当前位置:文档之家› 利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线
利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线

一.求切线方程

【例1】.已知曲线f(x)=x3-2x2+1.

(1)求在点P(1,0)处的切线l

1

的方程;

(2)求过点Q(2,1)与已知曲线f(x)相切的直线l

2

的方程.

提醒:注意是在某个点处还是过某个点!

二.有关切线的条数

【例2】.(2014?)已知函数f(x)=2x3﹣3x.

(Ⅰ)求f(x)在区间[﹣2,1]上的最大值;

(Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论)

【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3,

令f′(x)=0得,x=﹣或x=,

∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1,

∴f(x)在区间[﹣2,1]上的最大值为.

(Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x

0,y

),

则y

0=2﹣3x

,且切线斜率为k=6﹣3,

∴切线方程为y﹣y

0=(6﹣3)(x﹣x

),

∴t﹣y

0=(6﹣3)(1﹣x

),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3,

则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1),

∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值.

∴g(0)>0且g(1)<0,即﹣3<t<﹣1,

∴当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值围是(﹣3,﹣1).

(Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切;

过点B(2,10)存在2条直线与曲线y=f(x)相切;

过点C(0,2)存在1条直线与曲线y=f(x)相切.

【例3】.已知函数f(x)=lnax(a≠0,a∈R),.

(Ⅰ)当a=3时,解关于x的不等式:1+e f(x)+g(x)>0;

(Ⅱ)若f(x)≥g(x)(x≥1)恒成立,数a的取值围;

(Ⅲ)当a=1时,记h(x)=f(x)﹣g(x),过点(1,﹣1)是否存在函数y=h(x)图象的切线?若存在,有多少条?若不存在,说明理由.

【解答】解:(I)当a=3时,原不等式可化为:1+e ln3x+>0;

等价于,解得x,故解集为

(Ⅱ)∵对x≥1恒成立,所以,令,

可得h(x)在区间[1,+∞)上单调递减,

故h(x)在x=1处取到最大值,故lna≥h(1)=0,可得a=1,

故a的取值围为:[1,+∞)

(Ⅲ)假设存在这样的切线,设切点T(x

,),

∴切线方程:y+1=,将点T坐标代入得:

即,①

设g(x)=,则

∵x>0,∴g(x)在区间(0,1),(2,+∞)上是增函数,在区间(1,2)上是减函数,

故g(x)

极大=g(1)=1>0,故g(x)

极,小

=g(2)=ln2+>0,.

又g()=+12﹣6﹣1=﹣ln4﹣3<0,

由g(x)在其定义域上的单调性知:g(x)=0仅在(,1)有且仅有一根,方程①有且仅有一解,故符合条件的切线有且仅有一条.

【作业1】.(2017?一模)已知函数f(x)=2x3﹣3x+1,g(x)=kx+1﹣lnx.(1)设函数,当k<0时,讨论h(x)零点的个数;

(2)若过点P(a,﹣4)恰有三条直线与曲线y=f(x)相切,求a的取值围.三.切线与切线之间的关系

【例4】.(2018?模拟)已知a,b,c∈R,且满足b2+c2=1,如果存在两条互相垂直的直线与函数f(x)=ax+bcosx+csinx的图象都相切,则a+c的取值围是 .

23

a b c

++=

则23

b c

+,∵b2+c2=1,∴sin,cos

b a

ββ

==

设,

∴235sin()

b cβ?

+=+,

故a+c∈[﹣,],

【例5】.已知函数f(x)=lnx﹣a(x﹣1),g(x)=e x,其中e为自然对数的底数.

(Ⅰ)设,求函数t(x)在[m,m+1](m>0)上的最小值;

(Ⅱ)过原点分别作曲线y=f(x)与y=g(x)的切线l

1

,l

2

,已知两切线的斜率互为倒数,

求证:a=0或.

【解答】(Ⅰ)解:,

令t'(x)>0得x>1,令t'(x)<0得x<1,

所以,函数t(x)在(0,1)上是减函数,在(1,+∞)上是增函数,

∴当m≥1时,t(x)在[m,m+1](m>0)上是增函数,∴

当0<m<1时,函数t(x)在[m,1]上是减函数,在[1,m+1]上是增函数,∴t(x)

min

=t(1)=e.

(Ⅱ)设l

2的方程为y=k

2

x,切点为(x

2

,y

2

),则,

∴x

2=1,y

2

=e∴k

2

=e.由题意知,切线l

1

的斜率,∴切线l

1

的方程为

,设l

1

与曲线y=f(x)的切点为(x

1

,y

1

),∴,

∴,,

又y

1=lnx

1

﹣a(x

1

﹣1),消去y

1

,a后整理得,

令,则,

∴m(x)在(0,1)上单调递减,在(1,+∞)上单调递增,

若x

1

∈(0,1),∵,,∴,而,在单调递减,∴.

若x

1

∈(1,+∞),∵m(x)在(1,+∞)上单调递增,且m(e)=0,

∴x

1

=e,∴

综上,a=0或.

【作业2】.(2017?二模)已知函数f(x)=(ax2+x﹣1)e x+f'(0).

(1)讨论函数f(x)的单调性;

(2)若g(x)=e﹣x f(x )+lnx,h(x)=e x,过O(0,0)分别作曲线y=g(x)

与y=h(x)的切线l

1,l

2

,且l

1

与l

2

关于x轴对称,求证:﹣<a <﹣.

四.求公切线的方程

【例6】.(2018?一模)已知函数,g(x)=3elnx,其中e为自然对数的底数.

(Ⅰ)讨论函数f(x)的单调性.

(Ⅱ)试判断曲线y=f(x)与y=g(x)是否存在公共点并且在公共点处有公切线.若存在,求出公切线l的方程;若不存在,请说明理由.

【解答】解:(Ⅰ)由,得,

令f′(x)=0,得.

当且x≠0时,f′(x)<0;当时,f′(x)>0.

