当前位置:文档之家› 2015年步步高二轮复习-专题八 第1讲 函数与方程思想

2015年步步高二轮复习-专题八 第1讲 函数与方程思想

2015年步步高二轮复习-专题八 第1讲 函数与方程思想
2015年步步高二轮复习-专题八 第1讲 函数与方程思想

第1讲函数与方程思想

1.函数与方程思想的含义

(1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系.

2.和函数与方程思想密切关联的知识点

(1)函数与不等式的相互转化,对函数y=f(x),当y>0

时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式.

(2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要.

(3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解.

(4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论.

(5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用

例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________.

(2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3)

解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为a ≥3x 2-1

x

3.

设g (x )=3x 2-1

x 3,则g ′(x )=3(1-2x )x 4

,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减,

因此g (x )max =g ????

12=4,从而a ≥4; 当x <0即x ∈[-1,0)时,

f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x

3,

设g (x )=3x 2-1

x 3,且g (x )在区间[-1,0)上单调递增,

因此g (x )min =g (-1)=4,从而a ≤4,综上a =4.

(2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数.

又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数.

因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3).

所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3).

思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解.

(1)若2x +5y ≤2-

y +5-

x ,则有( )

A .x +y ≥0

B .x +y ≤0

C .x -y ≤0

D .x -y ≥0

(2)已知函数f (x )=1

2x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是( )

A .m ≥3

2

B .m >32

C .m ≤3

2

D .m <32

答案 (1)B (2)A

解析 (1)把不等式变形为2x -5-

x ≤2-

y -5y ,构造函数y =2x -5-

x ,其为R 上的增函数,所

以有x ≤-y .

(2)因为函数f (x )=1

2x 4-2x 3+3m .所以f ′(x )=2x 3-6x 2,令f ′(x )=0得x =0或x =3,经检验

知x =3是函数的一个最小值点,所以函数的最小值为f (3)=3m -27

2,不等式f (x )+9≥0恒成

立,即f (x )≥-9恒成立,

所以3m -272≥-9,解得m ≥3

2,故选A.

热点二 函数与方程思想在数列中的应用 例2 已知数列{a n }是各项均为正数的等差数列.

(1)若a 1=2,且a 2,a 3,a 4+1成等比数列,求数列{a n }的通项公式a n ;

(2)在(1)的条件下,数列{a n }的前n 项和为S n ,设b n =1S n +1+1S n +2+…+1

S 2n ,若对任意的n ∈N *,

不等式b n ≤k 恒成立,求实数k 的最小值. 解 (1)因为a 1=2,a 23=a 2·(a 4+1), 又因为{a n }是正项等差数列,故d ≥0, 所以(2+2d )2=(2+d )(3+3d ), 得d =2或d =-1(舍去), 所以数列{a n }的通项公式a n =2n . (2)因为S n =n (n +1), b n =1S n +1+1S n +2+…+1

S 2n

=1(n +1)(n +2)+1(n +2)(n +3)+…+12n (2n +1)

=1n +1-1n +2+1n +2-1n +3+…+12n -1

2n +1

1n +1-12n +1=n

2n 2+3n +1

=1

2n +1n

+3

, 令f (x )=2x +1

x

(x ≥1),

则f ′(x )=2-1

x 2,当x ≥1时,f ′(x )>0恒成立,

所以f (x )在[1,+∞)上是增函数, 故当x =1时,[f (x )]min =f (1)=3, 即当n =1时,(b n )max =1

6

要使对任意的正整数n ,不等式b n ≤k 恒成立, 则须使k ≥(b n )max =1

6,

所以实数k 的最小值为1

6

.

思维升华 (1)等差(比)数列中各有5个基本量,建立方程组可“知三求二”;

(2)数列的本质是定义域为正整数集或其有限子集的函数,数列的通项公式即为相应的解析式,因此在解决数列问题时,应注意利用函数的思想求解.

(1)(2014·江苏)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6

的值是________.

(2)已知函数f (x )=(1

3)x ,等比数列{a n }的前n 项和为f (n )-c ,则a n 的最小值为( )

A .-1

B .1 C.23

D .-23

答案 (1)4 (2)D

解析 (1)因为a 8=a 2q 6,a 6=a 2q 4,a 4=a 2q 2,所以由a 8=a 6+2a 4得a 2q 6=a 2q 4+2a 2q 2,消去a 2q 2,得到关于q 2的一元二次方程(q 2)2-q 2-2=0,解得q 2=2,a 6=a 2q 4=1×22=4. (2)由题设,得a 1=f (1)-c =1

3-c ;

a 2=[f (2)-c ]-[f (1)-c ]=-2

9;

a 3=[f (3)-c ]-[f (2)-c ]=-227

. 又数列{a n }是等比数列,

∴(-29)2=(13-c )×(-2

27),∴c =1.

又∵公比q =a 3a 2=13

∴a n =-23(13)n -1=-2(1

3)n ,n ∈N *.

且数列 {a n }是递增数列, ∴n =1时,a n 有最小值a 1=-2

3

.

热点三 函数与方程思想在几何中的应用

例3 已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的一个顶点为A (2,0),离心率为2

2.直线y =k (x -1)与

椭圆C 交于不同的两点M ,N . (1)求椭圆C 的方程; (2)当△AMN 的面积为

10

3

时,求k 的值. 解 (1)由题意得?????

a =2,c a =2

2,

a 2

=b 2

+c 2

解得b = 2.

所以椭圆C 的方程为x 24+y 2

2

=1.

(2)由?????

y =k (x -1),x 24+y 2

2=1得(1+2k 2)x 2-4k 2x +2k 2-4=0.

设点M ,N 的坐标分别为(x 1,y 1),(x 2,y 2), 则x 1+x 2=4k 2

1+2k 2,x 1x 2=2k 2-41+2k 2.

所以|MN |=(x 2-x 1)2+(y 2-y 1)2 =(1+k 2)[(x 1+x 2)2-4x 1x 2] =2(1+k 2)(4+6k 2)1+2k 2

.

又因为点A (2,0)到直线y =k (x -1)的距离 d =

|k |

1+k 2

, 所以△AMN 的面积为 S =1

2|MN |·d =|k |4+6k 21+2k 2

. 由|k |4+6k 21+2k 2=10

3,解得k =±1.

所以,k 的值为1或-1.

