当前位置:文档之家› 抛物线经典性质总结

抛物线经典性质总结

抛物线经典性质总结
抛物线经典性质总结

抛物线焦点弦性质总结30条

基础回顾

1. 以AB 为直径的圆与准线L 相切;

2. 2

124p x x =g ;

3. 2

12y y p =-g ;

4. '90AC B ∠=o

; 5. ''90A FB ∠=o ;

6. 1232

22()2sin p p

AB x x p x α

=++=+=; 7.

112

AF BF P

+=; 8. A 、O 、'B 三点共线; 9. B 、O 、'

A 三点共线;

10. 2

2sin AOB P S α

=V ;

11. 23()2

AOB S P

AB =V (定值); 12. 1cos P AF α=-;1cos P

BF α=+;

13. 'BC 垂直平分'

B F ;

14. 'AC 垂直平分'

A F ;

15. '

C F AB ⊥; 16. 2AB P ≥;

17. 11

'('')22

CC AB AA BB ==+; 18. AB 3

P K =

y ; 19. 2p 22

y

tan =x -α;

20. 2

A'B'4AF BF =?; 21. 1

C'F A'B'2

=

. 切线方程 ()x x m y y +=00性质深究

一)焦点弦与切线

1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有何特殊之处

结论1:交点在准线上

先猜后证:当弦x AB ⊥轴时,则点P 的坐标为??

?

??-

0,2p 在准线上. 证明: 从略

结论2 切线交点与弦中点连线平行于对称轴

结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.

2、上述命题的逆命题是否成立

结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点

先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.

3、AB 是抛物线px y 22

=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,

l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有

结论6PA ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ .

结论9 PA 平分∠A 1AB ,PB 平分∠B 1BA .

结论2

PF = 结论11PAB S ?2min

p =

二)非焦点弦与切线

思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果: 结论12 ①p y y x p 221=

,2

2

1y y y p += 结论13 PA 平分∠A 1AB ,同理PB 平分∠B 1BA . 结论14 PFB PFA ∠=∠

结论15 点M 平分PQ

结论162

=

相关考题

1、已知抛物线y x 42

=的焦点为F ,A ,B 是抛物线上的两动点,且FB AF λ=(λ>0),过A ,

B 两点分别作抛物线的切线,设其交点为M ,

(1)证明:?的值;

(2)设ABM ?的面积为S ,写出()λf S =的表达式,并求S 的最小值.

2、已知抛物线C 的方程为y x 42

=,焦点为F ,准线为l ,直线m 交抛物线于两点A ,B ; (1)过点A 的抛物线C 的切线与y 轴交于点D ,求证:DF AF =;

(2)若直线m 过焦点F ,分别过点A ,B 的两条切线相交于点M ,求证:AM ⊥BM ,且点M 在直线l 上.

3、对每个正整数n ,()n n n y x A ,是抛物线y x 42

=上的点,过焦点F 的直线FA n 交抛物线于另一点

()n n n t s B ,, (1)试证:4-=?n n s x (n ≥1)

(2)取n

n x 2=,并C n 为抛物线上分别以A n 与B n 为切点的两条切线的交点,求证:

122121+-=++++-n n n FC FC FC Λ(n ≥1)

抛物线的一个优美性质

几何图形常常给人们带来直观的美学形象,我们在研究几何图形时也会很自然地想得到有关这个几何图形的美妙的性质,作为几何中的圆锥曲线的研究,正是这方面的一个典型代表,作为高中数学中的必修内容,对于培养学生对于数学美的认识,起着相当重要的作用。因此,在研究圆锥曲线的过程中,有意识地得到一些有关圆锥曲线的几何性质并且加以归纳,并在教学中与学生一起进行一些可行的研究,一方面,作为高考命题也会往这个方向上尝试,另一方面,作为新课程的一个理念,让学生进行一些学有余力的研究,提高学生学习数学的兴趣,提高学生自己研究问题的能力也很有帮助。本人从一个在教学中学生遇到的习题结合该知识点有关的一些性质,并结合高考的热点题对这一性质作了一些研究。

题:抛物线y 2=2px (p>0)的准线与x 轴交于Q 点,过点Q 作斜率为k 的直线L 。则“直线L 与抛物线有且只有一个交点”是“k=±1”的_________条件。

本题设计意图是考查学生对于直线与抛物线有且只有一个交点的问题的了解,要求学生掌握直线与抛物线相切时是只有一个交点,还有当直线与抛物线的对称轴平行时,直线与抛物线也只有一个交点,因此,经过简单的验证可知道上题的答案是必要不充分条件。

结合抛物线的下面的性质及上题的图形,我们发现了一些共同点。

性质1:已知AB 是经过抛物线y 2=2px (

证明:由图2可知,BF=BB 1,AF=AA 1,2PP 1=AA 1+BB 1。所以2PP 1=AB 。

其中图1是图2的一个特例,即当焦点弦是通径时,图2即变成了图1。这就引导我们思考在图2中的两条直线P 1A 、P 1B 是否也是抛物线的两条切线,这样我们得出了抛物线的一个性质:

性质2:已知AB 是经过抛物线y 2=2px (p>0)的焦点F 的弦,则以A 、B 为切点的两条切线的交点P 落在其准线上。

证明:设A (x 1,y 1),B (x 2,y 2),P (x ,y )

点A 在抛物线上:y 12

=2px 1 (1) 点B 在抛物线上:y 22=2px 2

(2) 过点A 的切线方程:yy 1=p (x+x 1) (3) 过点B 的切线方程:yy 2=p (x+x 2) (4)

直线AB 经过点F :

2

2

2211p x y p x y -

=

-

(5)

将(1)式与(2)式分别代入(3)、(4)、(5)式,得到

yy 1=p (x+p y 221)

(3′)

yy 2=p (x+p

y 222

(4′)

y 1y 2=-p 2

(5′)