∴f(x)在(﹣∞,0)上单调递减,在上单调递减,在上单调递增;

(Ⅱ)假设曲线y=f(x)与y=g(x)存在公共点且在公共点处有公切线,且切点横坐标为x

>0,

则,即,其中(2)式即.

记h(x)=4x3﹣3e2x﹣e3,x∈(0,+∞),则h'(x)=3(2x+e)(2x﹣e),得h(x)在上单调递减,在上单调递增,

又h(0)=﹣e3,,h(e)=0,

故方程h(x

0)=0在(0,+∞)上有唯一实数根x

=e,经验证也满足(1)式.

于是,f(x

0)=g(x

)=3e,f′(x

)=g'(x

)=3,

曲线y=g(x)与y=g(x)的公切线l的方程为y﹣3e=3(x﹣e),

即y=3x.

【作业3】.已知函数f (x)=lnx,g(x)=2﹣(x>0)

(1)试判断当f(x)与g(x)的大小关系;

(2)试判断曲线 y=f(x)和 y=g(x)是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;

(3)试比较(1+1×2)(1+2×3)…(1+2012×2013)与 e4021的大小,并写出判断过程.

五.与公切线有关的参数取值围问题

【例7】.已知函数f(x)=blnx,g(x)=ax2﹣x(a∈R).

(Ⅰ)若曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,数a、b的值;

(Ⅱ)当b=1时,若曲线f(x)与g(x)在公共点P处有相同的切线,求证:点P唯一;

(Ⅲ)若a>0,b=1,且曲线f(x)与g(x)总存在公切线,求正实数a的最小值.

【解答】解:(Ⅰ)f′(x)=,g'(x)=2ax﹣1.

∵曲线f(x)与g(x)在公共点A(1,0)处有相同的切线,

∴,解得a=b=1.

(Ⅱ)设P(x

0,y

),则由题设有lnx

=ax

2﹣x

…①,

又在点P有共同的切线,∴f′(x

0)=g′(x

),∴,

∴a=,代入①得lnx

0=x

设h(x)=lnx﹣+x,则h′(x)=+(x>0),则h′(x)>0,

导数切线斜率问题解析版

绝密★启用前 2015-2016学年度学校1月月考卷 试卷副标题 题 号 一 二 三 总 分 得 分 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 评卷人 得 分 一、选择题(题型注 释) 1.曲线31 23y x =-在点 51,3?? - ??? 处切线的斜率为( ) A .3 B .1 C .1- D .3- 2.曲线31 23y x =-在点(1,-5 3)处切线的倾斜角为( ) A .30° B.45° C .135° D .150° 3.已知函数ln y x x =,则这个函数在点)0,1(处的切线方程是( ) A .22y x =- B .22y x =+ C .1y x =- D .1+=x y 4.直线y =kx +1与曲线y =x 3+ax +b 相切于点A(1,3),则2a +b 的值为( ) A .2 B .-1 C .1 D .-2 5.若曲线在点处的切线平行于x 轴,则k= ( ) A .-1 B .1 C .-2 D .2 6.过点)1,1(-且与曲线x x y 23-=相切的直线方程为( ) A . 20x y --=或5410x y +-= B .02=--y x C .20x y --=或4510x y ++= D .02=+-y x

7.已知点P 在曲线41 x y e = +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.3[ ,)4ππ B.[,)42ππ C.3(,]24ππ D.[0,4 π) 8.若曲线321()3 f x x x mx =++的所有切线中,只有一条与直线30x y +-=垂直,则实数m 的值等于( ) A .0 B .2 C .0或2 D .3 9.曲线e x y =在点A 处的切线与直线30x y -+=平行,则点A 的坐标为( ) (A )()11,e -- (B )()0,1 (C )()1,e (D )()0,2 10.设曲线11 x y x +=-在点(3,2)处的切线与直线10ax y ++=垂直,则a 等于 ( ) A. 2 B. 12 C. 12 - D. 2- 11.曲线323y x x =-+在点(1,2)处的切线方程为( ) A .y =3x -1 B .y =-3x +5 C .y =3x +5 D .y =2x 12.已知曲线421y x ax =++在点()-12a +,处切线的斜率为8,=a ( ) (A )9 (B )6 (C )-9 (D )-6 13.已知点P 在曲线y= 41x e +上,α为曲线在点P 处的切线的倾斜角,则α的取值范围是( ) A.[0, 4π) B.[,)42ππ C. 3(,]24ππ D. 3[,)4 ππ

利用导数求切线的方程

利用导数求切线的方程 第I 卷(选择题) 一、选择题 1.已知曲线21y x =-在0x x =处的切线与曲线31y x =-在0x x =处的切线互相平行,则0x 的值为( ) A .0 B C .0 D 2.若幂函数a mx x f =)(的图像经过点A 处的切线方程是( ) A.02=-y x B.02=+y x C.0144=+-y x D.0144=++y x 3.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A B 、22e C 、2e D 4.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是( ) A.)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 5.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-距离的最小值为() A .1 B C D 6处的切线与直线1y x =+平行,则实数a 的值为( ) A D 7处的切线平行于x 轴, 则()0f x =( ) A C D .2e 8上一动点00(,())P x f x 处的切线斜率的最小值为( ) A B .3 C D .6 第II 卷(非选择题) 二、填空题 9在点()1,1处的切线与曲线x y e =在点P 处的切线垂直,则点P 的坐标为 __________.