思维升华 几何最值是高考的热点,在圆锥曲线的综合问题中经常出现,求解此类问题的一般思路为在深刻认识运动变化的过程之中,抓住函数关系,将目标量表示为一个(或者多个)变量的函数,然后借助于函数最值的探求来使问题得以解决.

(1)(2014·安徽)设F 1,F 2分别是椭圆E :x 2

+y 2

b

2=1(0

F 1的直线交椭圆E 于A ,B 两点.若|AF 1|=3|F 1B |,AF 2⊥x 轴,则椭圆E 的方程为__________. (2)若a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )

A .(1,2)

B .(2,5)

C .[2,5]

D .(3,5)

答案 (1)x 2+3

2y 2=1 (2)B

解析 (1)设点B 的坐标为(x 0,y 0), ∵x 2

+y 2

b

2=1,且0

∴F 1(-1-b 2,0),F 2(1-b 2,0). ∵AF 2⊥x 轴,∴A (1-b 2,b 2). ∵|AF 1|=3|F 1B |,∴AF 1→=3F 1B →

∴(-21-b 2,-b 2)=3(x 0+1-b 2,y 0). ∴x 0=-531-b 2

,y 0=-b 23.

∴点B 的坐标为????-531-b 2,-b

2

3. 将点B ????-531-b 2,-b 2

3代入x 2+y

2b 2=1, 得b 2=2

3

.

∴椭圆E 的方程为x 2+3

2

y 2=1.

(2)e 2

=(c a )2=a 2+(a +1)2

a 2

=1+(1+1

a

)2, 因为当a >1时,0<1

a <1,所以2

即2

1.在高中数学的各个部分,都有一些公式和定理,这些公式和定理本身就是一个方程,如等差数列的通项公式、余弦定理、解析几何的弦长公式等,当题目与这些问题有关时,就需要根据这些公式或者定理列方程或方程组求解需要的量.

2.当问题中涉及一些变化的量时,就需要建立这些变化的量之间的关系,通过变量之间的关系探究问题的答案,这就需要使用函数思想.

3.借助有关函数的性质,一是用来解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题,二是在问题的研究中,可以通过建立函数关系式或构造中间函数来求解.

4.许多数学问题中,一般都含有常量、变量或参数,这些参变量中必有一个处于突出的主导地位,把这个参变量称为主元,构造出关于主元的方程,主元思想有利于回避多元的困扰,解方程的实质就是分离参变量

.

真题感悟

1.(2014·辽宁)已知a =2-13,b =log 21

3,c =12

1log 3

,则( )

A .a >b >c

B .a >c >b

C .c >a >b

D .c >b >a

答案 C 解析 0

3

2 <20=1,b =log 21

3

c =1

2

1log 3>121

log 2

=1, 即01,所以c >a >b .

2.(2014·福建)设P ,Q 分别为圆x 2

+(y -6)2

=2和椭圆x 2

10

+y 2=1上的点,则P ,Q 两点间的

最大距离是( ) A .5 2 B.46+ 2 C .7+ 2 D .6 2

答案 D

解析 如图所示,设以(0,6)为圆心,以r 为半径的圆的方程为x 2

+(y -6)2

=r 2

(r >0),与椭圆方程x 2

10

+y 2=1联立得方程组,消

掉x 2得9y 2+12y +r 2-46=0. 令Δ=122-4×9(r 2-46)=0, 解得r 2=50, 即r =5 2.

由题意易知P ,Q 两点间的最大距离为r +2=62, 故选D.

3.(2014·江苏)在平面直角坐标系xOy 中,若曲线y =ax 2+b

x (a ,b 为常数)过点P (2,-5),且

该曲线在点P 处的切线与直线7x +2y +3=0平行,则a +b 的值是______.

答案 -3

解析 y =ax 2+b x 的导数为y ′=2ax -b

x 2,

直线7x +2y +3=0的斜率为-7

2

.

由题意得???

4a +b

2=-5,

4a -b 4=-7

2,

解得?

????

a =-1,

b =-2,则a +b =-3.

4.(2014·福建)要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是________.(单位:元) 答案 160

解析 设该长方体容器的长为x m ,则宽为4

x m .又设该容器的造价为y 元,则y =20×4+

2(x +4x )×10,即y =80+20(x +4x )(x >0).因为x +4x ≥2

x ·4x =4(当且仅当x =4

x

,即x =2时取“=”),

所以y min =80+20×4=160(元). 押题精练

1.函数f (x )的定义域为R ,f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)

答案 B

解析 f ′(x )>2转化为f ′(x )-2>0,构造函数F (x )=f (x )-2x , 得F (x )在R 上是增函数.

又F (-1)=f (-1)-2×(-1)=4,f (x )>2x +4, 即F (x )>4=F (-1),所以x >-1.

2.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M 、N ,则当|MN |达到最小时t 的值为( )

A .1 B.12 C.52 D.22

答案 D

解析 可知|MN |=f (x )-g (x )=x 2-ln x .

令F (x )=x 2

-ln x ,F ′(x )=2x -1x =2x 2

-1

x

所以当0

2

时,F ′(x )<0,F (x )单调递减; 当x >

2

2

时,F ′(x )>0,F (x )单调递增, 故当x =t =

2

2

时,F (x )有最小值,即|MN |达到最小. 3.(2014·辽宁)当x ∈[-2,1]时,不等式ax 3-x 2+4x +3≥0恒成立,则实数a 的取值范围是( )

A .[-5,-3]

B .[-6,-9

8]

C .[-6,-2]

D .[-4,-3]

答案 C

解析 当x =0时,ax 3-x 2+4x +3≥0变为3≥0恒成立,即a ∈R . 当x ∈(0,1]时,ax 3

≥x 2

-4x -3,a ≥x 2-4x -3x 3,所以a ≥

????x 2-4x -3x 3max .

设φ(x )=x 2-4x -3

x 3

所以φ′(x )=(2x -4)x 3-(x 2-4x -3)3x 2x 6=-x 2-8x -9x 4

=-(x -9)(x +1)

x 4>0, 所以φ(x )在(0,1]上递增,φ(x )max =φ(1)=-6.所以a ≥-6. 当x ∈[-2,0)时,a ≤x 2-4x -3x 3,所以a ≤????x 2-4x -3x 3min . 仍设φ(x )=x 2-4x -3x 3

,φ′(x )=-(x -9)(x +1)

x 4

. 当x ∈[-2,-1)时,φ′(x )<0,φ(x )在[-2,-1)上单调递减, 当x ∈(-1,0)时,φ′(x )>0,φ(x )在(-1,0)上单调递增. 所以当x =-1时,φ(x )有极小值,即为最小值. 而φ(x )min =φ(-1)=

1+4-3

-1

=-2,所以a ≤-2.综上知-6≤a ≤-2. 4.若关于x 的方程(2-2-|x -2|

)2=2+a 有实根,则实数a 的取值范围是________.

