当前位置:文档之家› 电力系统谐振

电力系统谐振

电力系统谐振
电力系统谐振

电力系统谐振原因及处理措施分析发布时间:2012-10-16 阅读次数:1883 次

一、概述

铁磁谐振是由铁心电感元件,如发电机、变压器、电压互感器、电抗器、消弧线圈等和和系统的电容元件,如输电线路、电容补偿器等形成共谐条件,激发持续的铁磁谐振,使系统产生谐振过电压。

电力系统的铁磁谐振可分二大类:一类是在66kV及以下中性点绝缘的电网中,由于对地容抗与电磁式电压互感器励磁感抗的不利组合,在系统电压大扰动(如遭雷击、单相接地故障消失过程以及开关操作等)作用下而激发产生的铁磁谐振现象;另一类是发生在220kV(或110kV)变电站空载母线上,当用220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电过程中,或切除(含保护整组传动联跳)带有电磁式电压互感器的空母线时,操作暂态过程使连接在空母线上的电磁式电压互感器组中的一相、两相或三相激发产生的铁磁谐振现象,即串联谐振,简单地讲就是由高压断路器电容与母线电压互感器的电感耦合产生谐振由于谐振波仅局限于变电站空载母线范围内,也称其为变电站空母线谐振。

二、铁磁谐振的现象

1、铁磁谐振的形式及象征

1)基波谐振:一相对地电压降低,另两相对地电压升高超过线电压;或两相电压降低、一相电压升高超过线电压、有接地信号发出

2)分次谐波:三相对地电压同时升高、低频变动

3)高次谐波:三相对地电压同时升高超过线电压

2、串联谐振的现象:线电压升高、表计摆动,电压互感器开口三角形电压超过100V

三、铁磁谐振产生的原因及其分析:

1、铁磁谐振产生的原因:

1)、有线路接地、断线、断路器非同期合闸等引起的系统冲击

2)、切、合空母线或系统扰动激发谐振

3)、系统在某种特殊运行方式下,参数匹配,达到了谐振条件

2、串联谐振产生的原因:进行刀闸操作时,断路器隔离开关与母线相连,引发断路器端口电容与母线上互感器耦合满足谐振条件

3、电力系统铁磁谐振产生的原因分析

电力系统是一个复杂的电力网络,在这个复杂的电力网络中,存在着很多电感及电容元件,尤其在不接地系统中,常常出现铁磁谐振现象,给设备的安全运行带来隐患,下面先从简单的铁磁谐振电路中对铁磁谐振原因进行分析。

3.1简单的铁磁谐振电路中谐振原因分析

在简单的R、C和铁铁芯电感L电路中,假设在正常运行条件下,其初始状态是感抗大于容抗,即ωL>(1/ωC),此时不具备线性谐振条件,回

路保持稳定状态。但当电源电压有所升高时,或电感线圈中出现涌流时,就有可能使铁芯饱和,其感抗值减小,当ωL=(1/ωC)时,即满足了串联谐振条件,在电

感和电容两端便形成过电压,回路电流的相位和幅值会突变,发生磁谐振现象,谐振一旦形成,谐振状态可能“自保持”,维持很长时间而不衰减,直到遇到新的干扰改变了其谐振条件谐振才可能消除。

3.2电力系统铁磁谐振产生的条件

电力系统中许多元件是属于电感性的或电容性的,如电力变压器、互感器、发电机、消弧线圈为电感元件,补偿用的并或串联电容器组、高压设备的寄生电容为电容元件,而线路各导线对地和导线间既存在纵向电感又存在横向电容,这些元件组成复杂的LC震荡回路,在一定的能源作用下,特定参数配合的回路就会出现谐振现象。由于铁芯电感的磁通和电流之间的非线性关系,电压升高导致铁芯电感饱,极容易使电压互感器发生铁磁谐振。在中性点不接地系统中,如果不考虑线路的有功损耗和相间电容,仅考虑电压互感器电感L与线路的对地电容Co,当C大到一定值,且电压互感器不饱和时,感抗XL大于容抗XCo。而当电压互感器上电压上升到一定数值时,电压互感器的铁芯饱和,感抗XL小于容抗XCo,这样就构成了谐振条件,下列几种激发条件可以造成铁磁谐振:

a.电压互感器的突然投入;

b.线路发生单相接地;

c.系统运行方式的突然改变或电气设备的投切;

d.系统负荷发生较大的波动;

e.电网频率的波动;

f.负荷的不平衡变化等。

电压互感器的铁磁谐振必须由工频电源供给能量才能维持下去如果抑制或消耗这部分能量,铁磁谐振就可以抑制或消除。在我国6—10KV配电网内,发生互感器引起的谐振过电压情况甚为频繁,每到雷雨季节,熔断电压互感器保险的情况频繁发生。

3.3中性点不接地系统铁磁谐振产生的原因

中性点不接地系统中,为了监视绝缘,发电厂、变电所的母线上通常接有Yo接线的电磁式电压互感器,由于接有Yo接线的电压互感器,网络对地参数除了电力导线和设备的对地电容Co外,还有互感器的励磁电感L,由于系统中性点不接地,Yo接线的电磁式电压互感器的高压绕组,就成为系统三相对地的唯一金属通道。正常运行时,三相基本平衡,中性点的位移电压很小。但在某些切换操作如断路器合闸或接地故障消失后,由于三相互感器在扰动后电感饱和程度不一样而形成对地电阻不平衡,它与线路对地电容形成谐振回路,可能激发起铁磁谐振过电压。电压互感器铁心饱和引起的

铁磁谐振过电压是中性点不接地系统中最常见和造成事故最多的一种内部过电压。在实际运行设备中,由于中性点不接地电网中设备绝缘低,线树矛盾以及绝缘子闪烙等单相接地故障相对频繁,一般说来,单相接地故障是铁磁谐振最常见的一种激发方式。

3.4中性点直接接地系统铁磁谐振产生的原因

若中性点直接接地,则电压互感器绕组分别与各相电源电势相连,电网中各点电位被固定,不会出现中性点位移过电压;若中性点经消弧线圈接地,其电感值远小于电压互感器的励磁电感,相当于电压互感器的电感被短接,电压互感器的变化也不会引起过电压。但是,当中性点直接接地或经过消弧线圈接地的系统中,由于操作不当和某些倒闸过程,也会形成局部电网在中性点不接地方式下临时运行。在中性点直接接地电力系统中,一般铁磁谐振的激发因素为合刀闸和断路器分闸。在进行此操作时,由于电路内受到足够强烈的冲击扰动,使得

电感L两端出现短时间的电压升高、大电流的震荡过程或铁心电感的涌流现象。这时候很容易和断路器的均压电容Ck一起形成铁磁谐振。

四、铁磁谐振对电力系统安全运行的影响

通过以上分析,我们就能够明白,当线路发生单相接地或断路器操作等干扰时,造成电压互感器电压升高,三相铁芯受到不同的激励而呈现不同程度的饱和,电压互感器的各相感抗发生变化,各相电感值不相同,中性点位移产生零序电压。由于线路电流持续增大,导致电压互感器铁芯逐渐磁饱和,当满足ωL=1/ωC时,即具备谐振条件,从而产生谐振过电压,其造成的主要影响如下:

1、中性点不接地系统中,其运行方式的主要特点是单相接地后,允许维持一定的时间,一般为2h不致于引起用户断电。但随着中低压电网的扩大,出线回路数增多、线路增长,电缆线路的逐渐增多,中低压电网对地电容电流亦大幅度增加,单相接地时接地电弧不能自动熄灭必然产生电弧过电压,一般为3—5倍相电压甚至更高,致使电网中绝缘薄弱的地方放电击穿,并且在过电压的作用下极易造成第二点接地发展为相间短路造成设备损坏和停电事故,严重威胁电网安全运行。