10.曲线cos y x x =-在点___________. 11.已知直线01=+-y x 与曲线的值为 . 12.若曲线ln (0)y x x =>的一条切线是直线,则实数b 的值为 . 13.若直线y x b =+是曲线 14.已知函数()tan f x x =,则__________. 15在点()()1,1f 处的切线方程是 . 16.设曲线3()2f x ax a =-在点()1,a 处的切线与直线210x y -+=平行,则实数a 的值为______. 17.已知曲线()cos f x a x =与曲线()21g x x bx =++在交点()0,m 处有公切线,则实数a b +的值为____________. 18.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为________. 19__________. 三、解答题 20.求曲线3 =y=f(x)(2x-2)在点(2,8)处的切线方程(一般式) 参考答案

导数法巧解曲线的切线方程

导数法巧解曲线的切线方程 导数'0()f x 的几何意义是曲线()y f x =在点00(,)P x y 处切线的斜率,于是求曲线()y f x =的切线方程是导数的重要应用之一.用导数求切线方程的关键在于求出切点00(,)P x y 及斜率k ,其求法为:设00(,)P x y 是曲线()y f x =上的一点,则以P 的切点的切线方程为:'000()()y y f x x x -=-.若曲线()y f x =在点00(,)P x y 的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 一、已知切点,求曲线的切线方程 典例1、(2011年重庆文3)曲线32 3y x x =-+在点(1,2)处的切线方程为( ) A.31y x =- B.35y x =-+ C.35y x =+ D.2y x = 解:由题知,点(1,2)在曲线323y x x =-+上且为切点,所以'2'136,|3x y x x k y ==-+?==, 所以切线方程为23(1)y x -=-即31y x =-,选A. 点评:此类题较为简单,只须求出曲线的导数'()f x ,并代入点斜式方程即可. 二、已知斜率,求曲线的切线方程 典例2、与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00(,)P x y 为切点,则切点的斜率为0'0|22x x y x ===.01x ∴=. 由此得到切点1,1() .故切线方程为12(1)y x -=-,即210x y --=,故选D. 点评:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代 入2 y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 三、已知曲线的切线方程求切点 典例3、(2010年全国卷2文数)若曲线2y x ax b =++在点(0,)b 处的切线方程是10x y -+=,则( ) A.1,1a b == B.1,1a b =-= C.1,1a b ==- D.1,1a b =-=-

用导数求切线方程的四种类型

用导数求切线方程的四种类型 浙江 曾安雄 求曲线的切线方程是导数的重要应用之一,用导数求切线方程的关键在于求出切点00()P x y ,及斜率,其求法为:设00()P x y ,是曲线()y f x =上的一点,则以P 的切点的切线 方程为:000()()y y f x x x '-=-.若曲线()y f x =在点00(())P x f x ,的切线平行于y 轴(即导数不存在)时,由切线定义知,切线方程为0x x =. 下面例析四种常见的类型及解法. 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为( ) A.34y x =- B.32y x =-+ C.43y x =-+ D.45y x =- 解:由2 ()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为 (1)3(1)y x --=--,即32y x =-+,因而选B. 类型二:已知斜率,求曲线的切线方程 此类题可利用斜率求出切点,再用点斜式方程加以解决. 例2 与直线240x y -+=的平行的抛物线2y x =的切线方程是( ) A.230x y -+= B.230x y --= C.210x y -+= D.210x y --= 解:设00()P x y ,为切点,则切点的斜率为0022x x y x ='==|. 01x =∴. 由此得到切点(11),.故切线方程为12(1)y x -=-,即210x y --=,故选D. 评注:此题所给的曲线是抛物线,故也可利用?法加以解决,即设切线方程为2y x b =+,代入2y x =,得220x x b --=,又因为0?=,得1b =-,故选D. 类型三:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例3 求过曲线32y x x =-上的点(11)-,的切线方程. 解:设想00()P x y ,为切点,则切线的斜率为02032x x y x ='=-|. ∴切线方程为2000(32)()y y x x x -=--.

用导数求切线方程的四种类型84657

题型一:利用导数去切线斜率 类型一:已知切点,求曲线的切线方程 此类题较为简单,只须求出曲线的导数()f x ',并代入点斜式方程即可. 例1 曲线3231y x x =-+在点(11)-,处的切线方程为 解:由2()36f x x x '=-则在点(11)-,处斜率(1)3k f '==-,故所求的切线方程为(1)3(1)y x --=--,即32y x =-+,. 类型二:已知过曲线上一点,求切线方程 过曲线上一点的切线,该点未必是切点,故应先设切点,再求切点,即用待定切点法. 例2 求过曲线32y x x =-上的点(11)-,的切线方程. 类型三:已知过曲线外一点,求切线方程 此类题可先设切点,再求切点,即用待定切点法来求解. 例3 求过点(20),且与曲线1y x =相切的直线方程. 题型二:利用导数判断函数单调性 总结求解函数f(x)单调区间的步骤: 练习:判断下列函数的单调性,并求出单调区间。 (1)确定函数f(x)的定义域; (2)求f(x)的导数f'(x); (3)解不等式 f'(x)>0 ,解集在定义域内的部分为 增区间; (4)解不等式 f'(x)<0 ,解集在定义域内的部分为 减区间. 例1.:已知导函数 的下列信息: 注意: x x x f x x x f x x x x f ln 2 1 )()3(7 62)()2(),0(,sin )()1(223-=+-=∈-=π图像的大致形状。 试画出或当或当当)(0)(,1,40)(,1,40)(,41x f x f x x x f x x x f x ='==<'<>>'<<3211 11(1)2231(11)y x y x x =-+-=-+-练习:、在,处的切线方程 、在,处的切线方程1(01)x y xe =+-3、曲线在,处的切线方程sin 20x y x e x =++=5、曲线在处的切线方程

导数之一:导数求导与切线方程

本章节知识提要 考试要求 1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何意义. 2.导数的运算 (1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y = x 1,y =x 的导数; (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次); (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 4.生活中的优化问题:会利用导数解决某些实际问题. 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义 导数(1):求导与切线 【知识点梳理】 1. 求导公式与求导法则:

0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x x sin )'(cos -= x x 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf 法则2 ''' [()()]()()f x g x f x g x ±=±. 法则3 [()()]'()()()'()f x g x f x g x f x g x '=+, [()]'()cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ??-=≠ ??? 3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=- 曲线f (x )在A (m,n )处的切线方程求法: ①求函数f (x )的导数f ′(x ). ②求值:f ′(m )得过A 点的切线的斜率 ③由点斜式写出切线方程:y –n = f ′(m )(x-m) 【精选例题】 例1.求下列函数的导函数 1. x x f =)( 2.2)(e x f = 3.y=2x+3 4.x x f = )( 5.y=x 2+3x-3 6. 1y x = 7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+= 例2:.求函数12+=x y 在-1,0,1处导数。

导数解决切线问题的习题

导数复习专题——切线问题 例一: 求曲线32 31y x x =-+在点(11)-,处的切线方程 变式一:已知函数33y x x =-,过点(016)A ,作曲线()y f x =的切线,求此切线方程. 变式二:已知函数33y x x =-,过点(2,2)A 作曲线()y f x =的切线,求此切线方程. 例二:已知函数f(x)=x 3+3ax 2-3b ,g(x)=-2x 2+2x+3(a≠0) (1) 若f(x)的图象与g(x)的图象在x=2处的切线互相平行,求a 的值; (2)若函数y=f(x)的两个极值点x=x 1,x=x 2恰是方程f(x)=g(x)的两个根,求a 、b 的值;并求此时函数y=f(x)的单调区间. 变式二:设函数()32910y x ax x a =+--<, 若曲线y =f (x )的斜率最小的切线与直线126x y +=平行,求: (Ⅰ)a 的值; (Ⅱ)函数()f x 的单调区间.

例三:已知函数()3,y x ax b a b R =++∈ (Ⅰ)若()f x 的图像在22x -≤≤部分在x 轴的上方,且在点()(2,2)f 处的切线与直线950x y -+=平行,求b 的取值范围; (Ⅱ)当123,0,3x x ??∈ ? ??? ,且12x x ≠时,不等式()()1212f x f x x x -<-恒成立,求的取值范围。 变式三: 已知函数f(x)=,在x=1处取得极值为2. (1)求函数f(x)的解析式; (2)若函数f(x)在区间(m ,2m +1)上为增函数,求实数m 的取值范围; (3)若P (x 0,y 0)为f(x)=图象上的任意一点,直线l 与f(x)=的图象相切于点P ,求直线l 的斜率的取值范围. b x ax +2b x ax +2b x ax +2

导数切线斜率问题解析版

绝密★启用前 2015-2016学年度???学校1月月考卷 试卷副标题 注意事项: 1.答题前填写好自己的、班级、考号等信息 2.请将答案正确填写在答题卡上 第I卷(选择题) 请点击修改第I卷的文字说明 一、选择题(题型注释) 1处切线的斜率为( ) A 2(1处切线的倾斜角为( ) A.30° B.45° C.135° D.150° 3) A D 4.直线y=kx+1与曲线y=x3+ax+b相切于点A(1,3),则2a+b的值为()A.2 B.-1 C.1 D.-2 5.若曲线在点处的切线平行于x轴,则k= ( ) A.-1 B.1 C.-2 D.2 6) A. C 7.已知点P P

是() 8 ) A.0 B.2 C.0或2 D.3 9( ) (A(B(C(D 10.() 11(1,2)处的切线方程为( ) A.y=3x-1 B.y=-3x+5 C.y=3x+5 D.y=2x 128) (A(B(C(D P 13.已知点P在曲线 是( )

第II卷(非选择题) 请点击修改第II卷的文字说明 二、填空题(题型注释) 141,2)处切线的斜率为__________。 151,3)处的切线方程为. 16s 加速度为. 17.已知直线l过点,且与曲线相切,则直线的方程为 . 18.____________. 19处的切线方程是 . 20, 三、解答题(题型注释)

参考答案 1.B 【解析】 (145°. 考点:导数的几何意义.特殊角的三角函数值. 2.B 【解析】 (145°. 考点:导数的几何意义.特殊角的三角函数值. 3.C 【解析】 ,∴函数在点(1,0)处的 考点:导数的几何意义. 4.C 【解析】 试题分析:由题意得,y′=3x2+a,∴k=3+a …… ①∵切点为A(1,3),∴3=k+1……②3=1+a+b ……③,由①②③解得,a=-1,b=3,∴2a+b=1,故选C. 考点:利用导数研究曲线上某点切线方程. 5.A 【解析】求导得,依题意, ∵ 曲线在点处的切线平行于x轴, ∴k+1=0,即k=-1. 6.A 【解析】 试题分析:设切点为,因为,所以切线的斜率为 又因为切线过

利用导数求切线的方程教案资料

利用导数求切线的方 程

利用导数求切线的方程 第I 卷(选择题) 一、选择题 1.已知曲线21y x =-在0x x =处的切线与曲线31y x =-在0x x =处的切线互相平行,则0x 的值为( ) A .0 B .23 C .0或23- D .23 - 2.若幂函数a mx x f =)(的图像经过点)2 1,41(A ,则它在点A 处的切线方程是( ) A.02=-y x B.02=+y x C.0144=+-y x D.0144=++y x 3.曲线x y e =在点2(2)e ,处的切线与坐标轴所围三角形的面积为( ) A 、294e B 、22e C 、2e D 、22e 4.函数x e x f x ln )(=在点))1(,1(f 处的切线方程是( ) A.)1(2-=x e y B.1-=ex y C.)1(-=x e y D.e x y -= 5.若点P 是曲线2ln y x x =-上任意一点,则点P 到直线2y x =-距离的最小值为() A .1 B C . 2 D 6.曲线cos 16y ax x =+在2x π= 处的切线与直线1y x =+平行,则实数a 的值为( ) A .2π- B . 2 C .2 π D .2π- 7在点()()00,x f x 处的切线平行于x 轴, 则()0f x =( ) A .2e 8.曲线31()(0)f x x x x =->上一动点00(,())P x f x 处的切线斜率的最小值为( ) A B .3 C ..6