答案 [-1,2) 解析 令f (x )=(2-2

-|x -2|

)2.要使f (x )=2+a 有实根,只需2+a 是f (x )的值域内的值.∵f (x )

的值域为[1,4),∴1≤a +2<4,∴-1≤a <2.

5.已知函数f (x )=ax 2+ax 和g (x )=x -a ,其中a ∈R ,且a ≠0.若函数f (x )与g (x )的图象相交于不同的两点A 、B ,O 为坐标原点,试求△OAB 的面积S 的最大值. 解 依题意,f (x )=g (x ),即ax 2+ax =x -a , 整理得ax 2+(a -1)x +a =0,① ∵a ≠0,

函数f (x )与g (x )的图象相交于不同的两点A 、B ,

∴Δ>0,即Δ=(a -1)2-4a 2=-3a 2-2a +1=(3a -1)·(-a -1)>0, ∴-1

3且a ≠0.设A (x 1,y 1),B (x 2,y 2),

且x 1

由①得x 1x 2=1>0,x 1+x 2=-a -1

a

.

设点O 到直线g (x )=x -a 的距离为d ,则d =|-a |

2,

∴S =1

21+12|x 1-x 2|·|-a |2=12-3a 2-2a +1

=12

-3????a +132+43.∵-1

. 即△OAB 的面积S 的最大值为

3

3

.

6.如图,已知椭圆G :x 2a 2+y 2

a 2-1=1(a >1),⊙M :(x +1)2+y 2=1,P 为椭

圆G 上一点,过P 作⊙M 的两条切线PE 、PF ,E 、F 分别为切点. (1)求t =|PM →

|的取值范围;

(2)把PE →·PF →表示成t 的函数f (t ),并求出f (t )的最大值、最小值.

解 (1)设P (x 0,y 0),则x 2

0a 2+y 20a 2-1

=1(a >1),∴y 20=(a 2-1)????1-x 20a 2, ∴t 2

=|PM →|2=(x 0+1)2+y 20=(x 0+1)2+(a 2-1)????1-x 20a 2=???

?1a x 0+a 2, ∴t =????1a x 0+a .

∵-a ≤x 0≤a ,∴a -1≤t ≤a +1(a >1).

(2)∵PE →·PF →=|PE →||PF →|cos ∠EPF =|PE →

|2(2cos 2∠EPM -1) =(|PM →|2-1)??????2(|PM →|2-1)|PM |2

-1 =(t 2

-1)????2(t 2

-1)t 2-1=t 2+2

t 2-3,

∴f (t )=t 2+2

t

2-3(a -1≤t ≤a +1).

对于函数f (t )=t 2+2t

2-3(t >0),显然在t ∈(0,4

2]时,f (t )单调递减,

在t ∈[4

2,+∞)时,f (t )单调递增.∴对于函数f (t )=t 2+2t

2-3(a -1≤t ≤a +1),

当a>4

2+1,即a-1>

4

2时,[f(t)]max=f(a+1)=a2+2a-2+

2

(a+1)2

[f(t)]min=f(a-1)=a2-2a-2+2

(a-1)2

当1+2≤a≤4

2+1时,[f(t)]max=f(a+1)=a2+2a-2+

2

(a+1)2

[f(t)]min=f(4

2)=22-3;

当1

(a-1)2

[f(t)]min=f(4

2)=22-3.

高考数学函数与方程的思想方法

高考数学函数与方程的 思想方法 Last revised by LE LE in 2021

第4讲 函数与方程的思想方法 一、知识整合 函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f(x)=0的解就是函数y =f(x)的图像与x 轴的交点的横坐标,函数y =f(x)也可以看作二元方程f(x)-y =0通过方程进行研究。 就中学数学而言,函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程的数学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题。方程思想是动中求静,研究运动中的等量关系. 3.(1) 函数和方程是密切相关的,对于函数y =f(x),当y =0时,就转化为方程f(x)=0,也可以把函数式y =f(x)看做二元方程y -f(x)=0。函数问题(例如求反函数,求函数的值域等)可以转化为方程问题来求解,方程问题也可以转化为函数问题来求解,如解方程f(x)=0,就是求函数y =f(x)的零点。 (2) 函数与不等式也可以相互转化,对于函数y =f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式。 (3) 数列的通项或前n 项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要。 (4) 函数f(x)=n b ax )( (n ∈N *)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题。 (5) 解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元

函数与方程思想在高中的应用

函数与方程思想在高考中的应用 组长:潘云鹏 12033034 组员:夏炎 12304177 杨岑 12304154 张瑶 12304184 孙雪 12304013 高清华 12304196 谭博闻 12304159 郭志岩 12304143 刘春旭 12304009 函数与方程思想在高考中的应用

摘要本文阐述了函数思想与方程思想的概念、二者之间的相互转换及在转换时需要注意的一些问题.用典型的例题阐明用函数与方程思想方法能够轻易解决数学学科中不等式、数列、二项式定理、三角函数、平面向量、解析几何、立体几何、概率与统计、导数、实际问题等难以突破的部分,并且它也应用在其他学科领域中.并结合中学数学教学,提出教师应该在教学中有意培养学生的函数与方程思想,并且给出了具体可行性的建议. 一.函数与方程思想的概念 1.函数思想 函数思想是一种通过构造函数从而应用函数图象、性质解题的思想方法,即用运动变化的思想观点,分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来,并加以研究其内在的联系,使问题获解.应用函数思想解题的基础是:常见函数的单调性、奇偶性、周期性、最值和图象变换等;熟练掌握一次函数、二次函数、指对数函数等具体特征;应用函数思想解题的关键是:善于观察题目的结构特征,揭示内在联系,挖掘隐含条件,从而恰当地构造函数和利用函数性质去解题.. 2.方程思想 方程思想是若干变量关系是通过解析式表示的,则可以把解析式看成一个等式,然后通过方程的讨论从而使问题获解.许多问题中含有常量、变量和参量,可以通过适当方式,运用方程的观点去观察、