2、在发生谐振时,电压互感器一次励磁电流急剧增大,使高压熔丝熔断。如果电流尚未达到熔丝的熔断值,但超过了电压互感器额定电流,长时间处于过电流状况下运行,必然造成电压互感器烧损。

3、谐振发生后电路由原来的感性状态转变为容性状态,电流基波相位发生180°反转,发生相位反倾现象,可导致逆序分量胜于正序分量,从而使

小容量的异步电动机发生反转现象。

4、产生高零序电压分量,出现虚幻接地和不正确的接地指示。

五、常用的消谐方法及优缺点

多年来,国内外专家学者对铁磁谐振做了大量研究,在理论分析方面,前人进行了大量卓有成效的工作,阐明了这类非线性谐振问题中所蕴含的不同于线性谐振的丰富内容,给我们提供了坚实的理论基础。一般来讲,消谐应从两方面着手,即改变电感电容参数以破坏谐振条件和过吸收与消耗谐振能量以抑制谐振的产生,或使其受阻尼而消失。下面是常用的消谐方法。

1、中性点不接地系统常见的消谐措施

1.1采用励磁特性较好的电压互感器

目前,在我单位新建变电站电压互感器选型时尽量采用采用励磁特性较好的电压互感器。电压互感器伏安特性非常好,如每台电压互感器起始饱和电压为 1.5Ue,使电压互感器在一般的过电压下还不会进入饱和区,从而不易构成参数匹配而出现谐振。显然,若电压互感器伏安特性非常好,电压互感器有可能在一般的过电压下还不会进入较深的饱和区,从而不易构成参数匹配而出现谐振。从某种意义上来说,这是治本的措施。但电压互感器的励磁特性越好,产生电压互感器谐振的电容参数范围就越小。虽可降低谐振发生的概率,但一旦发生,过电压、过电流更大。

1.2在母线上装设中性点接地的三相星形电容器组,增加对地电容这种方法,当增大各相对地电容Co,使XCo/XL<0.01时(谐振区为小于0.01或大于3)回路参数超出谐振的范围,可防止谐振。通过对两种典型伏安特性的铁芯电感进行模拟试验。试验结果表明,谐振区域与阻抗比XCo/XL有直接关系,对于1/2分频谐振区,阻XCo/XL约为0.01~0.08;基波谐振区,XCo/XL约为0.08~0.8;高频谐振区,XC0/XL约为0.6~3.0。当改变电网零序电容时,XCo/XL

随之改变,回路中可能出现由一种谐振状态转变为另一种谐振状态。如果零序电容过大或过小,就可以脱离谐振区域,谐振就不会发生。

1.3电流互感器高压侧中性点经电阻接地,由于系统中性点不接地,Yo接线的电磁式电压互感器的高压绕组,就成为系统三相对地的唯一金属通道。系统单相接地有两个过渡过程,一是接地时;二是接地消失时。接地时,当系统某相接地时,该相直接与地接通,另两相对地也有电源电路(如主变绕组)成为良好的金属通道。因此在接地时的三相对地电容的充放电过程的通道,不会走电压互感器高压绕组,就是说发生接地时电压互感器高压绕组中不会产生涌流,因为已有某相固定在地电位,也就不会发生铁磁谐振。但是当接地消失时,

情况就不同了。在接地消失的过程中,固定的地电位已消失,三相对地的金属通道已无其他路可走,只有走电压互感器高压绕组,即此时三相对地电容(零序电容)3Co中存储的电荷,对三相电压互感器高压绕组电感L/3放电,相当一个直流源作用在带有铁芯的电感线圈上,铁芯会深度饱和。对于接地相来说,更是相当一个空载变压器突然合闸,叠加出更大的暂态涌流。在高压绕组中性点安装电阻器Ro后,能够分担加在电压互感器两端的电压,从而能限制电压互感器中的电流,特别是限制断续弧光接地时流过电压互感器的高幅值电流,将高压绕组中的涌流抑制在很小的水平,相当于改善电压互感器的伏安特性,1.4电压互感器一次侧中性点经零序电压互感器接地,此类型接线方式的的电压互感器称为抗谐振电压互感器,这种措施在部分地区有成功经验,其原理是提高电压互感器的零序励磁特性,从而提高电压互感器的抗烧毁能力,已有很多厂家按此原理制造抗谐振电压互感器。但是应注意到,电压互感器中性点仍承受较高电压,且电压互感器在谐振时虽可能不损坏,但谐振依然存在。

1.5电压互感器二次侧开三角绕组接阻尼电阻,在三相电压互感器一次侧中性点串接单相电压互感器或在电压互感器二次开口三角处接入阻尼电阻,用于消耗电源供给谐振的能量,能够抑制铁磁谐振过电压,其电阻值越小,越能抑制谐振的发生。若R=0,即将开口三角两端短接,相当于电网中性点直接接地,谐振就不会发生。但在实际应用中,由于原理及装置的可靠性欠佳,这些装置的运行情况并不理想。二次侧电子消谐装置仍有待从理论、制造上加以完善。在单相持续接地时,开三角绕组也必须具备足够大的容量;这类消谐措施对非谐振区域内流过电压互感器的大电流不起限制作用

1.6中性点经消弧线圈接地,中性点经消弧线圈接地有以下优点:瞬间单相接地故障可经消弧线圈动作消除,保证系统不断电;永久单相接地故障时消弧线圈动作可维持系统运行一定时间,可以使运行部门有足够的时间启动备用电源或转移负荷,不至于造成被动;系统单相接地时消弧线圈动作可有效避免电弧接地过电压,对全网电力设备起保护作用;由于接地电弧的时间缩短,使其危害受到限制,因此也减少维修工作量;由于瞬时接地故障等可由消弧线圈自动消除,因此减少了保护错误动作的概率;系统中性点经消弧线圈接地可有效抑制单相接地电流,因此可降低变电所和线路接地装置的要求,且可以减少人员伤亡,对电磁兼容性也有好处。可见,中性点谐振接地是

中压电网(包括电缆网络)乃至高压系统的比较理想的中性点接地方式。但是由于不适当操作或某些倒闸过程会导致局部电网在中性点不接地方式下临时运行,所以这种系统也曾经发生过电压互感器谐振,同时安装消弧线圈自然会增加投资,此外,消

弧线圈自身的维护和整定还需要不断的完善。

2、中性点直接接地系统谐振消除方法及优缺点

2.1、尽量保证断路器三相同期、防止非全相运行。

2.2、改用电容式电压互感器(CVT),从根本上消除了产生谐振的条件,但是电容式电压互感器价格高、带负载能力差、且仍带有电感,二次侧仍要采用消谐措施。增加对地电容,操作时让母线带上一段空线路或耦合电容器。

2.3、带空载线路可以很好地消谐,但有可能产生一个很大的冲击电流通过互感器线圈,对互感器不利,而耦合电容器十分昂贵,目前尚无高压电容器。

2.4、与高压绕组串接或并接一个阻尼绕组,可消除基频谐振,在发生谐振的瞬间投入此阻尼电阻将会增加投切设备和复杂的控制机构。

2.5、电容吸能消谐,对幅值较高的基频谐振比较有效,但对于幅值较低的分频谐振往往难以奏效。

2.6、在开口三角形回路中接入消谐装置,能自动消除基频和分频谐振,需在压变开口三角绕阻回路中增加1根辅助边线,增大了投资。

2.7、采用光纤电压互感器,可以有效地消除谐振。价格较高,还需要在现场中进一步实验。

六、从运行操作方面去防止谐振的发生。

以上是从设备、技术方面考虑,我们还要从运行操作方面去防止谐振的发生。

1、控制XcE/XL的比值,尽量躲开谐振区。

1.1当XCo/XL≤0.01或XCo/XL≥3时不产生铁磁谐振

1.2当运行相电压Up除以额定电压Un等于0.58时极易发生分频或基波铁磁谐振。

1.3改变运行方式,以改变网络参数,消除谐振

1.4当电压互感器的XL一定时,增加对地电容Co,XCo将减小,XCo/XL的比值也随之减小,是防止铁磁谐振发生的有效方法。倒闸操作中增加Co的方法一般有:外接电容、介入空载线路或空载变压器、介入电缆线路、拉母联或分段断路器等。

