当前位置:文档之家› 第六章 晶结构与晶体材料

第六章 晶结构与晶体材料

第六章 晶结构与晶体材料
第六章 晶结构与晶体材料

第六章晶体结构与晶体材料

教学目的:

掌握晶体的概念及晶体结构的特点;掌握晶体的宏观对称性;熟悉晶体的基本性质;了解晶体缺陷的重要性。

教学重点:

晶体材料:石英晶体与压电材料、钛酸钡晶体与非线性光学材料、BGO晶体材料。教学难点:

晶体的对称性与晶系。

第一节晶体的结构特点

一、晶体

晶体是由原子或分子按照一定的周期性规律在空间重复排列而成的固体物质。

二、晶体结构的特点

1. 晶体结构的特点

以NaCl晶体为例讨论晶体结构的特点。

NaCl是食盐的主要成分,市售粗盐经过重结晶可得到纯净、漂亮的NaCl晶体。NaCl晶体呈立方体外形,肉眼可以看到平滑的晶面,尖锐的顶角和笔直的棱边。NaCl晶体整齐的外形反映了晶体的内部结构规整性。用X射线衍射法测定的NaCl的晶体结构,如图6-1所示。

2. 晶胞

晶胞晶胞是晶体的一个基本结构单位,它的形状是一个平行六面体。图6-1给出了NaCl晶体的一个晶胞,无数的这种晶胞在空间规则地重复排列就形成NaCl晶体。

要确定晶体的结构,首先要知道晶胞的大小和形状,其次要知道晶胞中原子的种类、数目和原子的坐标位置。

晶胞的大小和形状由晶胞参数规定。若把晶胞放在坐标系中,如图6-2所示,它的三条棱边a,b,c和三条棱边两两之间的夹角α,β,γ合称为晶胞参数。如NaCl晶体的晶胞参数为:a=b=c=562.8 pm,α=β=γ=90°,这种晶胞称为立方晶胞。NaCl晶体中Na+与Cl-以离子键结合,所以NaCl晶体称为离子晶体。在NaCl晶体中,一个Na+周围配有6个Cl-(配位数为6)。这6个配位Cl-形成一个八面体,Na+处于八面体的空隙中。同样地,以一个Cl-为中心,周围也配有6个Na+,Cl-也处于Na+的八面体空隙中。由此可见,NaCl只是个化学式,整块NaCl 晶体是个巨大的分子,把NaCl看作一个分子(或分子式)是不确切的。

3. 结构基元

结构基元是指晶体中作周期性规律重复排列的那一部分内容。它是晶体中重复排列的基本单位,必须满足化学组成相同、空间结构相同、排列取向相同和周围环境相同的条件。晶胞中含一个结构基元的称为素晶胞,含2个和2个以上结构基元的称复晶胞。图6-1的NaCl晶胞中含4个Na—Cl结构基元,是面心立方型式的复晶胞。图6-3给出了CsCl晶体和金属钨晶体的晶胞结构。CsCl晶胞中只含1个结构基元(Cs—Cl),所以是素晶胞,它是立方晶胞,故称为简单立方。

金属钨立方晶胞中有2个钨原子,一个钨原子为一个结构基元,所以是复晶胞,称为体心立方。立方晶胞共有三种形式:简单立方、体心立方和面心立方。

第二节晶体的基本性质

一、晶体的基本性质

晶体的基本性质由晶体的周期性结构决定的。晶体具有均匀性和各向异性。

二、均匀性

均匀性如晶体的化学组成、密度等性质在晶体中各部分都是相同的,这是由于晶体周期性结构中的周期很小,宏观上分辨不出的缘故。

三、各向异性

晶体中沿不同方向,原子或分子排列的情况不同,因此在不同方向上呈现不同的性质,这称为各向异性。

四、晶体的熔点、晶体的对称性、晶体能使X射线产生衍射

晶体具有确定的熔点如果把晶体加热,随着温度的升高,晶体中原子之间的化学键会发生断裂,晶体的周期性规则排列遭到破坏,晶态向液态转化,转化时的温度就是晶体的熔点。

晶体具有对称性对称性是晶体的重要性质之一,晶体的外形和内部结构都具有特有的对称性,下面将做具体讨论。不论是天然晶体或人工培养的晶体,都呈现多面体外形。

晶体能使X射线产生衍射当入射光的波长与光栅隙缝大小相当时,能产生光的衍射现象。X射线的波长与晶体结构的周期大小相近,所以晶体是个理想的光栅,它能使X射线产生衍射。利用这种性质人们建立了测定晶体结构的重要实验方法。非晶态物质没有周期性结构,不能使X射线产生衍射,只有散射效应。

第三节晶体的对称性与晶系

一、晶体的宏观对称性

晶体宏观对称性有旋转轴(也称对称轴)、对称面(也称镜面)和对称中心。

1.旋转轴

旋转轴是对称元素,绕旋转轴可做旋转操作。n次旋转

体对应面中心联

线方向有4次旋转轴,绕此轴每旋转90°后,晶体形状不变;立方体对角线联线方向有3次旋转轴,绕此轴每旋转120°后,晶体形状不变;立方体对应棱边中心联线方向有2次旋转轴,绕此轴每旋转180°,晶体形状不变。图6-4示出这3种旋转轴。可以证明在晶体宏观外形中存在的旋转轴有1,2,3,4和6次旋转轴5种,不存在5次轴和大于6次的旋转轴。

2.对称面

对称面是对称元素,对称面也称镜面,常用m表示。凭借对称面可以做反映操作,如同物体与镜子中的像是反映关系。人的双手手心相对,平行放置,左右手就互为镜象。许多晶体中存在对称面,NaCl晶体有9个对称面。

3. 对称中心

对称中心也是对称元素,常用i表示。通过对称中心可以做倒反操作。例如人的双手手心相对,逆平行放置,此时左右手构成倒反关系。图6-1 所示的NaCl 晶胞中,在体心位置存在对称中心。因此晶胞中任意一个原子与对称中心相连,在反方向等距离处必存在同样的原子。晶体有无对称中心对晶体的性质有较大的影响。

凭借上述三种对称元素所做的对称操作都是简单操作,如果连续做两个简单操作就成为复合操作。旋转倒反操作是复合操作,与它对应的

综上所述,在晶体外形独立存在的宏观对称元素有8种:1,2,3,

称类型,称为32种晶体学点群。

二、7个晶系

自然界存在的晶体和人工培养的晶体有千万种,但按照晶体宏观对称性可将它们分为7类,称为7个晶系。

在众多的对称元素中,把对称性最高的叫做特征对称元素。晶系就是根据晶体的特征对称元素来划分的。凡晶体中有4个3次轴的归为立方晶系,立方晶系的对称性最高。其次是六方晶系,晶体中有一个6次轴是六方晶系的特征对称元素。