深入分析问题的结构特点,抓住某一个关键变量,构造出这种等式来处理.两种思想方法是相辅相成的,有关方程、不等式、最值等问题,利用函数、方程观点加以分析,常可以使问题“明朗化”,从而易于找到适当解题途径. 3.函数与方程思想的相互转化 很明显,只有在对问题的观察、分析、判断等一系列的思维过程中,具备有标新立异、独树一帜的深刻性、独创性思维,才能构造出函数原型,化归为方程的问题,实现函数与方程的互相转化接轨,达到解决问题的目的. 方程与函数是中学数学的重点内容,占了相当多的份量,其中某些内容既是重点又是难点.例如,列方程(组)解应用题,函数的定义和性质,反函数的概念,平面解几里曲线的方程,方程的曲线的概念等等.方程的思想和函数的思想是处理常量数学与变量数学的重要思想,在解决一般数学问题中具有重大的方法论意义.在中学数学里,对各类代数方程和初等超越方程都作了较为系统的研究.对一个较为复杂的问题,常常先通过分析等量关系,列出一个或几个方程或函数关系式,再解方程(组)或研究这函数的性质,就能很好地解决问题.函数知识涉及到的知识点多,面广,在概念性、应用性、理解性上能达到一定的要求,有利于检测学生的深刻性、独创性思维. 二.函数思想在解题中的应用分析 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的

函数与方程思想的典型例题

函数与方程思想的典型例题 [例1]设函数)(x f 的定义域为R ,对任意实数βα,有 ,且21)3(=πf ,0)2(=πf . (1)求证:)()()(x f x f x f --==-π; (2)若20π <≤x 时,0)(>x f ,求证:)(x f 在],0[π上单调递减; (3)求)(x f 的最小周期并*证明. [解析](1)),0()3(2)3()3(f f f f πππ=+ 且2 1)3(=πf ,1)0(=∴f . 又)()0(2)()(x f f x f x f =-+,)()(x f x f -=∴. )2()2(2)()(πππ-=-+x f f x f x f ,且0)2(=π f ,)()()(x f x f x f --=-=∴π. (2))()(x f x f =- 且20π<≤x 时,0)(>x f ,∴当2 2ππ<<-x 时,0)(>x f . 设π≤<≤210x x , 则)()()()(2121x f x f x f x f -+=-π)2()2( 22121ππ-+-+=x x f x x f . 222,2202121πππππ<-+<-<+-≤x x x x ,0)2 (,0)2(2121>-+>-+∴ππx x f x x f . )()(21x f x f >∴,即)(x f 在],0[π上单调递减. (3)由(1))()(x f x f --=-π得)()(x f x f +-=π,)2()(x f x f +-=+ππ, )()2(x f x f =+∴π,说明π2是原函数的一个周期. 假设0T 也是原函数的一个周期,且)2,0(0π∈T ,则由)()(0x f x T f =+得)()0(0T f f =. 但若],0(0π∈T 时,因原函数是单调递减函数,所以)()0(0T f f >,两者矛盾; 若)2,(0ππ∈T 时,),0(20ππ∈-T ,从而)()()2()0(000T f T f T f f =-=->π,两

函数与方程思想简单应用

数学思想方法的简单应用(1) 一、函数与方程思想 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还需要函数与方程的互相转化、接轨,达到解决问题的目的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:y=f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解决问题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题、集合问题、数列问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 1.证明:若 则为整数. 解析:若x+y+z+t=0,则由题设条件可得 ,于是此时(1)式的值等于-4. 若x+y+z+t≠0,则 由此可得x=y=z=t.于是(1)式的值等于4. 2.已知:函数g(x)=ax2﹣2ax+1+b(a≠0,b<1),在区间[2,3]上有最大值4,最小值1,设函数f(x)=. (1)求a、b的值及函数f(x)的解析式; (2)若不等式f(2x)﹣k?2x≥0在x∈[﹣1,1]时恒成立,求实数k的取值范围;

中考专题--方程思想

方程应用试题 姓名___________ 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力;(正确的找到等量关系)③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知25A x mx n =-+,2 321B y x =-+-,若A B +中不含有一次项和常数项,则222m mn n -+的值为 2.单项式2343m n m n x y ++与422y x -是同类项,则m n 的值为 (2)函数与方程思想 3.若函数2 1 5m m y mx --=+是一次函数,且y 随x 的增大而减小,则m = 4.已知反比例函数k y x = 与一次函数2y x k =+的图像的一个交点的纵坐标是4-,则k 的值为 5.已知点(1,)P m 在正比例函数2y x =的图像上,那么点P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程;②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片ABCD 中,AB=4,AD=3,折叠纸片使AD 边与对角线BD 重合,折痕为DG ,则AG 的长为( ) A .1 B . 34 C .2 3 D .2 7.如图,如图,矩形ABCD 中,AB =2,BC =3,对角线AC 的垂直平分线分别交AD ,BC 于点E 、F ,连接CE , 则CE 的长________. 8.如图,已知等腰△ABC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 AD AC 的值为( ) . A . 1 2 B .51- C .1 D .51+ 9.如图,在△ABC 中,∠C=45°,BC=10,高AD=8,矩形EFPQ 的一边QP 在边上,E 、F 两点分别在AB 、AC 上,AD 交EF 于点H 。设EF=x ,当x 为何值时,矩形EFPQ 的面积最大?并求其最大值 (3)圆与方程思想 通常以半径相等或者切线长相等为突破口 以“勾股定理”为等量关系列出方程 10.如图,ABC Rt ?中,?=∠90ACB ,4=AC ,3=BC ,以BC 上一点O 为圆心作⊙O,与AC 、AB 分别相切于C 点、E 点,则⊙O 的半径为 11.如图,已知AB 是⊙O 的弦,P 是AB 上一点,若AB =10cm ,PB =4cm ,OP =5cm ,则⊙O 的半径等于______________cm 。 A ′ G D C 6题 第7题 F A D O E B C E B O 第10题 O B A P D 第11题 第8题

