当前位置:文档之家› 桥面板计算-规范法

桥面板计算-规范法

桥面板计算-规范法
桥面板计算-规范法

1. 简支板

1.1. 恒载

铺装厚度为9cm ,桥面板厚度为23cm ,单位长度桥面板上恒载集度为:g=0.09*23+0.23*25=7.82kN /m 。

恒载下与计算跨径相同的简支板跨中弯矩:

m kN gl M og ?=??==

128.32.382.781812 1.2. 活载

1.2.1. 最不利荷载布置方式

根据《公路桥涵设计通用规范(JTG D60-2015)》4.3.1节车辆荷载加载方式,结合前面的弯矩影响线,对桥面板进行车辆布载。

图 1-1跨中弯矩最不利加载方式

1.2.2. 荷载分布宽度

根据《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》4.1节计算车辆荷载分布宽度。

车轮着地尺寸:

a1=0.2,b1=0.6

横桥向荷载分布宽度:

b=b1+2h=0.6+2*0.09=0.78m

顺桥向荷载分布宽度:

单个车轮在板的跨径中部时,a=a1+2h+l/3=0.2+2*0.09+3.2/3=1.447m>1.4m ,按多个车轮计算,a=a1+2h+d+l/3=0.2+2*0.09+1.4+3.2/3=2.847m 。

均布荷载大小:P1=2*(140/2)/(0.78*2.847)=63.044kN/m 2。

表 1.1加载点有效分布宽度

1.2.3. 活载弯矩

m kN M oq ?=??-?=431.412

39.039.0044.636.18907.28 2. 连续板

梁高h=1.1m ,桥面板高度t=0.23m ,t/h<1/4,根据《公预规》4.1.2: 恒载支点弯矩M=-0.7*3.128=-2.190kN ·m ;

恒载跨中弯矩M=0.5*3.128=1.564kN ·m 。

活载支点弯矩M=-0.7*41.431=-29.002kN·m;

活载跨中弯矩M=0.5*41.431=20.716kN·m。

3.效应组合

承载力极限状态基本组合

冲击系数取0.3

跨中:M ud=1.1*(1.2*1.564+1.8*(1+0.3)*20.716)=55.387kN·m 支点:M ud=-1.1*(1.2*2.190+1.8*(1+0.3)*29.002)=-77.542kN·m 正常使用极限状态频遇组合

跨中:M fd=1.564+0.7*20.716=16.065 kN·m

支点:M fd=-(2.190+0.7*29.002)=-22.491 kN·m

正常使用极限状态准永久组合

跨中:M qd=1.564+0.4*20.716=9.850 kN·m

支点:M qd=-(2.19+0.4*29.002)=-13.791kN·m

标准组合

跨中:M=1.564+20.716=22.28kN·m

支点:M=-(2.19+29.002)=-31.192kN·m

4.应力计算

桥面板厚度为23cm,单位宽度桥面板抗弯惯性距为:

433

100134.112m bh I y -?==。

标准组合下跨中截面最大拉应力:MPa W M 527.26

/23.011000/28.222=?= 标准组合下支点截面最大拉应力:MPa W M 538.36

/23.011000/192.312=?= 5. 承载力验算

根据承载力极限状态对桥面板进行抗弯配筋设计。

跨中:M ud =55.387kN ·m

支点:M ud =-77.542kN ·m

若桥面板横桥向上下缘按12@10进行钢筋布置,保护层厚度为20mm ,则跨中截面和支点截面承载力验算结果如下图。

a)跨中截面 b)支点截面

图 5-1跨中、支点抗弯承载力验算

桥博常见问题问答

常见问题解答 第一节直线桥梁设计计算 一、一般步骤 1 利用本系统进行设计计算一般需要经过:离散结构划分单元,施工分析,荷载分析,建立工程项目,输入总体信息、单元信息、钢束信息、施工阶段信息、使用阶段信息,进行项目计算,输出计算结果等几个步骤。 2 结构离散的一般原则:参考使用手册P36。 二、总体信息 1 极限组合计预应力与极限组合计预二次矩 V3.0中预应力二次矩的计算方法仅适用于连续梁,其他结构形式不适用。程序仅考虑竖向边界条件对变形的约束影响(次竖向力产生的弯矩),没有考虑次水平力和次弯距的影响。 一般情况下,对于连续梁,应只选择“计入二次矩”,但应保证在形成超静定结构后不能有体系转化;对于一次落架或逐孔施工的结构体系,可以采取一次落架的模型计算。 对于大跨度连续刚构体系的桥梁,由于结构的线刚度比较小,二次效应的比重比较小,对于梁体,计不计二次效应对极限组合内力基本影响不大。但对于墩身的计算应分计入预应力和不计预应力两种工况进行偏安全的计算(墩身中没有预应力通过,预应力对墩身的效应就是二次效应了)。 2 累计初位移 选择此项表示新安装的工作节点将根据邻近节点的累计位移作为本节点的初始位移,对于除悬臂拼装以外的结构在计算时不应勾选该项。一般情况下,对于悬臂施工的结构,要输出位移图的时候,同一节点处,由于施工缝的影响,位移会不连续(有突变)。如果想输出连续的位移图时,可选择此项,此时,输出位移图时,新单元的左节点位移以已浇筑单元右节点累计位移为准来进行输出,这样就可以得到一张连续的位移图 (慎用仅用于出图) 三、单元信息 1 单元的自重: 单元的自重是根据用户指定的截面大小和自重系数在单元安装阶段自动计入的,如果不计入自重,则将自重系数置为0。附加截面的自重是根据附加截面中指定的计自重阶段来计算的。 2 附加截面: 附加截面用来模拟结构单元截面的分次施工或不同材料等情况的,附加截面与主截面共同形成有效断面参与结构受力。输入数据图形显示中主、附加截面的横向 (自重系数同时影响主、附截面) 位置有时出现重叠现象,由于系统没有输入主、附截面的横向相对位置,因此会出现此类情况,这并不影响结构的计算,因为平面杆系计算中不考虑截面对竖直轴的几何特性,因此横向位置没有影响。 系统根据用户设定的截面几何特征和材料特征以及施工特征在各施工阶段合成有效截面。 3 截面 (1)湿接缝用附加截面输入,注意计入自重阶段和参与受力阶段。