第四节晶体材料

一、石英晶体与压电材料

1.压电效应

把晶体切成薄片,薄片受压后在两个面上分别产生正电荷和负电荷,这就是晶体的压电效应。

只有非中心对称晶体可能有压电效应,因此利用压电效应可以帮助我们判断晶体的对称性。

图6-5示出石英晶体的形状,并标出了石英晶体的对称元素。它有1个3

次轴,有3个2次轴垂直3次轴,没有对称中心,所以石英是非中心对称晶体,是很好的压电材料。石英晶体具有压电效应,把石英晶体切成薄片,石英片可以取代钟表中的摆和游丝。

二、钛酸钡晶体与非线性光学材料

非线性光学效应在传统的线性光学范围内,一束光通过晶体后,光的频率不会改变。然而当光通过某种晶体后产生频率为入射光两倍的光,则将这种现象称为非线性光学效应。

产生非线性光学效应的晶体叫非线性光学晶体。这种晶体必须是非中心对称晶体。

钛酸钡晶体钛酸钡的化学式为BaTiO3,高温时它的晶体是立方晶系,图6-6示出BaTiO3立方晶体的一个晶胞。晶胞中只有一个分子,Ba原子位于体心位置,Ti原子处于顶角,O原子处于棱边。从图中可看到,立方晶胞的顶角有TiO6八面体基团。立方BaTiO3晶体有对称中心,因此没有非线性光学性能。当温度降低时,TiO6八面体基团发生畸变,基团中的Ti沿4次轴相对O原子移动12 pm,Ba也在同方向移动6pm,O原子也偏离了正八面体。此时晶体转变为四方晶系,没有对称中心,四方BaTiO3是非线性光学晶体,它能对高强度的激光光源进行调频、调相等技术处理。四方BaTiO3还是优良的压电、铁电、电光等重要功能晶体材料。

三、BGO晶体材料

BGO是化合物锗酸铋Bi4Ge3O12的简称。BGO晶体无色透明,在光和X射线辐照下,BGO在室温下有很强的发光性质,是性能优异的新一代闪烁晶体材料,可用于探测X射线、γ射线、正电子和带电粒子等,在高能物理、核物理、核医学、核工业和石油勘探等方面有广泛的应用。

图6-7BGO晶体属立方晶系,晶胞中有4个Bi4Ge3O12分子。Bi+3周围有6个GeO4四面体,图6-7示出BGO的晶体结构。作为闪烁晶体材料,对BGO晶体的纯度要求极高。如果起始原料中包含高于千万分之几的杂质,如Fe,Pb,Cr,Mn等,BGO晶体在光和X射线辐照下就会变成棕色,形成辐照损伤,它的探测性能就明显下降。因此,生长BGO晶体需要用高纯(99.999%)的Bi2O3和GeO2作原料,并且要严格地按化学计量比(Bi2O3∶GeO2=2∶3)配料,还要长时间保持稳定的温度。上海硅酸盐研究所曾培养出长25cm,质量为5kg的BGO大晶体。

第五节晶体缺陷

1.晶体缺陷

理想晶体是指晶体中的原子、分子完全按照严格的周期性重复排列得到的晶体,晶体中所有的晶胞都是等同的。而在实际晶体中或多或少总会存在空位、位错、杂质原子等缺陷,这些因素促使实际晶体偏离理想的周期性重复排列,人们称之为晶体缺陷。

2.ZnS晶体与蓝色荧光粉

蓝色荧光粉的主要原料是硫化锌(ZnS)晶体,它是白色的。如果往ZnS晶体中掺入大约0.0001%的氯化银(AgCl)时,Ag+和Cl-分别占据ZnS晶体中Zn2+和S2-的位置,造成晶体缺陷,破坏了ZnS晶体周期性结构,使得杂质原子周围的电子

能级与Zn2+和S2-周围的不同。这种掺杂的ZnS晶体,在阴极射线激发下,放出波长为450nm的荧光,可做彩色电视荧光屏中的蓝色荧光粉。

3.单晶硅、锗和信息材料

高纯的单晶硅、单晶锗都是很好的半导体材料,但如果掺杂后得到的掺杂半导体,其性能受掺杂的种类和数量控制,应用更为广泛。

(1)P型半导体单晶硅是金刚石型结构,每个Si原子的配位数为4,形成4个Si—Si单键,所以每个Si原子的外层有8个电子。如果往单晶硅中掺杂质Ga(镓),由于Ga原子价层只有3个价电子,当它取代了硅原子的位置后,Ga原子外层只有7个电子,其中有一个Ga—Si键只有一个电子,即产生了一个空穴,如图6-8(a)所示。相邻的Si原子价层上电子可移动到空穴,而又留下一个空穴,这相当于空穴在移动。这种由空穴迁移导电的称为P型半导体。

(2)N型半导体若在单晶硅中掺杂质As(砷),由于As原子外层有5个价电子,当它取代硅原子位置后,成键的As原子外层就有9个价电子,见图6-8(b),多出的一个电子可以激发到导带而导电。这类由电子移动导电的称为N型半导体。

(3)P-N结单晶硅和单晶锗都可通过掺杂形成P型和N型半导体。若将单晶硅的一端掺Ga,而另一端掺As,则掺Ga部分形成P型半导体,掺As部分形成N型半导体。N型和P型半导体的结合处称为P-N结,它具有一种特殊的功能,使电流只能单向导通。所以P-N结就是一个整流器,它可将交流电转变为直流电,使电流从P-N结的P区流向N区。利用P-N结可以做成晶体管,P-N-P或N-P-N

晶体管都可以将光信号转变为电信号输出,并且还能把光电流放大。把许许多多的晶体管集成在硅芯片上,做成集成电路,它是现代计算机技术、通信技术、遥控技术、自动化技术的基础。

各种晶体总结及其应用

对晶体结构及其应用的认识 引言:化学中对晶体的研究促进了各种特性材料的发现和发明,也促进了各种催化剂的发现,晶体是美丽的,他们的最小单位——晶胞更是充分体现了各种对称美和造物者的神奇。晶体的应用在人类的生产生活中正发挥着巨大的作用。在本飞行器制造工程专业中也占据着不可忽视的作用。 关键词原子晶体,离子晶体,分子晶体,材料,制造业 高中时学习化学,曾接触过晶体的一些知识,因而对晶体产生了浓厚的兴趣,想借此机会,总结一下晶体结构以及晶体的各种应用。晶体分为原子晶体、离子晶体、分子晶体和金属晶体,我们生活的世界大部分是由这些物质构成。晶体具有以下特征: 自范性:晶体具有自发地形成封闭的凸几何多面体外形能力的性质,又称为自限性。 均一性:指晶体在任一部位上都具有相同性质的特征。 各向异性:在晶体的不同方向上具有不同的性质。 对称性:指晶体的物理化学性质能够在不同方向或位置上有规律地出现,也称周期性。最小内能和最大稳定性。 晶体中质点排列具有周期性和对称性整个晶体可看作由结点沿三个不同的方向按一定间距重复出现形成的,结点间的距离称为该方向上晶体的周期。同一晶体不同方向的周期不一定相同。可以从晶体中取出一个单元,表示晶体结构的特征。取出的最小晶格单元称为晶胞。晶胞是从晶体结构中取出来的反映晶体周期性和对称性的重复单元。 原子晶体是几种晶体中硬度最大,熔点较高的一类晶体。晶体中原子与原子通过共价键链接,构成一个空间的三维网络结构,所以具有他们特有的物理性质。俗话说“没有金刚钻别揽瓷器活”就是说的原子晶体中最典型的金刚石,金刚石