第II 卷(非选择题) 二、填空题 9.设曲线1y x =在点()1,1处的切线与曲线x y e =在点P 处的切线垂直,则点P 的坐标为 __________. 10.曲线cos y x x =-在点,22ππ?? ??? 处的切线的斜率为___________. 11.已知直线01=+-y x 与曲线ln y x a =-相切,则a 的值为 . 12.若曲线ln (0)y x x =>的一条切线是直线12 y x b =+,则实数b 的值为 . 13.若直线y x b =+是曲线ln y x x =的一条切线,则实数b = . 14.已知函数()tan f x x =,则()f x 在点(,())44 P f ππ处的线方程为__________. 15.函数()x x f x e =在点()()1,1f 处的切线方程是 . 16.设曲线3()2f x ax a =-在点()1,a 处的切线与直线210x y -+=平行,则实数a 的值为______. 17.已知曲线()cos f x a x =与曲线()21g x x bx =++在交点()0,m 处有公切线,则实数a b +的值为____________. 18.函数()x e x f x cos =的图像在点()()0,0f 处的切线的倾斜角为________. 19.曲线1x y x = +在点11,2?? ???处的切线方程为__________. 三、解答题 20.求曲线3=y=f(x)(2x-2)在点(2,8)处的切线方程(一般式)

利用导数求函数切线方程

利用导数求函数切线方程 摘要:导数是高中数学学习中分析和解决问题的有效工具,其中,导数在求解函数切线方程的应用中有很强的功能。本文采用“目标法”,通过对几个用导数求函数切线方程的例子的剖析,给出这类题的解题思路和技巧,让大家更深入地理解如何用“目标法”解决用导数求函数切线方程的问题,并在解题过程中通过“目标法”寻找策略,发现疏漏,同时展示高考题中用导数求切线方程的缜密的数学逻辑思维过程。 关键词:导数;切线方程;目标法;解题思路;数学逻辑 前言 导数作为高中教材必学内容之一,无论是在高中生的平时学习或者是在高考试题中,都毫无疑问的占有一席之地,已经有很多的教育工作者对有关导数在高中学习中的重要性和应该注意的一些问题进行了研究。付禹[1]采用问卷调查法,通过分析学生在测试中出现的问题和错误,对学生在学习“导数及其应用”中遇到的困难进行了分析。在高考试题中,导数已经从作为解决问题的辅助地位上升为分析和解决问题必不可少的工具[2]。而且,导数的广泛应用,也成为新教材高考试题的热点和命题的增长点[3]。可见,导数在高中学习中占有重要的位置。应用导数求函数的切线方程,这是导数的一个重要应用,对于高中生来说,也还存在一些解题误区,高春娇[4]对此做了分析。针对导数在求函数的切线方程中的重要性和高中生在学习过程中遇到的问题,作者主要想从一个高中生的视角,结合自己的解题经验,总结利用导数求函数切线方程的要点,并发现了解决导数问题的有效工具——“目标法”,同时在应用时体现数学的逻辑。希望对正在学习导数及其应用的高中学生有一定的帮助。文中选取的一些例题,主要来源于参考文献[5],作者从另一角度给出了解题的思路和步骤,以及解答的过程,同时给出了解题中应该要注意到的诸多的细节问题,以期读者能掌握良好的做题习惯,感受强大的数学逻辑。 1用“目标法”解决用导数求函数的切线方程

(完整版)利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线 一.求切线方程 【例1】.已知曲线f(x)=x3-2x2+1. (1)求在点P(1,0)处的切线l 1 的方程; (2)求过点Q(2,1)与已知曲线f(x)相切的直线l 2 的方程. 提醒:注意是在某个点处还是过某个点! 二.有关切线的条数 【例2】.(2014?北京)已知函数f(x)=2x3﹣3x. (Ⅰ)求f(x)在区间[﹣2,1]上的最大值; (Ⅱ)若过点P(1,t)存在3条直线与曲线y=f(x)相切,求t的取值范围;(Ⅲ)问过点A(﹣1,2),B(2,10),C(0,2)分别存在几条直线与曲线y=f(x)相切?(只需写出结论) 【解答】解:(Ⅰ)由f(x)=2x3﹣3x得f′(x)=6x2﹣3, 令f′(x)=0得,x=﹣或x=, ∵f(﹣2)=﹣10,f(﹣)=,f()=﹣,f(1)=﹣1, ∴f(x)在区间[﹣2,1]上的最大值为. (Ⅱ)设过点P(1,t)的直线与曲线y=f(x)相切于点(x 0,y ), 则y 0=2﹣3x ,且切线斜率为k=6﹣3, ∴切线方程为y﹣y 0=(6﹣3)(x﹣x ), ∴t﹣y 0=(6﹣3)(1﹣x ),即4﹣6+t+3=0,设g(x)=4x3﹣6x2+t+3, 则“过点P(1,t)存在3条直线与曲线y=f(x)相切”,等价于“g(x)有3个不同的零点”.∵g′(x)=12x2﹣12x=12x(x﹣1), ∴g(0)=t+3是g(x)的极大值,g(1)=t+1是g(x)的极小值. ∴g(0)>0且g(1)<0,即﹣3<t<﹣1, ∴当过点过点P(1,t)存在3条直线与曲线y=f(x)相切时,t的取值范围是(﹣3,﹣1). (Ⅲ)过点A(﹣1,2)存在3条直线与曲线y=f(x)相切; 过点B(2,10)存在2条直线与曲线y=f(x)相切; 过点C(0,2)存在1条直线与曲线y=f(x)相切.