桥面板计算-规范法

1. 简支板 1.1. 恒载 铺装厚度为9cm ,桥面板厚度为23cm ,单位长度桥面板上恒载集度为:g=*23+*25=m 。 恒载下与计算跨径相同的简支板跨中弯矩: m kN gl M og ?=??==128.32.382.78 1812 1.2. 活载 1.2.1. 最不利荷载布置方式 根据《公路桥涵设计通用规范(JTG D60-2015)》节车辆荷载加载方式,结合前面的弯矩影响线,对桥面板进行车辆布载。 图 1-1跨中弯矩最不利加载方式 1.2.2. 荷载分布宽度 根据《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004)》节计算车辆荷载分布宽度。 车轮着地尺寸: a1=,b1= 横桥向荷载分布宽度: b=b1+2h=+2*=

顺桥向荷载分布宽度: 单个车轮在板的跨径中部时,a=a1+2h+l/3=+2*+3=>,按多个车轮计算,a=a1+2h+d+l/3=+2*++3=。 均布荷载大小:P1=2*(140/2)/*=m 2。 表 1.1加载点有效分布宽度 1.2.3. 活载弯矩 m kN M oq ?=??-?=431.412 39.039.0044.636.18907.28 2. 连续板 梁高h=,桥面板高度t=,t/h<1/4,根据《公预规》: 恒载支点弯矩M=*=·m ; 恒载跨中弯矩M=*=·m 。 活载支点弯矩M=*=·m ; 活载跨中弯矩M=*=·m 。 3. 效应组合 承载力极限状态基本组合 冲击系数取 跨中:M ud =**+*(1+*=·m 支点:M ud =**+*(1+*=·m 正常使用极限状态频遇组合 跨中:M fd =+*= kN ·m 支点:M fd =-+*= kN ·m

桥博中横向分布系数取值详细介绍

关于横向分布调整系数: 一、进行桥梁的纵向计算时: a) 汽车荷载 1对于整体箱梁、整体板梁等整体结构 其分布调整系数就是其所承受的汽车总列数,考虑纵横向折减、偏载后的修正值。例如,对于一个跨度为230米的桥面4车道的整体箱梁验算时,其横向分布系数应为4 x 0.67(四车道的横向折减系数) x 1.15(经计算而得的偏载系数)x0.97(大跨径的纵向折减系数) = 2.990。汽车的横向分布系数已经包含了汽车车道数的影响。 2多片梁取一片梁计算时 按桥工书中的几种算法计算即可,也可用程序自带的横向分布计算工具来算。计算时中梁边梁分别建模计算,中梁取横向分布系数最大的那片中梁来建模计算。 b) 人群荷载 1对于整体箱梁、整体板梁等整体结构 人群集度,人行道宽度,公路荷载填所建模型的人行道总宽度,横向分布系数填1 即可。因为在桥博中人群效应= 人群集度x人行道宽度x人群横向分布调整系数。城市荷载填所建模型的单侧人行道宽度,若为双侧人行道且宽度相等,横向分布系数填2,因为城市荷载的人群集度要根据人行道宽度计算。 2多片梁取一片梁计算时 人群集度按实际的填写,横向分布调整系数按求得的横向分布系数填写,一般算横向分布时,人行道宽度已经考虑了,所以人行道宽度填1。 c) 满人荷载 1对于整体箱梁、整体板梁等整体结构 满人宽度填所建模型扣除所有护栏的宽度,横向分布调整系数填1。与人群荷载不同,城市荷载不对满人的人群集度折减。 2多片梁取一片梁计算时 满人宽度填1,横向分布调整系数填求得的。 注: 1、由于最终效应: 人群效应= 人群集度x人行道宽度x人群横向分布调整系数。 满人效应= 人群集度x满人总宽度x满人横向分布调整系数。 所以,关于两项的一些参数,也并非一定按上述要求填写,只要保证几项参数乘积不变,也可按其他方式填写。 2 、新规范对满人、特载、特列没作要求。所以程序对满人工况没做任何设 计验算的处理,用户若需要对满人荷载进行验算的话,可以自定义组合。 二、进行桥梁的横向计算时 a) 车辆横向加载分三种:箱梁框架,横梁,盖梁。 1计算箱形框架截面,实际是计算桥面板的同时考虑框架的影响,汽车横向分布系数=轴重/顺桥向分布宽度; 2横梁,盖梁,汽车荷载横向分布调整系数可取纵向一列车的最大支反力(该值可由纵向计算时,使用阶段支撑反力汇总输出结果里面,汽车MaxQ对

桥博调索的使用方法

调索过程中存在多次试算和微量调整过程,为此桥博3.0中提供了一个交互式的调索工具,利用此工具可进一步缩短调索过程,如果再配套调束工具则完成斜拉桥的设计计算就不再令人感到棘手了。 调索介绍 (1) 调索界面操作 (2) 功能区 (2) 1. 重载索力 (2) 2. 重载效应 (3) 3. 上传桥博 (3) 4. 调索次号 (3) 5. 约束定义 (3) 6. 显示设置 (4) 7. 刷新方式 (5) 效应窗口操作 (5) 图形窗口操作 (7) 调索操作流程 (8) 1. 调索前的数据准备 (8) 2. 初步确定施工、成桥索力 (8) 3. 调整施工、成桥索力 (8) 调索示例 (9) 1. 完成全桥建模 (9) 2. 打开调索文档 (9) 3. 调整索力 (11) 4. 重载效应 (12) 5. 调整索力 (13) 调索介绍 1.调索前的准备: l建立工程计算项目,在总体信息中选择生成调索信息,执行项目计算; l“数据”菜单中选择“调索” l调索界面如图1: 图1 2.两套数据 l“调索”是在桥博的基础上开发的,与桥博之间可以进行数据交互。 l首次打开“调索”文件时程序从“计算结果”中读取索力信息(包括张拉力与张拉阶段)。在调