因为点P (x ,y )的坐标满足(3′)、(4′),所以y 1、y 2可视为是方程yt=p (x+p t 22

的两根,因此由韦达定理可得y 1y 2=-p 2=2px 。即x=2

p -

。 所以点P 的轨迹为抛物线的准线。

从上面的证明中我们可以看出,当A 、B 两点的坐标满足某种条件时,则以A 、B 为切点的两条切线的交点一定落在某条固定的直线上。因此,我们更进一步地得出了更好的性质:

性质3:已知AB 是经过抛物线y 2=2px (p>0)的对称轴(即x 轴)上一定点P (m ,0)(m>0)的弦,则以A 、B 为切点的两条切线的交点Q 的轨迹是一条直线x=-m 。证明:略。

对于上述性质的得出,我们使用了抛物线上已知切点坐标的切线方程的写法,但如果换一个角度看这个问题,我们也可以得出另一种形式的性质:

性质3′:动点P 在直线x=-m 上运动,过点P 作抛物线的两条切线PA 、PB ,切点分别为A 、B ,连结AB ,得到弦AB ,那么弦AB 过定点(m ,0)。

证明:略。

根据上面的讨论,我们得到了关于抛物线的一个性质,特别是对于抛物线的切线以及抛物线中动弦中的定值问题的结合,在高考题的命题中也常有涉及。

例1:(2007江苏高考第19题)如图,过C (0,c )(c>0)作直线与抛物线y=x 2

交于A 、B 两点,一条垂直于x 轴的直线,分别与线段AB 和直线y+c=0交于P 、Q 。

(1)若OB OA ?=2,求c 的值;

(2)若P 为线段AB 的中点,

求证:AQ 为抛物线的切线;

(3)试问(2)的逆命题是否成立。 解:(1)设A (x 1,y 1),B (x 2,y 2),C (0,c )

点A 在抛物线上:y 1=x 12

(1)点B 在抛物线上:y 2=x 22

(2)

直线AB 经过点C :

2

211x c

y x c y -=

- (3)

将(1)式与(2)式分别代入(3)式,得到x 1x 2=-c ,y 1y 2=c 2 由OB OA ?= x 1x 2+y 1y 2=2,得c=2。

(2)P 为线段AB 的中点,得点Q 的坐标为(2

2

1x x +,-c )

由AQ 的斜率k 1=

121212121112)

(22

x x x x x x x x x c y =--=+-

+,过点A 的切线的斜率为k 2=2x 1。所以直

线AQ 是抛物线的切线。

(3)过点A 的切线方程为y-y 1=2 x 1(x-x 1)与直线y=-c 相交于点Q , 将y=-c 代入y-y 1=2 x 1(x-x 1),可得-c-x 12=2 x 1(x-x 1)即x 1x 2-x 12=2 x 1(x-x 1) 所以点Q 的横坐标为

2

2

1x x +,即点P 为线段AB 的中点。(2)的逆命题成立。

该题的命题思路就是借助于性质3而编制的一道中等难度的题。其中主要运用了切

线的斜率,切线的方程的写法,以及抛物线中的定值的使用。下题也是用类似的方法命制的题。

例2:(2006全国高考卷Ⅱ21题)抛物线x 2=4y 的焦点F ,A 、B 是抛物线上两动点,且FB AF λ=,过A 、B 两点分别作抛物线的切线,设其交点为M 。

(1) 证明:AB FM ?为定值;

(2) 设△ABM 的面积为S ,写出S=f (λ)的表达式,并求出S 的最小值。 解:(1)设A (x 1,y 1),B (x 2,y 2),F (0,1)

点A 在抛物线上:4y 1=x 12

(1)点B 在抛物线上:4y 2=x 22 (2)

直线AB 经过点F :

2

2111

1x y x y -=

- (3)

得到过点A 的切线方程:2(y-y 1)=x 1(x-x 1) (4)

过点B 的切线方程:2(y-y 2)=x 2(x-x 2) (5) 由(1)(2)(3)得x 1x 2=-4,y 1y 2=1。 由(4)、(5)得M 坐标为(2

2

1x x +,-1)。

所以AB FM ?=(

2

2

1x x +,-2)·(x 2- x 1,y 2- y 1)=0)(22

122

122=---y y x x 。

(2)λ=,即(0-x 1,1-y 1)=λ(x 2,y 2-1)

所以-x 1=λx 2,再由x 1x 2=-4,得λx 2x 2=4, 即x 2=

λ

4

,则x 1=λ4-,y 1=λ,y 2=

λ

1

。由?=0, 所以S= f (λ)=()()

422

1

212

212

212

21+??

?

??+?-+-=

?x x y y x x FM AB =41213

≥???

?

??+λλ。当λ=1时,△ABM 的面积S 取得最小值。 从上面两例可以看出,高考命题往往借助课本例题中一个典型图形,结合其他知识点进行再创造,即使是在全国数学联赛中也有这样的命题方向:

例:(2007年全国数学联赛一试14题)过点(0,1)的直线L 与曲线C :)0(1>+=x x

x y 交于两个不同点M 和N ,求曲线C 在点M 、N 处的切线的交点的轨迹。

因此在日常教学工作中,我们也应该对课本中的性质定理进行再挖掘,对几何图形的优美性质进行一些研究性的工作,一方面对学生处理新颖题的能力提高有帮助,另一方面对教师的教学研究工作也有促进作用。

