当前位置:文档之家› 浅谈焊接应力和变形的控制方法

浅谈焊接应力和变形的控制方法

浅谈焊接应力和变形的控制方法
浅谈焊接应力和变形的控制方法

浅谈焊接应力和变形的控制方法

浅谈焊接应力和变形的控制方法

摘要:常温下,金属结构是稳定的,但在焊接过程中,受热部位会产生焊接应力和变形,这种情况如不采取措施控制,产品质量将得不

到保证,甚至使产品报废。为有效的控制由于焊接热过程引起的应力和变形,对焊接应力产生的原因和形成焊接变形的基本规律进行分析,并提出相应的控制措施。

关键词:焊接变形;焊接应力;产生原因;控制措施

中图分类号:P755文献标识码: A

引言

随着科技的进步和工业的发展,各种焊接机械和焊接方法日新月异,但在施工过程中,由于焊接过程产生的内应力,引起了焊件变形,

严重影响了工程质量、工程进度和焊接的使用性能。因而,应采取必要措施,通过分析焊接结构和焊接变形,焊接工艺和焊接结构设计等,提高焊接质量。

一、焊接应力的产生及危害

焊接过程中焊接件热量传输的不平衡产生不均匀的温度场,使材料产生不均匀的膨胀与收缩,从而形成内应力场。此外,焊件在热循环的作用下,焊缝内部金属组织发生变化,产生相变应力。持此之外,刚性固定以及焊接件之间相互关联,也会产生焊接应力。室温下,残存于焊接件中的内应力影响焊接结构的力学性能、受压稳定性、尺寸稳定性和加工精度等。

二、焊接应力与焊接变形产生的原因

1、焊件不均匀受热

焊接整体在焊接时温度是不均匀的,焊接部分温度高,膨胀量大,同一焊体中,其他部位温度低,膨胀量小,受此影响,在焊件内出现内

应力,使温度区的材料受到挤压,产生局部压应变。在冷却过程中,已经形成压应变的材料,由于不能自由收缩而受到拉伸,于是焊件中又

出现与焊接加热时方向大致相反的应力。

2、焊缝金属的收缩

当焊缝金属由液态变为固态时,此时由于受冷,体积收缩,而焊缝金属与母材料是一体的,这便限制了焊体的收缩,这种情况将使整个

焊件变形,而且在焊缝中会引起残余应力。

(1)金属组织的变化

由于构成焊件组织的比体积不同,当焊件受热或遇冷时,会使焊

接应力和变形。加热及冷却过程中发生金相组织变化

(2)焊件的刚性和拘束

刚性是指焊件抵抗变形的能力。拘束是指焊件周围物体对焊件变形的约束。焊件自身的刚性及受周围的拘束程度越大,焊件变形越小,焊接应力越大。

三、防止和减小焊接变形和应力的措施

1、焊接结构的合理设计

避免焊接残余变形与应力,需采用合作的设计方案。在焊接结构设计时要考虑到以下事项:焊缝数理和尺寸是引起焊接变形与应力的因素之一,因此,在保证结构有足够强度的基础上,应减少其数理、尺寸。在特殊情况下,预留适当收缩余量及使用冲压结构也是有效措施。

2、合理选择焊接规范合理选择焊接规范,对减少焊件变形影响很大。如随着电流强度的增加,焊件变形相应增大。为了尽量焊接过程中的热影响,根据实际情况,合适的情况下采用小直径焊条和小电流焊接,可以减少焊接残余应力。

3、消除焊接应力的方法

(1)热处理法

整体热处理:消除应力的程度主要决定于材质的成分、组织、加热温度和保温时间。低碳钢及部分低合金钢焊接构件在650度,保温20~40h,可基本消除全部残余应力。局部热处理:大型焊接结构,受加热炉的限制或要求不高时采用这种方法。可采用火焰、红外、电阻、感应等加热方式,应保持均匀加热并具有一定的加热宽度。低合金高强钢,一般在焊缝两侧各100-200mm。

(2)机械锤击法

在长焊缝焊接过程中,趁着焊缝和堆焊层在赤热状态,用手锤敲

打,可以抵消焊缝的收缩和减少内应力,减小或矫正变形。锤击施焊部位,可以提高金属的机械性能和耐蚀性。延展性能较好的金属,采用这个方法效果较好。对于底层和表面层的焊缝一般不锤击。锤击时必须注意选择合适的温度范围。比如钢铁材料温度在300℃-500℃时有蓝脆性,也不能进行锤击。铝加热到400℃-500℃时,强度几乎丧失,此时,锤击会损坏焊件。含磷高的钢铁材料,冷态锤击时也易产生裂纹。

(3)振动时效法

振动时效作为目前比较常用的一种时效方式,已经越来越多的应用于各个机械制造行业。振动时效适用于碳素结构钢、低合金钢、不锈钢、铸铁、有色金属等材质的焊接结构;可插在任何工序之间多次处理;几十米长、数百吨重、上千条焊缝的工件都可适用。具有低能耗、短周期、无污染等优点。

4、控制焊接残余变形的工艺措施

(1)选着合理的装焊顺序

采用不同的装配、焊接顺序,焊后会产生不同的变形效果。简单的焊件可以采用先总装后焊接的控制结构焊后变形的工艺措施。对于结构较复杂的焊件,一般不能整体装配焊接,而是要将构件适当的分成若干部件,分别装配、焊接,最后组焊成整体,这要处理,即使是收缩量大、不对称的焊缝也可以自由收缩,不影响整体效果。

(2)采取合理的焊接顺序

对称焊接:如焊接结构的焊缝是对称的,首选对称焊接不对称焊缝:焊缝少的先烤焊,这样可以减少焊缝产生的变形采用不同的焊接顺序:对于长焊缝,采用连续的直通焊,会造成较大的变形。因此要采用不同的焊接顺序来控制变形。其中分段退焊法、分中分段退焊法、跳焊法和交替焊法,常用于长度为1m以上的焊缝;长度为0.5-1m的焊缝可用分中对称焊法。

(3)反变形法根据理论计算和实践经

验,先根据焊件的结构,估计可能会产生的变形方向与大小,在焊接装配时,加装一个预置变形,预置变形的大小要与结构焊接变形的一样,方向相反,加装这个是为了抵消焊后所产生的变形。