索过程中可以通过“重载索力”、“重载效应”等操作从桥博“计算结果”中调用相关信息并作为此后调索的初始状态。 l“调索”的结果可以通过“上传桥博”反馈到桥博“原始数据”,项目重新计算后才能获得准确的计算结果。 l索力与效应等信息在“调索”中的不同区域显示。 3.调索窗口组成 l功能区:完成“调索”界面与桥博的数据交互操作以及“调索”界面数据管理 l效应区:以桥博的计算结果形成效应图作为此后调整索力的初始效应并根据“调索”界面中索力的变化刷新效应图 l调索区:交互编辑拉索索力 l拉索管理窗:可显示或隐藏指定拉索 4.注意事项 工程项目在后台计算过程中,窗口中的索力信息应注意不要修改,否则其变化无法反映到效应图中,同时在读取调索数据时也容易产生错误,此时只能耐心等待。 调索界面操作 功能区 1.重载索力: 将桥梁博士中的索力数据重新载入到调索界面中,“调索”中索力被删除,结构效应同步刷新。 注意:重载索力的操作意味着放弃对索力已做的调整,一般在调索混乱后或项目施工方案改变后使用。 2.重载效应: 将项目的最新效应置为此后调索的初始效应。 注意:该操作一般用在上传索力数据、项目重新计算后,或改变预应力、荷载等重新计算后,主要目的是消除收缩、徐变影响或计入预应力影响等,以获得当前状态下结构的准确效应,用户需确保当前索力与项目计算中的索力状态相同,也就是说此时的索力与结构效应是匹配的。 3.上传桥博: 将调索界面中的索力数据上传到桥梁博士中,覆盖原始数据,在上传过程中索力作用的施工阶段与原来保持一致。 注意:该项操作一般用于将调整后的数据上传到桥博中重新执行项目计算,以获得准确的计算结果(包含徐变与收缩效应)。若上传时数据文件已打开,需将数据窗口关闭,再将数据窗口打开才能看到索力数据的变化,此时再重新计算。 4.调索次号: 在项目计算并生成调索文件时程序从原始数据中读入索力张拉值与张拉阶段,并记录每根拉索的张拉次数形成调索次号。根据所有拉索在施工阶段中重复张拉的最大次数(n)来确定调索最大次号,并将每根拉索对应的施工索力按张拉顺序依次排列在第1次到第n次调索次号中。因此在同一个调索次号中的拉索其张拉的实际施工阶段(施工内容)可能不同。 5.约束定义: 在对称结构中一般索力也是对称的,使用拉索间的约束关系可减少工作量并防止出现人为的错误调整。设置约束关系后仅调整主索索力,从索自动更新。约束定义窗口如图2。拉索间的约束关系在每个调索次号中都需要定义。

桥面板计算

248桥面板的计算 248.1主梁桥面板按单向板计算 根据《公桥规》4.1.1条规定,因长边与短边之比为60/6.6=9.09>2故按单向板计算。人行道及栏杆重量为 8.5kN/m. 1、恒载及其内力的计算每延米板的恒载g: 防水混凝土少:0.08 1 25 2.0kN /m 沥青混凝土磨耗层g2:0.02 1 25 0.5kN / m 将承托的面积平摊于桥面板上,则:t 30 30 60/660 32.7cm 桥面板g3:0.327 1.0 25=8.仃5k N / m 横载合计为:g g1 g2+g310.915kN /m (1)计算M og 计算跨径:丨min (I o t,l o b) l o+t=6.2+0.327=6.527 l°+b=6.2+0.4=6.6 取l=6.527m 1 21 2 M ag glo 10.915 6.2252.45kN m g 8 8 (2)计算Q支g l0=6.2m,作用于每米宽板条上的剪力为: 1 1 Q 支g=3gl°=3 10.915 6.2=33.84kN 2、活载内力 公路-II级车辆荷载后轮轴重P=140kN,由《桥规》查得,车辆荷载的后轮着地长度为0.20m,宽度为0.60m。 板上荷载分布为:心2+2H=0.2+2 0.1=0.4m b1=b2+2H=0.6+2 0.1=0.8m 有效分布宽度计算:a=a1+L 3=0.4+6.527 , 3=2.58 1.4m (两后轮轴距) 两后轮有效分布宽度发生重叠,应一起计算其有效分布宽度。纵向2个车轮对于单向板跨中与支点的有效分布宽度分别为: ap+d 1. 3 0.4 1.4 6.527 3 3.98mS2l 3+d 2l:3 d 2 6.527 3+1.4=5.75m 所以:a=5.75

桥面板计算-规范法

1. 简支板 1.1. ? 载 铺装厚度为9cm,桥面板厚度为23cm ,单位长度桥面板上包载集度为: g=0.09*23+0.23*25=7.82kN / m。 包载下与计算跨径相同的简支板跨中弯矩: 1 21 M og gl 7. 82 3.2 3. 128kN m 8 8 1.2. 活载 1.2.1. 最不利荷载布置方式 根据《公路桥涵设计通用规范(JTG D60-2015) ? 4.3.1节车辆荷载加载方式, 结合前面的弯矩影响线,对桥面板进行车辆布载。 P‘P2 160 130 --------------------- ------------------ 1*-, W W 320 ------------------------------ 图1-1跨中弯矩最不利加载方式 1.2.2. 荷载分布宽度 根据《公路钢筋混凝土及预应力混凝土桥涵设计规范(JTG D62-2004) ? 4.1 节计算车辆荷载分布宽度。

车轮着地尺寸: a1=0.2 , b1=0.6 横桥向荷载分布宽度: b=b1+2h=0.6+2*0.09=0.78m 顺桥向荷载分布宽度: 单个车轮在板的跨径中部时, a=a1+2h+l/3=0.2+2*0.09+3.2/3=1.447m>1.4m ,按多个车轮计算,a=a1+2h+d+l/3=0.2+2*0.09+1.4+3.2/3=2.847m 。 均布荷载大小:P1=2*(140/2)/(0.78*2.847)=63.044kN/m 2。 1.2.3 .活载弯矩 0. 39 M O q28.8907 1. 6 63. 044 0.39 41. 431kN m 2. 连续板 梁高h=1.1m,桥面板高度t=0.23m , t/h<1/4,根据《公预规》4.1.2 : 包载支点弯矩M=-0.7*3.128=-2.190kN - m; 包载跨中弯矩M=0.5*3.128=1.564kN - m。