抛物线及其性质知识点及题型归纳总结

抛物线及其性质知识点及题型归纳总结 知识点精讲 一、抛物线的定义 平面内与一个定点F 和一条定直线)(l F l ?的距离相等的点的轨迹叫做抛物线,定点F 叫抛物线的焦点,定直线l 叫做抛物线的准线. 注 若在定义中有l F ∈,则动点的轨迹为l 的垂线,垂足为点F . 二、抛物线的方程、图形及性质 抛物线的标准方程有4种形式:)0(2,2,2,22 2 2 2 >-==-==p py x py x px y px y ,其中一次项与对称轴一致,一次项系数的符号决定开口方向(如表10-3所示) 1. 点),(00y x P 与抛物线)0(22 >=p px y 的关系 (1)P 在抛物线内(含焦点)02 02px y ?. 2. 焦半径 抛物线上的点),(00y x P 与焦点F 的距离称为焦半径,若)0(22 >=p px y ,则焦半径2 0p x PF + =,2 max p PF = . 3. )0(>p p 的几何意义

p 为焦点F 到准线l 的距离,即焦准距,p 越大,抛物线开口越大. 4. 焦点弦 若AB 为抛物线)0(22 >=p px y 的焦点弦,),(11y x A ,),(22y x B ,则有以下结论: (1)4 2 21p x x =. (2)2 21p y y -=. (3)焦点弦长公式1:p x x AB ++=21,p x x x x =≥+21212,当21x x =时,焦点弦取最小值 p 2,即所有焦点弦中通径最短,其长度为p 2. 焦点弦长公式2:α 2sin 2p AB = (α为直线AB 与对称轴的夹角). (4)AOB ?的面积公式:α sin 22 p S AOB =?(α为直线AB 与对称轴的夹角). 5.抛物线的弦 若AB 为抛物线2 2(p 0)y px => 的任意一条弦,1122(x ,y ),B(x ,y )A ,弦的中点为 000(x ,y )(y 0)M ≠ ,则 (1) 弦长公式:1212(k k 0)AB AB x y y =-=-=≠ (2) 0 AB p k y = (3) 直线AB 的方程为000 (x x )p y y y -= - (4) 线段AB 的垂直平分线方程为0 00(x x )y y y p -=- - 6.求抛物线标准方程的焦点和准线的快速方法(4 A 法) (1)2 (A 0),y Ax =≠ 焦点为(,0)4A ,准线为4 A x =- (2) 2 (A 0),x Ay =≠ 焦点为(0,)4 A ,准线为4A y =- 如24y x =,即2 4y x =,焦点为1(0,)16 ,准线方程为116 y =- 7.参数方程

抛物线常用性质总结

结论一:若AB 是抛物线2 2(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x =,212y y p =-。 结论二:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:112=AF BF p + 。 结论三:(1)若AB 是抛物线2 2(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 22sin P AB α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二: 例:已知直线AB 是过抛物线2 2(0)y px p =>焦点F ,求证:11AF BF +为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12p AF x =+ ,22 p BF x =+,又AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x =。 则:212 121211()()()2224AF BF AB AB p p AF BF AF BF x x x x x x ++===?+++++ =22 2()424 AB p p p p AB p =+-+(常数 证明:结论四: 已知AB 是抛物线2 2(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 切。 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111 ()()222 QP AM BN AF BF AB = +=+=, ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF , ∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO ∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN= 1 2 (∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴1 2 MP NP FP MN ===, ∴∠PFM=∠FMP ∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB

抛物线经典性质总结30条

抛物线经典性质总结30条

1.

2. 23 ()2AOB S P AB =V (定值); 3. 1cos P AF α=-;1cos P BF α =+; 4. 'BC 垂直平分'B F ; 5. 'AC 垂直平分'A F ; 6. ' C F AB ⊥; 7. 2AB P ≥; 8. 11'('')22CC AB AA BB ==+; 9. AB 3P K =y ; 10. 2 p 22y tan =x -α; 11. 2A'B'4AF BF =?; 12. 1C'F A'B'2=. 13. 切线方程 ()x x m y y +=00 性质深究 一)焦点弦与切线 1、 过抛物线焦点弦的两端点作 抛物线的切线,两切线交点位置 有何特殊之处? 结论1:交点在准线上 先猜后证:当弦x AB ⊥轴时,则点P 的坐标为?? ? ??-0,2p 在准线上. 证明: 从略

结论2 切线交点与弦中点连线平行于对称轴 结论3 弦AB不过焦点即切线交点P不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论 4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x轴的交点作抛物线的切线,则过两切点AB的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB是抛物线px 2=(p>0)焦点弦,Q是AB y2 , 的中点,l是抛物线的准线,l AA⊥ 1 ,过A,B的切线相交于P,PQ BB⊥ l 1 与抛物线交于点M.则有 结论6PA⊥PB. 结论7PF⊥AB. 结论8 M平分PQ. 结论9 PA平分∠A1AB,PB平分∠B1BA. 结论102 FA= FB

高中数学抛物线经典性质的总结

抛物线

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,) A x y 22(,) B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α ,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0(φp ① 联立方程法: o x ()22,B x y F y ()11,A x y

???=+=px y b kx y 22 ?0)(2222=+-+b x p kb x k 设交点坐标为),(11y x A ,),(22y x B ,则有0φ?,以及2121,x x x x +,还可进一步求出 b x x k b kx b kx y y 2)(212121++=+++=+, 2212122121)())((b x x kb x x k b kx b kx y y +++=++= 在涉及弦长,中点,对称,面积等问题时,常用此法,比如 a. 相交弦AB 的弦长 2122122124)(11x x x x k x x k AB -++=-+=a k ?+=2 1 或 2122122124)(1111y y y y k y y k AB -++=-+ =a k ?+=2 1 b. 中点),(00y x M , 2210x x x += , 2 2 10y y y += ② 点差法: 设交点坐标为),(11y x A ,),(22y x B ,代入抛物线方程,得 12 12px y = 22 22px y = 将两式相减,可得 )(2))((212121x x p y y y y -=+- 2 121212y y p x x y y += -- a. 在涉及斜率问题时,2 12y y p k AB += b. 在涉及中点轨迹问题时,设线段AB 的中点为),(00y x M , 021*******y p y p y y p x x y y ==+=--, 即0 y p k AB = , 同理,对于抛物线)0(22≠=p py x ,若直线l 与抛物线相交于B A 、两点,点

