的洛朗级数,或则没有负幂项,或则 只有有限个负幂项,或则有无限个负幂项,我们分别将Zo 称为函数 F( z)的可去奇点,极点及本性奇点。 判别方法:洛朗级数展开法 A,先找出函数f(z)的奇点; B,把函数在的环域作洛朗展开 1)如果展开式中没有负幂项,则为可去奇点; 2)如果展开式中有无穷多负幂项,则为本性奇点; 3)如果展开式中只有有限项负幂项,则为极点,如果负幂项的最高项为,则为m阶奇点。 3、何谓定解问题的适定性( 6 分) 1,定解问题有解; 2,其解是唯一的; 3,解是稳定的。满足以上三个条件,则称为定解问题 的适定性。 4、什么是解析函数其特征有哪些( 6 分) 在某区域上处处可导的复变函数 称为该区域上的解析函数. 1)在区域内处处可导且有任意阶导数 . u x, y C1 2)这两曲线族在区域上正交。 v x, y C2 3)u x, y 和 v x, y 都满足二维拉普拉斯方程。(称为共轭调和函数 ) 4)在边界上达最大值。 4、数学物理泛定方程一般分为哪几类波动方程属于其中的哪种类型( 6 分)

数学物理泛定方程一般分为三种类型:双曲线方程、抛物线方程、椭圆型偏微分方程。波动方程属于其中的双曲线方程。 5、写出 (x) 挑选性的表达式( 6 分) f x x x 0 dx f x 0 f x x dx f 0 f (r ) ( r R 0 ) dv f ( R 0 ) 、写出复数 1 i 3 的三角形式和指数形式( 8 分) 6 2 cos isin 1 3 2 i 2 三角形式: 2 sin 2 cos 2 1 i 3 cos i sin 2 3 3 1 指数形式:由三角形式得: 3 i z e 3 、求函数 z 在奇点的留数( 8 分) 7 1)( z 2) 2 (z 解: 奇点:一阶奇点 z=1;二阶奇点: z=2 Re sf (1) lim (z 1) z 1 ( z 1)( z 2) 2 z 1

数理方程期末试题B答案

北 京 交 通 大 学 2007-2008学年第二学期《数理方程与特殊函数》期末考试试卷(B ) (参考答案) 学院_ ____________ 专业___________________ 班级________ ____ 学号_______________ 姓名___________ __ 一、 计算题(共80分,每题16分) 1. 求下列定解问题(15分) 2. 用积分变换法及性质,求解半无界弦的自由振动问题:(15分) 3. 设弦的两端固定于0x =及x l =,弦的出示位移如下图所示。初速度为零,又没有外力 作用。求弦做横向振动时的位移(,)u x t 。 [ 解 ] 问题的定解条件是 由初始条件可得 4. 证明在变换, x at x at ξη=-=+下,波动方程xx tt u a u 2=具有形式解0=n u ξ,并由此求 出波动方程的通解。 5. 用分离变量法解下列定解问题 [ 提示:1) 可以直接给出问题的固有函数,不必推导;2) 利用参数变易法。] [ 解 ] 对应齐次方程的定解问题的固有函数是x l n π sin ,其解可以表示成 把原问题中非齐次项t x t x f l a l π π22sin sin ),(=按照固有函数展开成级数 因此有 利用参数变易法,有 于是 6. 用Bessel 函数法求解下面定解问题 [ 解 ] 用分离变量法求解。令)()(),(t T R t u ρρ=,则可得

以及 设0ρβλn n = 为Bessel 函数)(0x J 的正零点,则问题(II )的特征值和特征函数分别为 问题(I )的解为 于是原问题的解是 由初始条件 得到 故 于是最后得到原问题的解是 二、 证明题(共2分,每题10分) 7. 证明平面上的Green 公式 其中C 是区域D 的边界曲线,ds 是弧长微分。 [证明] 设),(),,(y x Q y x p 在D+C 上有一阶连续偏导数,n 为C 的外法线方向,其方向余弦为βαcos ,cos ,则有 再设u,v 在D 内有二阶连续偏导数,在D+C 上有一阶连续偏导数,令 得到 交换u,v ,得到 上面第二式减去第一式,得到 证毕。 8. 证明关于Bessel 函数的等式:

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 1、长度为 l 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为k 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。(10分) 2、长为l 的均匀杆,侧面绝热,一端温度为0度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是() 2 x l x -,试写出其定解问题。(10分) 3、试用分离变量法求定解问题(10分): .? ?? ?? ?? ??===><??? ==?????=+= ????? 5、利用行波法,求解波动方程的特征问题(又称古尔沙问题)(10分):

???????==??=??=+=-).()(002 22 2 2x u x u x u a t u at x at x ψ? ())0()0(ψ?= 6、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?????=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 7、用积分变换法求解定解问题(10分): ???? ???=+=>>=???==,1,10,0,1002y x u y u y x y x u 8、用积分变换法求解定解问题(10分): ?? ?==>∈=0)0,(,sin )0,(0,,2x u x x u t R x u a u t xx tt 9、用格林函数法求解定解问题(10分): 22220 0, y 0, () , .y u u x y u f x x =???+=

数理方程试卷及答案2

长沙理工大学考试试卷 ………………………………………………………………………………………………………………… 试卷编号 拟题教研室(或教师)签名 教研室主任签名 ………………………………………………………………………………………………………………… 课程名称(含档次) 数学物理方程与特殊函数 课程代号 专 业 层次(本、专) 本 科 考试方式(开、闭卷) 闭卷 一.判断题:(本题总分25分,每小题5分) 1.二阶线性偏微分方程062242=+++-y x yy xy xx u u u u u 属于椭圆型; ( ) 2.定解问题的适定性包括解的稳定性、解的唯一性和解的存在性; ( ) 3.如果格林函数),(0M M G 已知,且它在Γ+Ω上具有一阶连续偏导数,又若狄利克雷 问题???=Ω∈=?Γ ).,,(|,),,(0z y x f u z y x u 在Γ+Ω上具有一阶连续偏导数的解存在,那么其解可 表示为=)(0M u dS n G z y x f ??Γ??-) ,,(; ( ) 4.设)(x P n 为n 次Legendre 多项式,则0)()(1 1 1050358?-=dx x P x P ; ( ) 5.设)(x J n 为n 阶Bessel 函数,则 [])()(021ax xJ a ax xJ dx d =. ( ) 二.解答题:(本题总分65分) 1.(本小题15分)设有一根长为l 的均匀细杆,它的表面是绝热的,如果它的端点温度为1),0(u t u =,2),(u t l u =,而初始温度为0T ,写出此定解问题. 2.(本小题20分)利用固有函数法求解下面的定解问题 ???????====><<+=. 0),(,0),0(,0)0,(,0)0,(),0,0(cos sin 2t l u t u x u x u t l x l x t A u a u x x t xx tt πω 其中ω,A 是常数. 3.(本小题15分)求出方程xy u u yy xx =+的一个特解. 第 1 页(共 2 页)

2012、11、10、09年电子科技大学研究生数理方程期末试卷

2012、11、10、09年电子科技大学研究生数理方程期末试卷

电子科技大学研究生试卷 (考试时间: 14点 至 16 点 ,共 2小时) 课程名称 数理方程与特殊函数 教师 学时60 学分 3 教学方式 闭卷 考核日期 2012年 12 月 28 日 成绩 考核方式: (学生填写) 1.把方程 22222320u u u x x y y ???++=????化为标准型,指出其 类型,求出其通解. (10分) 2. 设定解问题:(10分) 2000(),0,0,,0(),(),0. tt xx x x l t t t u a u f x x l t u A u B t u x u x x l ?ψ====?-=<<>?? ==>??==≤≤?? 将该定解问题化成可直接分离变量求解的问题(不需要求出解的具体形式)。 学 号 姓 学 院 教 座位 ……………………密……………封……………线……………以……………

第 1页 3. 长为l 的均匀细杆,其侧面与左端保持零度,右端绝热,杆内初始温度分布为()x ?,求杆内温度分布 (,)u x t . (20分) 4.求下面的定解问题:(10分) 22 009,(,0)18,sin 18 t tt xx t t t u u x e x R t u x x u x ==?-=∈>??=++=+??.