导数中的切线问题

第二轮解答题复习——函数和导数(1) (求导和切线) 令狐采学 一、过往八年高考题型汇总: 二、知识点: 1.导数的几何意义是 2.默写以下的求导公式: 3.写出求导的四则运算公式: 4.如何求复合函数的导数?例如求)2 ln( (2x ) =的导数。 f- x x 5、函数)(x f y=在0x处的切线方程是

6、基础题型说明——切线: (1)直接求函数在0x 处的切线方程或者切线斜率; (2)已知函数),(a x f 在0x 处的切线求a 值; (3)已知函数),,(b a x f 在0x 处的切线求b a ,值 三、强化训练: 1、请对下列函数进行求导,并写出其定义域: (1))1ln()(+=x x x f (2))ln()(2x x x f -= (3)1 ()ln(1)f x x x = +- (4) ()f x =2x x e e x ---. (5) 22 ()(ln )x e f x k x x x =-+ (6) x x e x f x sin ln )(2= 2、曲线 y=x(3lnx+1)在点(1,1)处的切线方程为________ 3、若曲线y =kx +ln x 在点(1,k)处的切线平行于x 轴,则k =________ 4、曲线y= sin x 1M(,0)sin x cos x 24 π -+在点处的切线的斜率为 5.若点P 是曲线y =x2-lnx 上任意一点,则点P 到直线y =x -2的最小距离为

6、已知曲线ln y x x =+在点()1,1处的切线与曲线()221y ax a x =+++相切,则a=. 7、过原点与x y ln =相切的直线方程是 8、(15年21)已知函数f (x )=31,()ln 4 x ax g x x ++=-. (Ⅰ)当a 为何值时,x 轴为曲线()y f x =的切线; 9、(14年21)设函数 x be x ae x f x x 1 ln )(-+=曲线 y=f (x )在点(1, f (1))处得切线方程为y=e (x ﹣1)+2.(Ⅰ)求a 、b ; 10、(13 年21)已知函数f(x)=x2+ax +b ,g(x)=ex(cx +d),若 曲线y =f(x)和曲线y =g(x)都过点 P(0,2),且在点P 处有相同的切线y =4x+2 (Ⅰ)求a ,b ,c ,d 的值 11、已知函数ln ()1 a x b f x x x =++,曲线()y f x =在点(1,(1)f )处的切线方 程为230x y +-=. (I)求a ,b 的值; 12、设()()256ln f x a x x =-+,其中a R ∈,曲线()y f x =在点()()1,1f 处的 切线与y 轴相交于点()0,6.(1)确定a 的值; 13、已知函数f (x ) g (x )=alnx ,a ∈R 。

导数之一:导数求导与切线方程

本章节知识提要 考试要求1.导数概念及其几何意义(1)了解导数概念的实际背景; (2)理解导数的几何 意义. 2.导数的运算 (1)能根据导数定义,求函数y =c (c 为常数),y =x ,y =x 2,y =x 3,y = x 1,y =x 的导数; (2)能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax +b )的复合函数)的导数. 3.导数在研究函数中的应用 (1)了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次); (2)了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次). 4.生活中的优化问题:会利用导数解决某些实际问题. 5.定积分与微积分基本定理 (1)了解定积分的实际背景,了解定积分的基本思想,了解定积分的概念; (2)了解微积分基本定理的含义 导数(1):求导与切线 ?知识点梳理? 1. 求导公式与求导法则:

0'=C ; 1)'(-=n n nx x ; x x cos )'(sin =; x sin )'(cos -= x x 1)'(ln = ; x x e e =)'( a a a x x ln )'(= 2. 法则1 )(.))'(('=x f c x cf 法则2 '''[()()]()()f x g x f x g x ±=±. 法则3 [()()]'()()()f x g x f x g x f x g x '= +, [()]'(cf x cf x '= 法则4:'2()'()()()'()(()0)()()f x f x g x f x g x g x g x g x ??-=≠ ??? 3.利用导数求曲线的切线方程:函数()y f x =在点0x 的导数的几何意义就是曲线()y f x =在点00(,)p x y 处的切线的斜率,也就是说,曲线()y f x =在点00(,)p x y 处的切线斜率是0()f x ',切线的方程为000()()y y f x x x '-=- 曲线f (x )在A (m,n )处的切线方程求法: ①求函数f (x )的导数f ′(x ). ②求值:f ′(m )得过A 点的切线的斜率 ③由点斜式写出切线方程:y –n = f ′(m )(x-m) ?精选例题? 例1.求下列函数的导函数 1. x x f =)( 2.2)(e x f = 3.y=2x+3 4.x x f = )( 5.y=x 2+3x-3 6. 1y x = 7. x x x f ln 2)(= 8. 32)sin()(x x x f += 9. x x x x f 2ln )(+= 例2:.求函数12+=x y 在-1,0,1处导数。 例3:已知曲线313y x =上一点P (2,38 ),求点P 处的切线的斜率及切线方程?

导数的切线问题

导数的切线问题 导数的几何意义:导数)(0/x f 表示曲线)(x f y =在点))(,(00x f x P 处的切线的斜率。 热身练手: 1.曲线24223+--=x x x y 在点)3,1(-处的切线方程是 。 2.曲线x y 1=和2x y =在它们交点处的两条切线与x 轴所围成的三角形面积是 。 例1.求曲线2:3+-=x x y C 过点)2,1(A 的切线方程。 变式1:若曲线上一点P 处的切线恰好平行于直线111-=x y ,则P 点坐标为 , 切线方程为 。 变式2:函数12+=ax y 的图象与直线x y =相切,则a = 。 例2.)(/x f 是)(x f y =的导函数,)(/x f 的图象如图所示,则) (x f y =的图象只可能是 。 变式:函数)(x f y =的定义域是R ,若对于任意的正数a ,函数)()()(x f a x f x g -+=都 是其定义域上的增函数,则函数)(x f y =的图象可能是 。