中C原子通过sp3杂化轨道与其他C原子相连,在空间形成承受力能力相当强的正四面体结构,我们不禁赞叹大自然的神奇,简单的C原子以这种方式连结竟然构成了世间最硬的物质。正是由于原子晶体的各种特异的性质,原子晶体在工业中具有广泛的应用,金刚石因为它的硬度较大,被广泛用在精密切割的刀具上,另外钻石还是昂贵的奢侈品;二氧化硅常被用在机械加工中各种砂轮砂纸上作为耐磨材料;高纯度的硅单质是良好的半导体,被广泛用于电子信息产业;碳化硅是良好的耐磨材料,。 离子晶体由阴、阳离子通过离子键结合而成的晶体,离子键:阴、阳离子间强烈的静电作用。离子键无饱和性、无方向性,大多数盐、强碱、活泼金属氧化物属于离子晶体,典型代表是氯化钠。相对于原子晶体,离子晶体更加普遍存在,同时它们也具有许多独特的特点。应为离子晶体是靠阴阳离子相互吸引结合,离子间以离子键相互结合,离子之间按照严格的规则排列,因此具有很漂亮的晶胞下面如图立方ZnS、CaF2、NaCl的晶胞 离子晶体在人类的生活中发挥着重要作用,冶炼金属,制作高储能的电池,制作具有各种光学特性光学器材,温度测量等很多地方都有应用。 分子晶体是由分子组成,可以是极性分子,也可以是非极性分子。分子间的作用力很弱,分子晶体具有较低的熔、沸点,硬度小、易挥发,许多物质在常温下呈气态或液态,例如O2、CO2是气体,乙醇、冰醋酸是液体。同类型分子的晶体,其熔、沸点随分子量的增加而升高,例如卤素单质的熔、沸点按F2、Cl2、Br2、I2顺序递增;非金属元素的氢化物,按周期系同主族由上而下熔沸点升高;有机物的同系物随碳原子数的增加,熔沸点升高。但HF、H2O、NH3、CH3CH2OH等分子间,除存在范德华力外,还有氢键的作用力,它们的熔沸点较高。在固态和熔融状态时都不导电。 金属晶体:晶格结点上排列金属原子-离子时所构成的晶体。金属中的原子

七大晶系详细图解

七大晶系详细图解

一、四方晶系 。其中两个水平轴(X 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90° 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是 四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。 横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和 顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图: 注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面。 晶体实物图:

三、斜方晶系 斜方晶系的晶体中三个轴的长短完全不相等,它们的交角仍然是互为90度垂直。即X≠Y≠Z。Z轴和Y轴相互垂直90°。X轴与Y轴垂直,但是不与Z轴垂直,即α=γ=90,β>90°与正方晶系直观相比,区别就是:x轴、y轴长短不一样。如果围绕z轴旋转,四方晶系旋转九十度即可使x轴y轴重合,旋转一周使x轴y轴重合四次(使另两轴重合的次数多于两次,该轴称“高次轴”),四方晶系有一个高次轴,也叫“主轴”。斜方晶系围绕z轴旋转,需180度才可使x轴y 轴重合,旋转一周只重合两次,属低次轴。也就是说,斜方晶系的对称性比四 方晶系要低。特征对称元素是二重对称轴或对称面。其实,斜方晶系的晶体如 果围绕x轴或y轴旋转,情况与围绕z轴旋转相同。换句话说,斜方晶系没有 高次轴,或曰没有理论上的主轴。从模型上看,四方晶系的x轴和y轴所指向的晶面完全都是对称相同的,斜方晶系的x轴和y轴所指向的晶面却是各自相等的。

七大晶系十四个点阵图解大全

*七大晶系简单介绍(带图) 1、立方晶系[等轴晶系]-cubic system [晶体] a=b=c; α=β=γ=90°; 2、四方晶系[正方晶系]-tetragonal system [晶体] a=b≠c ; α=β=γ=90°; 3、正交晶系(晶体)-orthorhombic system [晶体] rhombic system [晶体] a≠b≠c ; α=β=γ=90°; [斜方晶系(矿物)] 4、单斜晶系-monoclinic system [晶体] a≠b≠c ;α=γ=90°≠β; 5、三斜晶系-triclinic system [晶体] a≠b≠c ; α≠γ≠β; 6、菱方晶系[三角晶系]-rhombohedral system [晶体] a=b=c; α=β=γ≠90°(0120 ); 7、六方晶系-hexagon system [晶体] hexagonal system [晶体] a=b≠c ;α=β=90°;γ=120°; 七大晶系

七大晶系细分

1、立方晶系[等轴晶系]-cubic system [晶体] 简单立方面心立方体心立方 2、四方晶系[正方晶系] -tetragonal system [晶体] 简单四方体心四方

3、正交晶系[斜方晶系]- orthorhombic system [晶体] rhombic system [晶体] 简单正方体心正方底心正方面心正方 4、单斜晶系-monoclinic system [晶体] 简单单斜底心单斜