高中数学竞赛专题一 函数与方程思想

高中数学竞赛专题一函数与方程思想 函数是中学数学的一个重要概念,它渗透在数学的各部分内容中,它主要包括函数的概念、图象和性质以及几类典型的函数,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。函数思想贯穿于高中代数的全部内容,它是在学习指数函数、对数函数以及三角函数的过程中逐渐形成,并为研究这些函数服务的,如研究方程、不等式、数列、解析几何等其他内容,一直是高考的热点、重点内容。函数的思想,就是用运动变化的观点,分析和研究具体问题中的数量关系,建立函数关系,运用函数的知识,使问题得到解决.这种思想方法在于揭示问题的数量关系的本质特征,重在对问题的变量的动态研究,从变量的运动变化,联系和发展角度拓宽解题思路. 和函数有必然联系的是方程,方程是初中代数的主要内容,初中阶段主要学习了几类方程和方程组的解法,方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的的解题思路和策略。 一、考点回顾 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。比如,对于满足0≤p≤4的一切实数,不等式x2+px>4x+p-3恒成立,试求x的取值范围一例,我们习惯上把x当作自变量,构造函数y=x2+(p-4)x+3-p,于是问题转化为:当p∈[0,4]时,y>0恒成立,求x的取值范围.解决这个等价的问题需要应用二次函数以及二次方程的区间根原理,可想而知,这是相当复杂的. 如果把p看作自变量,x视为参数,构造函数y=(x-1)p+(x2-4x+3),则y是p的一次函数,就非常简单.即令 f(p)=(x-1)p+(x2-4x+3).函数f(p)的图象是一条线段,要使f(p)>0恒成立,当且仅当f(0)>0,且f(4)>0,解这个不等式组即可求得x的取值范围是(-∞,-1)∪(3,+∞).本题看上去是一个不等式问题,但是经过等价转化,我们把它化归为一个非常简单的一次函数,并借助于函数的图象建立了一个关于x的不等式组来达到求解的目的 在函数的学习和复习中,要做到熟练掌握基础知识,充分理解各知识点间的内在联系,如数列中的an、Sn都可以看作是n的函数而应用函数思想以获得新的解法。要总结、归纳运用

高考数学二轮专题复习-函数与方程思想

第1讲函数与方程思想 1.函数与方程思想的含义 (1)函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等.(2)方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题.方程思想是动中求静,研究运动中的等量关系. 2.和函数与方程思想密切关联的知识点 (1)函数与不等式的相互转化,对函数y=f(x),当y>0时,就化为不等式f(x)>0,借助于函数的图象和性质可解决有关问题,而研究函数的性质也离不开不等式. (2)数列的通项与前n项和是自变量为正整数的函数,用函数的观点去处理数列问题十分重要. (3)在三角函数求值中,把所求的量看作未知量,其余的量通过三角函数关系化为未知量的表达式,那么问题就能化为未知量的方程来解. (4)解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决.这都涉及二次方程与二次函数的有关理论. (5)立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决,建立空间直角坐标系后,立体几何与函数的关系更加密切.

热点一 函数与方程思想在不等式中的应用 例1 (1)f (x )=ax 3-3x +1对于x ∈[-1,1]总有f (x )≥0成立,则a =________. (2)设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+f (x )g ′(x )>0,且g (-3)=0,则不等式f (x )g (x )<0的解集是__________. 答案 (1)4 (2)(-∞,-3)∪(0,3) 解析 (1)若x =0,则不论a 取何值,f (x )≥0显然成立; 当x >0即x ∈(0,1]时,f (x )=ax 3-3x +1≥0可化为 a ≥3x 2-1x 3. 设g (x )=3x 2-1 x 3,则g ′(x )=3(1-2x )x 4 ,所以g (x )在区间????0,12上单调递增,在区间????12,1上单调递减, 因此g (x )max =g ???? 12=4,从而a ≥4; 当x <0即x ∈[-1,0)时, f (x )=ax 3-3x +1≥0可化为a ≤3x 2-1x 3, 设g (x )=3x 2-1 x 3,且g (x )在区间[-1,0)上单调递增, 因此g (x )min =g (-1)=4,从而a ≤4,综上a =4. (2)设F (x )=f (x )g (x ),由于f (x ),g (x )分别是定义在R 上的奇函数和偶函数,得F (-x )=f (-x )g (-x )=-f (x )g (x )=-F (x ),即F (x )在R 上为奇函数. 又当x <0时,F ′(x )=f ′(x )g (x )+f (x )g ′(x )>0, 所以x <0时,F (x )为增函数. 因为奇函数在对称区间上的单调性相同, 所以x >0时,F (x )也是增函数. 因为F (-3)=f (-3)g (-3)=0=-F (3). 所以,由图可知F (x )<0的解集是(-∞,-3)∪(0,3). 思维升华 (1)在解决不等式问题时,一种最重要的思想方法就是构造适当的函数,利用函数的图象和性质解决问题;(2)函数f (x )>0或f (x )<0恒成立,一般可转化为f (x )min >0或f (x )max <0;已知恒成立求参数范围可先分离参数,然后利用函数值域求解. 已知函数f (x )=1 2 x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范

函数与方程思想总结(很好很全面)

函数与方程思想 函数思想在解题中的应用主要表现在两个方面:一是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性质,达到化难为易,化繁为简的目的。函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 1.函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。 2.方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。方程思想是动中求静,研究运动中的等量关系; 3.函数方程思想的几种重要形式 (1)函数和方程是密切相关的,对于函数y=f(x),当y=0时,就转化为方程f(x)=0,也可以把函数式y=f(x)看做二元方程y-f(x)=0。 (2)函数与不等式也可以相互转化,对于函数y=f(x),当y>0时,就转化为不等式f(x)>0,借助于函数图像与性质解决有关问题,而研究函数的性质,也离不开解不等式; (3)数列的通项或前n项和是自变量为正整数的函数,用函数的观点处理数列问题十分重要; (4)函数f(x)=(1+x)^n (n∈N*)与二项式定理是密切相关的,利用这个函数用赋值法和比较系数法可以解决很多二项式定理的问题; (5)解析几何中的许多问题,例如直线和二次曲线的位置关系问题,需要通过解二元方程组才能解决,涉及到二次方程与二次函数的有关理论; (6)立体几何中有关线段、角、面积、体积的计算,经常需要运用布列方程或建立函数表达式的方法加以解决。 【例1】. 关于x的方程(x2-1)2-|x2-1|+k=0,给出下列四个命题: ①存在实数k,使得方程恰有2个不同的实根; ②存在实数k,使得方程恰有4个不同的实根; ③存在实数k,使得方程恰有5个不同的实根; ④存在实数k,使得方程恰有8个不同的实根. 其中真命题是_____________ 解答:根据题意可令|x2-1|=t(t≥0),则方程化为t2-t+k=0,(*) 作出函数t=|x2-1|的图象,结合函数的图象可知①当t=0或t>1时,原方程有两上不