第2页 5.求22 cos()a e x d ?τ??+∞-?.(10分) 6. 222 23()(22)(25) s s F s s s s s ++=++++,求Laplace 逆变换1 (())L F s -.(10分)

数学物理方程与特殊函数-模拟试题及参考答案

成都理工大学 《数学物理方程》模拟试题 一、填空题(3分?10=30分) 1.说明物理现象初始状态的条件叫( ),说明边界上的约束情况的条件叫( ),二者统称为 ( ). 2.三维热传导齐次方程的一般形式是:( ) . 3 .在平面极坐标系下,拉普拉斯方程算符为 ( ) . 4.边界条件 f u n u S =+??)(σ是第( )类边界条件,其中S 为边 界. 5.设函数),(t x u 的傅立叶变换式为),(t U ω,则方程22 222x u a t u ??=??的傅立叶变换为 ( ) . 6.由贝塞尔函数的递推公式有 =)(0x J dx d ( ) . 7.根据勒让德多项式的表达式有)(3 1)(3 202x P x P += ( ). 8.计算积分 =? -dx x P 2 1 1 2)]([( ) . 9.勒让德多项式)(1x P 的微分表达式为( ) . 10.二维拉普拉斯方程的基本解是( ) . 二、试用分离变量法求以下定解问题(30分): 1.??? ? ? ????<<=??===><

2.???? ? ?? ??===><<<+??=??====20,0,8,00,20,16200202 2 2 22x t u t x x u t u t t x x u u u 三、用达朗贝尔公式求解下列一维波动方程的初值问题(10分) ?? ???=??=>+∞<<-∞+??=??==0 ,2sin 0,,cos 0022 2 22t t t u x u t x x x u a t u 四、用积分变换法求解下列定解问题(10分): ??? ? ???=+=>>=???==, 1, 10,0,1002y x u y u y x y x u 五、利用贝赛尔函数的递推公式证明下式(10分): )(1)()(' 0' '02x J x x J x J -= 六、在半径为1的球内求调和函数u ,使它在球面上满足 θ21cos ==r u ,即所提问题归结为以下定解问题(10分):

数理方程试卷A

一. (10分)填空题 1.初始位移为)(x ?,初始速度为)(x ψ的无界弦的自由振动可表述为定解问题: ?????==>+∞<<∞-===).(),(0,,00 2 x u x u t x u a u t t t xx tt ψ? 2.为使定解问题 ???? ???=======0 ,000 02t l x x x xx t u u u u u a u (0u 为常数) 中的边界条件齐次化,而设)(),(),(x w t x v t x u +=,则可选=)(x w x u 0 3.方程0=xy u 的通解为)()(),(y G x F y x u += 4.只有初始条件而无边界条件的定解问题,称为柯西问题. 5.方程y x u xy 2=满足条件1cos ),0(,)0,(2-==y y u x x u 的特解为 1cos 6 1),(22 3-++= y x y x y x u 二. (10分)判断方程 02=+yy xx u y u 的类型,并化成标准形式. 解:因为)0(02≠<-=?y y ,所以除x 轴外方程处处是椭圆型的。 ……2分 它的特征方程是 022 =+??? ??y dx dy …… 5分

即iy dx dy ±= 特征线为 21ln ,ln c ix y c ix y =+=- 作变换:???==x y ηξln …… 7分 求偏导数 ????? ???? ??-====)(1 1 2ξξξξ ηηηu u y u u y u u u u u yy y xx x 将二阶偏导数代入原方程,便可得到标准形式 ξηηξξu u u =+ …… 10分 三. (10分)求解初值问题 ?????==>+∞<<∞-===x u x u t x u u t t t xx tt cos ,0,,4020 解:x x x x a cos )(,)(,22===ψ? 利用达朗贝尔公式 ?+-+-++=at x at x d a at x at x t x u ξξψ??)(21)]()([21),( … …5分 得

数学物理方程期末试卷

2012学年第二学期数学与物理方程期末试卷 出卷人:欧峥 、长度为 的弦左端开始时自由,以后受到强度为sin A t ω的力的作用,右端系在弹性系数为 的弹性支承上面;初始位移为(),x ?初始速度为().x ψ试写出相应的定解问题。 分 、长为l 的均匀杆,侧面绝热,一端温度为 度,另一端有已知的恒定热流进入,设单位时间流入单位截面积的热量为q ,杆的初始温度分布是 ()2 x l x -,试写出其定解问题。 分 、试用分离变量法求定解问题 分 : ?????????===><