抛物线经典性质总结

抛物线 抛 物 线 ) 0(22>=p px y ) 0(22>-=p px y ) 0(22>=p py x ) 0(22>-=p py x 定义 平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹叫做抛物线,点F 叫做抛物线的焦点,直线l 叫做抛物线的准线。 {MF M =点M 到直线l 的距离} 范围 0,x y R ≥∈ 0,x y R ≤∈ ,0x R y ∈≥ ,0x R y ∈≤ 对称性 关于x 轴对称 关于y 轴对称 焦点 ( 2 p ,0) (2p -,0) (0,2p ) (0,2 p - ) 焦点在对称轴上 顶点 (0,0)O 离心率 e =1 准线 方程 2 p x - = 2 p x = 2 p y - = 2 p y = 准线与焦点位于顶点两侧且到顶点的距离相等。 顶点到准线的距离 2 p 焦点到准线的距离 p 焦半径 11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ x y O l F x y O l F l F x y O x y O l F

焦点弦长 AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦 AB 的几条性质 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,则22sin p AB α= 若AB 的倾斜角为α,则22cos p AB α = 2 124 p x x = 212y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 切线 方程 00()y y p x x =+ 00()y y p x x =-+ 00()x x p y y =+ 00()x x p y y =-+ 1. 直线与抛物线的位置关系 直线 ,抛物线 , ,消y 得: (1)当k=0时,直线l 与抛物线的对称轴平行,有一个交点; (2)当k ≠0时, Δ>0,直线l 与抛物线相交,两个不同交点; Δ=0, 直线l 与抛物线相切,一个切点; Δ<0,直线l 与抛物线相离,无公共点。 (3)若直线与抛物线只有一个公共点,则直线与抛物线必相切吗?(不一定) (4) 2. 关于直线与抛物线的位置关系问题常用处理方法 直线l :b kx y += 抛物线 ,)0( p ① 联立方程法: o x ()22,B x y F y ()11,A x y

抛物线地性质归纳及证明

抛物线的常见性质及证明 概念 焦半径:抛物线上一点与其焦点的连线段; 焦点弦:两端点在抛物线上且经过抛物线的焦点线段称为焦点弦. 性质及证明 过抛物线y 2 =2px (p >0)焦点F 的弦两端点为),(11y x A ,),(22y x B ,倾斜角为α,中点为 C(x 0,y 0), 分别过A 、B 、C 作抛物线准线的垂线,垂足为A ’、B ’、C ’. 1.求证:①焦半径αcos 12||1-= + =p p x AF ;②焦半径α cos 12||2+=+=p p x BF ; ③ 1| AF | + 1| BF | =2 p ; ④弦长| AB |=x 1+ x 2+p = α 2 sin 2p ;特别地,当x 1=x 2(α=90)时,弦长|AB|最短,称为通径,长为2p ;⑤△AOB 的面积S △OAB = α sin 22 p . 证明:根据抛物线的定义,| AF |=| AD |=x 1+p 2,| BF |=| BC |=x 2+p 2 , | AB |=| AF |+| BF |=x 1+x 2+p 如图2,过A 、B 引x 轴的垂线AA 1、BB 1,垂足为 A 1、 B 1,那么| RF |=| AD |-| FA 1 |=| AF |-| AF |cos , ∴| AF |=| RF |1-cos =p 1-cos 同理,| BF |=| RF |1+cos =p 1+cos ∴| AB |=| AF |+| BF |=p 1-cos +p 1+cos =2p sin 2 . C D B (x 2,y 2) R A (x 1,y 1) x y O A 1 B 1 F 图2

抛物线经典性质总结30条

抛物线性质30条 已知抛物线2 2(0)y px p =>,AB 是抛物线的焦点弦,点C 是AB 的中点. AA’垂直准线于A ’, BB ’垂直准线于B ’, CC’垂直准线于C ’,CC ’交抛物线于点M ,准线交x 轴于点K. 求证: 1.12||,||,22p p AF x BF x =+ =+ 2.11 ()22 CC AB AA BB '''==+; 3.以AB 为直径的圆与准线L 相切; 证明:CC’是梯形AA’BB’的中位线, ||||||||||2| AB AF BF AA BB ''=+=+=4.90AC B '∠=o ;(由1可证) 5.90A FB ''∠=o ; ,,||||,,1, 2 AA FK A FK FA A AF AA AA F AFA A FK AFK '''∴∠=∠'''=∴∠=∠'∴∠=∠Q P Q 证明: 同理:1,2 B FK BFK '∠=∠得证. 6.1 C F A B 2 '''=. 证明:由90A FB ''∠=o 得证. 7.AC '垂直平分A F ';BC '垂直平分B F '证明:由1C F A B 2 '''=可知,1||||||,2C F A B C A '''''== ||||,.AF AA '=∴Q 又得证 同理可证另一个. 8.AC '平分A AF '∠,BC '平分B BF '∠,A’F 平分AFK ∠,B ’F 平分BFK ∠. 证明:由AC '垂直平分A F '可证. 9.C F 'AB ⊥; 证明:12 2121(,)(,)2y y C F AB p x x y y +'?=-?--u u u u v u u u v 222222 122112 21()02222y y y y y y p x x --=-+=-+= 10.1cos P AF α=-;1cos P BF α =+; 证明:作AH 垂直x 轴于点H ,则||||||||||cos ,||1cos p AF AA KF FH p AF AF αα '==+=+∴=-. 同理可证另一个. 11. 112AF BF P +=; 证明:由1cos P AF α=-;1cos P BF α =+;得证.