5、三斜晶系-triclinic system [晶体] 简单三斜

常见的金属晶体结构

第二章作业 2-1 常见的金属晶体结构有哪几种它们的原子排列和晶格常数有什么特点 V、Mg、Zn 各属何种结构答:常见晶体结构有 3 种:⑴体心立方:-Fe、Cr、V ⑵面心立方:-Fe、Al、Cu、Ni ⑶密排六方:Mg、Zn -Fe、-Fe、Al、Cu、Ni、Cr、 2---7 为何单晶体具有各向异性,而多晶体在一般情况下不显示出各向异性答:因为单晶体内各个方向上原子排列密度不同,造成原子间结合力不同,因而表现出各向异性;而多晶体是由很多个单晶体所组成,它在各个方向上的力相互抵消平衡,因而表现各向同性。第三章作业3-2 如果其它条件相同,试比较在下列铸造条件下,所得铸件晶粒的大小;⑴金属模浇注与砂模浇注;⑵高温浇注与低温浇注;⑶铸成薄壁件与铸成厚壁件;⑷浇注时采用振动与不采用振动;⑸厚大铸件的表面部分与中心部分。答:晶粒大小:⑴金属模浇注的晶粒小⑵低温浇注的晶粒小⑶铸成薄壁件的晶粒小⑷采用振动的晶粒小⑸厚大铸件表面部分的晶粒小第四章作业 4-4 在常温下为什么细晶粒金属强度高,且塑性、韧性也好试用多晶体塑性变形的特点予以解释。答:晶粒细小而均匀,不仅常温下强度较高,而且塑性和韧性也较好,即强韧性好。原因是:(1)强度高:Hall-Petch 公式。晶界越多,越难滑移。(2)塑性好:晶粒越多,变形均匀而分散,减少应力集中。(3)韧性好:晶粒越细,晶界越曲折,裂纹越不易传播。 4-6 生产中加工长的精密细杠(或轴)时,常在半精加工后,将将丝杠吊挂起来并用木锤沿全长轻击几遍在吊挂 7~15 天,然后再精加工。试解释这样做的目的及其原因答:这叫时效处理一般是在工件热处理之后进行原因用木锤轻击是为了尽快消除工件内部应力减少成品形变应力吊起来,是细长工件的一种存放形式吊个7 天,让工件释放应力的时间,轴越粗放的时间越长。 4-8 钨在1000℃变形加工,锡在室温下变形加工,请说明它们是热加工还是冷加工(钨熔点是3410℃,锡熔点是232℃)答:W、Sn 的最低再结晶温度分别为: TR(W) =(~×(3410+273)-273 =(1200~1568)(℃)>1000℃ TR(Sn) =(~×(232+273)-273 =(-71~-20)(℃) <25℃ 所以 W 在1000℃时为冷加工,Sn 在室温下为热加工 4-9 用下列三种方法制造齿轮,哪一种比较理想为什么(1)用厚钢板切出圆饼,再加工成齿轮;(2)由粗钢棒切下圆饼,再加工成齿轮;(3)由圆棒锻成圆饼,再加工成齿轮。答:齿轮的材料、加工与加工工艺有一定的原则,同时也要根据实际情况具体而定,总的原则是满足使用要求;加工便当;性价比最佳。对齿轮而言,要看是干什么用的齿轮,对于精度要求不高的,使用频率不高,强度也没什么要求的,方法 1、2 都可以,用方法 3 反倒是画蛇添足了。对于精密传动齿轮和高速运转齿轮及对强度和可靠性要求高的齿轮,方法 3 就是合理的。经过锻造的齿坯,金属内部晶粒更加细化,内应力均匀,材料的杂质更少,相对材料的强度也有所提高,经过锻造的毛坯加工的齿轮精度稳定,强度更好。 4-10 用一冷拔钢丝绳吊装一大型工件入炉,并随工件一起加热到1000℃,保温后再次吊装工件时钢丝绳发生断裂,试分析原因答:由于冷拔钢丝在生产过程中受到挤压作用产生了加工硬化使钢丝本身具有一定的强度和硬度,那么再吊重物时才有足够的强度,当将钢丝绳和工件放置在1000℃炉内进行加热和保温后,等于对钢丝绳进行了回复和再结晶处理,所以使钢丝绳的性能大大下降,所以再吊重物时发生断裂。 4-11 在室温下对铅板进行弯折,越弯越硬,而稍隔一段时间再行弯折,铅板又像最初一样柔软这是什么原因答:铅板在室温下的加工属于热加工,加工硬化的同时伴随回复和再结晶过程。越弯越硬是由于位错大量增加而引起的加工硬化造成,而过一段时间又会变软是因为室温对于铅已经是再结晶温度以上,所以伴随着回复和再结晶过程,等轴的没有变形晶粒取代了变形晶粒,硬度和塑性又恢复到了未变形之前。第五章作业 5-3 一次渗碳体、二次渗碳体、三次渗碳体、共晶渗碳体、共析渗碳体异同答:一次渗碳体:由液相中直接析出来的渗碳体称为一次渗碳体。二次渗碳体:从 A 中析出的渗碳体称为二次渗碳体。三次渗碳体:从 F 中析出的渗碳体称为三次渗碳体共晶渗碳体:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体共析渗碳体:经共析反应生成的渗碳体即珠光体中的渗

最新七大晶系详细图解说课材料

七大晶系详细图解 已知晶体的形态已经超过了四万种,但是万物都会有规律,晶体自然也是有的。它们都是按七种结晶方式模式发育的,即七大晶系。晶体即是一种以三维方向发育的的几何体,为了表示三维空间,分别用三、四跟人为添加的轴来表示晶体的长宽高以及中心。三条轴分别用X、Y、Z(U)(Z轴也可叫做“主轴”)来表示,而为了更好表示轴之间的度数,我们用α、β、γ来表示轴角。就这样出现了七种不同的晶系模式:立方晶系(也称等轴晶系)、四方晶系、三方晶系、六方晶系、正交晶系(也称斜方晶系)、单斜晶系、三斜晶系。其中又按照对称程度又分为高级晶族、中级晶族、低级晶族。高级晶族中只有一个立方晶系;中级晶族有六方、四方、三方三个晶系;低级晶族有正交、单斜、三斜三个晶系。 一、立方晶系 立方晶系的三个轴的长度是一样的,即X=Y=Z,且互相垂直,即α=β=γ=90°,对称性最强。具有4个立方体对角线方向三重轴特征对称元素的晶体归属立方晶系。属于立方晶系的有:面心立方晶胞、体心立方晶胞、简单立方晶胞。这个晶系的晶体并不是只有狭义的正方体一种形状,四面体、八面体、十二面体形状的

晶体都属于立方晶系。它们从不同角度看高低宽窄都差不太多,相对晶面和相邻晶面都相似,横截面和竖截面一样。最典型立方晶系的晶体为:氯化钠。 常见立方晶系晶体模型图: 晶体实物图:

二、四方晶系 四方晶系四方晶系的三条晶轴互相垂直,即α=β=γ=90°。其中两个水平轴(X 轴、Y轴)长度一样,Z轴的长度可长可短,通俗的说:四方晶系的晶体大多是四棱的柱状体,有的是长柱体,有的是短柱体,即其晶胞必具有四方柱的形状。横截面为正方形,四个柱面是对称的,即相邻和相对的柱面都是一样的,但和顶端不对称。所有主晶面交角都是90。特征对称元素为四重轴。如果Z轴发育,它就是长柱状甚至针状;如果两个横轴(X轴、Y轴)发育大于Z轴,那么晶体就会呈现四方板状,最有代表的就是磷酸二氢钠和硫酸镍β了。 常见的立方晶系的晶体模型图: 注:柱体的棱角发育成窄小晶面,此种晶体又叫“复四方”——四个主柱面,四个小柱面。 晶体实物图:

晶体结构 (讲义)

第一章晶体结构 §1.1 引言 §1.2 晶体的特征 ●长程有序/外形规则/各向异性 §1.3 空间点阵学说 ●基元/结点/格点/重复单元/子晶格§1.4 晶体结构的数学描述及晶系举例 ●三矢/晶系举例/晶列、晶面指数 §1.5 半导体的晶体结构 ●金刚石/闪锌矿/岩盐/纤锌矿 §1.6 倒格子与布里渊区 ●周期函数的级数展开/ 状态空间的几何表示/ 倒格子的概念/举例/ 波矢空间与布里渊区

§1.2 晶体的特征(附件0) ┌单晶体 ┌晶体┤ 固体(半导体)┤└多晶体 │ └非晶体(非晶态固体) ●晶体:具有规则结构的固体 长程有序──晶体中的原子(分子)至少在远大于其分子 线度的范围内是按照一定的规律周期性排列 的。 晶体举例:金属、岩盐、水晶、金刚石、白宝石、陶瓷材料●非晶体:不具有规则结构的固体 短程有序──非晶态固体中原子(分子)的排列没有明确 的周期性,其内部结构的有序性仅仅表现在 分子线度内。 非晶体举例:玻璃、橡胶、塑料、白蜡 “过冷液体”──无确定熔点 ●单晶体?多晶体?