(4)刚性固定法焊接时将焊件加以刚性固定,焊完后让焊件冷却,定型后去刚性固定,以防止角变形与波浪变形。

(5)此法是在焊接时将焊区里的热量强迫带走,从而使温度骤降,焊件受热面积减少,可最大程度的减少变形。并非所有材料都适用于散热法,如淬硬倾向较高的材料。

5、焊接变形的控制及矫正方法

(1)刚性加固法

刚度大的焊件,焊后变形一般都较小。因此,施焊前如果加强焊件的刚性,则可防止被焊件在焊接时产生变形。对于壁厚小于等于2mm的薄壁零件和折断零件的焊接,常需加以刚性固定,以防变形或错位。固定的方法有很多形式,有时采用专用的焊接夹具,有时点焊固定在刚性工作台上,有时利用焊件本身构成刚性结构。

(2)反变形法

预加反变形法是根据经验和焊件金属性质,预先凭经验估计出焊修后发生变形的方向和收缩量,在焊修前,将工件用机械方法预先使焊件向相反方向变形,或将焊件布置成相反的位置,使焊修后的变形恰好和预变形抵消,达到所需要的正常状态。

(3)合理控制焊接线能量

焊接线能量是一个非常重要的参数,对焊接变形有着明显的影响。焊接过程中,线能量的提高会导致变形程度的增大。所以在保证焊接质量的前提下,选择尽可能小的线能量。因此恰当的焊接坡口形式尤为重要。在保证焊接质量的前提下,破口应尽可能小,甚至不开坡口,比如超窄间隙的焊接,线能量很小,热输入小,很好地控制了焊接变形。

(4)矫正法

整体热矫正是指将整体构件加热至锻造温度以上再进行矫正的方法,可用以消除较大的形状偏差。但是焊后整体加热容易引起冶金方面的副作用,限制了该方法的进一步推广及应用。局部热矫正多采用火焰对焊接构件局部加热,在高温处,材料的热膨胀受到构件本身刚性制约,产生局部压缩塑性变形,冷却后收缩,抵消了焊后部位的伸长变形,达到矫正目的,火焰加热法采用一般的气焊焊炬,不需要专门

的设备,方法简便灵活,因此在生产上广为应用。

四、结束语

在实际生产中,焊接变形和焊接应力的产生还有很多复杂的原因,但只要了解了焊接工艺,采用合理的焊接方法和控制措施,在实践中

积累经验,总结工作,综合的考虑分析各方面因素,使焊接的质量能够得到保证。

参考文献:

[1]董涛,李兴春.焊接变形的控制方法[J].现代制造技术与装备,2010(2).

[2]尹妍.车载式电子设备机柜结构轻型化设计[J].指挥信息系

统与技术,2010(4).

[3]白艳玲.指挥方舱设备装载形式[J].指挥信息系统与技术,2011(4).

------------最新【精品】范文

焊接应力与变形

4.2 焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力 焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正:

4.2.3.1 焊接变形的基本形式,如图6-2-9 如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量3---横向收缩量4、5---角变形量f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

焊接应力变形的产生原因与控制措施

焊接应力变形的产生原因与控制措施 无锡威孚力达催化净化器有限责任公司王习宇[摘要] 近年来,汽车行业发展迅猛,各主机厂在提升产量的同时,对于产品质量的要求也大幅提高。为应对巨大的市场冲击,我们威孚力达应采取相应措施,来迎接机遇和挑战。目前我司焊接向着自动化、集成化、高精度、高质量的方向发展,如何采取措施减小金属构件在焊接工序中发生的应力与应变,从而提高焊接工序的精度以及产品的总体质量,有着十分重要的现实意义。本文主要叙述了焊接应力变形与控制方法。 [关键词] 威孚力达焊接变形焊接应力产生原因控制措施

国内现状 随着我国汽车产业的高速发展,焊接技术在汽车工程中得到大量的应用,焊接工件尤其是法兰焊接变形也成为人们密切关注的焦点。在焊接过程中,焊接残余应力和焊接变形会严重影响制造过程、焊接结构的使用性能、焊接接头的抗脆断能力、疲惫强度、抗应力腐蚀开裂和高温蠕变开裂能力。焊接变形在制造过程中也会危及外形与公差尺寸,使制造过程更加困难,当出现题目时还需采取一些费时耗资的附加工序来进行弥补,不仅增加本钱,还可能出现由此工序带来的其他不利因素。因此,要得到高质量的焊接结构必须对这些现象严格控制。焊接应力分析熔化焊接时,被焊金属在热源作用下发生局部加热和熔化,材料的力学性能也会发生明显的变化,而焊接热过程也直接决定了焊缝和热影响区焊后的显微组织、残余应力与变形大小,所以焊接热过程的正确计算和测定是焊接应力和变形分析的条件。因此在焊接过程的模拟研究中,只考虑温度场对应力场的影响,而忽略应力场对温度场的作用。同时,非线性、瞬时作用以及温度相关性效应等也会妨碍正确描述在各种情况下产生的残余应力,并使同一系统化的工作很难完成。为使其简单化,实际中常用焊接性的概念作为一种分类系统,将焊接分解为热力学、力学和显微结构等过程,从而降低了焊接性各种现象的复杂性。图1所示的工艺基础将焊接性分解为温度场、应力和变形场以及显微组织状态场。这种分解针对焊接残余应力和焊接变形的数值分析处理很有价值。在狭义上,焊接性又可理解成所要求的强度性能。影响强度性能的主要因素又包括化学成分、相变显微组织、焊接温度循环、焊后热处理、构件外形、负载条件以及氢含量等。显微组织的转变不仅决定于材料的化学成分,也决定于其受热过程(特别是与焊接有关的过程),特别是它在焊接接头的热影响区和熔化区的影响更加引人留意。 在焊接过程中,由于焊件局部的温度发生变化,产生应力变形。进而导致了构件产生变形。因此,通过对焊接结构及焊接变形的分析,通过对焊接工艺焊件结构设计等方面采取有效措施,从而提高焊接质量。

