当前位置:文档之家› 原核表达及纯化方法

原核表达及纯化方法

原核表达及纯化方法
原核表达及纯化方法

原核表达及纯化-His tag

一、原核表达

1.挑取一个单菌落(重组表达载体),接种到10mL LB培养基中(注意抗生素

抗性)。37℃,过夜摇菌。

2.次日,将菌液接种到1L LB培养基中(1:50~1:100),继续培养至OD600=0.6

时(0.6~0.8),加1×IPTG诱导4h。(加IPTG前留样(诱导前全菌蛋白)

200μL做SDS-PAGE)

3.收菌:

(1)200μL诱导后全菌;

(2)小量表达:收集5mL诱导后全菌,12000g离心1min,裂解沉淀,分别

收集上清(可溶性)和沉淀(包涵体)中的蛋白。

大量表达:收集1L诱导后全菌,4℃,4500g离心15~30min。

二、可溶性分析

目的:重组蛋白是否表达,是可溶性的还是包涵体形式。根据这个结果选择纯化方法。

(1)各用30μL 4×SDS Loading buffer重悬诱导前和诱导后的菌体(200μL);

用500μL 1×Binding Buffer重悬菌体(5mL),超声破碎(3min,超2s,挺3s,27%能量;溶液透亮即可);4℃,19000g离心15min,分离上清和沉淀;

(2)用30μL 4×SDS Loading buffer重悬沉淀;

(3)取10μL上清蛋白加10μL 4×SDS Loading buffer;

(4)将诱导前全菌,诱导后全菌,上清蛋白和包涵体蛋白煮沸5~10min。

(5)各取10μL 用于SDS-PAGE检测(12%的胶)。

三、小量富集实验

样品制备:

取5mL诱导全菌,用500μL 1×Binding Buffer(8M Urea)溶解,超声破碎(3min,超2s,挺3s,27%能量;溶液透亮即可)。4℃,19000g离心15min,取上清用于富集实验。(留样做SDS-PAGE)

富集:

1.装柱:取30μL~50μL体积的Ni柱料(纯柱料)于1.5mL离心管中。

2.平衡:向离心管中加200μL 1×Binding Buffer(8M Urea),混匀1min,700g

离心1min,去上清;重复一次。

3.上样:将制备的上清蛋白加到离心管中,混匀30min(混匀仪上)。700g离

心1min,上清即为穿透(留样做SDS-PAGE)。

4.淋洗:

加50μL 1×Binding Buffer(8M Urea,5mM咪唑),混匀,700g离心1min,分离上清,留样做SDS-PAGE;

加50μL 1×Binding Buffer(8M Urea,10mM咪唑),混匀,700g离心1min,分离上清,留样做SDS-PAGE;

加50μL 1×Binding Buffer(8M Urea,20mM咪唑),混匀,700g离心1min,分离上清,留样做SDS-PAGE;

5.洗脱:

加50μL 1×Elution Buffer(8M Urea,50mM咪唑),混匀,700g离心1min,分离上清,留样做SDS-PAGE;

加50μL 1×Binding Buffer(8M Urea,3000mM咪唑),混匀,700g离心

1min,分离上清,留样做SDS-PAGE;

6.取少量柱料做SDS-PAGE;

注:用定量工作液估计蛋白的浓度:2μL待测蛋白溶液+180μL定量工作

液,根据颜色的变化可以估计蛋白的浓度。对富集过程进行监控。

四、大量富集实验

样品制备:用50mL 1×Binding Buffer(8M Urea)溶解菌体,超声破碎(3min,超2s,挺3s,27%能量;溶液透亮即可)或者用高压破碎仪(推荐)。4℃,19000g 离心15min,取上清用于富集实验。(留样做SDS-PAGE)

富集:

1.装柱:将1mL Ni柱料装入层析柱,用至少三个柱体积的超纯水以工作流速

(每滴/3S)压实柱料,以获得均一的柱床,同时避免带入气泡。

注:以下的层析操作流速不要超过装柱流速的1.75倍。

2.柱平衡:三个柱体积的1×Binding Buffer(8M Urea)平衡柱料。

注:柱子挂上镍离子后,可在Binging 溶液中过夜,4℃。

3.上样:视样品的多少可选用LOOP或由泵直接上样两种方式,接穿透峰以

备SDS-PAGE检测。

4.淋洗:去除非特异结合的蛋白质,接穿透峰以备SDS-PAGE检测。

10个柱体积的1×Binding Buffer(8M Urea);

6个柱体积的W ASH Buffer(分别是含有10mM 咪唑,20mM 咪唑的1×

Binding Buffer(8M Urea));

注:也可以根据定量工作液错落估计蛋白的浓度,以确定每步的淋洗是否完

全。

5.洗脱:

6个柱体积的1×Binding Buffer(8M Urea,50mM咪唑);

6个柱体积的1×Binding Buffer(8M Urea,100mM咪唑);

6个柱体积的1×Binding Buffer(8M Urea,300mM咪唑);

留样做SDS-PAGE;

注:也可以不使用含100mM咪唑的洗脱液;至于每步用多少体积的洗脱液,可根据粗略定量而定;最好每管收集0.5mL富集的蛋白。

五、SDS-PAGE检测:

可溶性分析:

纯化检测:

注:每个咪唑浓度均可以Loading 多个样品,如果一块胶不够的的话可以考用用多个。

六、Bradford 定量

根据蛋白的浓度和纯度,将相近的合并到一起。采用Bradford定量。

1. 启动Versa Microplate Reader, 预热5-10分钟;

2. 在Eppendorf离心管中制备一系列浓度的BSA标准蛋白,较适的浓度范围

为,0.1-1μg/μl,7到8个浓度;可配置5μg/μl的储液,用时稀释到0.2μg/μl。3.加入20 μl标准蛋白至微板孔中,以水或相应的缓冲液为空白对照;

4.加入20 μl样品液,如果样品蛋白浓度较高,可考虑用样品缓冲液稀释,但是加入微板孔中的样品体积必须维持在20 μl;

5. 加入180 μl的过滤的Bradford定量工作液;

6. 将微板置于Versa Microplate Reader;

7. 选择自动混合功能,震动一分钟;

8. 室温下静止5分钟;

9.选择光吸收波长为595nm;

10.按“Read”键, 读取数据;

11.输出数据,计算定量结果。

注:

1.该机器所读出的数据可通过及其自身的软件进行处理(请参见软件的说明),也可以直接paste数据至Excel中,再行处理;

2.所配的标准蛋白也必须充分考虑到样品制备液对Bradford试剂的干扰。一般说来,标准蛋白储液可以样品制备液来稀释;

3. 所测的样品,无论是标准蛋白质还是样本,都必须平行测定至少两次。

4. 配置上述反应体系时,一定要认真细心,要尽量减小平行微孔的差别。

七、溶液配制

1、8×Binding溶液

40mM 咪唑

4M NaCl

160 mM Tris-HCl

pH7.9

2、4×Elute 溶液

4M 咪唑

2M NaCl

80mM Tris-HCl

Ph7.9

3、8×charge 溶液

4、8×Wash 溶液

160 mM 咪唑

4M NaCl

160 mM Tris-HCl

pH7.9

5、4×strip 溶液

40 mM EDTA

2M NaCl

80mM Tris-HCl

Ph7.9

注:

(1)如样品在变性状态下,则应在Binding,Elute,Wash溶液中加入4~8M的尿素。

(2)PH的调节应在加完尿素和稀释完储液后调节。

七、注意事项:

(1)层析具体操作中各缓冲溶液的注入量以PH及电导基线基本不再变化为止。(2)所有的样品和溶液层析前,应脱气和过膜(0.45μm)。

(3)当柱流速明显减低或层析介质被charge 后不再变蓝时,需再生柱子。再生的方法:依次将以下的溶液按建议的体积数处理介质。

两个柱体积的8M的尿素,两个柱体积的水,一个柱体积的2%SDS,一个柱体积25%的乙醇,一个柱体积50%的乙醇,一个柱体积75%乙醇,一个柱体积100%乙醇,一个柱体积75%乙醇,一个柱体积50%乙醇,一个柱体积25%乙醇,一个柱体积水,五个柱体积100mM的EDTA(PH=8.0),三个柱体积水,三个柱体积20%的乙醇,储存于4℃。