引申: 函数)(x f y =在某开区间的图象上任意两点),(),,(2211y x Q y x P 连线的斜率 )(212 121x x x x y y k ≠--=的取值范围就是曲线在该区间上任意一点切线的斜率(假设存在)的范围(导数的值域问题)。 例3.已知集合D M 是满足下列性质函数)(x f 的全体:若函数)(x f 的定义域为D ,对任 意的)(,2121x x D x x ≠∈有|||)()(|2121x x x f x f -<- (1)当),0(+∞=D 时,x x f ln )(=是否属于D M ?若属于,请给予证明,否则说明理由; (2)当)3 3, 0(=D ,函数b ax x x f ++=3)(时,求实数a 的取值范围,使得D M x f ∈)(。 例4.已知抛物线a x y C x x y C +-=+=2221:,2:,如果直线l 同时是1C 和2C 的切线, 就称l 是1C ,2C 的公切线。问:当a 取什么值时,1C 和2C 有且仅有一条公切线?写出公切线的方程。

(完整版)利用导数求曲线的切线和公切线

利用导数求曲线的切线和公切线 一. 求切线万程 【例11 .已知曲线f(x)=x 3-2x 2+1. (1) 求在点P (1,0 )处的切线l 1的方程; ⑵ 求过点Q( 2,1 )与已知曲线f(x)相切的直线丨2的方程. 提醒:注意是在某个点处还是过某个点! 二. 有关切线的条数 【例21.( 2014?北京)已知函数f (x ) =2x 3 - 3x . (I)求f (x )在区间[-2, 1]上的最大值; (n)若过点P (1, t )存在3条直线与曲线y=f (x )相切,求t 的取值范围; (川)问过点 A (- 1, 2), B (2, 10), C (0, 2)分别存在几条直线与曲线 y=f (x )相切?(只需写出结论) 【解答1 解:(I)由 f (x ) =2x 3 - 3x 得 f '( x ) =6x 2- 3, 令 f '(x ) =0 得,x= -^_或 x=」, ?- f (-2) =- 10, f (-=) =:-:, f (斗)=-::,f (1) =- 1, .f (x )在区间[-2, 1]上的最大值为:.:. (n)设过点P (1, t )的直线与曲线y=f (x )相切于点(X 。,y °), 则y °=2诃-3X 0,且切线斜率为k=6爲-3, .切线方程为 y -y o = (6-,- - 3)(x - x o ), +t+3=0,设 g (x ) =4x 3 - 6x 2+t+3 , 则“过点P (1, t )存在3条直线与曲线y=f (x )相切”,等价于“ g (x )有3 个不同的零点”.T g '(x ) =12x 2- 12x=12x (x - 1), .g (0) =t+3是g (x )的极大值,g (1) =t+1是g (x )的极小值. .g (0)> 0 且 g (1)v 0,即-3v t v- 1, .当过点过点P (1, t )存在3条直线与曲线y=f (x )相切时,t 的取值范围是 (-3,- 1). (rn)过点A (- 1, 2)存在3条直线与曲线y=f (x )相切; 过点B (2, 10)存在2条直线与曲线y=f (x )相切; 过点C (0, 2)存在1条直线与曲线y=f (x )相切. (6 t - y o = -3)( 1-X 。),即卩 4嗚 2 O

过一点求曲线的切线方程的三种类型

过一点求曲线的切线方程的三种类型 舒云水 过一点求曲线的切线方程有三种不同的类型,下面举例说明﹒ 1.已知曲线)(x f y =上一点))(,(00x f x P ,求曲线在该点处的切线方程﹒ 这是求曲线的切线方程的基本类型,课本上的例、习题都是这种类型﹒其求法为:先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率,后写出切线方程)(0x f y -=)(0x f ')(0x x -,并化简﹒ 例1 求曲线33)(23+-=x x x f 在点)1,1(P 处的切线方程﹒ 解:由题设知点P 在曲线上, ∵x x y 632-=',∴曲线在点)1,1(P 处的切线斜率为3)1(-='f ,所求的切线方程为)1(31--=-x y ,即43+-=x y ﹒ 2. 已知曲线)(x f y =上一点))(,(11x f x A ,求过点A 的曲线的切线方程﹒ 这种类型容易出错,一般学生误认为点A 一定为切点,事实上可能存在过点A 而点A 不是切点的切线,如下面例2,这不同于以前学过的圆、椭圆等二次曲线的情况,要引起注意,这类题型的求法为:设切点为))(,(00x f x P ,先求出函数)(x f 的导数)(x f ',再将0x 代入)(x f '求出)(0x f ',即得切线的斜率(用0x 表示),写出切线方程)(0x f y -=)(0x f ')(0x x -,再将点A 坐标),(11y x 代入切线方程得)(01x f y -=)(0x f ')(01x x -,求出0x ,最后将0x 代入方程)(0x f y -=)(0x f ')(0x x -求出切线方程﹒ 例2 求过曲线x x y 23-=上的点)1,1(-的切线方程﹒

导数中参数的取值范围问题

题型一:最常见的关于函数的单调区间;极值;最值;不等式恒成立; 经验1:此类问题提倡按以下三个步骤进行解决: 第一步:令0 ) ('= x f得到几个根;第二步:列表如下;第三步:由表可知; 经验2:不等式恒成立问题的实质是函数的最值问题,常见处理方法有四种:第一种:变更主元(即关于某字母的一次函数);题型特征(已知谁的围就把谁作为主元);第二种:分离变量求最值;第三种:关于二次函数的不等式恒成立;第四种:构造函数求最值;题型特征() ( ) (x g x f>恒成立 ) ( ) ( ) (> - = ?x g x f x h恒成立); 单参数放到不等式上 设函数 1 () (1)ln(1) f x x x = ++ (1 x≠,且0 x≠) (1)求函数的单调区间;(2)求() f x的取值围; (3)已知 1 1(1) 2m x x +>+对任意(1,0) x∈-恒成立,数m的取值围。