2、控制电源电压、降低铁磁谐振的工作点,使Up/Ue≠0.58。

3、注意倒闸操作中的操作步骤。

3.1当参数处在串联谐振范围时,母线停电的操作顺序:先拉母线电压感器,以切断L,再拉母联断路器,送电时顺序相反;如220kV、110kV带断口均压电容的主开关或母联开关对带电磁式电压互感器的空母线充电时,为防止合上两侧刀闸后因断开电容的耦合作用有可能与空母线电磁式电压互感

器产生串联谐振,应先合上开关,后合电压互感器刀闸,如属新安装的电磁式电压互感器投产时应考虑带上互感器对母线充电。

3.2电源向母线升压时,先合断路器,使C短接,再升压;

3.3当母差保护动作跳闸时,是一条母线停电,也要及时拉开母联断路器的隔离开关或母线TV的隔离开关,以切断L-C回路。

3.4运行中注意监视备用母线的情况,发现异常,及时进行处理。热备用母线,如发现母线电压又指示时,应首先考虑是否发生了串联铁磁谐振,此时应尽快合上母联断路器将C短接或拉开TV隔离开关;如在系统运行方式和倒闸操作过程中出现了开关断口电容与空母线电磁式PT造成的串联谐振,不管是合开关时出现的谐振过电压,还是拉开关后出现的谐振过电压,最直接有效的办法是迅速拉开或合上主开关或母联开关。如上述措施无法实现时,应迅速汇报调度,合上备用线路开关。由于谐振时电压互感器一次绕组电流很大,应禁止用电压互感

器或直接取下一次侧熔断器的方法来消除谐振。

3.5当变压器向接有TV的空载母线合闸充电时,应将变压器中性点接地或经消弧线圈接地。

3.6系统发生并联谐振时,应瞬间短接TV开口三角形绕组,有时也可以消除谐振,尤其是分频谐振特别有效。

为防止电力系统中发生铁磁谐振,杜绝铁磁谐振给电网带来的不安全影响,作为从事电网调度工作的我更是义不容辞的责任,这需要我们在工作中一点一滴地做起,确实为保证电网安全运行、共创和谐社会做出更多努力

电力系统分析课后作业题及练习题

第一章 电力系统的基本概念 1-1 什么叫电力系统、电力网及动力系统 1-2 电力线、发电机、变压器和用电设备的额定电压是如何确定的 1-3 我国电网的电压等级有哪些 1-4 标出图1-4电力系统中各元件的额定电压。 1-5 请回答如图1-5所示电力系统中的二个问题: ⑴ 发电机G 、变压器1T 2T 3T 4T 、三相电动机D 、单相电灯L 等各元件的额定电压。 ⑵ 当变压器1T 在+%抽头处工作,2T 在主抽头处工作,3T 在%抽头处工作时,求这些变压器的实际变比。 1-6 图1-6中已标明各级电网的电压等级。试标出图中发电机和电动机的额定电压及变压器的额定变比。 1-7 电力系统结线如图1-7所示,电网各级电压示于图中。试求: 习题1-5图 习题1-6图 习题1-4图

⑴发电机G 和变压器1T 、2T 、3T 高低压侧的额定电压。 ⑵设变压器1T 工作于+%抽头, 2T 工作于主抽头,3T 工作于-5%抽头,求这些变压器的实际变比。 1-8 比较两种接地方式的优缺点,分析其适用范围。 1-9 什么叫三相系统中性点位移它在什么情况下发生中性点不接地系统发生单相接地时,非故障相电压为什么增加3倍 1-10 若在变压器中性点经消弧线圈接地,消弧线圈的作用是什么 第二章 电力系统各元件的参数及等值网络 2-1 一条110kV 、80km 的单回输电线路,导线型号为LGJ —150,水平排列,其线间距离为4m ,求此输电线路在40℃时的参数,并画出等值电路。 2-2 三相双绕组变压器的型号为SSPL —63000/220,额定容量为63000kVA ,额定电压为242/,短路损耗404=k P kW ,短路电压45.14%=k U ,空载损耗93=o P kW ,空载电流 41.2%=o I 。求该变压器归算到高压侧的参数,并作出等值电路。 2-3 已知电力网如图2-3所示: 各元件参数如下: 变压器:1T :S =400MVA ,12%=k U , 242/ kV 2T :S =400MVA ,12%=k U , 220/121 kV 线路:2001=l km, /4.01Ω=x km (每回路) 习题1-7图 115kV T 1 T 2 l 1 l 2 习题2-3图