抛物线经典性质总结

抛物线焦点弦性质总结30条 基础回顾 1.以AB为直径的圆与准线L相切; 2. 3. 4. 5. 6. 7. 8. 9. 11. 12. 2 “ o P x1gx2—; 2 y1gy2p ; AC'B 90°; A'FB' 90°; AB % x2 p 2(x3#) 丄_L 1 AF||BF| P; A、O B'三点共线; B、O A'三点共线; P2 2sin ' (P)3(定值); 2 S VAOB 2 Sv AOB |AB AF 1 cos BF 2p sin2 1 cos P ;

13. BC 垂直平分BF ; 14. AC '垂直平分A 'F ; 15. C 'F AB ; 16. AB 2P ; 1 17. CC' -AB 2 “ P 18. K AB =-; y 3 19. tan =-^; X 2-号 2 20. A'B' 4AF| |BF 21. C'F ^A'B'. 2 22.切线方程 y 0y m x 0 x 性质深究 )焦点弦与切线 1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之 处? 结论1:交点在准线上 先猜后证:当弦AB x 轴时,则点P 的坐标为 卫,0在准线上. 2 证明:从略 结论2切线交点与弦中点连线平行于对称轴 结论3弦AB 不过焦点即切线交点 P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论4过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与 x 轴的交点作抛物线的切线,则过两切点 AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB 是抛物线y 2 2px ( p > 0)焦点弦,Q 是AB 的中点,I 是抛物线的准线,AA l , BB 1 l , 过A , B 的切线相交于P, PQ 与抛物线交于点M 则有 结论 6PALPB. 结论7PF 丄AB. 结论8 M 平分 PQ 结论9 PA 平分/ AAB PB 平分/ BBA 结论 10 F A |FB PF 2 结论 11S PAB min p ' 1(AA' BB');

抛物线常用性质总结

结论一:若AB 是抛物线22(0)y px p =>的焦点弦(过焦点的弦),且11(,)A x y ,22(,)B x y ,则: 2 124 p x x = ,212y y p =-。 结论二:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证:112= AF BF p + 。 结论三:(1)若AB 是抛物线22(0)y px p =>的焦点弦,且直线AB 的倾斜角为α,则 2 2sin P A B α = (α≠0)。(2)焦点弦中通径(过焦点且垂直于抛物线对称轴的弦)最短。 结论四:两个相切:(1)以抛物线焦点弦为直径的圆与准线相切。 (2)过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切。

证明结论二: 例:已知直线AB 是过抛物线22(0)y px p =>焦点F ,求证: 11AF BF + 为定值。 证明:设11(,)A x y ,22(,)B x y ,由抛物线的定义知:12 p A F x =+ ,22 p B F x =+ ,又 AF +BF =AB ,所以1x +2x =AB -p ,且由结论一知:2 124 p x x = 。 则:2 12121211()() ()222 4AF BF AB AB p p p p AF BF AF BF x x x x x x ++== =?+ + + ++ = 2 2 2()4 2 4 AB p p p p AB p = + -+ (常数 证明:结论四: 已知AB 是抛物线22(0)y px p =>的过焦点F 的弦,求证:(1)以AB 为直径的圆与抛物线的准线相切。 (2)分别过A 、B 做准线的垂线,垂足为M 、N ,求证:以MN 为直径的圆与直线AB 相 切。 证明:(1)设AB 的中点为Q,过A 、Q 、B 向准线l 作垂线, 垂足分别为M 、P 、N ,连结AP 、BP 。 由抛物线定义:AM AF =,BN BF =, ∴111()()2 2 2 Q P A M B N A F B F A B = += += , ∴以AB 为直径为圆与准线l 相切 (2)作图如(1),取MN 中点P ,连结PF 、MF 、NF , ∵AM AF =,AM ∥OF ,∴∠AMF=∠AFM ,∠AMF=∠MFO , ∴∠AFM=∠MFO 。同理,∠BFN=∠NFO , ∴∠MFN= 12 (∠AFM+∠MFO+∠BFN+∠NFO )=90°, ∴12 M P N P F P M N === , ∴∠PFM=∠FMP ∴∠AFP=∠AFM+∠PFM=∠FMA+∠FMP=∠PMA=90°,∴FP ⊥AB B A M N Q P y x O F O A M N P y x F B

高考抛物线知识点总结

高考抛物线知识点总结 1. 抛物线定义: 平面内与一个定点和一条直线的距离相等的点的轨迹叫做抛物线,点叫做抛物线的焦点,直线叫做抛物线的准线,定点不在定直线上。它与椭圆、双曲线的第二定义相仿,仅比值(离心率e)不同,当e=1时为抛物线,当0 2. 抛物线的标准方程有四种形式,参数的几何意义,是焦点到准线的距离,掌握不同形式方程的几何性质(如下表):其中为抛物线上任一点。 3. 对于抛物线上的点的坐标可设为,以简化运算。 4. 抛物线的焦点弦:设过抛物线的焦点的直线与抛物线交于,直线与的斜率分别为,直线的倾斜角为,则有解。 说明: 1. 求抛物线方程时,若由已知条件可知曲线是抛物线一般用待定系数法;若由已知条件可知曲线的动点的规律一般用轨迹法。 2. 凡涉及抛物线的弦长、弦的中点、弦的斜率问题时要注意利用韦达定理,能避免求交点坐标的复杂运算。 3. 解决焦点弦问题时,抛物线的定义有广泛的应用,而且还应注意焦点弦的几何性质。 抛物线的焦点弦的性质: 关于抛物线的几个重要结论:

(1)弦长公式同椭圆. (2)对于抛物线y2=2px(p0),我们有P(x0,y0)在抛物线内部P(x0,y0)在抛物线外部 (3)抛物线y2=2px上的点P(x1,y1)的切线方程是抛物线y2=2px(p,高二;0)的斜率为k的切线方程是y=kx+ (4)抛物线y2=2px外一点P(x0,y0)的切点弦方程是 (5)过抛物线y2=2px上两点的两条切线交于点M(x0,y0),则 (6)自抛物线外一点P作两条切线,切点为A,B,若焦点为F, 又若切线PA⊥PB,则AB必过抛物线焦点F. 利用抛物线的几何性质解题的方法: 根据抛物线定义得出抛物线一个非常重要的几何性质:抛物线上的点到焦点的距离等于到准线的距离.利用抛物线的几何性质,可以进行求值、图形的判断及有关证明. 抛物线中定点问题的解决方法: 在高考中一般以填空题或选择题的形式考查抛物线的定义、标准方程以及几何性质等基础知识,在解答题中常常将解析几何中的方法、技巧与思想集于一身,与其他圆锥曲线或其他章节的内容相结合,考查综合分析问题的能力,而与抛物线有关的定值及最值问题是一个很好的切人点,充分利用点在抛物线上及抛物线方程的特点是解决此类题型的关键,在求最值时经常运用基本不等式、判别式以及转化为函数最值

抛物线经典性质总结

124=3. 212y y p =-; 4. '90AC B ∠=; 5. ''90A FB ∠=; 6. 123222()2sin p p AB x x p x α=++=+=; 7. 112 AF BF P +=; 8. A 、O 、'B 三点共线; 9. B 、O 、'A 三点共线; 10. 2 2sin AOB P S α=; 11. 23()2AOB S P AB =(定值); 12. 1cos P AF α=-;1cos P BF α=+; 13. 'BC 垂直平分'B F ; 14. 'AC 垂直平分'A F ; 15. 'C F AB ⊥; 16. 2AB P ≥; 17. 1 1 '('')22CC AB AA BB ==+;

18. AB 3 P K = y ; 19. 2 p 22y tan =x -α; 20. 2A'B'4AF BF =?; 21. 1C'F A'B'2 =. 22. 切线方程 ()x x m y y +=00 性质深究 一)焦点弦与切线 1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之处? 结论1:交点在准线上 先猜后证:当弦x AB ⊥轴时,则点P 的坐标为?? ? ?? -0,2p 在准线上. 证明: 从略 结论2 切线交点与弦中点连线平行于对称轴 结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB 是抛物线px y 22 =(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有 结论6P A ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ . 结论9 P A 平分∠A 1AB ,PB 平分∠B 1BA . 结论2= 结论11PAB S ?2min p =

抛物线知识点归纳

抛物线方程及其性质 1.抛物线定义:平面内到一定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线. 2.抛物线四种标准方程的几何性质: 图形 参数p 几何意义 参数p 表示焦点到准线的距离,p 越大,开口越阔. 开口方向 右 左 上 下 标 准方 程 22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =-> 焦 点位 置 X 正 X 负 Y 正 Y 负 焦 点坐 标 (,0)2 p (,0)2p - (0,)2p (0,)2p - 准 线方 程 2p x =- 2p x = 2p y =- 2p y = 范 围 0,x y R ≥∈ 0,x y R ≤∈ 0,y x R ≥∈ 0,y x R ≤∈ 对 称轴 X 轴 X 轴 Y 轴 Y 轴 顶 点坐 标 (0,0) 离心率 1e = 通 径 2p 焦半径11(,)A x y 12 p AF x =+ 12 p AF x =-+ 12 p AF y =+ 12 p AF y =-+ 焦点弦长AB 12()x x p ++ 12()x x p -++ 12()y y p ++ 12()y y p -++ 焦点弦长AB 的补充 11(,)A x y 22(,)B x y 以AB 为直径的圆必与准线l 相切 若AB 的倾斜角为α,2 2sin p AB α = 若AB 的倾斜角为α,则22cos p AB α = 2124 p x x = 2 12y y p =- 112AF BF AB AF BF AF BF AF BF p ++===?? 3.抛物线)0(22>=p px y 的几何性质: (1)范围:因为p>0,由方程可知x ≥0,所以抛物线在y 轴的右侧, 当x 的值增大时,|y |也增大,说明抛物线向右上方和右下方无限延伸.

抛物线 标准方程、几何性质、经典大题归纳总结

第一讲:抛物线标准方程 一、 考点、热点回顾 一、定义:在平面内,与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫抛物线. 即:的轨迹是抛物线。 则点若 M MN MF ,1 (定点F 叫做抛物线的焦点,定直线l 叫做抛物线的准线。) 二、 标准方程: 设定点F 到定直线l 的距离为p(p 为已知数且大于0). 取过焦点F 且垂直于准线l 的直线为x 轴,x 轴与l 交于K ,以线段KF 的垂直平分线为y 轴,建立直角坐标系

抛物线上的点M(x,y)到l的距离为d,抛物线是集合p={M||MF|=d}. 化简后得:y2=2px(p>0). 由于焦点和准线在坐标系下的不同分布情况,抛物线的标准方程有四种情形(列表如下):

二、典型例题 例1、(1)已知抛物线的标准方程是y2=6x,求它的焦点坐标和准线方程; (2)已知抛物线的焦点坐标是F(0,-2),求它的标准方程. 方程是x2=-8y.例2、根据下列所给条件,写出抛物线的标准方程:

(1)焦点是F(3,0); (3)焦点到准线的距离是2. 答案是:(1)y 2=12x ;(2)y 2=-x ;(3)y 2=4x ,y 2=-4x ,x 2=4y ,x 2=-4y . 三、课堂练习 1. 抛物线y 2=4x 的焦点到准线的距离是________ 答案:2 解析:解析:抛物线y 2=4x 的焦点F (1,0),准线x =-1. ∴焦点到准线的距离为2. 2.分别求适合下列条件的抛物线的标准方程: (1)过点(-3,2); (2)焦点在直线x -2y -4=0上. 答案: 解析:解:(1)设抛物线方程为y 2=-2px 或x 2=2py (p >0),则将点(-3,2)代入方程得2p =43或2p =9 2 , 故抛物线方程为y 2=-43x 或x 2=9 2 y . (2)①令x =0,由方程x -2y -4=0,得y =-2. ∴抛物线的焦点为F (0,-2). 设抛物线方程为x 2=-2py (p >0),则由p 2 =2,得2p =8. ∴所求抛物线方程为x 2=-8y . ②令y =0,由方程x -2y -4=0,得x =4. ∴抛物线的焦点为F (4,0). 设抛物线方程为y 2=2px (p >0),则由p 2 =4,得2p =16.∴所求抛物线方程为y 2=16x . 综上,所求抛物线方程为y 2=16x 或x 2=-8y . 3、已知抛物线的顶点在原点,对称轴是x 轴,抛物线上的点M(-3,m)到焦点的距离等于 5,求抛物线的方程和m 的值 解法一:由焦半径关系,设抛物线方程为y 2=-2px(p >0),则准线方