桥博的一般问题

桥博一般问题 第一节直线桥梁设计计算 一、一般步骤 1 利用本系统进行设计计算一般需要通过:离散结构划分单元,施工剖析,荷载剖析,树立工程项目,输入总体信息、单元信息、钢束信息、施工阶段信息、应用阶段信息,进行项目计算,输出计算结果等几个步骤。 2 结构离散的一般原则:参考应用手册P36。 二、总体信息 1 极限组合计预应力与极限组合计预二次矩 V3.0中预应力二次矩的计算方法仅适用于连续梁,其余结构形式不适用。次序仅斟酌竖向边界条件对变形的约束影响(次竖向力发生的弯矩),木油斟酌次水平力和次弯距的影响。 一般情况下,对于连续梁,应只选择“计入二次矩”,但应保障在形成超静定结构后不能有系统转化;对于一次落架或逐孔施工的结构系统,可以采取一次落架的模型计算。 对于大跨度连续刚构系统的桥梁,由于结构的线刚度比较小,二次效应的比重比较小,对于梁体,计不计二次效应对极限组合内力基本影响不大。但对于墩身的计算应分计入预应力和不计预应力两种工况进行偏平安的计算(墩身中木油预应力通过,预应力对墩身的效应就是二次效应了)。 2 累计初位移 选择此项表示新安装的工作节点将依据邻近节点的累计位移作为本节点的初始位移,对于除悬臂拼装以外的结构在计算时不应勾选该项。一般情况下,对于悬臂施工的结构,要输出位移图的时刻,同一节点处,由于施工缝的影响,位移会不连续(有突变)。如果想输出连续的位移图时,可选择此项,此时,输出位移图时,新单元的左节点位移以已浇筑单元右节点累计位移为准来进行输出,酱紫就可以得到一张连续的位移图 (慎用仅用于出图) 三、单元信息 1 单元的自重: 单元的自重是依据用户指定的截面大小和自重系数在单元安装阶段自动计入的,如果不计入自重,则将自重系数置为0。附加截面的自重是依据附加截面中指定的计自重阶段来计算的。 2 附加截面:

桥面板计算

桥面板计算 一、中板计算 箱梁顶板跨中厚度为0.3m,两腹板间板净距为5m,腹板宽度为0.5m,箱梁腹板处承托尺寸为0.6m×0.2m。 1.恒载内力取1m板宽计算 将承托面积摊于桥面板上,则计算板厚t’=30+60×20/500=32.4cm; 桥面板每延米自重为:g1=0.324×1×26=8.424kN/m; 每延米桥面铺装荷载为:g2=0.1×1×23=2.3k N/m; 所以:Σg= g1 +g2=8.424+2.3=10.724 N/m; (1) 计算恒载弯矩 弯矩计算跨径L=min{L0+t, L0+t,}=min{5+0.3,5+0.5}=5.3m; 故M sg=1/8gL2=1/8×10.724×5.32=37.655kN.m。 (2) 计算恒载剪力 剪力计算跨径L= L0=5.0m; 故Q sg=1/2gL=1/2×10.724×5.0=26.81kN。 2. 活载内力取1m板宽计算 采用城A级车辆荷载,车轮着地宽度为b0×a0=0.6×0.25m; 平行于板方向的分布宽度:b=b0+2h=0.6+2×0.1=0.8m。 当单个车轮作用在跨中桥面板时,垂直板跨径方向的荷载分布宽度为: a= a0+2h+L/3=0.25+2×0.1+5.3/3=2.217m<2L/3=3.533m; 取a=3.533m,因为a>1.2,且a<3.6m,故2、3轮的荷载分布宽度发生重叠。 则a= a0+2h+L/3+d=0.25+2×0.1+5.3/3+1.2=3.417m<2L/3+d=4.733m; 取a=4.733m。 对4轮, p=100/(3.533× 对2、3轮, p=140/(4.733× 可得出2、3 况最不利。 支承处垂直板跨径方向的荷载分布 宽度为: a'= a0+2h+t=0.25+2×0.1+0.3=0.75m (1) 计算活载弯矩 按L=5.3m简支梁计算,根据右图所 示的计算图示,可计算出各参数如下: a1=4.25,a2=2.65,a3=3.25,a4=1.65; y1=1.225,y2=0.675; y3=0.608,y4=0.425,y5=0.358; 所以有:p1=P/ a1b=41.18kN/m2; 同样算得:p2=65.30kN/m2; P3=53.85kN/m2; P4=106.06kN/m2;活载弯矩计算图示根据试算,按上图所示的荷载布置方式所算得的跨中弯矩与结构力学方法计算的跨中最

桥博和midas考虑有效分布宽度的快速输入方法

桥博和midas考虑有效分布宽度的快速输入方法 在桥博和midas中,考虑有效分布宽度的属输入都不是很轻松的事情,桥博要求输入上下翼缘的有效宽度,midas的非内嵌截面要求输入有效截面相对原截面的惯性矩折减系数;相对来说,桥博数据较直接、简单方便;midas数据较底层,麻烦、数据处理量较大;但即使是使用桥博,有效分布宽度的处理也是件工作量很大的工作;老任利用朋友们开发的cad 小工具软件,总结出一套有效宽度处理的方法,相对比较方便快捷;下面以一个例子的方式介绍一下这种方法的操作过程和工具软件;这个过程的总体思路是: 第一步、在cad中使用yxkd程序计算出翼缘的折减后宽度曲线,并使用程序将该曲线坐标输出到excel中,计算得到折减系数沿跨长的分布函数; 第二步、使用桥博通用截面拟合功能输入截面有效宽度; 第三步:对于使用midas程序,可先使用进行第一步、第二步得到桥博模型,然后按一次落架方式计算,再使用报表输出原截面和有效截面的截面特性,得到惯性矩折减系数; 1、例子资料 例子为计算跨径34.35+48+34.35m的变截面连续箱梁,翼缘悬臂2.5m内,标准断面上缘箱室净宽6.073m;下缘净宽5.763m;梁端至 边支座中心线距离为0.55m; 2、计算有效分布宽度系数 为简单起见,全桥的翼缘计算宽度统一取标准断面的翼缘实际宽度,不考虑由于腹板加宽造成的翼缘宽度差异;工程上,类似取舍造成的误差微乎其微; 计算有效分布宽度使用张文锋工程师开发的lisp程序--yxkd,该程序在程序编制的过程中,笔者对张树仁推荐的有效分布宽度折减系数回归方程进行了计算研究,发现ps表达式值相对规范表格值误差较大,最大达到20%左右;这个误差可能无法接受,因此未采用 该公式;经过检索文献,发现桂林工学院景天虎拟合公式较为合理,该公式为:

桥面板计算

2.4.8 桥面板的计算 2.4.8.1 主梁桥面板按单向板计算 根据《公桥规》4.1.1条规定,因长边与短边之比为60/6.6=9.09>2,故按单向板计算。人行道及栏杆重量为8.5kN/m. 1、恒载及其内力的计算 每延米板的恒载g : 防水混凝土g 1: 0.08125 2.0/kN m ??= 沥青混凝土磨耗层g 2:0.021250.5/kN m ??= 将承托的面积平摊于桥面板上,则:cm 7.32660/603030t =?+= 桥面板g 3:0.327 1.025=8.175k /m N ?? 横载合计为:123g g g +g 10.915/kN m =+= (1)计算og M 计算跨径:00min(,)l l t l b =++ 00l +t=6.2+0.327=6.527l +b=6.2+0.4=6.6≤取l=6.527m 2201110.915 6.252.4588 ag M gl kN m ==??=? (2)计算g Q 支 00g l =6.2m 11Q =gl =10.915 6.2=33.84kN 22 ??支,作用于每米宽板条上的剪力为: 2、活载内力 公路-II 级车辆荷载后轮轴重P=140kN ,由《桥规》查得,车辆荷载的后轮着地长度为0.20m,宽度为0.60m 。 板上荷载分布为:1212a =a +2H=0.2+20.1=0.4m b =b +2H=0.6+20.1=0.8m ?? 有效分布宽度计算:1a=a +l 3=0.4+6.527 1.4m >(两后轮轴距) 两后轮有效分布宽度发生重叠,应一起计算其有效分布宽度。纵向2个车轮对于单向板跨中与支点的有效分布宽度分别为: 1a=a +d 0.4 1.4 6.5273 3.98m 222 6.527l l l d +=++=+=?S 所以:a=5.75

桥博计算3跨箱涵计算书

一. 桥梁设计标准 道路等级:城市主干道(双向四车道); 设计荷载:公路—Ⅰ级; 地震烈度:地震烈度:地震基本烈度为7o ,相应的地震动加速度为0.15g ; 高程系统:采用1985国家高程系统; 二. 采用规程及规范 《城市道路设计规范》(CJJ 37-90) 《城市桥梁设计准则》(CJJ 11-93) 《公路桥涵设计通用规范》 (JTG D60-2004) 《公路钢筋混凝土及预应力混凝土桥设计规范》 (JTG D62-2004) 《公路桥涵地基与基础设计规范》 (JTG D63-2007) 《公路圬工桥涵设计规范》 (JTG D61-2005) 《公路桥梁抗震设计细则》 (JTG/T B02-01—2008) 《公路涵洞设计细则》 (JTG/T D65-04—2007) 三. 计算参数 A. B. 荷载 恒载:混凝土及铺装层自重计算采用容重3/25m kN ; 土容重3/18m kN ; 侧壁土压力:箱涵两侧填土采用6%石灰土回填,取土内摩擦角为35°,计算得主动土压 力系数u =0.25,按梯形分布载作用在侧壁单元上; 活载:公路—Ⅰ级; 汽车冲击系数: 正弯矩效应和剪力效应: f 1 =12.876 μ=0.436 负弯矩效应: f 2 =22.367 μ=0.45 横向分布系数计算:跨中横向分布系数按刚接板梁法计算,取车道宽度15m 作为桥面宽度,10m 跨箱涵刚接板梁每片宽度1m 、高度0.6m 计算,横向分布系数取0.228,支点截面按杠杆法计算,横向分布系数为0.5;6m 跨箱涵刚接板梁每片宽度1m 、高度0.6m 计算,横向分布系数取0.260,

人横向分布系数为1.00,各跨横向分布系数按折线形计算。 10m跨中刚接板梁法计算横向分布系数结果 梁号汽车挂车人群满人特载车列 1 0.228 0.000 0.000 1.07 2 0.000 0.000 2 0.221 0.000 0.000 1.062 0.000 0.000 3 0.21 4 0.000 0.000 1.051 0.000 0.000 4 0.207 0.000 0.000 1.041 0.000 0.000 5 0.200 0.000 0.000 1.031 0.000 0.000 6 0.193 0.000 0.000 1.021 0.000 0.000 7 0.186 0.000 0.000 1.010 0.000 0.000 8 0.179 0.000 0.000 1.000 0.000 0.000 9 0.182 0.000 0.000 0.990 0.000 0.000 10 0.185 0.000 0.000 0.979 0.000 0.000 11 0.189 0.000 0.000 0.969 0.000 0.000 12 0.192 0.000 0.000 0.959 0.000 0.000 13 0.196 0.000 0.000 0.949 0.000 0.000 14 0.199 0.000 0.000 0.938 0.000 0.000 15 0.203 0.000 0.000 0.930 0.000 0.000 6m跨中刚接板梁法计算横向分布系数结果 梁号汽车挂车人群满人特载车列 1 0.260 0.000 0.000 1.181 0.000 0.000 2 0.248 0.000 0.000 1.132 0.000 0.000 3 0.237 0.000 0.000 1.092 0.000 0.000 4 0.22 5 0.000 0.000 1.068 0.000 0.000 5 0.213 0.000 0.000 1.051 0.000 0.000 6 0.202 0.000 0.000 1.034 0.000 0.000 7 0.190 0.000 0.000 1.017 0.000 0.000 8 0.179 0.000 0.000 1.000 0.000 0.000 9 0.184 0.000 0.000 0.983 0.000 0.000 10 0.190 0.000 0.000 0.966 0.000 0.000 11 0.195 0.000 0.000 0.949 0.000 0.000 12 0.201 0.000 0.000 0.931 0.000 0.000 13 0.207 0.000 0.000 0.937 0.000 0.000