基于智能技术的电力系统自动化设计

基于智能技术的电力系统自动化设计 发表时间:2020-03-17T10:43:33.663Z 来源:《电力设备》2019年第21期作者:高学军 [导读] 摘要:现如今科学技术日益发展,在电力系统自动化中运用智能技术已必不可少,人工智能技术已覆盖了我们生活中的各种领域,并且在我们电力领域中应用空间更加广泛,智能技术种类繁多,并各具优势,因电力系统与我们日常生活不可分割,要保证电力系统的安全、稳定都需要对电力自动化系统技术进行不断提升,电力系统自动化与智能技术相结合,相当于建立了智能的系统化电力平台。 (内蒙古电力(集团)有限责任公司鄂尔多斯电业局内蒙古自治区鄂尔多斯 017020) 摘要:现如今科学技术日益发展,在电力系统自动化中运用智能技术已必不可少,人工智能技术已覆盖了我们生活中的各种领域,并且在我们电力领域中应用空间更加广泛,智能技术种类繁多,并各具优势,因电力系统与我们日常生活不可分割,要保证电力系统的安全、稳定都需要对电力自动化系统技术进行不断提升,电力系统自动化与智能技术相结合,相当于建立了智能的系统化电力平台。基于此,本文主要探讨了基于智能技术的电力系统自动化设计。 关键词:智能技术;电力系统;自动化设计 中图分类号:F407.61 文献标识码:C 引言 电力系统为社会生产生活带来方便的同时,也需要相关人员能够深入了解电力自动化控制技术中的不足,充分利用智能技术并发展智能技术优势,使电力系统的电力服务能力得以提升。信息技术不断创新发展,必将使电力系统的自动化控制水平得以进步,从而促进电力领域的发展进步。 1 电力系统自动化控制现状概述 电力系统的自动化控制体系是由多种具有自动控制、分析、决策功能的小部件工作设备装置组合而成的,通常是指电工进行二次电力系统控制。各个组合的功能装置通过数据传输采集和信号采集对电力系统中的整体或是局部甚至于某一单元部件进行协调工作和或者监控调节,进而起到对其进行控制管理的作用。就监视控制工作这一层面来说,自动化控制能在一定程度上帮助确保电力系统安全、稳定、健康的进行持续工作。 但我国现阶段的电力系统自动化控制技术不是完全呈直线上升的。由于受到各种各样外界条件和内在因素的制约,我国的电力系统自动化技术发展受到限制,也存在许多尚未被合理解决的问题。但对电力系统自动化的评价不能以偏概全,需要对其优缺点进行综合分析探究,肯定其给人民生活带来的便利条件。 2 智能技术在电力系统自动化设计中的应用 2.1 发电系统的智能化 在智能技术下,可以有效提升电力系统的控制能力,同时还可以对于电网与电源的结构进行优化,改善其中存在的问题。而智能技术还能够使电力系统的信息传递得到有效的提升,使信息在传输过程中可以使用更为精确地方式进行传输。另外,智能技术的存在对于电力系统而言,还可以带动新能源的发电,如当前的光伏发电、风能发电等。 2.2 电力调度的智能化 基于智能技术,电力系统中可以拥有更为合理的电力调度。而同构智能电网的构建,还可以保障电力系统的安全性。在其中的调度系统中,安全预警系统、数据采集系统等系统都具有非常重要的作用,可以起到针对性的控制与监督效果,并且一旦发生问题,将会自动报警[1]。 2.3 用电系统的智能化 电力系统在实际的运行环节,可能会发生各种各样的问题,而如果不能对于突发情况及时采取有效的处理,将会对于设备的运行以及信息采集等工作产生严重影响。在智能基数背景下,能够实现智能化用电,使电力系统的信息采集工作更为顺利,从而有效提高设备的交互水平。另外,基于智能技术的用电模式下,能够使用电安全得到最大程度上的保障,但是用户要想拥有持续电能,就需要通过其中的交互系统来实现,因为交互系统能够满足不同用户所提出的不同用电需求,从而提高电力系统的服务质量[2]。 3 基于智能技术的电力系统自动化设计策略 3.1 神经网络控制 神经网络技术是一种新型的智能技术类型,通过计算机来模拟人类的神经系统工作,利用计算机算法对数据进行自主分析和判断,从而实现对电力系统的智能化控制目标。神经网络技术还具备较强的学习能力,可以对过去电力系统工作进行总结,形成新的控制方法,其学习能力也有目共睹,最为著名的例子就是计算机深蓝在与国际围棋大师的比赛中取得了胜利。神经网络技术已经得到了较为成熟的发展,将其应用于电力系统自动化控制中,不仅能够降低人工控制的压力,而且也提高了电力控制的效率。神经网络技术的原理是,以信息节点来作为人类大脑的神经中枢,通过计算机的高速计算得到最优数值,并以此作为自动化控制的依据。神经网络技术不仅能够对数字数据进行处理,也能够对图形进行数据挖掘和分析,使电力系统自动化控制途径得以最大程度地优化。 3.2 线性最优的控制系统 线性最优技术是最优控制技术中比较特殊的一类,线性最优技术的本质与特点就是在条件允许的情况下找出控制规律,使自主控制系统达到要求状态,并使某个性能指标达到最优状态。在科技发展迅速的时代,在各种控制领域中线性最优控制技术应用也较为普遍。电力系统自动化技术中怎样够增加输电线路传输的最大距离并且还能提高所输电能质量? 线性最优控制技术就运用到了这一方面。在电力系统自动化运行时,线性最优控制技术中的自我运算,可以使电力系统各个指标达到最优状态,提升电能调度的效率。线性最优控制技术是依托于电力系统存才产生的,所以在电力系统中线性最优控制技术更具优势[3]。 3.3 专家控制技术 该技术在当前的在电力系统中是一项比较成熟的技术。该技术具有较长时间的发展,并应用在电力系统的自动化设计中可以获得良好的效果。专家控制技术可以及时的分辨电力系统的状态,并根据不同的状态采取不同的处理方式。如果一旦出现警报等紧急情况,该技术能够在第一时间识别,同积极响应,使电力系统尽快恢复运行状态。专家控制系统中含有非常多的内容,可以基于电力系统的状态来迅速切换状态,并且还可以对系统展开排除故障等操作。但是,专家控制技术虽然其中具有“专家”,但是实际应用的过程中却不具备模拟专家

船舶综合电力系统

浅析船舶综合电力系统 1.引言 船舶综合电力系统是船舶动力的发展方向,是造船技术发展史上的又一个革命性的跨越,其主要特点是将推进动力与电站动力合二为一。该项技术正在逐步成熟、完善。以美、英、法为代表的发达国家率先引入综合电力系统这一概念,并积极开展研究、试验和应用到船艇。 2.综合电力系统概述 综合电力系统的思想基础是降低未来船舶的总成本,优化船舶总体、系统和设备的组成。其设计理念是突出系统化、集成化和模块化。在船舶平台上的具体实现途径是将全船所需的能源以电力的形式集中提供,统一调度、分配和管理。 美国海军提出的综合电力系统主要包括发电、配电、电力变换、电力控制、平台负载、推进电机、能量储存等七个模块。其中,发电模块将其它形式的能量转化为电能,经全船环形电网向各区域配电系统供电;电力控制模块对配电模块实行电能分配和监控;配电模块将电力输送到电力负荷中心,再分配到各用电设备;电力变换模块将一种形式的配电模块转化为另一种形式的配电模块;推进电机模块用于船舶推进;平台负载模块是一个或多个配电模块的用户;能量储存模块用于储存电能,维持整个供电系统的稳定。 采用综合电力系统的船舶与传统船舶比较,具有的主要优势为: 便于采用分段和模块化建造,使用维护费用低,经济性好;噪音低,可提高船舶的安静性和舒适性,提高舰艇的战斗力和生命力;调速性能好,控制方便,倒车简便、迅速,提高船舶的机动性;布置灵活、设计方便、可靠性高,可维修性好、生命力强;便于实现自动化,减少船员;适用性强,可广泛采用各种电子设备和先进的推进技术,对于舰艇而言,可以使用诸如激光武器、电磁炮等高能武器。 3.综合电力系统的发展现状 近十来年,船舶的电力推进技术已进入应用阶段。目前,不同类型的船舶,如一些科考船、破冰船以及邮轮采用了电力推进系统。推进电机采用直流、交流同步电动机或交流感应电动机。研究报告显示,虽然商船的综合电力推进系统提高了船的建造费用,但其运行和支持费用,及其生命周期里的整个费用却降低了。上世纪九十年代,一些商船业公司,如ALSTOM、ABB、SIEMENS等,已形成了企业内部的商船业电力推进标准。有人统计,八十年代后期建造的1000吨以上的商船中采用柴-电推进的约占25%,到九十年代中期,此类船舶中有35%以上采用电力推进,且该比例正在呈逐年上升的趋势。据统计,到2000年,全世界商船电力推进的装机总容量约为4200MW。 美国海军于1980年建立了综合电力驱动计划,希望通过将船舶日用电力系统和推进电力系统合而为一,进一步提高战船的性能。1990年后,美国海军将注意力转到提高船舶的能购性上,研究计划转为综合电力系统(IPS:Integrated Power System)项目。针对当时水面战斗舰艇(SC-21,现转型为DD(X))的概念设计,美海军完成了费用和效能评估。2002年4月29日,美国海军宣布英格尔斯造船公司、诺斯罗普格鲁曼船舶系统公司为DD(X)的设计主承包商,设计承包合同总价款为28亿多美元,执行期至2005财政年度。DD(X)设计合同的签署意味着美国海军水面舰艇革命性变革的开始。综合电力系统强调的主要技术目标为增加可操作性和支持柔性设计。美海军计划2003年开始,用3年多时间完成11个工程开发模块的建造和试验,并通过充分的陆试和海试去降低技术风险,争取2005年技术定型,2012