●单晶体:所有原子(分子)都按照统一的规则排列的晶体 特征:有一定外形,且其外形呈现出高度的对称性, 物理性质各向异性 凸多面体,晶面 解理,解理面,解理性 晶带(a-1-c-2), 晶棱(晶面交线),带轴,晶轴 单晶体举例:水晶、岩盐、金刚石 ●多晶体:由许多微细单晶体组成的晶体 其原子(分子)在整个晶体中不按统一的规则排列特征:无一定外形,物理性质各向同性 多晶体举例:各种金属、各种陶瓷材料 →组成金属的小晶粒的线度为μm量级 故金属至少在μm量级的范围内有序 ●理想晶体(完整晶体):结构完全规则的晶体 ●近乎完整的晶体:在规则(排列)的背景中 尚存在微量不规则性的晶体 晶体中的微量不规则性──缺陷 天然杂质或人为掺杂 缺陷的两重性:纯 Fe +微量 C →钢 白宝石+微量铬离子→红宝石 (Al2O3)(Cr+3) p-n结注:铬(gè)

2020年常用晶体材料

作者:非成败 作品编号:92032155GZ5702241547853215475102 时间:2020.12.13 Al2O3晶体 氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ 材料基本性能: CaF2晶体

折射率: MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F 2

折射率: LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 材料性能:

晶体晶胞结构

物质结构要点 1、核外电子排布式 外围核外电子排布式价电子排布式 价电子定义:1、对于主族元素,最外层电子 2、第四周期,包括3d与4S 电子 电子排布图 熟练记忆 Sc Fe Cr Cu 2、S能级只有一个原子轨道向空间伸展方向只有1种球形 P能级有三个原子轨道向空间伸展方向有3种纺锤形 d能级有五个原子轨道向空间伸展方向有5种 一个电子在空间就有一种运动状态 例1:N 电子云在空间的伸展方向有4种 N原子有5个原子轨道 电子在空间的运动状态有7种 未成对电子有3个 ------------------------结合核外电子排布式分析 例2 3、区的划分 按构造原理最后填入电子的能级符号 如Cu最后填入3d与4s 故为ds区 Ti 最后填入能级为3d 故为d区 4、第一电离能:同周期从左到右电离能逐渐增大趋势(反常情况:S2与P3 半满或全 满较稳定,比后面一个元素电离能较大) 例3、比较C、N、O、F第一电离能的大小 --------------- F >N>O>C 例4、某元素的全部电离能(电子伏特)如下:

I1 I2 I3 I4 I5 I6 I7 I8 23.6 35.1 54.9 77.4 113.9 138.1 739.1 871.1 回答下列各问: (1)I6到I7间,为什么有一个很大的差值?这能说明什么问题? _________________________ (2)I4和I5间,电离能为什么有一个较大的差值_________________________________ (3)此元素原子的电子层有 __________________层。最外层电子构型为 ______________ 5、电负性:同周期从左到右电负性逐渐增大(无反常)------------F> O >N >C 6、对角线规则:某些主族元素与右下方的主族元素的性质有些相似,被称为“对角线规则”如:锂 和镁在空气中燃烧的产物,铍和铝的氢氧化物的酸碱性以 及硼和硅的含氧酸酸性的强弱 7、共价键:按原子轨道重叠形式分为:σ键和π键 (具有方向性和饱和性) 单键 -------- 1个σ键 双键------1个σ键和1个π键 三键---------1个σ键和2个π键 8、等电子体:原子总数相等,价电子总数相等----------具有相似的化学键特征 例5、N2 CO CN-- C22-互为等电子体 CO2 CS2 N2O SCN-- CNO-- N3- 互为等电子体 从元素上下左右去找等电子体,左右找时及时加减电荷,保证价电子相等。 9、应用VSEPR理论判断下表中分子或离子的构型。 化学式σ键电子对数中心原子含有 孤对电子对数 VSEPR模型 分子立体构型杂化类型 ABn SO3

高中化学选修三几种典型晶体晶胞结构模型总结

学生版:典型晶体模型 晶体晶体结构晶体详解 原子晶体金刚 石 (1)每个碳与相邻个碳以共价键结合, 形成体结构 (2)键角均为 (3)最小碳环由个C组成且六个原子不 在同一个平面内 (4)每个C参与条C—C键的形成,C原子 数与C—C键数之比为 SiO2 (1)每个Si与个O以共价键结合,形成正 四面体结构 (2)每个正四面体占有1个Si,4个“ 1 2O”,n(Si)∶ n(O)= (3)最小环上有个原子,即个O,个Si 分子晶体干冰 (1)8个CO2分子构成立方体且在6个面心又各 占据1个CO2分子 (2)每个CO2分子周围等距紧邻的CO2分子 有个 冰 每个水分子与相邻的个水分子,以相 连接,含1 mol H2O的冰中,最多可形成 mol“氢键”。 NaCl( 型)离子 晶体(1)每个Na+(Cl-)周围等距且紧邻的Cl-(Na+)有 个。每个Na+周围等距且紧邻的 Na+有个 (2)每个晶胞中含个Na+和个Cl- CsCl (型)(1)每个Cs+周围等距且紧邻的Cl-有个,每个Cs+(Cl-)周围等距且紧邻的Cs+(Cl-)有个(2)如图为个晶胞,每个晶胞中含个Cs +、个Cl-

金属晶体简单 六方 堆积 典型代表Po,配位数为,空间利用率52% 面心 立方 最密 堆积 又称为A1型或铜型,典型代表,配位 数为,空间利用率74% 体心 立方 堆积 又称为A2型或钾型,典型代表,配位 数为,空间利用率68% 六方 最密 堆积 又称为A3型或镁型,典型代表,配位 数为,空间利用率74% 混合晶体石墨(1)石墨层状晶体中,层与层之间的作用是 (2)平均每个正六边形拥有的碳原子个数是,C原子采取的杂化方式是 (3)每层中存在σ键和π键,还有金属键 (4)C—C的键长比金刚石的C—C键长,熔点比金刚石的 (5)硬度不大、有滑腻感、能导电