222sin cos ,(0,0)(0,)3,(,)6 4(,0)31,(,0)sin tt xx t u a u x x x l t l l u t u l t x u x u x x l l πππ?=+<<>???==?????=+= ????? 、利用行波法,求解波动方程的特征问题(又称古尔沙问题) 分 : ???????==??=??=+=-). ()(0022222x u x u x u a t u at x at x ψ? ())0()0(ψ?= 、用达朗贝尔公式求解下列一维波动方程的初值问题( 分) ?????=??=>+∞<<-∞+??=??==0,2sin 0,,cos 0022222t t t u x u t x x x u a t u 、用积分变换法求解定解问题( 分): ???????=+=>>=???==,1, 10 ,0,1002y x u y u y x y x u 、用积分变换法求解定解问题 分 :

天津大学研究生课程-数理方程试题

一. 判断题(每题2分). 1. 2u u x y x y x ??+=???是非线性偏微分方程.( ) 2. 绝对可积函数一定可做Fourier 积分变化.( ) 3. ()(1) 1.n n F x n Legendre F =是次正交多项式, 则 ( ) 4. (,)0xy f x y =的解是调和函数.( ) 5. **12u u 已知,是线性偏微分方程(,)xx yy u u f x y +=的解,则**12u u -是0u ?= 的解.( ) 二. 填空题(每题2分). 1. ()sin t xx yy u u u xt -+= 是____________型偏微分方程. 2. 内部无热源的半径为R 的圆形薄板,内部稳态温度分布,当边界上温度为()t φ时,试建立方程的定解问题________________________. 3. 2x 的Legendre 正交多项式的分解形式为__________________. 4.某无界弦做自由振动,此弦的初始位移为()x φ,初始速度为()a x φ-,则弦振动规律为______________________________. 5. []()____________.at m L e t s = 三.求解定解问题(12分) 200sin ; 0,0;0. t xx x x x x l t u a u A t u u u ω===-====

四.用积分变换方法求解以下微分方程(每题12分,共24分) (1) 001,0,0; 1,1. xy x y u x y u y u ===>>=+= (2) 00230, 1.t t t y y y e y y =='''+-='== 五.某半无界弦的端点是自由的,初始位移为零,初始速度为cos x ,求弦的自由振动规律。(12分)

2008年12月南京信息工程大学数理方程期终考试试卷A(1)

南京信息工程大学数理方程期终考试试卷 A 2008年 12月 任课教师 学生所在系 专业 年级 班级 学生姓名 学号 一、 填空题(共60分) 1. 方程44442242(,)u u u f x y x x y y ???++=????是 四 阶 线性 (“线性”或“非线性”) 非齐次 (“齐次”或“非齐次”)偏微分方程(3分); 2. 方程222220u u a t x ??-=??的全部解可写为(,)u x y =()()f x at g x at ++-(,f g 是任意二阶连续可微函数) ;(3分) 3. 二维Laplace 方程22220u u u x y ???=+=??的基本解为(,)u x y =12π(3分) 4. 若(,)i u x t 是非齐次波动方程22222(,)i u u a f x t t x ??-=??的解,则1 (,)i i i c u x t ∞=∑满足的微分方程是222221 (,)i i n u u a c f x t t x ∞=??-=??∑;(3分) 5. 方程2222223260u u u u u x x y y x y ?????+-++=??????的类型属于 双曲型或波动方程 ,其特征方程为3dy dx =或1dy dx =-,特征曲线为 13y x c -=和 2y x c +=,可以将其化为标准型的自变量变换为3y x y x ξη=-??=+?,若要消去一阶导数项,可以通过函数变换 (,)(,) u v e λξμηξηξη+=(其中,λμ待定);(5分) 6. 定解问题2,0(,0)(),(,0)() tt xx t u a u x t u x x u x x x ?ψ?=-∞<<∞>?==-∞<<∞?属于初值 问题(“初值”或“边值”),其解的表达式为(,)u x y = 11[()()]()22x at x at x at x at d a ??ψξξ+-++-+?;定解问题0u x u f x n ?=∈Ω????=∈Γ???属于