焊接应力与变形

焊接应力和变形. 教学目的:了解应力和变形的概念、产生原因;了解焊接变形的种类;掌握预防和减小焊接应力和变形的措施。 教学重点:预防和减小焊接应力和变形的措施 教学难点:应力和变形的概念、产生原因 教学课时:16课时 第一节应力和变形的概念 一、变形 钢结构构件或节点在焊接过程中,局部区域受到很强的高温作用,在此不均匀的加热和冷却过程中产生的变形称为焊接变形。 二、应力 焊接后冷却时,焊缝与焊缝附近的钢材不能自由收缩,由此约束而产生的应力称为焊接应力。 三、应力形成 两块钢板上施焊时,产生不均匀的温度场,焊缝附近温度高达1600 C,其邻近区域温度较低,且冷却很快。冷却时钢材收缩,冷却慢的区域收缩受到限制,从而产生拉应力,冷却快的区域受到压应力。 四、焊接应力的分类 1.根据焊接应力在空间的位置 单向应力、双向应力、三向应力。 2.根据焊接应力发生和互相平衡所在的范围大小 第一类应力、第二类应力、第三类应力。 3.根据焊接应力在焊缝中的方向不同 纵向应力、横向应力、厚度方向应力 第二节焊接应力和变形的产生原因 焊件进行局部的、不均匀的加热是产生焊接应力和变形的原因。 一、金属棒的均匀加热和冷却 金属棒在均匀加热时,产生过压缩塑性变形,则冷却后必定产生缩短变形。 二、纵向焊接应力和变形

焊接时,在电弧热的作用下,使金属局部达到熔化温度,但离电弧较远处的金属温度则较低,这样焊件就出现了不均匀的膨胀。沿焊缝轴线方向尺寸的缩短。 三、横向焊接应力和变形 焊件在于海峰轴线垂直的方向上,焊缝及热影响区金属在加热过程中也受到压应力,发生压缩塑性变形,在冷却后则存在着残余应力和变形,称为横向焊接应力和变形。 四、影响焊接应力和变形的因素 影响焊接应力和变形的因素主要包括以下几点:焊接规范、焊缝尺寸、焊缝在结构中位置的布置、焊缝分段和焊接方向、焊接程序、焊接结构的刚性以及层数。 第三节焊接变形的种类 一、纵向变形 指平行于焊缝方向的变形。多层焊比单层焊的变形量小。 二、横向变形 指垂直于焊缝方向的变形。角焊缝和对接焊缝焊后都会引起横向变形,同时,与焊接方法有关。 三、弯曲变形 T型梁焊接后,由于焊缝布置不对称,焊缝多的一面收缩量大,引起的工件弯曲。 四、角变形 由于V型坡口对接焊焊缝布置不对称,造成焊缝上下横向收缩量不均匀而引起的变形。 五、扭曲变形 由于焊接过程中焊接顺序和焊接方向不合理引起的工件扭曲,又称为螺旋形变形,多出现在工字梁的焊接加工过程中。 六、波浪变形 这种变形易发生在波板焊接过程中。是由于焊缝收缩使薄板局部引起较大的压应力而失去稳定性,焊后使构件成波浪形。 第四节预防和减小焊接应力和变形的措施 一、从结构设计方面的预防措施 1、尽量减少焊缝数量。

焊接过程中应力与变形控制

焊接过程中应力与变形控制 摘要焊接应力与变形是直接影响焊接结构性能、安全可靠性和制造工艺性的重要因素,了解其作用与影响,采取措施进行控制与消除,对于焊接结构的完整性设计和焊接工艺方法的选择以及产品在运行中的安全评定都有重大意义。 关键词焊接应力;焊接变形;规律;控制 焊接是一种特殊而又重要的加工工艺,随着焊接技术的发展,一个重要技术课题是控制焊接件的焊接变形以提高产品制造精度,使焊件焊后加工量减少或不加工即可用于精度要求高的机械产品中,因此,了解焊接应力产生机理,掌握结构件焊接变形规律,在焊接工艺中采取措施进行控制和消除,从而保证焊接质量。 1 焊接应力 1.1 焊接应力产生机理及影响因素 焊接时的局部不均匀热输入是产生焊接应力与变形的决定因素,焊接热输入引起材料不均匀局部加热,使焊缝区融化,而与熔池毗邻的高温区材料的热膨胀则受到周围材料的限制,产生不均匀压缩塑性变形,在冷却过程中,已发生压缩变形的这部分材料又受到周围条件的制约,而不能自由收缩,在不同程度上又被拉伸而卸载;与此同时,熔池凝固,金属冷却收缩也产生相应的收缩应力与变形,使得焊接接头区产生不协调的应变,称为初始应变或固有应变。与此相对应,在构件中会形成自身相平衡的内应力,通常称为焊接应力;而焊后,在在室温条件下,残留于构件中的内应力场和宏观变形,称为焊接残余应力与焊接残余变形。 焊接应力与焊接材料(主要包含材料特性、热物理常数及力学性能)、焊接接头形状和尺寸、焊接工艺参数,焊接结构(结构形状、厚度及刚性)有关。 1.2 焊接应力的分类 1.2.1 接应力在焊件空间位置 一维空间应力沿着焊件—个方向作用;二维空间应力应力在—个平面内不同方向上作用;三维空间应力应力在空间所有方向上作。 1.2.2 按产生应力的原因 (1)热应力它是在焊接过程中,焊件内部温差所引起应力,随着温度的消失而消失,并且是引起热裂纹的力学原因。 (2)相变应力焊接过程中,局部金属发生相变,相比容增大或减小而引起的应力。

焊接应力和变形控制论文

焊接应力和变形控制论文 摘要:为有效控制因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 关键词:焊接变形,焊接应力,热过程,焊接工艺 在焊接技术发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在作业过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着焊接的质量,因而,急需采用合理的方法予以控制。 焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。

1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与

建筑工程钢结构焊接过程模拟与焊接变形、焊接ansys应力有限元分析(详细图解分析)

焊接过程模拟与焊接变形、焊接Ansys应力有限元分析 1.1 焊接变形与焊接应力 焊接时,加热和冷却循环总会导致一定程度的变形,焊接变形对尺寸稳定性以及结构力学性能都有很大的影响,控制焊接变形在焊接加工中是一个关键的任务。 在钢结构焊接中,焊接工艺会使构件温度场产生不均匀变化,从而在构件中产生复杂的残余应力分布。残余应力是一种自相平衡的力系,当构件承受荷载时,如受拉、受压等,荷载引起的应力将与截面残余应力相叠加,从而使构件某些部位提前达到屈服强度,并发生塑性变形,故会严重降低构件的刚度和稳定性以及结构疲劳强度。 对构件进行焊接,在焊件上产生局部高温的不均匀温度场,焊接中心处温度可达1600℃,高温区的钢材会发生较大程度的膨胀伸长,但受到相邻钢材的约束,从而在焊件内引起较高的温度应力,并在焊接过程中,随时间和温度而不断变化,称其为焊接应力。焊接应力较高的部位,甚至将达到钢材的屈服强度而发生塑性变形,因而钢材冷却后将有残存于焊件内的应力,称为焊接残余应力。并且在冷却过程中,钢材由于不能自由收缩,而受到拉伸,于是焊件中出现了一个与焊件加热方向大致相反的内应力场。 1.2 Ansys有限元焊接分析 为通过对焊接过程的三维有限元模拟分析以及焊接后构件变形及残余应力分布分析,为评估焊接对焊件的影响提供更加合理、有效、可靠的分析数据,并为焊接工艺提供一定的指导,为采用的焊接过程提供一定的分析依据,采用大型有限元计算软件Ansys作为分析工具对焊接过程与焊件的变形与残余应力进行了分析。 ANSYS有2种方式来考虑热分析与力学分析之间的耦合,即直接耦合和间接耦合。 间接耦合法的处理思路为先进行温度场的模拟,然后将求出的结点温度作为体载荷施加在结构中,计算焊接残余应力与变形。即:

焊接残余应力与变形

焊接残余应力和焊接变形 焊接残余应力(welding residual stresses)简称焊接应力,有沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 1、纵向焊接应力 焊接过程是一个不均匀加热和冷却的过程。在施焊时,焊件上产生不均匀的温度场,焊缝及其附近温度最高,可达1600℃以上,而邻近区域温度则急剧下降。不均匀的温度场产生不均匀的膨胀。温度高的钢材膨胀大,但受到两侧温度较低、膨胀量较小的钢材所限制,产生了热塑性压缩。焊缝冷却时,被塑性压缩的焊缝区趋向于缩短,但受到两侧钢材限制而产生纵向拉应力。在低碳钢和低合金钢中,这种拉应力经常达到钢材的屈服强度。焊接应力是一种无荷载作用下的内应力,因此会在焊件内部自相平衡,这就必然在距焊缝稍远区段内产生压应力 2、横向焊接应力 横向焊接应力产生的原因有二:一是由于焊缝纵向收缩,使两块钢板趋向于形成反方向的弯曲变形,但实际上焊缝将两块钢板连成整体,不能分开,于是两块板的中间产生横向拉应力,而两端则产生压应力。二是由于先焊的焊缝已经凝固,会阻止后焊焊缝在横向自由膨胀,使其发生横向塑性压缩变形。当焊缝冷却时,后焊焊缝的

收缩受到已凝固的焊缝限制而产生横向拉应力,而先焊部分则产生横向压应力,在最后施焊的末端的焊缝中必然产生拉应力。焊缝的横向应力是上述两种应力合成的结果。 3、厚度方向的焊接应力 在厚钢板的焊接连接中,焊缝需要多层施焊。因此,除有纵向和横向焊接应力σx、σy外,还存在着沿钢板厚度方向的焊接应力σz。在最后冷却的焊缝中部,这三种应力形成同号三向拉应力,将大大降低连接的塑性。 3.4.2 焊接应力和变形对结构工作性能的影响 一、焊接应力的影响 1、对结构静力强度的影响 对在常温下工作并具有一定塑性的钢材,在静荷载作用下,焊接应力是不会影响结构强度的。设轴心受拉构件在受荷前(N=0)截面上就存在纵向焊接应力。在轴心力N作用下,截面bt部分的焊接拉应力已达屈服点fy,应力不再增加,如果钢材具有一定的塑性,拉力N就仅由受压的弹性区承担。两侧受压区应力由原来受压逐渐变为受拉,最后应力也达到屈服点fy,这时全截面应力都达到fy 2、对结构刚度的影响 构件上的焊接应力会降低结构的刚度。由于截面的bt部分的拉应力已达fy,这部分的刚度为零,则具有所示残余应力的拉杆的抗

如何控制焊接应力和变形

如何控制焊接应力和变形- - 摘要:为有效控制钢结构因焊件的不均匀膨胀和收缩而造成的焊接变形,就焊接变形和焊接应力的各种影响因素进行分析,提出了相应的控制措施。 在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。 钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热 输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度 而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。 3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。 双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响 1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第 一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。

焊接应力和变形的产生及其消除

焊接应力和变形的产生及其消除

焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭曲变形等。焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和变形的根本原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量 根据理论计算和实践经验,在焊件备料及加工时预先考虑收缩余量,以便焊 后工件达到所要求的形状、尺寸。 二、反变形法 根据理论计算和实践经验,预先估计结构焊焊接件变形的方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法 焊接时将焊件加以刚性固定,焊后待焊件冷却到室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序 尽量使焊缝自由收缩。焊接焊缝较多的结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分布较均匀,从而减少了焊接应力和变形合理的装配和焊接顺序。具体如下: 1)先焊收缩量大的焊缝,后焊收缩量较小的焊缝; 2)焊缝较长的焊件可以采用分中对称焊法、跳焊法,分段逐步退焊法。交替焊法; 3)焊件焊接时要先将所焊接的焊缝都点固后,再统一焊接。能够提高焊接焊件的刚度,点焊固定后在进行焊接,其将增加焊接结构的刚度的部件先焊,使结构具有抵抗变形的足够刚度; 4)具有对称焊缝的焊件最好成双的对称焊接使各焊道引起的变形相互抵消;

5)焊件焊缝不对称时要先焊接焊缝少的一侧。; 6)采用对称与中和轴的焊接和由中间向两侧焊接都有利于抵抗焊接变形。 7)在焊接结构中,当钢板拼接时,同时存在着横向的端接焊缝和纵向的边接焊缝。应该先焊接端接焊缝再焊接边接焊缝。 8)在焊接箱体时,同时存在着对接和角接焊缝时,首先尽量焊接对接焊缝,然后焊接角焊缝。 9)十字接头和丁字接头焊接时,应该正确采取焊接顺序,避免焊接应力集中,以保证焊缝获得良好的焊接质量。对称与中轴的焊缝,应由内向外进行对称焊接。 10)焊接操作时,减少焊接时的热输入,(如:降低电流、加快焊接速度、)。 10-1)焊接操作时,减少熔敷金属量(焊接时采用小坡口、减少焊缝宽度、焊接角焊时减少焊缝尺寸)。 10-2)逐步退焊法,常用于较短裂纹的焊缝。施焊前把焊缝分成适当的小段,标明次序,进行后退焊补。焊缝边缘区段的焊补,从裂纹的终端向中心方向进行,其它各区段接首尾相接的方法进行 五、锤击焊缝法在焊缝的冷却过程中,用圆头小锤均匀迅速地锤击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而减小焊接应力和变形。 六、加热“减应区”法 1)焊接前,在焊接部位附近区域(称减应区)进行加热使之伸长,焊后冷却时,与焊缝一起收缩,可有效减小焊接应力和变形。 2)焊接后,在焊接部位附近区域进行加热,同样可减少焊接应力和变形。 七、焊前预热和焊后缓冷预热的目的是减少焊缝区与焊件其他部分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从而减少焊接应力与变形。在温差相较不大的情况下可称为冷焊。 八.合理的焊接工艺方法,采用焊接热源比较集中的焊接方法进行焊接可降低焊接变形。如CO2气体保护焊,埋弧焊等