电力系统作业一

1、电力系统自动化在电力系统中的作用,功能和意义 为什么需要:电力系统是由发电、输电、变电、配电、用电设备以及相应的辅助系统构成的生产、输送、分配、和使用的统一整体。(1)电力网络的控制系统为复杂控制系统,电网规模大,控制对象多、参数极多、复杂MIMO。(2)电能难以大量储存的问题,需要在任何时刻产生的电能要和消耗的电能相等;(3)还有电传到的快速性(光速),一但出现突变将会迅速影响整个电力系统,这需要设备在极短的实践内完成控制和排除故障。 作用:以上问题就需要我们研究电力系统自动化,通过信号系统和数据传输系统对电力系统中的各个环节、局部系统或者整个系统就地或者远方的进行自动检测、决策和控制。保证电力系统处于一个规定的稳定范围内正常运作,如220v,50Hz。 功能:(1)电力调度自动化,分层调度,实现电能要多少发多少,保证电力系统实时处于动态平衡,实现电能高利用率;(2)通过检测调控,电力系统正常运行,应对突发状况排障快,保证供电的可靠性和电力系统运行稳定;(3)通过闭环系统,调节电压偏差,频率偏差,波形偏差,使电能质量变好。 意义:(1)从电力与国民经济层面上说,电力系统自动化实现电能即发即用,经济性高;(2)从社会稳定性层面上说,电力系统自动化保证电力系统运行稳定,社会工作正常运转,社会稳定性提高。 2、通讯技术的发展,如4G、5G等时代的到来,对电力系统将会产生怎样的变化 (1)5G时代的到来,一方面将带动电力使用程度的提升。通信行业的用电量包括设备生产、网络通信、终端设备和数据中心的电力消耗。根据预测,通信行业占全球电力消费总量的比重将从2019年的11%增加到2030年的21%。 (2)5G技术提高供电质量、提高电力系统的稳定性和灵活性。5G超低时延和高可靠性的信息传输将提高智能电网自动采集和控制力度,降低电力系统潜在危险。在特高压直流输电线、配网局部发生故障时,5G通信系统使得毫秒级自动定位并隔离故障成为可能,从而保障非故障区域的不间断供电。另一方面电力系统更好地适应快速增长的分布式电源和用户侧储能等灵活的资源,保证系统稳定,可以使用5G技术与用户终端实时通信。这将促成用户侧参与提供调频等辅助,从而优化电力系统运行。 (3)信息安全问题。5G有潜在的通信安全风险敞口,终端节点众多,安全暴露面更广。但电力系统对于网络安全要求极高。 3、电力市场在电力系统中的作用 电力系统和电力市场联系密切,二者单独运作,各自发展,相互制约,相互影响。电力系统这一物理基础是电力市场发展的基础,电力系统主要是依据电力市场要求,结合其运作模式开展。 提高电力系统效率和安全可靠供应水平。我国电力供应可靠性单纯依赖技术手段是很难实现调控的。通过电力市场,对资源(人、财、物)进行有效分配,将是解决发电即发即用,解决电力经济性的必要手段。另一方面从国民经济效益上,电力市场是一个国家电力使用程度的体现,电网公司也可以根据用电程度指定各地区收费标准,维持价格合理。 4、回顾电力系统的起源、发展及演化 直流供电:最早的电力系统是简单的住户式供电系统,由小容量发电机单独向灯塔、轮船、车间等照明供电,如1882年爱迪生在纽约建造的由6台直流发电机,总容量670KW的珍珠街电站。住户式电力系统使用电进入千家万户,出现中心电站式供电系统 交流供电:19世纪90年代初,特斯拉发明交流电,三相交流输电研究成功,三相感应电动

基于MATLAB的电力系统仿真

《电力系统设计》报告题目: 基于MATLAB的电力系统仿 学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 日期:2015年12月6日 基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来 越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB 电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真 目录 一.前言.............................................. 二.无穷大功率电源供电系统仿真模型构建............... 1.总电路图的设计......................................

电力系统综合实践总结

电力系统综合实践总结 导语:古之立大事者,不惟有超世之才,亦必有坚忍不拔之志。以下小编为大家介绍文章,欢迎大家阅读参考! 电力系统综合实践总结1 暑假期间应院团号召提高自己的社会实践能力,我前往电力建设公司开一个二十天实践活动。活动期间,我参加了公司里的各工作,内容涉及安全用电发电厂的运行和调试;和优质服务等各个方面。活动中公司内的工作人员给予了我大力的支持。现将本次实践活动的有关情况报告如下: 一、社会实践内容: 1.发电厂安全用电教育及实践任务。我到电建公司的第一天师傅就给我讲了很多关于电安全方面的注意事项。例如,我在进入电厂时必须要带安全帽穿实习服;在雨天进入电厂是要穿一些带有绝缘设备的衣服进入现场要穿绝缘靴带绝缘手套等;进入现场是禁止在套管上行走休息和长时间的停留。未经师傅的允许下不得私自合拉闸等。同时给我讲了关于这次实践的主要任务及目的,理论和生产实际相结合。通过实习全面了解电能生产过程,巩固和扩大所学知识,并为以后学好专业课打下一定的基础;学习热力部分和电气部分各个主要系统,学习电厂有关运行的基本知识和操作技能;了解火力发电厂火电机组的特点;了解发电厂的组织,管理

和主要技术经济指标;学习在电力系统中的高度组织性,纪律性,安全性及培养正确的劳动观点,经济观点;了解火力发电厂的电能生产流程,火力发电厂的基本结构;了解燃料,锅炉部分,汽轮机和电气部分的基本构成和工作原理,各部分在发电过程中的作用;了解电气主接线的工作原理、主要运行方式和倒闸操作方法;了解励磁系统、并列装置、备用电源自动投入、继电 保护装置、防雷和接地装置作用;了解厂用电系统的电气原理图;了解主变压器参数,电抗器和电容器的作用等。梁部长让我好好珍惜这次实践活动,通过这次理论和实践的学习,对工作会有很大的帮助,实践活动不仅在有形方面可以提高自己的实际动手能力,而且在无形方面可以高自身对待事情的一些态度和观点。这些对以后不论从事任何工作有很大的帮助。 2.发电厂的运行和调试。 为满足生产需要,发电厂中安装有各种电气设备。通常把生产和分配电能的设备,如发电机、变压器和断路器等称为一次设备。它们包括: 、生产和转换电能的设备:例如发电机将机械能转换成电能,电动机将电能转换成机械能,变压器将电压升高或降低,以满足输配电需要。这些都是发电厂中最主要的设备。 、接通或断开电路的开关电器:例如:断路器、隔离开