数理方程期末复习

1. 将下列函数展开为球函数()()sin 0,1,2,,cos cos 0,1,2,3,m m l l m m l Y P m l ?θ?θ?=?? ??=?? ??=???? ""的形式。 (1) ()sin sin cos sin θθθ?+ (2) sin sin θ? (3) ()6cos 1sin cos θθ?+ 2. 将下列函数展开为球函数()()sin 0,1,2,,cos cos 0,1,2,3,m m l l m m l Y P m l ?θ?θ?=?? ??=?? ??=???? ""的 形式。 (1) ()3sin 2sin cos 2sin 2cos 2cos 2sin 2cos 21θ?θ?θ?????++? (2) sin cos θ? (3) ()13cos sin cos θθ?+ 3. 如图所示,长为l 的弦,两端固定,弦中张力为T ,在弦的中间点以横向力0F 把弦拉开,然后突然撤除这力,求解弦的振动。 4. 求解细杆导热问题,杆长l ,两端保持为零度,初始温度分布 ()20t u bx l x ==? 5. 在球坐标系下将三维波动方程220tt u a u ??=分离变量。其中,拉普拉斯算符在球坐标系下的形式为 22 222222 111sin sin sin u u u u r r r r r r θθθθθφ??????????=++ ?????????????

()()()()()()()()(),,,,;,. u r T t v v R r Y Y θφθφθφθφ===ΘΦr r 求出()T t ,()R r ,(),Y θφ,()θΘ,()φΦ分别满足的本征方程以及通解的形式。 6. 在柱坐标系下将三维输运方程220t u a u ??=分离变量。其中,拉普拉斯算符在柱坐标系下的形式为 222 22211u u u u r r r r r z φ???????=++???????? ()()()()()()(),,,. u r T t v v R r Z z θφφ==Φr r 求出()T t ,()R r ,()φΦ,()Z z 分别满足的本征方程以及通解的形式。 7. 在半径为0r 的球的(1)内部,(2)外部求解定解问题 2222 0, 1cos cos cos .3r r u u r θ??=??=? ??=?+??? 8. 均匀中空介质球壳,内半径为1r ,外半径为()21r r >,壳层内介电常数为ε,壳层外和中间空心部分为真空。把介质球壳放在点电荷04q πε的电场中,球心跟点电荷相距()2d r >,求解介质球壳外、介质球壳区域、和中间空心区域内的静电场中的电势。 ()0cos ,1l l l h P h θ∞ ==<∑

数学物理方程考试试题及解答

数学物理方程试题(一) 一、填空题(每小题5分,共20分) 1.长为π的两端固定的弦的自由振动,如果初始位移为x x 2sin ,初始速度为 x 2cos 。则其定解条件是 2. 方程 03=??-??x u t u 的通解为 3.已知边值问题???===+0 )()0(0 )()('"πλX X x X x X ,则其固有函数)(x X n = 4.方程0)(222'"2=-++y n x xy y x α的通解为 二.单项选择题(每小题5分,共15分) 1. 拉普拉斯方程02222=??+??y u x u 的一个解是( ) (A )xy e y x u x sin ),(= (B )22),(y x y x u += (C )2 21),(y x y x u += (D )22ln ),(y x y x u += 2. 一细杆中每点都在发散热量,其热流密度为),(t x F ,热传导系数为k ,侧面绝热,体密度为ρ,比热为c ,则热传导方程是 ( ) (A )ρc t x F x u a t u ),(222 22+??=?? (B )ρc t x F x u a t u ),(222+??=?? (C ) ρc t x u x F a t F ),(22222+??=?? (D) ρc t x u x F a t F ),(22 2+??=?? (其中ρc k a =2) 3. 理想传输线上电压问题??? ??? ?=??=??=??=x aA t u x A x u x u a t u t ωωωsin ,cos )0,(0 2 2 222 ( 其中C L a 1 2 = )的解为( ) (A ))(cos ),(at x A t x u +=ω (B )t a x A t x u ωωcos cos ),(= (C )t a x A t x u ωωsin cos ),(= (D ))(cos ),(t a x A t x u -=ω

相关主题
文本预览
相关文档 最新文档