焊接应力与变形控制方法

焊接应力与变形控制方法 发表时间:2018-12-02T13:27:28.937Z 来源:《基层建设》2018年第29期作者:胡涛 [导读] 摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。 大庆油田中油电能热电一公司热机检修部黑龙江大庆市 163300 摘要:伴随着我国社会经济的快速崛起,带动着我国工业行业亦获得了高速发展,而焊接作为不可或缺的环节,在工业发展当中发挥着非常重要的地位,尤其是电力行业。各种各样的焊接工艺和焊接形式越来越多的被应用在实际的焊接工作过程中。同时焊接使用的工作机械也在不断的更新及发展。现在的焊接工相较于以前的焊接工作已经有了非常大的发展和创新。基于此,本文主要对焊接变形与焊接应力进行了简要的分析,希望可以为相关工作人员提供一定的参考。 关键词:焊接变形;焊接应力;探讨 引言 在整个焊接的过程当中,由于焊接时温度分布不同,焊接材料之间也会呈现不同的收缩率。这些因素的存在会在一定层面上导致焊接材料之间的变形。这种变形有持久的也有暂时的。目前,关于焊接变形与焊接应力相关的研究,在学术领域和实践领域并没有达成很大的共识。因此,需进一步加强焊接变形和应力的分析。 1焊接应力与焊接变形的定义 1.1焊接应力 钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均的温度场,高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的影响,会在焊件内部产生较大的收缩应力。在焊接的过程中,这种收缩应力伴随着焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接应力。 1.2焊接变形 焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均,焊接构件冷却也不均,因此焊接构件不仅会产生焊接应力,还会产生各种变形。这种焊件产生的变形,被称为焊接变形。 2焊接变形及焊接应力出现的主要原因 2.1焊接件受热不均匀 按照有关的实践分析可知,在焊接过程中出现焊接应力与变形的根本原因为在焊接操作时受力不均匀所导致。焊接件焊接的位置引起焊接操作的实施而发生热涨状况,但是没有焊接的位置因不存在热涨现象进而阻止了热涨变形。因此,导致焊接完成后发生严重的焊接变形。并还会出现较大的焊接应力。 2.2焊接金属出现收缩 焊接工作实际就是将要融化焊接母材然后再进行金属填充,在常态下是一种全塑状态,在焊接操作的过程中只会出现自身的变形而没有带动亦或拉动其它金属变形,从而导致金属发生收缩的现象,造成焊接变形的出现。 2.3焊接件刚性约束 捍接件本身存在的刚性约束同焊接过程中出现焊接应力及焊接变形之间存在着必要的联系。焊接件的刚性约束同焊接变形以及焊接应力发生概率呈现反比例关系。刚性约束越大,发生焊接变形与焊接应力的概率则越小。 2.4其它因素导致焊接残余应力产生 在电力焊接加工中,不仅受到热源和材料、力学性能因索的影响,而且受到其它因素的影响,也会出现不同的残余应力。例如:如果在焊接加工操作之前,使钢结构局部零件以及器材进行轧刹,也会影响电力焊接加工过程,使电力焊接加工中出现不同的残余应力。此外,在电力焊接加工中,还要重点考虑其它多方面的影响,才能避免出现较大的残余应力。 3焊接变形控制措施 首先需要严格控制焊接量,避免焊接残余应力出现。在材料焊接加工前必须做好充足的准备工作,深入了解和分析材料的基本特征,焊缝的尺寸需要进行严格管理,母材不能进行焊缝。其次,在具体焊接中需要合理调整焊接工艺次序,对于不必要的焊接次序需要进行优化调整,如果材料收缩量比较大,那么需前焊接,然而继续焊接长直缝,只有遵循先大后小的原则,才能避免残余应力,再者,焊接时需有意识的预留充分焊接缝,从而却未必焊接时自由收缩缓和槽减小应力法:厚度大的焊件刚性大,焊接时极易出现裂纹,在不影响结构强度性能基础上,通过焊缝附近开缓和槽的方法降低焊接应力,防止裂纹的发生。最后,在先进的科学技术支撑下,可以不断改善焊接技术,加强应用全新的焊接技术,例如二氧化碳保护焊以及氩弧焊,这些焊接工艺技术都能避免电力焊接变形问题产生。 4焊接变形的控制措施 4 1设计措施 (1)焊缝要对称布置,连接处要平滑。当焊接不同宽度或者是厚度的焊件时,防止截面出现突变而产生过大的应力集中现象,可以采用一定的坡度过渡的方法。(2)焊接要避免焊缝过分集中,或者是多个方向的焊缝都相交于一点,如出现前两种情况,相交处会形成多向同号应力场,这样就会使得钢材变脆;通常采用主要焊缝连续通过而次要焊缝断开的构造方法来防止多方向焊缝相交的现象发生。(3)尽量减小焊缝的数量及其尺寸,采用适宜的焊脚尺寸和长度。搭接角焊缝焊接时,要避免焊接热量集中现象,应该采用细长焊缝,而不能用粗短焊缝。(4)在搭接连接中不能只有一条正面角焊缝传力,要求搭接长度不小于薄板厚度的5倍或者是25毫米。(5)要尽量避免在母材厚度方向有收缩应力。(6)焊缝要合理布置位置,避免仰焊 4.2焊接工艺 (1)采用合理的焊接方向和顺序。结构对称时,采用对称焊法。当焊缝较多且较集中时,采用跳焊法分散受热防止集中受热。大于l米的长焊缝,采用分段退焊法。(2)先焊接膨胀大的焊缝,后焊膨胀小的焊缝。先焊短缝,后焊长缝,使得焊缝有足够大的横向收缩空间。(3)为保证受力较大的焊缝在焊接后有一定的伸缩空间,应先焊受力较大的主要焊缝,后焊受力较小的次要焊缝。(4)反变形弦。为了减小焊接变形,可以在焊接之前预留一个与焊接变形相反的预变形。5)预热。焊接之前,先将焊件整体或者是局部加热到100-300℃,并且在焊接后保