电力系统分析作业题答案

东北农业大学网络教育学院 电力系统分析作业题 复习题一 一、填空题(每小题1分,共10分) 1.降压变压器高压侧的主分接头电压为220kv ,若选择+2×2.5%的分接头,则该分接头电压为 231KV 。 2.电力系统中性点有效接地方式指的是 中性点直接接地 。 3.输电线路的电气参数包括电抗、电导、电纳和 电阻 。 4.输电线路的电压偏移是指线路始端或末端母线的实际运行电压与线路 额定电压 的数值差。 5.电力系统的潮流分布一般是用各节点的电压和 功率 表示。 6.调整发电机组输出的有功功率用来调整电力系统运行的 频率 。 7.复合故障一般是指某一时刻在电力系统 二个及以上地方 发生故障。 8.用对称分量法计算不对称故障,当三相阻抗完全对称时,则其序阻抗矩阵Zsc 的非对角元素为 零 。 9.系统中发生单相接地短路时故障点短路电流的大小是零序电流的 3 倍。 10.减小输出电元件的电抗将 提高(改善) 系统的静态稳定性。 二、单项选择题(每小题1分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。 11.同步发电机的转速和系统频率之间是否有严格的关系( ② ) ①否 ②是 ③不一定 ④根据发电机的形式定 12.三绕组变压器的结构、通常将高压绕组放在( ③ ) ①内层 ②中间层 ③外层 ④独立设置 13.中性点以消弧线圈接地的电力系统,通常采用的补偿方式是( ③ ) ①全补偿 ②欠补偿 ③过补偿 ④有时全补偿,有时欠补偿 14.三相导线的几何均距越大,则导线的电抗( ② ) ①越大 ②越小 ③不变 ④无法确定 15.变压器的电导参数G T ,主要决定于哪一个实验数据( ① ) ①△P O ②△P K ③U K % ④I O % 16.当功率的有名值为s =P +jQ 时(功率因数角为?)取基准功率为S n ,则有功功率的标么值为( ③ ) ① ?cos S P n ? ②?sin S P n ? ③n S P ④n S cos P ?? 17.环网中功率的自然分布是( ④ ) ①与电阻成正比分布 ②与电抗成正比分布 ③与阻抗成正比分布 ④与阻抗成反比分布 18.电力系统中PQ 节点的数量( ② ) ①全都是 ②大量的 ③少量的 ④必有且一般只设一个 19.潮流计算中,要求某些节点之间电压的相位差应满足的约束条件是(④ ) ①|-j i δδ|>|-j i δδ|min ②|-j i δδ|<|-j i δδ|min

基于matlab的电力系统潮流仿真计算

华中科技大学文华学院 毕业设计(论文) 题目:基于matlab的电力系统潮流 仿真计算 学生姓名:学号: 学部(系): 专业年级: 指导教师:职称或学位:硕士 2010 年 5 月 22日

华中科技大学文华学院毕业设计(论文) 目录 摘要 (1) 关键词 (1) Abstract (2) Key Words (2) 前言 (3) 1 电力系统潮流计算概述 (4) 1.1 电力系统概述 (4) 1.2 潮流计算介绍 (4) 1.3 国内用得较多的几种潮流计算软件简介 (5) 2 潮流计算的数学模型 (6) 2.1 导纳矩阵的原理及计算方法 (6) 2.1.1 自导纳和互导纳的确定方法 (6) 2.1.2 节点导纳矩阵的性质及意义 (6) 2.1.3 非标准变比变压器等值电路 (8) 2.2 潮流计算的基本方程 (9) 2.3 电力系统节点分类 (11) 2.4 潮流计算的约束条件 (12) 3 牛顿-拉夫逊法概述 (13) 3.1 牛顿-拉夫逊法基本原理 (13) 3.2 牛顿--拉夫逊法潮流求解过程 (14) 3.3 牛顿—拉夫逊法的程序框图 (17) 4 潮流仿真程序 (19) 4.1 Matlab简介 (19) 4.2 矩阵的运算 (19) 4.3 牛顿—拉夫逊法潮流计算程序 (20) 结束语 (21) 参考文献 (22) 致谢 (23) 附录 (24)

基于matlab的电力系统潮流仿真计算 摘要 传统的潮流计算程序缺乏图形用户界面,结果显示不直观,难于与其他分析功能集成。网络原始数据输入工作量大且易于出错。随着计算机技术的飞速发展,MICROSOFT WINDOWS操作系统早已被大家所熟悉,其友好的图形用户界面已成为PC机的标准,而DOS操作系统下的应用程序因其界面不够友好,开发具有WINDOWS风格界面的电力系统分析软件已成为当前的主流趋势。另外,传统的程序设计方法是结构化程序设计方法,该方法基于功能分解,把整个软件工程看作是一个个对象的组合,由于对某个特定问题域来说,该对象组成基本不变,因此,这种基于对象分解方法设计的软件结构上比较稳定,易于维护和扩充。 本文介绍了图形化潮流计算软件的开发设计思想和总体结构,阐述了该软件所具备的功能和特点。结合电力系统的特点,软件采用 MATLAB语言运行于WINDOWS操作系统的图形化潮流计算软件。本系统的主要特点是操作简单,图形界面直观,运行稳定.计算准确。计算中,算法做了一些改进,提高了计算速度,各个类的有效封装又使程序具有很好的模块性.可维护性和可重用性。 关键词:电力系统潮流仿真计算;牛顿—拉夫逊法潮流计算; MATLAB

电力系统接地分类

电力系统接地分类详解 电力系统接地分类详解 在电力系统中,接地是用来保护人身及电力、电子设备安全的重要措施。通常我们将接地分为工作接地、系统接地、防雷接地、保护接地,用他们来保护不同的对象,这几种接地形式从目的上来说是没有什么区别的,均是通过接地接地导体将过电压产生的过电流通过接地装置导入大地,从而实现保护的目的。现代工厂在接地上都要求形成一张严密的网,而所有的被保护对象都挂在这个安全的接地网上,但不同的接地都需要从接地装置处的等电位点连接。 对于防雷接地,主要是通过将雷电产生的雷击电流通过接地网这一有效途径引入大地,从而对建筑物起到保护作用。一般有两种避雷方式供选择,其一是避雷针接地,其二是采用法拉第笼方式接地。它们是两种不同的防雷模式,它们在防雷原理上有显著的区别。避雷针的原理是空中拦截闪电、使雷电通过自身放电,从而保护建筑物免受雷击,避雷针的保护范围是从地面算起的以避雷针高度为滚球半径的弧线下的面积,对于法拉第笼,它认为避雷针的范围很小,而且在避雷针保护的空间内仍有电磁感应作用,而且避雷针附近是强的电磁感应区,有很大的电位梯度,在它周围有陡的跨步电压存在,在这一范围内的人们有生命危险,鉴于种种观点,现在的防雷接地系统中法拉第笼占有重要地位。实验证明,一个封闭的金属壳体是全屏蔽的,在雷电流通过时,是沿着壳体的外表面流入大地,而在壳体的内部没有感应电动势及磁通,即雷电流没有对内部的设备产生干扰效应。而法拉第笼下部的环状接地环、等电位均压网也避免了人在此等电位环境中被雷击的危险。 采用保护接地是当前低压电力网中的一种行之有效的安全保护措施。通常有两种做法,即接地保护和接零保护。将设备和用电装置的中性点、外壳或支架与接地装置用导体作良好的电气连接是电气工作的一个重点,也就是我们通常说的接地。将电气设备和用电装置的金属外壳与系统零线相接叫做接零。由于电力系统中采用保护接地,是我们对用电设备、金属结构及电子等设备采取的接地保护措施,这样就可以避免电器设备漏电、线路破损或绝缘老化漏电等漏电事故造成

电力系统的现状与发展趋势

我国电力系统的现状与发展趋势 马宁宁 (曲阜师范大学电气信息与自动化学院邮编: 276826) 摘要:我国电力系统情况复杂,为了能够深入了解我国电力系统的发展形势,对我国电力的系统进行了调查。 我国电力系统的整体现状比较好,随着经济的增长,电力需求也越来越大,但是存在地区的差异。电源结构也存在在一些问题,要调整这种电源结构,需从以下三个方面着手:一是每一种电源尤其火电需要进行技术进步调整;二是水电、火电及其他发电形式的比例应合理调整;三是电源布局也应调整。我国煤炭资源储藏量不少,但分布极不合理。负荷高的地方如华东地区基本没有煤,煤大部分集中在西北部或华北北部。而适宜建水电的地方大部分在西部。水能资源不少,但分布不合理。应该通过电网建设调整布局使电力资源得到最大优化我国幅员辽阔各种可再生资源比较丰富,要充分利用可再生资源,能够实现绿色电能的效果。 关键词:电力系统、能源、电源结构 China's electric power system status and development trend Ma Ningning (Qufu Normal university electricity information and automated institute zip code: 276826) Abstract:The more complicated the situation of China's electric power system, in order to understand the depth of China's electric power system development situation of China's electricity system were investigated. China's electric power system's overall status quo is better, with economic growth, electricity demand is also growing, but the existence of regional differences. Power structures also exist on some issues, it is necessary to adjust the power structure, to begin from the following three aspects: First, every kind of fire power, in particular the need for technological progress adjustment; Second, hydropower, thermal power and other forms of power generation should be proportional