(完整版)抛物线的焦点弦_经典性质及其证明过程

有关抛物线焦点弦问题的探讨 过抛物线px y 22 =(p>0)的焦点F 作一条直线L 和此抛物线相交于A ),(11y x 、B ),(22y x 两点 结论1:p x x AB ++=21 p x x p x p x BF AF AB ++=+++ =+=2121)2 ()2( 结论2:若直线L 的倾斜角为θ,则弦长θ2sin 2p AB = 证: (1)若2 π θ= 时,直线L 的斜率不存在,此时AB 为抛物线的通径,结论得证∴=∴p AB 2 (2)若2 π θ≠ 时,设直线L 的方程为:θtan )2(p x y - =即2 cot p y x +?=θ 代入抛物线方程得0cot 222=-?-p py y θ由韦达定理θcot 2,21221p y y p y y =+-= 由弦长公式得θ θθ2 2212 sin 2)cot 1(2cot 1p p y y AB = +=-+= 结论3: 过焦点的弦中通径长最小 p p 2sin 21sin 2 2≥∴ ≤θ θΘ ∴AB 的最小值为p 2,即过焦点的弦长中通径长最短. 结论4: )(8 3 2为定值p AB S oAB =?

()8 sin 2sin sin 2221sin 21sin 21sin 2 1 sin 21322 20P AB S p p p AB OF BF AF OF AF OF BF OF S S S OAB AF OBF OAB = ∴=???=??=+?=??+??= +=????θθθθθ?θ 结论5: (1) 2 21p y y -= (2) x 1x 2=4 2 p 证44)(,2,22 2 221212 22211P P y y x x p y x p y x ==∴==Θ 结论6:以AB 为直径的圆与抛物线的准线相切 证:设M 为AB 的中点,过A 点作准线的垂线AA 1, 过B 点作准线的垂线BB 1, 过M 点作准线的垂线MM 1,由梯形的中位线性质和抛物线的定义知 2 2 2 1 11AB BF AF BB AA MM = += += 故结论得证 结论7:连接A 1F 、B 1 F 则 A 1F ⊥B 1F FA A FO A FO A F AA OF AA AFA F AA AF AA 11111111//,∠=∠∴∠=∠∴∠=∠∴=ΘΘ 同理?=∠∴∠=∠901111FB A FB B FO B ∴A 1F ⊥B 1 F 结论8:(1)AM 1⊥BM 1 (2)M 1F ⊥AB (3)BF AF F M ?=2 1 (4)设AM 1 与A 1F 相交于H ,M 1B 与 FB 1相交于Q 则M 1,Q ,F ,H 四点共圆 (5)2 1212 1 4M M B M AM =+ 证:由结论(6)知M 1 在以AB 为直径的圆上∴ AM 1⊥BM 1 Θ11FB A ?为直角三角形, M 1 是斜边A 1 B 1 的中点 1 11111111AFA F AA F A M FA M F M M A ∠=∠∠=∠∴=∴Θ ?=∠=∠+∠9011111M AA M FA F AA Θ ?=∠+∠∴90111FM A AFA ∴M 1F ⊥AB BF AF F M ?=∴2 1 Θ AM 1⊥BM 1 F B F A 90111⊥?=∠∴Θ又B AM ?=∠∴90FB A 11 所以M 1,Q ,F,H 四点共圆,2 212 1 AB B M AM =+ ()()()2 12 12 11 2 42MM MM BB AA BF AF ==+=+= 结论9: (1)、A O 、B 1 三点共线 (2)B ,O ,A 1 三点共线 (3)设直线AO 与抛物线的准线的交点为B 1,则BB 1平行于X 轴 (4)设直线BO 与抛物线的准线的交点为A 1,则AA 1平行于X 轴

抛物线焦点弦性质总结30条

基础回顾 1. 以AB 2. 2 124 p x x =3. 212y y p =-; 4. '90AC B ∠=; 5. ''90A FB ∠=; 6. 123222()2sin p p AB x x p x α=++=+ =; 7. 112AF BF P +=; 8. A 、O 、'B 三点共线; 9. B 、O 、' A 三点共线; 10. 2 2sin AOB P S α =; 11. 23()2 AOB S P AB =(定值); 12. 1cos P AF α= -;1cos P BF α=+; 13. 'BC 垂直平分'B F ; 14. 'AC 垂直平分'A F ; 15. 'C F AB ⊥; 16. 2AB P ≥; 17. 11'('')22CC AB AA BB = =+; 18. AB 3 P K =y ; 19. 2 p 22 y tan =x -α;

20. 2A'B'4AF BF =?; 21. 1C'F A'B'2 =. 22. 切线方程 ()x x m y y +=00 性质深究 一)焦点弦与切线 1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之 处? 结论1:交点在准线上 先猜后证:当弦x AB ⊥轴时,则点P 的坐标为?? ? ?? -0,2p 在准线上. 证明: 从略 结论2 切线交点与弦中点连线平行于对称轴 结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB 是抛物线px y 22=(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1,l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有 结论6P A ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ . 结论9 P A 平分∠A 1AB ,PB 平分∠B 1BA . 结论2= 结论11PAB S ?2min p = 二)非焦点弦与切线 思考:当弦AB 不过焦点,切线交于P 点时, 也有与上述结论类似结果: 结论12 ①p y y x p 221=,2 21y y y p += 结论13 P A 平分∠A 1AB ,同理PB 平分∠B 1BA . 结论14 PFB PFA ∠=∠ 结论15 点M 平分PQ 结论16 2 PF = 相关考题