专题7:函数与方程思想(理)

专题七:函数与方程思想 【思想方法诠释】 函数与方程都是中学数学中最为重要的内容.而函数与方程思想更是中学数学的一种基本思想,几乎渗透到中学数学的各个领域,在解题中有着广泛的应用,是历年来高考考查的重点. 1.函数的思想 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决.函数思想是对函数概念的本质认识,用于指导解题就是善于利用函数知识或函数观点观察、分析和解决问题.经常利用的性质是单调性、奇偶性、周期性、最大值和最小值、图象变换等. 2.方程的思想 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决.方程的教学是对方程概念的本质认识,用于指导解题就是善于利用方程或方程组的观点观察处理问题,方程思想是动中求静,研究运动中的等量关系. 3.函数思想与方程思想的联系 函数思想与方程思想是密切相关的,如函数问题可以转化为方程问题来龙去脉解决;方程问题也可以转化为函数问题加以解决,如解方程f (x)=0,就是求函数y= f (x)的零点,解不等式f (x)>0(或f (x)<0),就是求函数y= f (x)的正负区间,再如方程f (x)=g(x)的交点问题,也可以转化为函数y= f (x)-g(x)与x轴交点问题,方程f (x)= a有解,当且仅当a属于函数f (x)的值域,函数与方程的这种相互转化关系十分重要. 4.函数与方程思想解决的相关问题 (1)函数思想在解题中的应用主要表现在两个方面: ①借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题; ②在问题研究中通过建立函数关系式或构造中间函数;把研究的问题化为讨论函数的有关性质,达到化难为易,化繁为简的目的. (2)方程思想在解题中的应用主要表现在四个方面: ①解方程或解不等式; ②带参变数的方程或不等式的讨论,常涉及一元二次方程的判别式、根与系数的关系、区间根、区间上恒成立等知识应用; ③需要转化为方程的讨论,如曲线的位置关系; ④构造方程或不等式求解问题.

函数与方程思想在初中数学解题中的应用

函数与方程思想在初中数学解题中的应用 张猛 【内容提要】:函数与方程思想是初中数学中的基本思想。它们密切相关,有时需要互相转化来解决问题。本文对初中数学中的函数与方程思想的内涵作了探讨,并结合一些具体案例说明了函数与方程思想在初中数学解题中的应用。 关键词:函数;方程;函数与方程思想应用案例 数学知识可以记忆一时,但数学思想和方法却随时随地发挥作用,使人受益终身。近年来中考考纲已明确提出不仅要考察学生的数学知识和思维能力,还要考察学生思想方法的运用能力。其中,函数与方程思想是众多考试考查的最基本的数学思想方法之一。学生仅仅学习了函数与方程的知识是不够的,应通过解题和对解题过程的反思来领悟函数与方程思想。 一:函数与方程思想的地位与作用 函数与方程思想,简单地说,就是学会用函数和变量来思考,学会转化已知与未知的关系。在解题时,用函数思想做指导就需要把字母看作变量,把代数式看作函数,利用函数性质做工具进行分析,或者构造一个函数把表面上不是函数的问题化归为函数问题。用方程思想做指导就需要把含字母的等式看作方程,研究方程的根有什么要求。函数与方程思想在解题过程中有着密切的联系。 目前初中阶段主要数学思想有:函数与方程思想、数形结合思想、分类讨论思想,化归与转化思想、图形运动思想、数学模型思想。函数与方程思想,既是函数与方程思想的体现,也是两种思想综合运用

的体现,是研究变量与函数,相等与不等过程中的基本数学思想。 本文例析函数与方程思想在解题中的应用: 二:函数与方程思想的应用案例 通过整理与归纳,可以发现,在数学解题中,函数与方程思想常用于以下几类问题的解决。 1 求代数式的值 例1 已知 22a b ==求22(3124)(2813)a a b b -+-+的值。 解:因为24,1,,410a b ab a b x x +==-+=所以为方程的两个根。 当x a =时,2410.a a -+=可得2231243(41)11a a a a -+=-++=; 当x b =时,222410.28132(41)1111b b b b b b -+=-+=-++=可得 ∴ 原式=1?11=11。 解题反思:此题若将a ,b 的值分别代入所求式中计算,显然运算过程很麻烦。观察发现,所求式中两个括号内的二次项系数之比与一次项系数之比相等,因此可先算出a +b =4,ab =1.利用根与系数的关系构建一元二次方程,这样解起来就简便多了,体现了方程思想的简捷性。 2 解应用问题 例2 某开发公司生产的960件新产品需要精加工后才能投放市场,现有甲、乙两个工厂同时加工这批产品。已知甲厂单独完成加工任务比乙厂单独完成加工任务多用20天,而乙厂每天比甲厂多加工8件产品。公司每天需付甲厂加工费800元,每天需付乙厂加工费1200元。 (1)甲、乙两个工厂每天各加工多少件新产品? (2)请你计算两厂合作完成加工任务公司所付费用。 解:(1)设甲厂每天加工x 件新产品,则乙厂每天加工(x +8)件。 依题意得方程 960960208x x -=+。