电力系统作业2

1.
元件两端存在的电压幅值差是传输( (A) 有功 (B) 其它 (C) 无功 (D) 视在功率 [参考答案:C] 分值:5 得分:
0
)的条件

系统自动批改于 2018 年 6 月 6 日 15 点 43 分
2.
中枢点电压调节方式有( )、( )和( )三种。 (A) 顺调压 (B) 逆调压 (C) 常调压 (D) 其它 [参考答案:ABC] 分值:5 得分:
0

系统自动批改于 2018 年 6 月 6 日 15 点 43 分
3.
负荷的电压静态特性是(B)维持不变时,负荷功率与( )关系。 (A) 电压 (B) 频率 (C) 电阻 (D) 电抗 [参考答案:AB] 分值:5

得分:
0

系统自动批改于 2018 年 6 月 6 日 15 点 43 分
4.
输电线路中的电阻反映的是线路上电流通过时产生的( )效应。 (A) 有功损失 (B) 磁场 (C) 电场 (D) 其它 [参考答案:A] 分值:5 得分:
0

系统自动批改于 2018 年 6 月 6 日 15 点 43 分
5.
对于变化幅度小、 变化频率高、 变化周期短的负荷引起的频率偏移, 一般由发电机组的 ( ) 进行调整。 (A) 调频器 (B) 综合调整
(C) 不能调节 (D) 调速器 [参考答案:D] 分值:5 得分:
0

系统自动批改于 2018 年 6 月 6 日 15 点 43 分
6.
元件两端存在的电压相位差是传输( (A) 视在功率 (B) 其它 (C) 有功
)的条件

电力系统接地讲解知识

电力系统的中性点接地有三种方式: 有效接地系统(又称大电流接地系统) 小电流接地系统(包含不接地和经消弧线圈接地) 经电阻接地系统(含小电阻、中电阻和高电阻) 大电流接地系统 用于110kV及以上系统及。该系统在单相接地时,另外两相对地电压基本不变,系统过电压较低,对110kV及以上系统抑制过电压有利,但此时接地电流很大,运行设备很难长时间通过此电流,接地相对地电压很低,甚至为零,系统电压严重不平衡,许多电气设备无法正常工作,必须及时切除接地点。大电流接地系统要求部分主变的中性点接地,避免单相接地时短路电流过大。这些主变必须有一个三角形接线的绕组,以构成零序通路,降低零序阻抗。主变的零序阻抗一般为正序阻抗的1/3,线路的零序阻抗一般为正序阻抗的3倍。 作为220kV枢纽变电站的主变必须并列运行。其中一台主变的220kV侧中性点和110kV侧中性点必须直接接地,其他主变中性点通过间隙接地。好处是110kV侧零序阻抗稳定,有利于该110kV系统零序定值的计算和整定,零序过流保护的保护范围变化很小,容易保持其阶梯特性;未220kV系统提供稳定的零序电源,保持220kV系统零序保护的方向性和稳定性。主变220kV侧中性点和110kV侧中性点均加装间隙保护,保护动作跳开各侧断路器。 作为220kV负荷变电站的主变必须分列运行。此时所有主变的220kV侧中性点必须通过间隙接地,110kV侧中性点全部接地运行。所有主变不能相220kV系统提供零序电流,110kV 侧零序阻抗稳定。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 作为链式接线的220kV变电站,其220kV侧母线并列运行并有两个电源。虽然主变分列运行,但必须有一台主变的220kV侧中性点直接接地,其他主变的220kV侧中性点通过间隙接地。110kV侧中性点必须全部直接接地。主变220kV侧中性点加装间隙保护,保护动作跳开各侧断路器。 目前运行的110kV变电站全部主变均分裂运行,其电源侧母线为单电源。所以主变110kV 侧中性点通过间隙接地,并且不再加装间隙保护。 0.4kV系统均采用大电流接地运行。对于Y/Y0接线的变压器,零序阻抗很大。虽然接入的负荷多为单相负荷,由于每个负荷较小,并不一定会造成三相负荷电流严重不一致(中性点电流小于额定电流的25%),不会造成三相电压严重不平衡。但当线路出现对地短路时,短路电流较小,往往不能使断路器(空气开关)跳开或熔断器熔断,致使事故扩大,许多情况下形成火灾。此时应在变压器中性点引线处加装过流保护,跳开高压侧断路器。显然这是比较复杂的。 使用△/Y0接线的变压器,可以克服这一缺点。但充油变压器的分接开关制作比较困难,尤

电力系统综合课程设计

电力系统分析 综合课程设计报告 电力系统的潮流计算和故障分析 学院:电子信息与电气工程学院 专业班级: 学生姓名: 学生学号: 指导教师: 2014年 10月 29 日

目录 一、设计目的 (1) 二、设计要求和设计指标 (1) 2.1设计要求 (1) 2.2设计指标 (2) 2.2.1网络参数及运行参数计算 (2) 2.2.2各元件参数归算后的标么值: (2) 2.2.3 运算参数的计算结果: (2) 三、设计内容 (2) 3.1电力系统潮流计算和故障分析的原理 (2) 3.1.1电力系统潮流计算的原理 (2) 3.1.2 电力系统故障分析的原理 (3) 3.2潮流计算与分析 (4) 3.2.1潮流计算 (4) 3.2.2计算结果分析 (8) 3.2.3暂态稳定定性分析 (8) 3.2.4暂态稳定定量分析 (11) 3.3运行结果与分析 (16) 3.3.1构建系统仿真模型 (16) 3.3.2设置各模块参数 (17) 3.3.3仿真结果与分析 (21) 四、本设计改进建议 (22) 五、心得总结 (22) 六、主要参考文献 (23)

一、设计目的 学会使用电力系统分析软件。通过电力系统分析软件对电力系统的运行进行实例分析,加深和巩固课堂教学内容。 根据所给的电力系统,绘制短路电流计算程序,通过计算机进行调试,最后成一个切实可行的电力系统计算应用程序,通过自己设计电力系统计算程序不仅可以加深学生对短路计算的理解,还可以锻炼学生的计算机实际应用能力。 熟悉电力系统分析综合这门课程,复习电力系统潮流计算和故障分析的方法。了解Simulink 在进行潮流、故障分析时电力系统各元件所用的不同的数学模型并在进行不同的计算时加以正确选用。学会用Simulink ,通过图形编辑建模,并对特定网络进行计算分析。 二、设计要求和设计指标 2.1设计要求 系统的暂态稳定性是系统受到大干扰后如短路等,系统能否恢复到同步运行状态。图1为一单机无穷大系统,分析在f 点发生短路故障,通过线路两侧开关同时断开切除线路后,分析系统的暂态稳定性。若切除及时,则发电机的功角保持稳定,转速也将趋于稳定。若故障切除晚,则转速曲线发散。 图1 单机无穷大系统 发电机的参数: SGN=352.5MWA,PGN=300MW,UGN=10.5Kv,1=d x ,25.0'=d x ,252.0''=x x ,6.0=q x , 18.0=l x ,01.1'=d T ,053.0"=d T ,1.0"0=q T ,Rs=0.0028,H(s)=4s;TJN=8s,负序电抗:2.02=x 。 变压器T-1的参数:STN1=360MVA,UST1%=14%,KT1=10.5/242; 变压器T-2的参数:STN2=360MVA,UST2%=14%,KT2=220/121;