桥面板计算

5.4 桥面板的计算 5.4.1计算模型 (1)整体现浇的T 梁:单向板、双向板 (2)预制装配式T 形梁桥(长短边比大于等于2):悬臂板、铰接悬臂板 5.4.2车辆荷载在板上的分布 荷载在铺装层内的扩散程度,对于混凝土或沥青面层,荷载可以偏安全地假定呈45度角扩散。这样最后作用在桥面板顶面的矩形荷载压力面的边长为: 沿行车方向:H a a 221+= 沿横向:H b b 221+= H —铺装层的厚度 当有一个车轮作用在桥面板上时,作用于桥面板上的局部分布荷载为: 汽车:112/b a P p = P —汽车或挂车的轴重 5.4.3板的有效工作宽度 (1)单向板的有效工作宽度 1)荷载在跨径中间 对于单独一个荷载 3/23/21l H a l a a ++=+= 但不小于l 3/2 l —两梁肋之间板的计算跨径 计算弯矩时, t l l +=0,但不大于 b l +0;计算剪力时, l l =其中 l 为净跨径,t 为板的 厚度,b 为梁肋宽度。 对于几个靠近的相同荷载,如按上式计算各相邻荷载的有效分布宽度发生重叠时,应按相邻荷载共同计算其有效分布宽度。 3 /23/21l d H a l d a a +++=++= d —最外两个荷载的中心距离 2)荷载在板的支承处 t H a t a a ++=+=221' 但不得小于3/l 3)荷载靠近板的支承处 a a x 2 ' += x —荷载沿支承边缘的距离 (2)悬臂板的有效工作宽度 根据弹性板理论分析,悬臂板的有效工作宽度接近于2倍悬臂长,因此荷载可近呈45度角向悬臂板支承处分布。 ' 12b a a += ' b —承重板上荷载压力面外侧边缘至悬臂根部的距离 显然最不利情况就是0 ' l b = 此时 12l a a +=

桥博计算常见问题处理方式

承载能力极限状态组合组合I:基本组合 正常使用极限状态内力组合 组合I:长期效应组合 组合II:短期效应组合最大拉应力 组合III:标准值组合最大压应力 组合III:最大法向压应力、最大主压应力需要满足; 组合I、II:最大法向拉应力、主拉应力需要满足; 承载能力极限状态组合 ; 组合I:基本组合;按规范JTG D60-2004第4.1.6条规定;按此组合验算结构的承载能力极限状态的强度; 组合II:不用 组合III:不用 组合IV:撞击组合;按规范JTG D60-2004第4.1.6条规定; 组合V:不用 组合VI:地震组合 正常使用极限状态内力组合 组合I:长期效应组合;按规范JTG D60-2004第4.1.7条规定; 组合II:短期效应组合;按规范JTG D60-2004第4.1.7条规定;按此组合验算钢筋混凝土结构的裂缝宽度; 组合III:标准值组合 组合IV:不用

组合V:施工组合 组合VI:不用 应力组合 组合I:长期效应组合,仅供部分预应力A类构件的抗裂安全验算(参照规范JTG D62 – 2004第6.3.1条),组合原则按规范JTG D60-2004第4.1.7条规定,但组合时只考虑直接作用荷载,不考虑间接作用,例如不计汽车冲击、不计沉降、温度等;符合规范JTG D62 -2004第6.3.1条规定; 组合II:短期效应组合,对预应力混凝土构件而言是按照抗裂验算的要求进行组合计算的,组合原则按规范JTG D60-2004第4.1.7条规定,并满足规范JTG D62 – 2004第6.3.1条有关规定,即对全预应力构件和部分预应力A类构件以及预制和现浇构件的最小法向应力组合时预应力引起的应力部分分别按照0.85(全预应力预制构件)、0.8(全预应力现浇构件)、1.0(部分预应力A类构件)的系数来考虑的。其它类型应力以及非预应力构件的各种应力组合由预应力引起的应力部分都是按照1.0的系数考虑的; 组合III:标准组合,所有应力组合时各种荷载的分项组合系数都为1.0,参与组合的荷载类型为规范JTG D60-2004第4.1.7条中短期效应组合中规定的所有荷载类型,只是荷载分项系数都为1.0; 合IV:撞击组合 组合V:施工组合 组合VI:不用

(整理)桥博常见问题整理2

目录 1st.在进行“斜弯梁桥设计计算”时,桥面布置和桥面单元里面的参数如何填写,作用是什么? (3) 2rd.竖向预应力如何考虑? (5) 3nd.桥梁博士里面,受力性质中的,偏心受(拉)压构件和受弯构件是如何区分的,是否有判断的标准? (6) 4th.程序计算出的汽车荷载单项效应中是否包含有汽车冲击效应。 (6) 5th.输入总体信息>计算细节控制信息里面的“极限组合”是指什么? (7) 6th.某用户在做一个挂篮悬臂浇筑的连续梁模型时 (7) 7th.自定义截面时候,读入缩略图后程序无任何提示自动退出,是什么原因? (8) 8th.钢束的永存应力在哪里查看? (9) 9th.抗剪计算中,增加竖向预应力筋,抗剪强度反而不满足是怎么回事。 (10) 10th.关于桥博调束对钢束输入方式的规定。 (10) 11th.桥博使用信息>活载描述中桥梁特征计算跨径是如何填写,作用是什么。 (11) 12th.强度验算时的抗力是指什么? (12) 13th在桥梁博士中连接器位置mm,如何使用?好象总是灰色的,无法使用。 (12) 14th.基础计算>多排弹性基础>结构描述中的EI指单桩还是整体个基础的? (13) 15th.有附加截面时,普通钢筋输入时,否要考虑附加截面的高度。 (13) 16th.截面的抗力不应该是个确定的值吗?为什么桥博里面同一截面在不同情况下的抗力不一致? (15) 17th.如何撤消输入? (15) 18th.在做“直线梁桥设计计算”时,预应力钢束的平弯是否要进行输入,输入与不输入对计算有何影响? (16) 19th.输入钢束信息界面上,编束根数与束数如何理解? (16)