焊接与焊接应力

焊接与焊接应力 在建筑钢结构发展如火如荼的今天,形式各异的焊接机械、焊接方法日新月异,焊接技术成了一个关键的课题。但在施工过程中,由于焊接产生的焊接残余应力和残余变形,严重影响着工程的质量、安装进度和结构承载力(即使用功能),因而,急需采用合理的方法予以控制。 钢结构的焊接过程实际上是在焊件局部区域加热后又冷却凝固的热过程,但由于不均匀温度场,导致焊件不均匀的膨胀和收缩,从而使焊件内部产生焊接应力而引起焊接变形。常见的焊接应力有:1)纵向应力;2)横向应力;3)厚度方向应力。常见的焊接变形有:1)纵向收缩变形;2)横向收缩变形;3)角变形;4)弯曲变形;5)扭曲变形;6)波浪变形。针对这些不同种类的焊接变形和应力分布,追溯根源,具体进行研究控制。 1焊接变形的控制措施 全面分析各因素对焊接变形的影响,掌握其影响规律,即可采取合理的控制措施。 1.1焊缝截面积的影响 焊缝截面积是指熔合线范围内的金属面积。焊缝面积越大,冷却时收缩引起的塑性变形量越大,焊缝面积对纵向、横向及角变形的影响趋势是一致的,而且是起主要的影响,因此,在板厚相同时,坡口尺寸越大,收缩变形越大。 1.2焊接热输入的影响 一般情况下,热输入大时,加热的高温区范围大,冷却速度慢,使接头塑性变形区增大。 1.3焊接方法的影响 多种焊接方法的热输入差别较大,在建筑钢结构焊接常用的几种焊接方法中,除电渣以外,埋弧焊热输入最大,在其他条件如焊缝断面积等相同情况下,收缩变形最大,手工电弧焊居中,CO2气体保护焊最小。 1.4接头形式的影响 在焊接热输入、焊缝截面积、焊接方面等因素条件相同时,不同的接头形式对纵向、横向、角变形量有不同的影响。常用的焊缝形式有堆焊、角焊、对接焊。 1)表面堆焊时,焊缝金属的横向变形不但受到纵横向母材的约束,而且加热只限于工件表面一定深度而使焊缝的收缩同时受到板厚、深度、母材方面的约束,因此,变形相对较小。 2)T形角接接头和搭接接头时,其焊缝横向收缩情况与堆焊相似,其横向收缩值与角焊缝面积成正比,与板厚成反比。 3)对接接头在单道(层)焊的情况下,其焊缝横向收缩比堆焊和角焊大,在单面焊时坡口角度大,板厚上、下收缩量差别大,因而角变形较大。 双面焊时情况有所不同,随着坡口角度和间隙的减小,横向收缩减小,同时角变形也减小。 1.5焊接层数的影响 1)横向收缩:在对接接头多层焊接时,第一层焊缝的横向收缩符合对接焊的一般条件和变形规律,第一层以后相当于无间隙对接焊,接近于盖面焊道时与堆焊的条件和变形规律相似,因此,收缩变形相对较小。 2)纵向收缩:多层焊接时,每层焊缝的热输入比一次完成的单层焊时的热输入小得多,加热范围窄,冷却快,产生的收缩变形小得多,而且前层焊缝焊成后都对下层焊缝形成约束,因此,多层焊时的纵向收缩变形比单层焊时小得多,而且焊的层数越多,纵向变形越小。 在工程焊接实践中,由于各种条件因素的综合作用,焊接残余变形的规律比较复杂,了解各因素单独作用的影响便于对工程具体情况做具体的综合分析。所以,了解焊接变形产生的原因和影响因素,则可以采取以下控制变形的措施: 1)减小焊缝截面积,在得到完整、无超标缺陷焊缝的前提下,尽可能采用较小的坡口尺寸(角度和间隙)。 2)对屈服强度345MPA以下,淬硬性不强的钢材采用较小的热输入,尽可能不预热或适

焊接应力与变形及措施

焊接应力与变形: 4.2.1 焊接变形和残余应力的不利影响: 焊接变形{ 1.影响工件形状、尺寸精度 2.影响组装质量 3.增大制造成本———矫正变形费工、费时 4.降低承载能力———变形产生了附加应力 焊接应力{ 1.降低承载能力 2.引起焊接裂纹,甚至脆断 3.在腐蚀介质中,产生应力腐蚀裂纹 4.引起变形 4.2.2 焊接变形和应力的产生原因: 根本原因:对焊件进行的不均匀加热和冷却,如图6-2-8 焊接应力{焊接加热时,焊缝区受压力应力(因膨胀受阻,用符号“-”表示) 远离焊缝区手拉应力(用符号“+”表示) 焊后冷却时,焊缝受拉应力(因收缩受阻),远离焊缝区受压应力 焊接变形:当焊接应力超过金属σs时,焊件将产生变形 焊接应力和焊接变形总是同时存在,不会单独存在,当母材塑性较好,结构刚度较小时,焊接变形较大而应力较小;反之,则应力较大而变形较小。 4.2.3 焊接变形的控制和矫正: 4.2.3.1 焊接变形的基本形式,如图6-2-9

如图6-2-9 常见的焊接残余变形的类型 1、2---纵向收缩量 3---横向收缩量 4、5---角变形量 f---挠度 (1)收缩变形:即焊件沿焊缝的纵向和横向尺寸减少,是由于焊缝区的纵向和横向收缩引起的。如图5-2-9 a (2)角变形:即相连接的构件间的角度发生改变,一般是由于焊缝区的横向收缩在焊件厚度上分布不均匀引起的。如图5-2-9b (3)弯曲变形:即焊件产生弯曲。通常是由焊缝区的纵向或横向收缩引起的。如图5-2-9c (4)扭曲变形:即焊件沿轴线方向发生扭转,与角焊缝引起的角度形沿焊接方向逐渐增大有关。如图5-2-9d (5)失稳变形(波浪变形):一般是由沿板面方向的压应力作用引起的。如图5-2-9e 4.2.3.2 控制焊接变形的措施 (1)设计措施(详见焊接结构设计) 尽量减少焊缝的数量和尺寸,合理选用焊缝的截面形状,合理安排焊缝位置──尽量使焊缝对称或接近于构件截面的中性轴(以减少弯曲变形)。如图6-2-10