我国电力系统现状和发展趋势

. .. . 我国电力系统现状及发展趋势 班级: 姓名: 学号:

我国电力系统现状及发展趋势 摘要: 关键词:电力系统概况,电力行业发展 1.前言 中国电力工业自1882年在诞生以来,经历了艰难曲折、发展缓慢的67年,到1949年发电装机容量和发电量仅为185万千瓦和43亿千瓦时,分别居世界第21位和第25位。1949年以后我国的电力工业得到了快速发展。1978年发电装机容量达到5712万千瓦,发电量达到2566亿千瓦时,分别跃居世界第8位和第7位。改革开放之后,电力工业体制不断改革,在实行多家办电、积极合理利用外资和多渠道资金,运用多种电价和鼓励竞争等有效政策的激励下,电力工业发展迅速,在发展规模、建设速度和技术水平上不断刷新纪录、跨上新的台阶。装机先后超过法国、英国、加拿大、德国、俄罗斯和日本,从1996年底开始一直稳居世界第2位。进入新世纪,我国的电力工业发展遇到了前所未有的机遇,呈现出快速发展的态势。 一、发电装机容量、发电量持续增长:“十一五”期间,我国发电装机和发电量年均增长率分别为10.5%、10.34%。发电装机容量继2000年达到了3亿千瓦后,到2009年已将达到8.6亿千瓦。发电量在2000年达到了1.37万亿千瓦时,到2009年达到34334亿千瓦时,其中火电占到总发电量的82.6%。水电装机占总装机容量的24.5%,核电发电量占全部发电量的2.3%,可再生能源主要是风电和太阳能发电,

总量微乎其微; 二、电源结构不断调整和技术升级受到重视。水电开发力度加大,2008年9月,三峡电站机组增加到三十四台,总装机容量达到为二千二百五十万千瓦。核电建设取得进展,经过20年的努力,建成以山、大亚湾/岭澳、田湾为代表的三个核电基地,截至2008年底,国已投入运营的机组共11台,占世界在役核电机组数的2.4%,装机容量约910万千瓦,为全国电力装机总量的1.14%、世界在役核电装机总量的2.3%。高参数、大容量机组比重有所增加,截止2009年底,全国已投运百万千瓦超超临界机组21台,是世界上拥有百万千瓦超超临界机组最多的国家;30万千瓦及以上火电机组占全部火电机组的比重提高到69.43%,火电机组平均单机容量已经提高到2009年的10.31万千瓦。在6000千瓦及以上电厂火电装机容量中,供热机组容量比重为 22.42%,比上年提高了3个百分点; 三、电网建设不断加强。随着电源容量的日益增长,我国电网规模不断扩大,电网建设得到了不断加强,电网建设得到了迅速发展,输变电容量逐年增加。2009年,电网建设步伐加快,全年全国基建新增220千伏及以上输电线路回路长度41457千米,变电设备容量27756万千伏安。2009年底,全国220千伏及以上输电线路回路长度39.94万千米,比上年增长11.29%;220千伏及以上变电设备容量17.62亿千伏安,比上年增长19.40%。其中500千伏及以上交、直流电压等级的跨区、跨省、省骨干电网规模增长较快,其回路长度和变电容量分别比上年增长了16.64%和25.97%。目前,我国电网规模已超过美国,跃居世界首位; 四、西电东送和全国联网发展迅速。我国能源资源和电力负荷分布的不均衡性,决定了“西电东送”是我国的必然选择。西电东送重点在于输送水电电能。按照经济性原则,适度建设燃煤电站,实施西电东送;

基于MATLAB的电力系统仿真

《电力系统设计》报告 题目: 基于MATLAB的电力系统仿学院:电子信息与电气工程学院 班级: 13级电气 1 班 姓名:田震 学号: 20131090124 日期:2015年12月6日

基于MATLAB的电力系统仿真 摘要:目前,随着科学技术的发展和电能需求量的日益增长,电力系统规模越来越庞大,超高压远距离输电、大容量发电机组、各种新型控制装置得到了广泛的应用,这对于合理利用能源,充分挖掘现有的输电潜力和保护环境都有重要意义。另一方面,随着国民经济的高速发展,以城市为中心的区域性用电增长越来越快,大电网负荷中心的用电容量越来越大,长距离重负荷输电的情况日益普遍,电力系统在人们的生活和工作中担任重要角色,电力系统的稳定运行直接影响着人们的日常生活。从技术和安全上考虑直接进行电力试验可能性很小,因此迫切要求运用电力仿真来解决这些问题。 电力系统仿真是将电力系统的模型化、数学化来模拟实际的电力系统的运行,可以帮助人们通过计算机手段分析实际电力系统的各种运行情况,从而有效的了解电力系统概况。本文根据电力系统的特点,利用MATLAB的动态仿真软件Simulink搭建了无穷大电源的系统仿真模型,得到了在该系统主供电线路电源端发生三相短路接地故障并由故障器自动跳闸隔离故障的仿真结果,并分析了这一暂态过程。通过仿真结果说明MATLAB电力系统工具箱是分析电力系统的有效工具。 关键词:电力系统;三相短路;故障分析;MATLAB仿真

目录 一.前言 (4) 二.无穷大功率电源供电系统仿真模型构建 (5) 1.总电路图的设计 (5) 2.各个元件的参数设定 (6) 2.1供电模块的参数设定 (6) 2.2变压器模块的参数设置 (6) 2.3输电线路模块的参数设置 (7) 2.4三相电压电流测量模块 (8) 2.5三相线路故障模块参数设置 (8) 2.6三相并联RLC负荷模块参数设置 (9) 3.仿真结果 (9)

电力系统的接地形式(图示)

N = N eutral Conductor PE = P rotection- E arth Conductor PEN = P rotectitive- E arth- N eutral- Conductor T = T erre = Earthing I = I solation S = S eparated Neutral and Protective Conductor C = C ombined Neutral and Protective Conductor Abb. 6 TN-S-System Abb. 7 TN-C System Abb. 8 TN-C-S System Abb.9 TT System Abb. 10 IT System Network configuration Power systems Network configuration Network configurations are differed as per kind of – direct current, alternating current – “number of active conductors and the kind of earth connection” using the following characters: First letter: earthing of the current source (part 300, VDE 0100): T – direct earthing of a point I - insulation of all active parts of earth or connection of a point with the earth via an impedance. Second letter: earthing of elements of electrical machine: T – element is directly earthed, independent of the earthing of a point of a current source N – element is directly connected to the operating earth electrode (in networks of alternating voltage the earthed point is mostly the neutral point). Further letters: arrangement of neutral conductor and protective conductor in the TN-system: S – functions of neutral and protective conductor by separate conductors C – functions of neutral and protective conductor combined in one conductor (PEN). In TN-systems a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected to this point via PE- or PEN-conductor. Three types of TN-systems are to be differed (part 300, VDE 0100): TN-S-system - Separated neutral and protective conductor in the entire network (diagram 6)TN-C-system - Functions of neutral and protective conductor are combined in the entire network in one conductor, the PEN- conductor (diagram 7).TN-C-S-system - In one part of the network the neutral and the protective conductor are combined (PEN- conductor) (diagram 8). In the TT-system a point is directly earthed (operating earth electrode). The elements of the electrical machine are connected with earth electrodes, that are separated from the operating earth electrode (diagram 9). The IT-system has no direct connection between active conductors and earthed parts. The elements of the electrical machine are earthed (diagram 10).

相关主题
文本预览
相关文档 最新文档