第二章材料中的晶体结构

第二章材料中的晶体结构 基本要求:理解离子晶体结构、共价晶体结构。掌握金属的晶体结构和金属的相结构,熟练掌握晶体的空间点阵和晶向指数和晶面指数表达方法。 重点:空间点阵及有关概念,晶向、晶面指数的标定,典型金属的晶体结构。难点:六方晶系布拉菲指数标定,原子的堆垛方式。 §2.1 晶体与非晶体 1.晶体的定义:物质的质点(分子、原子或离子)在三维空间作有规律的周期性重复排列所形成的物质叫晶体。 2. 非晶体:非晶体在整体上是无序的;近程有序。 3. 晶体的特征 周期性 有固定的凝固点和熔点 各向异性 4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”) 5.晶体与非晶体的相互转化 思考题: 常见的金属基本上都是晶体,但为什么不显示各向同性? §2.2 晶体学基础 §2.2.1 空间点阵和晶胞 1.基本概念 阵点、空间点阵 晶格 晶胞:能保持点阵特征的最基本单元

2.晶胞的选取原则: (1)晶胞几何形状能够充分反映空间点阵的对称性; (2)平行六面体内相等的棱和角的数目最多; (3)当棱间呈直角时,直角数目应最多; (4)满足上述条件,晶胞体积应最小。 3. 描述晶胞的六参数 §2.2.2 晶系和布拉菲点阵 1.晶系 2. 十四种布拉菲点阵 晶体结构和空间点阵的区别 §2.2.3 晶面指数和晶向指数 晶向:空间点阵中各阵点列的方向。 晶面:通过空间点阵中任意一组阵点的平面。 国际上通用米勒指数标定晶向和晶面。 1.晶向指数的标定 (1)建立以晶轴a,b,c为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边

七大晶系图解

晶体的七大晶系是十分专业的问题,它有时是鉴别晶体的关键,鉴藏矿晶的人多少应该知道一些。 概论 已知晶体形态超过四万种,它们都是按七种结晶模式发育生长, 即七大晶系。晶体是以三维方向发育的几何体,为了表示三维空间,分别用三、四根假想的轴通过晶体的长、宽、高中心,这几根轴的交角、长短不同而构成七种不同对称、不同外观的晶系模式:等轴晶系, 四方晶系,三方晶系,六方晶系,斜方晶系,单斜晶系,三斜晶系 上图是七大晶系的理论模型,在同一水平面上,请大家仔细分辨它们的区 别。面向观众的轴称x 轴,与画面平行的横轴称y 轴,竖直的 轴称z 轴,也可叫“主轴” 请看图

一,等轴晶系简介 等轴晶系的三个轴长度一样,且相互垂直,对称性最强。这个晶系的晶体通俗地说就是方块状、几何球状,从不同的角度看高低宽窄差不多。如正方体、八面体、四面体、菱形十二面体等,它们的相对晶面和相邻晶面都相似,这种晶体的横截面和竖截面一样。此晶系的矿物有黄铁矿、萤石、闪锌矿、石榴石,方铅矿等。请看这种晶系的几种常见晶体的理论形态:

等轴晶系的三个晶轴(x 轴y 轴z 轴)一样长, 互相垂直

常见的等轴晶系的晶体模型图 金刚石晶体

八面体和立方体的聚形的方铅矿 黄铁矿 四方晶系简介

四方晶系的三个晶轴相互垂直,其中两个水平轴(x 轴、y 轴)长度一样,但z 轴的长度可长可短。通俗地说,四方晶系的晶体大都是四棱的柱状体,(晶体横截面为正方形,但有时四个角会发育成小柱面,称“复四方”),有的是长柱体,有的是短柱体。再,四方晶系四个柱面是对称的,即相邻和相对的柱面都一样,但和顶端不对称(不同形);所有主晶面交角都是九十度交角。请看模型图: 四方晶系的晶体如果z 轴发育,它就是长柱状甚至针状;如果两个横轴(x 、y)发育大于竖轴z 轴,那么该晶体就是四方板状,最有代表性的就是钼铅矿。请看常见的一些四方晶系的晶体模型:

典型晶体晶胞结构

典型晶体晶胞结构 原子晶体分子晶体混合型晶体 离子晶体 金属晶体 1.元素Cu的一种氯化物晶体的晶胞结构如图13所示,该氯化物的化学式 是,它可与浓盐酸发生非氧化还原反应,生成配合物 H n WCl3,反应的化学方程式为。 2.(2011山东高考) CaO与NaCl的晶胞同为面心立方结构,已知CaO晶体密度为 ag·cm-3,A N表示阿伏加德罗常数,则 CaO晶胞体积为cm3。 3.(2011新课标全国)六方氮化硼BN在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚石相当,晶苞边长为361.5pm,立方氮化硼晶胞中含有______各氮原子、________各硼原子,立方氮化硼的密度是_______g·cm-3(只要求列算式,不必计算出数

值,阿伏伽德罗常数为N A )。 描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8个顶点有8个碳原子, 6个面各有6个碳原子,立方体内部还有4个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数=8×1/8+6×1/2+4=8,因此立方氮化硼晶胞中应该含有4个N 和4个B 原子。由于立方氮化硼的一个晶胞中含有4个N 和4个B 原子,其质量是 g 2510 02.6423??是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 g·cm -3。 4.(4)元素金(Au )处于周期表中的第六周期,与Cu 同族,Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心,Au 原子处于顶点位置,则该合金中Cu 原子与Au 原子数量之比为_______;该晶体中,原子之间的作用力是________;(4)Au 电子排布或类比Cu ,只是电子层多两层,由于是面心立方,晶胞内N (Cu )=6×21=3,N (Au )=8×8 1=1; (5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与Au 原子构成的四面体空隙中。若将Cu 原子与Au 原子等同看待,该晶体储氢后的晶胞结构为CaF 2的结构相似,该晶体储氢后的化学式应为_____。H 8AuCu 3 5.(2010山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb 4+处于立方晶胞顶点,Ba 2+ 处于晶胞中心,O 2-处于晶胞棱边中心,该化合物化学式为 ,每个Ba 2+与 个O 2-配位。 6.(4) 2CaC 晶体的晶胞结构与NaCl 晶体的相似(如右图所示),但2CaC 晶体 中含有的中哑铃形22C -的存在,使晶胞沿一个方向拉长。2CaC 晶体中1个2Ca +周围距离最近的22C -数目为 。 7.(09江苏卷21 A )③在1个Cu 2O 晶胞中(结构如图所示),所包 含的Cu 原子数目为 。