焊接应力与变形的分类控制

焊接应力与变形的分类控制 焊接应力与变形往往使焊接产品质量下降,甚至会因无法补救而不得不报废。焊接裂纹的产生与发展和焊接应力及变形也有密切的关系。在一般情况下,焊接变形是对焊接质量不利的,但是若掌握了变形的机理和规律,便可利用它并能控制它。如利用反变形来校正变形。 1. 焊接应力与变形的概念在焊接过程中,工件受电弧热的不均匀加热而产生的内应力及变形是暂时的。当工件冷却后,任然保留在工件内部的内应力及变形叫着残余应力及残余变形。我们所说的焊接应力及变形就是指的焊接的残余应力和焊接的残余变形。 1.1 焊接应力的分类 1.1.1 根据引起应力的基本原因可分为: 热应力——由于焊接时温度分布不均匀所引起的应力。 组织应力——由于温度变化,引起了组织变化所产生的应力。 1.1.2 根据应力存在的时间可分为: 瞬时应力——在一定的温度及刚度条件下,某一瞬室内存在的应力。 残余应力——一般指焊接结束后完全冷却后任然存在的内应力。 1.1.3 根据应力作用可分为: 纵向应力——其方向平行于焊缝轴线。 横向应力——其方向垂直于焊缝轴线。 1.1.4 根据应力在空间的方向可分为: 单向应力——在焊件中沿一个方向存在。 两向应力——应力作用在一平面内的不同方向上,亦称为平面应力。 三向应力——应力沿空间所有的方向存在,亦称体积应力。 1.2 焊接变形的分类 由于焊接接头形式,工件的厚度和形状、焊缝的长度及其位置不同,焊接时会出现各种形式不同的变形。大体上可分为:纵向变形、横向变形、弯曲变形、角变形、波浪变形、扭曲变形等。 2. 焊接变形和应力的形成焊接变形和应力是由诸多因素同事作用造成的。其中最主要的因素有:焊接上温度分布不均匀;熔敷金属的收缩;焊接接头金属组织转变及工件的刚性约

焊接应力产生的原因及处理方法

1.焊接应力的分类 焊接过程是一个先局部加热,然后再冷却的过程。焊件在焊接时产生的变形称为热变形,焊件冷却后产生的变形称为焊接残余变形, 这时焊件中的应力称为焊接残余应力。焊接应力包括沿焊缝长度方向的纵向焊接应力,垂直于焊缝长度方向的横向焊接应力和沿厚度方向的焊接应力。 2.焊接残余应力对结构性能的影响 (1)对结构静力强度的影响:焊接应力不影响结构的静力强度。(2)对结构刚度的影响:焊接残余应力降低结构的刚度。 (3)对受压构件承载力的影响:焊接残余应力降低受压构件的承 载力。 (4)对低温冷脆的影响:增加钢材在低温下的脆断倾向。 (5)对疲劳强度的影响:焊接残余应力对结构的疲劳强度有明显 不利影响。 焊接变形的基本形式有收缩变形、角变形、弯曲变形、波浪变形和扭 曲变形等。 焊接过程中,对焊件进行不均匀加热和冷却,是产生焊接应力和 变形的根本原因。 减少焊接应力与变形的工艺措施主要有: 一、预留收缩变形量。根据理论计算和实践经验,在焊件备料及加

工时预先考虑收缩余量,以便焊后工件达到所要求的形状、尺寸。 二、反变形法。根据理论计算和实践经验,预先估计结构焊接变形的 方向和大小,然后在焊接装配时给予一个方向相反、大小相等的预置变形,以抵消焊后产生的变形。 三、刚性固定法。焊接时将焊件加以刚性固定,焊后待焊件冷却到 室温后再去掉刚性固定,可有效防止角变形和波浪变形。此方法会增大焊接应力,只适用于塑性较好的低碳钢结构。 四、选择合理的焊接顺序。尽量使焊缝自由收缩。焊接焊缝较多的 结构件时,应先焊错开的短焊缝,再焊直通长焊缝,以防在焊缝交接 处产生裂纹。如果焊缝较长,可采用逐步退焊法和跳焊法,使温度分 布较均匀,从而减少了焊接应力和变形。 五、锤击焊缝法。在焊缝的冷却过程中,用圆头小锤均匀迅速地锤 击焊缝,使金属产生塑性延伸变形,抵消一部分焊接收缩变形,从而 减小焊接应力和变形。 六、加热“减应区”法。焊接前,在焊接部位附近区域(称为减应区)进行加热使之伸长,焊后冷却时,加热区与焊缝一起收缩,可有效减 小焊接应力和变形。 七、焊前预热和焊后缓冷。预热的目的是减少焊缝区与焊件其他部 分的温差,降低焊缝区的冷却速度,使焊件能较均匀地冷却下来,从 而减少焊接应力与变形。

焊接应力和变形分析

焊接变形与残余应力的预测 目录 焊接变形和残余应力的基本原理 在焊接由焊接产生的动态应力应变过程及随后出现的残余应力和残余变形是导致焊接裂纹和接头强度和性能下降的重要因素。 焊接应力和焊接变形由焊接过程中的不均匀加热引起,由于其形成原因复杂多变,而且完全不可确定,因此我们只能通过总结焊接应力与变形的产生和存在的一般规律以及大家总结出原来的施工经验,对即将进行的工程构件焊接情况进行分析和预测。 焊接应力与焊接变形存在一定的关系,当焊接应力完全释放的时候焊接变形达到最大值;当焊接结构处于完全刚性的时候,几乎可以完全控制焊接变形,而此时由于无法进行应力释放,焊接残余应力将达到最大值。 如何选择和理的焊接结构、焊接方法、焊接材料和焊接工艺,以取得最佳的焊接残余应力和焊接变形状态时钢结构焊接的重要课题。 焊接变形和残余应力的常用计算方法 焊接应力与变形的形成原因极为复杂,因为直接影响应力与变形的金属材料的力学性能和热物理性能随着温度的变化而变化,而起决定作用的焊接温度场又因焊接接头的形状和尺寸、焊接工艺参数等的变化而变化。因此在计算焊接应力与焊接变形时,常常作出一些假定和简化,从而从最简单焊接的分析入手,并推断出结论。 目前常用的预测焊接变形的方法主要有残余塑变解析法、三维实体单元固有应变有限元法、板壳单元固有应变有限元法,以及热弹性有限元法等。