2.已知函数ln ()1a x b f x x x = ++在点(1,(1))f 处的切线方程为230x y +-= (1)求,a b 的值; (2)如果当0x >,且1x ≠时,ln ()1x k f x x x =+-,求k 的取值围. 3.已知函数4 4 ()ln (0)f x a x b c x x x =+->在 0x >出取得极值3c -- ,其中 ,,a b c 为常数. (1)试确定,a b 的值; (2)讨论函数()f x 的单调区间; (3)若对任意0x >,不等式2 ()2f x c ≥-恒成立,求c 的取值围。

4.已知函数2 ()21f x ax x = ++,()a g x x = ,其中0,0a x >≠ (1)对任意的[1,2]x ∈,都有()()f x g x >恒成立,数a 的取值围; (2)对任意的1 2 [1,2],[2,4]x x ∈∈,2 1 )()(f g x x >恒成立,数a 的取值围 5.已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >.若对任意的[]12,1x x e ∈,(e 为 自然对数的底数)都有()1f x ≥()2g x 成立,数a 的取值围

(完整版)导数解决切线问题的习题.doc

导数复习专题——切线问题例一:求曲线 y x33x21在点(1,1)处的切线方程 变式一:已知函数变式二:已知函数y x33x ,过点A(0,16)作曲线y f ( x) 的切线,求此切线方程.y x33x ,过点A(2,2)作曲线y f ( x) 的切线,求此切线方程. 例二:已知函数 f(x)=x3+3ax2-3b, g(x)=-2x2+2x+3(a ≠ 0) (1) 若 f(x)的图象与 g(x)的图象在 x=2 处的切线互相平行,求 a 的值; (2)若函数 y=f(x)的两个极值点 x=x1,x=x2恰是方程 f(x)=g(x)的两个根,求 a、b 的值;并求此时函数y=f(x)的单调区间. 变式二:设函数 y x3 ax2 9x 1 a 0 , 若曲线 y=f(x)的斜率最小的切线与直线12 x y 6 平行,求: (Ⅰ) a 的值; (Ⅱ)函数 f ( x) 的单调区间.

例三:已知函数 y x3ax b a, b R(Ⅰ)若f ( x)的图像在 2 x 2 部分在 x 轴的上方,且在点(2, f 2 ) 处的切线与直线9x y 50 平行,求b的取值范围; (Ⅱ)当 x1 , x20,3 ,且x1x2时,不等式 f x1 f x2x1x2恒成立,求的3 取值范围。 变式三:已知函数 f(x)= ax ,在 x=1 处取得极值为 2. 2 x b (1)求函数 f(x)的解析式; (2)若函数 f(x)在区间( m, 2m+ 1)上为增函数,求实数m 的取值范围; (3)若P( x0,y0)为 f(x)= ax l 与 f(x)= ax 的图象相切于x 2 图象上的任意一点,直线 2 b x b 点 P,求直线l 的斜率的取值范围.

利用导数求切线方程

切线方程的求法 ●基础知识总结和逻辑关系 一、 函数的单调性 求可导函数单调区间的一般步骤和方法: 1) 确定函数的()f x 的定义区间; 2) 求'()f x ,令'()0f x =,解此方程,求出它在定义区间内的一切实根; 3) 把函数()f x 的无定义点的横坐标和上面的各实数根按由小到大的顺序排列起来, 然后用这些点把函数()f x 的定义区间分成若干个小区间; 4) 确定'()f x 在各个区间内的符号,由'()f x 的符号判定函数()f x 在每个相应小区 间内的单调性. 二、 函数的极值 求函数的极值的三个基本步骤 1) 求导数'()f x ; 2) 求方程'()0f x =的所有实数根; 3) 检验'()f x 在方程'()0f x =的根左右的符号,如果是左正右负(左负右正),则() f x 在这个根处取得极大(小)值. 三、 求函数最值 1) 求函数()f x 在区间(,)a b 上的极值; 2) 将极值与区间端点函数值(),()f a f b 比较,其中最大的一个就是最大值,最小的一个就 是最小值. 四利用导数证明不等式 1) 利用导数得出函数单调性来证明不等式 我们知道函数在某个区间上的导数值大于(或小于)0时,则该函数在该区间上单调递增(或递减).因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数证明该函数的单调性,然后再用函数单调性达到证明不等式的目的.即把证明不等式转化为证明函数的单调性.具体有如下几种形式:

① 直接构造函数,然后用导数证明该函数的增减性;再利用函数在它的同一单调递增(减) 区间,自变量越大,函数值越大(小),来证明不等式成立. ② 把不等式变形后再构造函数,然后利用导数证明该函数的单调性,达到证明不等式的目 的. 2) 利用导数求出函数的最值(或值域)后,再证明不等式. 导数的另一个作用是求函数的最值. 因而在证明不等式时,根据不等式的特点,有时可以构造函数,用导数求出该函数的最值;由当该函数取最大(或最小)值时不等式都成立,可得该不等式恒成立.从而把证明不等式问题转化为函数求最值问题. ●解题方法总结和题型归类 1导数的几何意义及切线方程的求法 1)曲线y =f (x )“在”点P (x 0,y 0)处的切线与“过”点P (x 0,y 0)的切线的区别: 曲线y =f (x )在点P (x 0,y 0)处的切线是指P 为切点,若切线斜率存在时,切线斜率为k =f ′(x 0),是唯一的一条切线;曲线y =f (x )过点P (x 0,y 0)的切线,是指切线经过P 点,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条. 2)解决方案:解这类问题的关键就是抓住切点.看准题目所求的是“在曲线上某点处的切线方程”还是“过某点的切线方程”,然后求某点处的斜率,用点斜式写出切线方程. 【题】求过曲线cos y x =上点1 (,)32 P π且与在这点的切线垂直的直线方程. 【答案】:22032 x π--+= 【难度】* 【点评】

相关主题
文本预览
相关文档 最新文档