知识讲解_抛物线的简单性质_基础

抛物线的简单性质 编稿:张林娟 责编:孙永钊 【学习目标】 1.知识与技能: 掌握抛物线的范围、对称性、定点、焦点、准线、离心率、顶点、通径,理解2p 和e 的几何意义,初步学习利用方程研究 曲线性质的方法. 2.过程与方法: 通过曲线的方程来研究曲线性质的方法,让学生体会数形结合的思想、方程思想及转化的思想在研究和解决问题中的应用. 3.情感态度与价值观: 通过自主探究、交流合作使学生亲身体验研究的艰辛,感受知识的发生发展过程,力求使学生获得符合时代要求的“双基” 【要点梳理】 要点一:抛物线标准方程2(0)2y =px p >的几何性质 1. 对称性 观察图象,不难发现,抛物线y 2=2px (p >0)关于..x .轴对称...,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴....... . 2. 范围 抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x .≥0..;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线. 3. 顶点 抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点....(0,0). 4. 离心率 抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e 表示,e .=1... 5. 通径 通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径. 因为通过抛物线y 2=2px (p >0)的焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为,2p p ?? ???, ,2p p ??- ??? ,所以抛物线的通径长为....2.p ..这就是抛物线标准方程中2p 的一种几何意义.另一方面,由通径的定义我们还可以看出,p 刻画了抛物线开口的大小,p 值越大,开口越宽;p 值越小,开口越窄.

抛物线经典性质总结

抛物线焦点弦性质总结30条 a A'C'C(X3,Y3) B'O F B(X2,Y2) A(X1,Y1) 基础回顾 1. 以AB 为直径的圆与准线L 相切;2. 2124p x x g ; 3. 212y y p g ; 4. '90AC B o ; 5. ''90A FB o ; 6. 123222()2sin p p AB x x p x ; 7. 112AF BF P ; 8. A 、O 、' B 三点共线;9.B 、O 、'A 三点共线; 10.22sin AOB P S V ; 11.23()2AOB S P AB V (定值);12.1cos P AF ;1cos P BF ;13.'BC 垂直平分 'B F ; 14.'AC 垂直平分'A F ; 15.'C F AB ; 16.2AB P ;17.1 1 '('')22CC AB AA BB ;

18.AB 3P K = y ;19.2p 22y tan =x -; 20.2A'B'4AF BF ; 21.1 C'F A'B'2. 22.切线方程 x x m y y 00性质深究 一)焦点弦与切线 1、过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之处? 结论1:交点在准线上 先猜后证:当弦 x AB 轴时,则点P 的坐标为0,2p 在准线上. 证明: 从略 结论 2 切线交点与弦中点连线平行于对称轴 结论 3 弦AB 不过焦点即切线交点 P 不在准线上时,切线交点与弦中点的连线也平行于对称轴.2、上述命题的逆命题是否成立? 结论 4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点.结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径.3、AB 是抛物线px y 22(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线, l AA 1,l BB 1,过A ,B 的切线相交于P ,PQ 与抛物线交于点 M .则有结论6P A ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ . 结论9 P A 平分∠A 1AB ,PB 平分∠B 1BA . 结论102PF FB FA 结论11PAB S 2 min p

最新抛物线经典性质总结教学内容

2 124p x =; 3. 2 12y y p =-; 4. '90AC B ∠=; 5. ''90A FB ∠=; 6. 123222()2sin p p AB x x p x α =++=+= ; 7. 112 AF BF P +=; 8. A 、O 、'B 三点共线; 9. B 、O 、' A 三点共线; 10. 2 2sin AOB P S α =; 11. 23()2 AOB S P AB =(定值); 12. 1cos P AF α=-;1cos P BF α=+; 13. 'BC 垂直平分' B F ; 14. 'AC 垂直平分' A F ; 15. ' C F AB ⊥; 16. 2AB P ≥; 17. 11 '('')22 CC AB AA BB = =+;

18. AB 3 P K = y ; 19. 2p 22 y tan =x -α; 20. 2 A'B'4AF BF =?; 21. 1 C'F A'B'2 = . 22. 切线方程 ()x x m y y +=00 性质深究 一)焦点弦与切线 1、 过抛物线焦点弦的两端点作抛物线的切线,两切线交点位置有 何特殊之处? 结论1:交点在准线上 先猜后证:当弦x AB ⊥轴时,则点P 的坐标为?? ? ?? - 0,2p 在准线上. 证明: 从略 结论2 切线交点与弦中点连线平行于对称轴 结论3 弦AB 不过焦点即切线交点P 不在准线上时,切线交点与弦中点的连线也平行于对称轴. 2、上述命题的逆命题是否成立? 结论4 过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点 先猜后证:过准线与x 轴的交点作抛物线的切线,则过两切点AB 的弦必过焦点. 结论5过准线上任一点作抛物线的切线,过两切点的弦最短时,即为通径. 3、AB 是抛物线px y 22 =(p >0)焦点弦,Q 是AB 的中点,l 是抛物线的准线,l AA ⊥1, l BB ⊥1,过A ,B 的切线相交于P ,PQ 与抛物线交于点M .则有 结论6P A ⊥PB . 结论7PF ⊥AB . 结论8 M 平分PQ . 结论9 P A 平分∠A 1AB ,PB 平分∠B 1BA . 结论2 FB FA = 结论11PAB S ?2min p =

相关主题
文本预览
相关文档 最新文档