第六章 晶体结构与晶体材料

第六章晶体结构与晶体材料 教学目的: 掌握晶体的概念及晶体结构的特点;掌握晶体的宏观对称性;熟悉晶体的基本性质;了解晶体缺陷的重要性。 教学重点: 晶体材料:石英晶体与压电材料、钛酸钡晶体与非线性光学材料、BGO晶体材料。教学难点: 晶体的对称性与晶系。 第一节晶体的结构特点 一、晶体 晶体是由原子或分子按照一定的周期性规律在空间重复排列而成的固体物质。 二、晶体结构的特点 1. 晶体结构的特点 以NaCl晶体为例讨论晶体结构的特点。 NaCl是食盐的主要成分,市售粗盐经过重结晶可得到纯净、漂亮的NaCl晶体。NaCl晶体呈立方体外形,肉眼可以看到平滑的晶面,尖锐的顶角和笔直的棱边。NaCl晶体整齐的外形反映了晶体的内部结构规整性。用X射线衍射法测定的NaCl的晶体结构,如图6-1所示。 2. 晶胞

晶胞晶胞是晶体的一个基本结构单位,它的形状是一个平行六面体。图 6-1给出了NaCl晶体的一个晶胞,无数的这种晶胞在空间规则地重复排列就形成NaCl晶体。 要确定晶体的结构,首先要知道晶胞的大小和形状,其次要知道晶胞中原子的种类、数目和原子的坐标位置。 晶胞的大小和形状由晶胞参数规定。若把晶胞放在坐标系中,如图6-2所示,它的三条棱边a,b,c和三条棱边两两之间的夹角α,β,γ合称为晶胞参数。如NaCl晶体的晶胞参数为:a=b=c=562.8 pm,α=β=γ=90°,这种晶胞称为立方晶胞。NaCl晶体中Na+与Cl-以离子键结合,所以NaCl晶体称为离子晶体。在NaCl晶体中,一个Na+周围配有6个Cl-(配位数为6)。这6个配位Cl-形成一个八面体,Na+处于八面体的空隙中。同样地,以一个Cl-为中心,周围也配有6个Na+,Cl-也处于Na+的八面体空隙中。由此可见,NaCl只是个化学式,整块NaCl 晶体是个巨大的分子,把NaCl看作一个分子(或分子式)是不确切的。 3. 结构基元 结构基元是指晶体中作周期性规律重复排列的那一部分内容。它是晶体中重复排列的基本单位,必须满足化学组成相同、空间结构相同、排列取向相同和周围环境相同的条件。晶胞中含一个结构基元的称为素晶胞,含2个和2个以上结构基元的称复晶胞。图6-1的NaCl晶胞中含4个Na—Cl结构基元,是面心立方型式的复晶胞。图6-3给出了CsCl晶体和金属钨晶体的晶胞结构。CsCl晶胞中只含1个结构基元(Cs—Cl),所以是素晶胞,它是立方晶胞,故称为简单立方。

常用晶体材料资料讲解

常用晶体材料

Al2O3晶体 氧化铝晶体(白宝石,蓝宝石, Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ CaF2晶体 折射率: 仅供学习与交流,如有侵权请联系网站删除谢谢2

MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F2 仅供学习与交流,如有侵权请联系网站删除谢谢3

折射率: LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 仅供学习与交流,如有侵权请联系网站删除谢谢4

常用晶体材料

氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ CaF2晶体 折射率:

氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F2

LiF 氟化锂晶体是一种很重要的光学晶体,它具有如下优良的特性: 1、在真空紫外到红外(0.12-6μm)的波段有很高的透过率,特别是在真空紫外有优良的透过率。 材料性能: YVO4晶体 钒酸钇晶体是一种具有优良的物理和光学特性的双折射单晶。由于它具有较大的透过围、透光度高、大的双折射、易于加工等特点,所以广泛应用于光学组件如光纤光隔离器、环形器、分光器,

常见典型晶体晶胞结构.doc

典型晶体晶胞结构1.原子晶体 (金刚石 ) 2.分子晶体

3.离子晶体 + Na - Cl

4.金属晶体 堆积模型简单立方钾型镁型铜型典型代表Po Na K Fe Mg Zn Ti Cu Ag Au 配位数 6 8 12 12 晶胞 5.混合型晶体——石墨 1.元素是Cu 的一种氯化物晶体的晶胞结构如图 13 所示,该氯化物的化学 式,它可与浓盐酸发生非氧化还原反应,生成配合物H n WCl 3,反应的化 学方程式为。 2.( 2011 山东高考)CaO 与NaCl 的晶胞同为面心立方结构,已知CaO 晶体密度为ag·cm-3,N A表示阿伏加德罗常数,则CaO 晶胞体积为cm3。 2.( 2011 新课标全国)六方氮化硼BN 在高温高压下,可以转化为立方氮化硼,其结构与金刚石相似,硬度与金刚 石相当,晶苞边长为361.5pm ,立方氮化硼晶胞中含有______各氮原子、 ________各硼原子,立方氮化硼的密度是_______g ·cm-3(只要求列算式,不必计算出数值,阿伏伽德罗常数为N A)。

解析:描述晶体结构的基本单元叫做晶胞,金刚石晶胞是立方体,其中8 个顶点有8 个碳原子, 6 个面各有 6 个碳 原子,立方体内部还有 4 个碳原子,如图所示。所以金刚石的一个晶胞中含有的碳原子数= 8×1/8+6 ×1/2+4=8 ,因此立方氮化硼晶胞中应该含有 4 个 N 和 4 个 B 原子。由于立方氮化硼的一个晶胞中含有 4 个 4 25g 是,立方体的体积是(361.5cm)3,因此立方氮化硼的密度是 N 和 4 个 B 原子,其质量是 1023 6.02 g·cm-3。 3.( 4)元素金( Au )处于周期表中的第六周期,与Cu 同族, Au 原子最外层电子排布式为______;一种铜合金晶体具有立方最密堆积的结构,在晶胞中Cu 原子处于面心, Au 原子处于顶点位置,则该合金中Cu 原子与 Au 原子数量之比为 _______;该晶体中,原子之间的作用力是________; ( 5)上述晶体具有储氢功能,氢原子可进入到由Cu 原子与 Au 原子构成的四面体空隙中。若将Cu原子与Au原子等同看待,该晶体储氢后的晶胞结构为CaF2的结构相似,该晶体储氢后的化学式应为_____。 4.( 2010 山东卷)铅、钡、氧形成的某化合物的晶胞结构是:Pb4+处于立方晶胞顶点,Ba2+处于晶胞中心, O2-处于晶胞棱边中心,该化合物化学式为,每个 Ba2+与个 O2-配位。 5.(4) CaC2晶体的晶胞结构与NaCl晶体的相似(如右图所示),但 CaC2晶体中含有的中哑 铃形 C 22 的存在,使晶胞沿一个方向拉长。CaC 2晶体中1个 Ca 2 周围距离最近的 C 22 数目 为。 6.( 09 江苏卷 21 A )③在 1 个 Cu2O 晶胞中(结构如图所示),所包含的Cu 原子数目 为。

常用晶体材料(互联网+)