2021新高考数学二轮总复习专题突破练2函数与方程思想数形结合思想含解析

专题突破练2 函数与方程思想、数形结合思想 一、单项选择题 1. (2020河南开封三模,理3)如图,在平行四边形OABC 中,顶点O ,A ,C 在复平面内分别表示复数0,3+2i,-2+4i,则点B 在复平面内对应的复数为( ) A.1+6i B.5-2i C.1+5i D.-5+6i 2.(2020山东聊城二模,2)在复数范围内,实系数一元二次方程一定有根,已知方程x 2+ax+b=0(a ∈R ,b ∈R )的一个根为1+i(i 为虚数单位),则a 1+i =( ) A.1-i B.-1+i C.2i D.2+i 3.(2020河北武邑中学三模,5)已知f (x )是定义在区间[2b ,1-b ]上的偶函数,且在区间[2b ,0]上为增函数,f (x-1)≤f (2x )的解集为( ) A.[-1,2 3] B.[-1,1 3] C.[-1,1] D.[1 3,1] 4.(2020广东江门4月模拟,理6)《周髀算经》中有这样一个问题:从冬至日起,依次小寒、大寒、立春、雨水、惊蛰、春分、清明、谷雨、立夏、小满、芒种这十二个节气,其日影长依次成等差数列,冬至、立春、春分日影长之和为31.5尺,前九个节气日影长之和为8 5.5尺,则小满日影长为( ) A.1.5尺 B.2.5尺 C.3.5尺 D.4.5尺 5.(2020安徽合肥二模,文5)在平行四边形ABCD 中,若DE ????? =EC ????? ,AE 交BD 于点F ,则AF ????? =( ) A.23AB ????? +13AD ????? B.23 AB ????? ?13AD ????? C.1 3 AB ????? ?2 3 AD ????? D.13 AB ????? +2 3 AD ????? 6.(2020安徽合肥二模,文7)若函数F (x )=f (x )-2x 4 是奇函数,G (x )=f (x )+(12) x 为偶函数,则 f (-1)= ( ) A.-5 2 B.-5 4 C.5 4 D.5 2 7.(2020河北衡水中学月考,文12)已知关于x 的方程[f (x )]2-kf (x )+1=0恰有四个不同的实数根,则当函数f (x )=x 2e x 时,实数k 的取值范围是( ) A.(-∞,-2)∪(2,+∞) B.(4 e 2+ e 24 ,+∞) C.(8 e 2,2) D.(2,4 e 2+e 2 4)

高中数学必修一 函数与方程的思想方法

函数与方程的思想方法 函数与方程的思想是中学数学的基本思想,也是历年高考的重点。 函数的思想,是用运动和变化的观点、集合与对应的思想,去分析和研究数学问题中的数量关系,建立函数关系或构造函数,再利用函数的图像和性质去分析问题、转化问题,从而使问题获得解决。函数思想的精髓就是构造函数。 方程的思想,是分析数学问题中变量间的等量关系,从而建立方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使问题获得解决。 方程的思想与函数的思想密切相关,函数与方程的思想方法,几乎渗透到中学数学的各个 领域,在解题中有着广泛的运用。对于函数 ) (x f y=,当0 = y时,就转化为方程0 ) (= x f, 也可以把函数式 ) (x f y=看做二元方程0 ) (= -x f y,函数与方程这种相互转化的关系十 分重要。 函数与表达式也可以相互转化,对于函数 ) (x f y=,当0 > y时,就转化为不等式 ) (> x f,借助与函数的图像与性质可以解决不等式的有关问题,而研究函数的性质,也离不开解不等式。 数列的通项或前n项和时自变量为自然数的函数,用函数观点去处理数列问题也是十分重要。 函数 ) ( ) ( ) (* N n bx a x f n∈ + =与二项式定理密切相关,利用这个函数,用赋值法和比 较系数法可以解决很多有关二项式定理的问题。 解析几何中的许多问题,例如直线与二次曲线的位置关系问题,需要通过解二元方程组才能解决,这都涉及二次方程与二次函数的有关理论。 立体几何中有关线段、角、面积、体积的计算,经常需要运用列方程或建立函数表达式的方法加以解决。建立空间向量后,立体几何与函数的关系就更加密切。 函数思想在解题中的应用主要表现在两个方面:一是借助初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;二是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关问题,达到化难为易、化繁为简的目的。 高考中的方程和不等式问题包括方程、不等式的求解及方程、不等式观点的应用,可以分成逐渐提高的四个层次。 第一层次:解方程或不等式,主要是指解代数(一次、二次等)方程或不等式,指数、对数方程或不等式,三角方程或不等式,复数方程等; 第二层次:对带参数的方程或不等式的讨论,常涉及二次方程的判别式、韦达定理、区间根、区间上恒成立的不等式等问题; 第三层次:转化为方程的讨论,如曲线的位置关系(包括点与曲线及直线与曲线的位置关系)、函数的性质、集合的关系等; 第四层次:构造方程或不等式求解问题。 其中第三、四层次(特别是第四层次)已经进入到方程、不等式观点应用的境界,即把方程、不等式作为基本数学工具去解决各个学科中的问题。 纵观中学数学,可谓是以函数为中心,以函数为纲,“纲举目张”,抓住了函数这个“纲”

专题01 函数与方程思想(解析版)

专题01 函数与方程思想 思想方法诠释 1.函数的思想:是通过建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题得到解决的思想. 2.方程的思想:是建立方程或方程组或者构造方程或方程组,通过解方程或方程组或者运用方程的性质去分析问题、转化问题,从而使问题获得解决的思想. 【典例讲解】 要点一 函数与方程思想在函数、方程、不等式中的应用 [解析] (1)当y =a 时,2(x +1)=a ,所以x =a 2 -1. 设方程x +ln x =a 的根为t ,则t +ln t =a ,则|AB |=????t -a 2+1=????t -t +ln t 2+1=????t 2-ln t 2 +1.设g (t )=t 2-ln t 2+1(t >0),则g ′(t )=12-12t =t -12t ,令g ′(t )=0,得t =1,当t ∈(0,1)时,g ′(t )<0;当t ∈(1,+∞)时,g ′(t )>0,所以g (t )min =g (1)=32,所以|AB |≥32,所以|AB |的最小值为3 2,故选D. (2)因为函数f (x )=log 3(9x +t 2)是定义域R 上的增函数,且为“优美函数”,则f (x )=x 至少有两个不等 实根,由log 3(9x +t 2)=x ,得9x +t 2=3x ,所以(3x )2-3x +t 2=0有两个不等实根.令λ=3x (λ>0),则λ2-λ+t 2 =0有两个不等正实根,所以????? Δ=1-4t 2>0,t 2>0, 解得-12