箱梁桥面板计算

连续梁桥跨径布置为70+100+70(m ),主跨分别在梁端及跨中设横隔板,板厚40cm ,双车道设计,人行道宽1.5m 。桥面铺装层容重233 /m kN ,人行道构件容重243 /m kN ,主梁容重253 /m kN 。 求: 1、悬臂板最小负弯矩及最大剪力; 2、中间板跨中最大正弯矩、支点最小负弯矩、支点最大剪力。 解: 一、悬臂板内力计算 m kN g /8.42412.0=??=人 m kN g /5.72512 4 .02.0=??+= 板 m kN g /3.22311.0=??=铺 m kN q r /75.2175.2=?= 1、悬臂根部最小负弯矩计算 结构自重产生的悬臂根部弯矩: m kN M g ?-=??+? ?+-??-=2.42]2 5 .25.25.725.15.13.2)75.03(5.18.4[支 人群荷载产生的悬臂根部弯矩: m kN M r ?-=-??-=3.9)75.03(5.175.2支 汽车荷载产生的悬臂根部弯矩: m H a a 4.01.022.0221=?+=+= m H b b 8.01.026.0221=?+=+= 单个车轮作用下板的有效工作宽度: m m b a a 4.12.3)1.05.1(24.02>=-?+='+= 有重叠。 单位(cm )

故:m a 6.44.12.3=+= m kN ab P p /388 .06.41401=?== m kN M p ?-=???-=5.3918.0383.1支 内力组合: 基本组合:m kN M ud ?-=-??+-?+-?=4.116)3.9(4.18.0)5.39(4.1)2.42(2.1 短期效应组合:m kN M sd ?-=-?+÷-?+-=8.72)3.9(0.13.1)5.39(7.02.42 2、悬臂根部最大剪力计算 结构自重产生的悬臂根部剪力: kN Q g 4.295.25.75.13.25.18.4=?+?+?=支 人群荷载产生的悬臂根部剪力: kN Q r 1.45.175.2=?=支 汽车荷载产生的悬臂根部剪力: kN Q p 5.398.0383.1=??=支 内力组合: 基本组合:kN Q ud 2.951.44.18.05.394.14.292.1=??+?+?= 短期效应组合:kN Q sd 8.541.40.13.15.397.04.29=?+÷?+= 二、中间桥面板内力计算 m l a 502100== m l b 4= 24 50 >=b a l l 故按单向板计算内力 把承托面积平摊到桥面板上: m t 23.04 2 .06.02.0=?+ =' m kN g /3.2=铺 m kN g /8.525123.0=??=板 m kN g /1.88.53.2=+= 1、跨中弯矩计算: m b l m t l l 35.42.42.0400=+<=+=+= 单个车轮作用下板的有效工作宽度: m m l m l a a 4.18.23 28.132.44.031>=<=+=+ = 有重叠 故:m m d l a 2.44.18.23 2=+=+= m t a a 6.02.04.0=+=+=' 无重叠

桥面板计算

5 桥面板配筋计算 5.1 荷载标准值计算(弯矩) 根据《预规》第4.1.2条,计算弯矩时,计算跨径可取两肋间的净距加板厚,但不大于两肋中心之间的距离。桥面板计算断面见下图(单位mm): 5.1.1现浇箱内桥面板弯矩计算 1)计算跨径和模型: 计算跨径1L=3200+250=3450mm,计算模型如下(单位mm):

2) 车轮荷载分布宽度 a 、 平行于板跨径方向 mm h b b 960180260021=?+=+= b 、 垂直于板跨径方向单个车轮在板的跨径中部时 mm l mm l l h a a 230034503 2 3217103)1802200(3)21==<=+?+=+ ?+=(中所以mm 2300=中a 。因为mm mm 280014002165022300=?<=÷,所以因考虑纵向轮的叠加故mm 370014002300=+=中a 。 c 、 垂直于板跨径方向单个车轮在板的支点时 mm t h a a 810250)1802200()21=+?+=+?+=(支 d 、支点向跨中的过渡距离 mm 7452810-23002(=÷=÷-=)()支中a a x 3) 每米板宽跨中截面弯矩 a 、 板自重及铺装产生的跨中弯矩G M 板自重集度: m KN rh g m KN rh g /3.1455.026,/51.625.026'11=?===?== 铺装集度:m KN rh g /61.42508.01.0262=?+?==

板自重及铺装产生的跨中弯矩为: 3 925.0925.02)()(811'12 21??-++=g g l g g M G m KN /655.173 925 .0925.02)51.63.14(45.3)61.451.6(812=??-+ ?+= b 、 车轮荷载产生的跨中弯矩Q M 因mm mm x l 9601960745234502>=?-=-,所以车轮荷载分布宽度均取a 中,则车轮局部分布荷载强度为: 2/41.3996 .07.3140 2)2/(m KN ab p q =?=?= 汽车荷载产生的弯矩为: m KN l qb M Q /57.40)8.145.3(96.041.393.12/)8.1()1(=-???=-??+=μ 不计冲击力 m KN M Q ?=21.31 5.1.2 悬臂段桥面板弯矩计算 1) 计算跨径和模型: mm L 22003=,计算模型如下(单位mm ) :

某小桥桥博计算书

XX县道排工程 计 算 报 告 XX设计研究院有限公司二〇一二年十月

XX桥梁 编制: 复核: 审核: 院审:

第一部分:K2+878、K3+811小桥计算书

目录 第一部分K2+878、K3+811小桥 (1) 1 验算模型及参数 (2) 1.1结构介绍 (2) 1.2 计算方法 (2) 1.3 计算采用规范 (3) 1.4 计算采用标准 (3) 1.5结构验算参数 (4) 1.5.1 计算要点 (4) 1.5.2 结果参数说明 (4) 1.5.3 横断面布置 (4) 1.5.4跨中计算截面尺寸及几何特性 (5) 1.5.5汽车荷载横向分布系数 (5) 1.5.6汽车荷载冲击系数 值计算 (6) 1.5.7 荷载 (6) 2 设计状态下的结构验算 (7) 2.1 持久状况承载能力极限状态计算 (7) 2.2持久状况正常使用极限状态计算 (7) 2.2.1 抗裂验算 (7) 2.2.2 挠度验算 (9) 2.3 持久状况和短暂状况构件应力计算 (9) 2.3.1 使用阶段正截面法向应力计算 (9) 2.3.2受拉区预应力钢筋最大拉应力 (11) 2.3.3使用阶段混凝土主压应力计算 (11) 2.4设计状态下结构验算结论 (12) 3 重力式桥台验算 (12)

第一部分K2+878、K3+811小桥 计 算 书

1 验算模型及参数 1.1结构介绍 装配式预应力混凝土简支T梁(60m),共42片T梁,分四幅。主梁高度0.75m,梁间距1.462m,其中内梁预制宽度1.0m、边梁预制宽度1.05m,翼缘板中间湿接缝宽度0.462m。主梁跨中肋厚0.30m,两端部均匀加厚段0.40m。。T梁标准横断面布置见图1。 图1 K2+878小桥标准横断面图(单位:cm) 图1 K3+811小桥标准横断面图(单位:cm) 上部结构施工顺序:T梁预制→架梁→浇筑横隔板湿接缝→浇筑翼缘板湿接缝→安装护栏→浇筑桥面现浇层→浇筑沥青混凝土铺装、安装附属设施→成桥。 1.2 计算方法 计算书中将分别采用“桥梁博士V3.0”对T梁进行分析计算,并以《公路

桥博计算参数取值

桥梁博士问题与整理 问1: 关于刚接板梁法的疑问? 在进行小箱梁计算横向分布系数时,有一个要填左右悬臂板的惯性矩(主梁左侧悬臂板沿跨径方向每延米板截面绕水平轴的抗弯惯性矩),不知道是针对那个水平轴,请赐教。 答1: 对于带有翼板、挑板的梁桥,在采用刚接板梁法和铰接板梁法进行横向分布系数计算时,需要考虑每一片梁的单位力偏载于翼板端部时,引起三部分位移:刚性竖向位移w、梁体的转角位移φ、翼板端部的自身挠曲位移f。其中,第三项位移f时,主要是沿跨径方向的板的弯曲挠度。 对于问题中的左右悬臂板(翼板)的惯性矩,就是用来计算第三个位移f的,具体计算公式为: d1为翼板的悬出长度;h1为翼板的计算厚度,对于变厚度的翼板,可近似的取距离梁肋d1/3处的板厚度来计算;跨长方向单位长度b=1m。则有:单位宽度的翼板的抗弯惯矩(为参照自身的水平惯性轴)为:I=(b*h1^3)/12. 具体参见范老师《桥梁工程(上)》P240~250内容。 问2: 弯桥建模-扭矩系数 最近在弯桥计算,在用梁格法建模中对扭矩系数的填法存在疑问。在桥博帮助中的解释是这样的:扭矩系数:单元重心到单元轴线距离,面对单元左端到右端的轴线,如果重心在轴线以外为负,以内为正。请问: 1.“重心在轴线以外/以内”是怎么定义的? 2.箱梁输入时,在建模中用CAD导入截面与用桥博中自带的“截面输入”截面,在桥博中显示 的图形是不一样的。如果我是用“截面输入法”输入,中心线均位于腹板中心线的一侧,是否是建“扭矩系数”填一个值,还是不考虑桥博中的显示,按实际图形,填相反两个值?--详

见附件。两着计算结果先差很大 谢谢! 答2: 扭矩系数:用于考虑单元自重产生的扭矩,其单位是m,是截面重心到梁位线的距离。这部分扭矩在结构中实际存在,和输入的截面形式没有关系。桥博帮助中所说的“轴线”就是梁位线 人面对单元所在的梁位线,重心落于人与梁位线之间,为内侧,落于人与梁位线之外,为外侧。内侧为正,以外为负。面对你的电脑。确定重心和你,梁位线的关系。重心位于你和梁位线之间的话,就为内。 问3:请问双曲拱桥如何建模?请问双曲拱桥如何建模?桥体为圬工桥桥长为23M,宽为25M ,拱肋为上为200#砼,下为250#钢筋砼. 答3: 对于双曲拱桥,可以取纵向拱肋中的一片拱圈进行建模,在此可以将纵向拱肋作为桥面单元,采用桥博的横向分布计算工具来计算横向分布系数(刚接/铰接板法)。 在进行该片纵向拱肋的建模时,可以采用CAD交互功能,将拱肋的单元、截面等导入建模;对于拱上建筑,可将其处理为线形的外恒载的形式,在相应施工阶段中的永久荷载中填入。其他内容按照一般梁桥的方法处理。 问4:约束问题 模拟弹簧时,弹性系数具体怎么确定 答4: 关于弹性系数的确定,为外部约束发生单位水平位移时在该约束上产生的弯矩,或发生单位转角位移时在该约束上产生的水平力。对于弹性地基梁情况,以及基础与上部结构的共同作用:由于基础受到弹性土压力的影响,基础的刚度同上部结构不同,在分析上下部共同作用时可采用弹性支承来模拟,即先将基础的刚度参数求得,再将此刚度参数输入到支承节点的弹性系数中。 在进行结构的基础设计时,遇到结构物置于地基上或埋于地基中的情况时,多数情况下,地基,往往表现为一个个分布的弹性支承。为了便于计算,将分布的弹性支承离散成等效的弹性约束。在桥博中,需要用户计算出相应的弹性系数。可以参考《地基基础》相关教程中的

相关主题
文本预览
相关文档 最新文档