残余塑变解析法仅适用于简单构件、规则梁,计算过程需要经验及试验数据的累积,分析焊接构件几何参数及焊接规范参数,在本工程中适用于梁柱对接的应力分析。 三维实体单元固有应变有限元法主要适用于实体复杂结构,在本工程中适用于主要节点的焊后构件变形,需要划分网格、加载固有应变后进行三维弹性分析。 板壳单元固有应变有限元法适用于薄壁复杂结构,在本工程中可应用性不大。 对于整体结构的焊接变形预测,需要使用热弹塑性有限元法进行分析,计算步骤为:划分网格、模拟焊接温度场、热弹塑性分析,其计算过程需要跟踪焊接热力学的全部过程,计算量极大、计算时间很长,在目前的短时间内不可能得到准确的结果。 因此本章以后部分仅从理论角度对焊接应力和焊接变形做出基本的计算和预测。 分析焊接应力与变形的主要假定 常规分析假定 1.由于焊接过程十分复杂,因此在焊接应力的分析过程我们依据传统经验作出以下简化假 定 2.金属的热物理性能与温度无关 3.金属的力学性能与温度无关 4.除厚板焊接外,认为沿焊接方向的温度是均匀的;电弧为一个线状热源;温度场稳定并

焊接应力与变形

●焊接应力与变形 1.焊接应力与变形产生的原因 焊件在焊接过程中受到局部加热和冷却是产生焊接应力和变形的主要原因。 焊接加热时,图F-4(a)中虚线既表示接头横截面的温度分布,也表示金属能自由膨胀时的伸长量分布。实际上接头是个整体,由于受工件未加热部分的冷金属产生的约束,无法进行自由膨胀,平板只能在整个宽度上伸长ΔL,因此焊缝区中心部分因膨胀受阻而产生压应力(用符号“-”表示),两侧则形成拉应力(用符号“+”表示)。焊缝区中心部分的压应力超过屈服强度时,产生压缩塑性变形,其变形量为图F-4(a)中被虚线包围的无阴影部分。焊后冷却时,金属若能自由收缩,则焊件中将无残余应力,也不会产生焊接变形,但由于焊缝区中心部分已经产生的压缩塑性变形,不能再恢复,冷却到室温将缩短至图F-4(b)中的虚线位置,两侧则缩短到焊前的原长L。这种自由收缩同样是无法实现的,平板各部分收缩会互相牵制,焊缝区两侧将阻碍中心部分的收缩,因此焊缝区中心部分产生拉应力,两侧则形成压应力。在平板的整个宽度上缩短ΔL′,即产生了焊接变形。 图F-4 平板对焊的应力与分布 (a)焊接过程中;(b)冷却后 2.焊接变形的几种基本形式

图F-5 焊接变形的基本形式 (a)收缩变形;(b)角变形;(c)弯曲变形;(d)扭曲变形;(e)波浪变形 1)收缩变形:收缩变形是工件整体尺寸的减小,它包括焊缝的纵向和横向收缩变形。 2)角变形:当焊缝截面上下不对称或受热不均匀时,焊缝因横向收缩上下不均匀,引起角变形。V形坡口的对接接头和角接接头易出现角变形。 3)弯曲变形:由于焊缝在结构上不对称分布,焊缝的纵向收缩不对称,引起工件向一侧弯曲,形成弯曲变形。 4)扭曲变形:对多焊缝和长焊缝结构,因焊缝在横截面上的分布不对称或焊接顺序和焊接方向不合理等,工件易出现扭曲变形。 5)波浪变形:焊接薄板结构时,焊接应力使薄板失去稳定性,引起不规则的波浪变形。 实际焊接结构的真正变形往往很复杂,可同时存在几种变形形式。 3.焊接变形的防止与矫正

关于焊接变形和焊接应力的探讨15

关于焊接变形和焊接应力的探讨 摘要:在工业生产中,焊接工作的有效科学发展能够推动我国的机械行业的健 康发展,因此我们在焊接工作进行过程中,一定要注意焊接的质量,同时对于影 响焊接质量的各种因素给予及时的发现并且处理,只有这样我国的焊接工作才能 够有更好更快的发展。 关键词:焊接变形;焊接应力;探讨 在机械焊接的过程中,难免会出现焊接变形问题,同时还会产生焊接应力。 焊接变形同焊接应用对于焊接工作有着非常大的影响,会严重的影响焊接的质量。因此文章针对焊接过程中的焊接变形和焊接应力进行详细的阐述和分析,希望通 过文章的阐述和分析,能够为我国的机械行业的焊接加工质量及工作的提升作出 一定的贡献。 1 焊接应力与焊接变形的定义 1.1 焊接应力 钢材在焊接过程中,焊件部位会因为焊接时的局部高温产生不均的温度场。 高温时,有一部分钢材会产生很大的膨胀和伸长,但由于受到邻近钢材的约束影响,会在焊件内部产生较大的收缩应力。在焊接的过程中,这种收缩应力伴随着 焊接时间的变化和温度的升降变化不断的改变,而这种收缩应力就被定义为焊接 应力。 1.2 焊接变形 焊接构件在焊接及逐渐冷却的过程中,由于焊接构件局部受热且受热不均, 同时焊接构件冷却也不均,因此焊接构件不仅会产生焊接应力,还会产生各种变形。这种焊件产生的变形,被称为焊接变形。 2 焊接变形及焊接应力出现的主要原因 2.1 焊接件受热不均匀 按照有关的实践分析可知,在焊接过程中出现焊接应力与变形的根本原因为 在焊接操作时受力不均匀所导致。焊接件焊机的位置引焊接操作的实施而发生热 涨状况,但是没有焊接的位置因不存在热涨现象进而阻止了热涨变形。因此,导 致焊接完成后发生严重的焊接变形。 2.2 焊接金属出现收缩 焊接工作实际就是将要融化焊接木材然后再进行金属填充,在常态下是一种 全塑状态,在焊接操作的过程中只会出现自身的变形而没有带动亦或拉动其他的 金属变形,从而导致金属发生收缩的现象,造成焊接变形的出现。 2.3 焊接件刚性约束 焊接件本身存在的刚性约束同焊接过程中出现焊接应力及焊接变形之间存在 着必要的联系。焊接件的刚性约束同焊接变形以及焊接应力发生概率呈现反比例 关系。刚性约束越大,发生焊接变形与焊接应力的概率则越小。 2.4 其它因素导致焊接残余应力产生 在火车焊接加工中,不仅受到热源和材料、力学性能因素的影响,而且受到 其它因素的影响,也会出现不同的残余应力。例如:如果在焊接加工操作之前, 使钢结构局部零件以及器材进行轧刹,也会影响火车焊接加工过程,使火车焊接 加工中出现不同的残余应力。此外,在火车焊接加工中,还要重点考虑其它多方

相关主题
文本预览
相关文档 最新文档