函数方程思想

难点36 函数方程思想 函数与方程思想是最重要的一种数学思想,数学中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决. ●难点磁场 1.(★★★★★)关于x 的不等式2·32x –3x +a 2–a –3>0,当0≤x ≤1时恒成立,则实数a 的取值范围为 . 2.(★★★★★)对于函数f (x ),若存在x 0∈R ,使f (x 0)=x 0成立,则称x 0为f (x )的不动点.已知函数f (x )=ax 2+(b +1)x +(b –1)(a ≠0) (1)若a =1,b =–2时,求f (x )的不动点; (2)若对任意实数b ,函数f (x )恒有两个相异的不动点,求a 的取值范围; (3)在(2)的条件下,若y =f (x )图象上A 、B 两点的横坐标是函数f (x )的不动点,且A 、B 关于直线y =kx + 1 212 +a 对称,求b 的最小值. ●案例探究 [例1]已知函数f (x )=log m 3 3 +-x x (1)若f (x )的定义域为[α,β],(β>α>0),判断f (x )在定义域上的增减性,并加以说明; (2)当0<m <1时,使f (x )的值域为[log m [m (β–1)],log m [m (α–1)]]的定义域区间为[α,β](β>α>0)是否存在?请说明理由. 命题意图:本题重在考查函数的性质,方程思想的应用.属★★★★级题目. 知识依托:函数单调性的定义判断法;单调性的应用;方程根的分布;解不等式组. 错解分析:第(1)问中考生易忽视“α>3”这一关键隐性条件;第(2)问中转化出的方程,不能认清其根的实质特点,为两大于3的根. 技巧与方法:本题巧就巧在采用了等价转化的方法,借助函数方程思想,巧妙解题. 解:(1) ?>+-03 3 x x x <–3或x >3. ∵f (x )定义域为[α,β],∴α>3 设β≥x 1>x 2≥α,有 0) 3)(3() (6333321212211>++-=+--+-x x x x x x x x 当0<m <1时,f (x )为减函数,当m >1时,f (x )为增函数. (2)若f (x )在[α,β]上的值域为[log m m (β–1),log m m (α–1)] ∵0<m <1, f (x )为减函数. ∴??? ???? -=+-=-=+-=) 1(log 33log )()1(log 33log )(ααααββββm f m f m m m m

中考专题方程思想

A .1 B . C . D .2 A .如图,已知等腰△8 A BC 中,顶角∠A=36°,BD 为∠ABC 的平分线,则 的值为( ) . A . B . C .1 D . 中考数学专题复习—方程思想 方程思想是指对所求问题通过列方程(组)求解的一种思想方法。方程思想在初中数学的多个知 识点中均有体现,并且应用其解题可以使问题由复杂变得简单,易懂,易于求解。方程思想也是解几 何计算题的重要策略。 应用方程思想解题时应注意:①要具备用方程思想解题的意识;②要具有正确列出方程的能力; ③要掌握运用方程思想解决问题的要点 一.方程思想在代数问题中的应用 (1)整式与方程思想 1.已知 A = 5 x 2 - mx + n , B = -3 y 2 + 2 x - 1 ,若 A + B 中不含有一次项和常数项, 则 m 2 - 2mn + n 2 的值为 2.单项式 3x m +2n y 3m +4n 与 -2 y 4 x 2 是同类项,则 n m 的值为 (2)函数与方程思想 3.若函数 y = mx m 2-m -1 + 5 是一次函数,且 y 随 x 的增大而减小,则 m = 4.已知反比例函数 y = k 与一次函数 y = 2 x + k 的图像的一个交点的纵坐标是 -4 ,则 k 的值为 x 5.已知点 P(1,m ) 在正比例函数 y = 2 x 的图像上,那么点 P 的坐标为 二.方程思想在几何问题中的应用 在解答几何问题中经常会①运用勾股定理建立方程; ②运用相似三角形对应边成比例建立方程;③运用锐角三角函数的意义建立方程 (1)三角形和四边形与方程思想 通常解决等腰三角形相关问题时要列出方程 6.如图,矩形纸片 ABCD 中,AB=4,AD=3,折叠纸片使 AD 边与对角线 BD 重合,折痕为 DG , 则 AG 的长为( ) 4 3 3 2 7.如图,如图,矩形 A BCD 中,AB =2,BC =3,对角线 AC 的垂直平分线分别交 AD ,BC 于点 E 、 F ,连接 CE ,则 CE 的长________. D C E D A ′ O A G 6 题 B B F C 第 7 题 第 8 题 AD AC 1 5 - 1 5 + 1 2 2 2 △9.如图,在 ABC 中,∠C=45°,BC=10,高 AD=8,矩形 EFPQ 的一边

函数和方程的思想方法

函数与方程的思想方法 函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。 笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。宇宙世界,充斥着等式和不等式。我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。可以说,函数的研究离不开方程。列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。 函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。它体现了“联系和变化”的辩证唯物主义观点。一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f 1(x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。 函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;

第1讲 函数与方程思想

高考命题中,以知识为载体,以能力立意、思想方法为灵魂,以核心素养为统领,兼顾试题的基础性、综合性、应用性和创新性,展现数学的科学价值和人文价值.高考试题一是着眼于知识点新颖巧妙的组合,二是着眼于对数学思想方法、数学能力的考查.如果说数学知识是数学的内容,可用文字和符号来记录和描述,那么数学思想方法则是数学的意识,重在领会、运用,属于思维的范畴,用于对数学问题的认识、处理和解决.高考中常用到的数学思想主要有函数与方程思想、数形结合思想、分类讨论思想、转化与化归思想等. 第1讲 函数与方程思想 思想概述 函数的思想,是用运动和变化的观点,分析和研究数学中的数量关系,是对函数概念的本质认识,建立函数关系或构造函数,运用函数的图象和性质去分析问题、转化问题,从而使问题获得解决. 方程的思想,就是分析数学问题中变量间的等量关系,建立方程或方程组,或者构造方程,通过解方程或方程组,或者运用方程的性质去分析问题、转化问题,使问题得以解决. 方法一 运用函数相关概念的本质解题 在理解函数的定义域、值域、性质等本质的基础上,主动、准确地运用它们解答问题.常见问题有:求函数的定义域、解析式、最值,研究函数的性质. 例1 若函数f (x )=????? -x +3a ,x <0,a x ,x ≥0(a >0且a ≠1)是R 上的减函数,则实数a 的取值范围为( ) A .(0,1) B.????13,1 C.????13,1 D.??? ?0,13 思路分析 先求出f (x )=a x 是减函数时a 的范围→满足-0+3a ≥a 0时a 的范围→取交集 答案 B

解析 ∵函数f (x )是R 上的减函数, ∴? ???? 02b B .a <2b C .a >b 2 D .a

相关主题
文本预览
相关文档 最新文档