Al2O3晶体 氧化铝晶体(白宝石,蓝宝石,Al2O3)是一种很重要的光学晶体。它具有高硬度、高熔点、高强度、高透过率、耐高温和抗腐蚀的特性,广泛地用于航空航天仪器的红外和紫外的窗口、激光工作窗口、高炉测温窗口以及太阳能电池保护罩和永不磨损手表镜面等。在窗口应用方面,它具有如下优良的特性: (1)光透过范围从300nm到5.5μm (2)3-5μm波段红外透过率大于85% (3)具有高硬度,高透过率,抗挠曲强度和抗风蚀、雨蚀的能力 (4)优良的热传导性能 (5)低散射率0.02在λ=26到31μm,880℃ 熔点2050 o C 密度 3.91g/m3 莫氏硬度9 杨氏模量53 Mpsi 透过波段300nm-5.5μm CaF2晶体 密度 3.18 g/cm3 熔点1357~1360℃ 晶格常数 5.46 ? 努普硬度178 [100], 160 [110]kg/mm2 介电常数 6.76 ,105HZ 晶体类型cubic, CaF2 type structure 解离面(111) 应用紫外激光窗口材料 折射率: 波长, 0.19 0.21 0.25 0.33 0.41 0.88 2.65 3.90 5.00 6.20 7.00 8.22 μm

折射率 1.51 1.49 1.47 1.45 1.44 1.43 1.42 1.41 1.40 1.38 1.36 1.34 MgF2晶体 氟化镁晶体被应用在环境要求很苛刻的光学系统中,它的透过波段为0.11μm--8.5μm。辐照不会导致色心的产生,它有良好的机械性能,可以承受热和机械震动,很大的外力才能使氟化镁解理。氟化镁单晶由于有微弱的双折射性能,通常的切向为光轴垂直于晶片表面。 氟化镁是一种应用很广泛的晶体,具有如下特性: (1)、在真空紫外到红外(0.11~8.5μm)波段有很高的透过率. (2)、抗撞击和热波动以及辐照 (3)、良好的化学稳定性. (4)、可用于光学棱透镜、锲角片、窗口和相关光学系统中 (5)、四方双折射晶体性能,可用于光通讯. (6)、UV 窗口材料 Ba F2 密度 4.89 g/cm3, at 20°C 熔点1354°C 摩尔质量175.36 晶格常数 6.196 ? 热导率7.1 W/(m K), at 38°C 比热456 J/(kg K) 热膨胀系数16.5 ~ 19.2 ×10–6 / K,± 60°C 努普硬度82kg/mm2 莫氏硬度 3 杨氏模量53.05GPa 剪切模量25.4GPa 体积弹性模量56.4GPa 介电常数7.33,2×106HZ 水中溶解度0.17 g / 100 g,10℃ 晶体类型立方晶系 解离面(111) 泊松比0.343

不同人工晶体材料的特性

第26卷 第3期Vol 126 No 13材 料 科 学 与 工 程 学 报Journal of Materials Science &Engineering 总第113期J un.2008 文章编号:167322812(2008)0320467206 不同人工晶体材料的特性 崔海坡 (上海理工大学医疗器械与食品学院,上海 200093) 【摘 要】 人工晶体材料由最初的聚甲基丙烯酸甲酯发展到今天的丙烯酸酯多聚物等,一直在不断地改良变 化。不同人工晶体材料的性能各有其局限性,选择一种合适的人工晶体对白内障复明手术具有十分重要的意义。本文对目前常用的人工晶体材料基本性能及其优缺点进行了综述,并对不同人工晶体材料的临床性能进行了详实的对比分析,从而为人工晶体生产者及临床医师在选择人工晶体材料时提供一定的参考。 【关键词】 人工晶体;材料;性能;对比中图分类号:TB39 文献标识码:A Matreial Properties of Different Intraocular Lens CUI H ai 2po (College of Medical Device and food ,U niversity of Shangh ai for Science and T echnology ,Shanghai 200093,China) 【Abstract 】 The materials of intraocular lens (IOL )starting to improve and alter all along is exercised f rom the original polymethylmethacrylate to present acrylic.Every type material has defects itself.The right selection of intraocular lens is a vital element for deciding whether or not the cataract operation can be implemented successf ully.The essential properties of IOL materials are summarized.Emphasis is placed on the comparison and analysis of clinic characteristics for the different materials ,which may provide further assistance in the choosing of IOL materials for the IOL producer and therapist. 【K ey w ords 】 intraocular lens ;material ;property ;comparison 收稿日期:2007207204;修订日期:2007209212 作者简介:崔海坡(1978-),讲师,博士,主要研究方向为材料力学、材料的生物相容性。E 2mail :h _b _cui @https://www.doczj.com/doc/a8394833.html, 。 1 引 言 白内障是最常见的致盲眼病之一,我国目前至少有400 万因白内障致盲的患者,而且白内障致盲人数每年新增加约为40万人[1]。目前白内障无特殊的预防方法,手术治疗几乎是唯一有效的措施。人工晶体(intraocular lens )是白内障手术时植入人眼内的精密光学部件,多用在白内障手术后,代替摘除的自身混浊晶体。因人而异选择不同材质、不同特性和类型的人工晶体,对白内障患者术后效果和生活质量有着十分重要的意义。 人工晶体植入技术起始于1949年11月,英国眼科医生Ridley 第一次将自制的人工晶体植入患者眼内。50多年来,尤其是近10多年来,研究者们对各种材料的人工晶体都作了大量的实验研究,测试了人工晶体材料的相关生物学性能及其临床特性。然而,目前对不同材料人工晶体各方面性能都进行详细对比分析的文献还很少见。本文对目前常用的人工晶体材料基本性能及其优缺点进行了综述,并对不同人工晶体材料的临床性能进行了详实的对比分 析,这些性能与人工晶体植入术后临床并发症密切相关,对 它们的了解可以为临床医师选择人工晶体材料时提供参考,并有助于其在细胞和分子水平上了解术后并发症的发病机制。 2 人工晶体材料的基本特性 制造人工晶体的材料应具备以下特点[2]:(1)光学性能 好,屈光指数高,可见光透过率高(透光率大于90%);(2)质量轻、抗拉力强;(3)眼内理化性能稳定,耐用性强,无生物降解作用;(4)无毒,无致炎、致癌性;(5)无抗原性;(6)易加工。人工晶体从材料上分,有硬性材料聚甲基丙烯酸甲酯(polymethylmethacryte ,PMMA ),俗称有机玻璃;软性材料有硅凝胶、水凝胶等,以及由PMMA 衍生出来的丙烯酸酯类人工晶体。2.1 聚甲基丙烯酸甲酯(PMMA) PMMA 自1933年开始用于工业制品中,并最先被人们用来制造人工晶体,经50多年的临床验证表明,PMMA 材料具有很好的物理特性:质轻、不易破碎、性能稳定、耐用,

相关主题
文本预览
相关文档 最新文档