(4)加变性剂的Binding溶液应在平衡的最后步骤中使用,故应配两组Binding溶液,即8×且不含尿素和1×含尿素。

(5)DTT,BME,EDTA应避免在层析溶液中,因为DTT,BME会与镍离子形成棕色沉淀,而EDTA会剥离镍离子。

(6)为减少样品的粘度,可用Dnase处理(不用超声时),方法如下:在样品液中加入终浓度为10mM MgSO4,20μg/ml Dnase室温放置20分。但此种处理方法会增加样品被蛋白酶水解的危险。

(7)加入蛋白酶抑制0.2M的乙醇溶液,-20℃储藏。工作浓度为储液稀释200倍。(PMSF在水溶液中的半衰期短)。

(8)Wash溶液的咪唑需调节,与组氨酸的长度有关。如六个组氨酸所需的淋洗浓度低于十个组氨酸所需的淋洗浓度。

(9)变性蛋白质的一般复性方法。A、透析既逐步降低变性剂的浓度;B、稀释法(10)可将变性剂直接加入到Binding,Washing,Elute 溶液中,但需在加入变性剂后调节PH至所需的值。

原核表达遇到瓶颈怎么办(终审稿)

原核表达遇到瓶颈怎么 办 TPMK standardization office【 TPMK5AB- TPMK08- TPMK2C- TPMK18】

我想表达遇到的第一个瓶颈估计就是为什么我的外源片段插到载体里面,PCR鉴定没问题,双酶切也OK,可是就是不见表达。一般我们是如何判断没有表达呢?大多都是首先进行SDS-PAGE。在跑胶的时候一定要设对照,比较严谨的电泳对照,应该是:Marker,标准品阳性对照(如果有,且打算做Western的话),以及空白载体(诱导)和重组载体(不诱导)2个阴性对照,再加上诱导不同时间的表达结果。Marker用于判断条带大小,标准品用于判断Western体系包括抗体显色剂和操作的可靠性,以及精确判断大小;空白载体(诱导)负对照有助于判断在非诱导条件下的本底表达;而重组载体(不诱导)负对照则有助于判断诱导的效果以及排除诱导剂对宿主菌潜在的干扰,或者是区分细菌内源和外源表达产物——偷懒可不是好习惯,会影响结果判断。注意,接种表达和接种做感受态都类似,一定要用挑单克隆、加足量抗生素、过夜培养的新鲜菌液转种最好,在筛选压力下生长旺盛的种子液远比经过4℃保存的菌液要好得多,也许是因为保存时间长会导致抗生素失效部分细菌丢失质粒或者其他变化。反正就是一种经验做法。 跑SDS-PAGE的话可以用考马斯亮兰染,它灵敏度在100ng左右;但是不能跟着做Western了。银染的灵敏度在0.1~1 ng;有钱还可以用Sypro Red,灵敏度高还可以继续做Western。WesternBlot是蛋白质定性和半定量的最通用的技术,具体细节可参考生物通WesternBlot技术专题,我们有详细介绍的。 在做过Western Blot仍没有检测到表达带,那么就要开始进行下一步的分析了。首先,看看载体的多克隆位点和片断插入的序列,是否有因为酶切连接而意外引入了转录终止信号。有时载体几经多个实验人员的周转,反复插入片断,或者是粘端

浅谈原核表达

浅谈原核表达的技巧 摘要:原核表达是表达外源基因常用的方法,具有操作简单、快捷,需时较短,表达产量高,适合工业化等优点。本文作者根据自己的实践经验,总结了原核表达的一些技巧。 关键词:原核表达表达载体限制性内切酶 将植物、动物、微生物等的目的基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下优点:易于生长和控制;易于培养,实验耗费少;可选择多种大肠杆菌菌株及与之匹配的具各种特性的质粒。原核表达是近年来表达外源蛋白常用的方法,本文根据自己的实践经验,着重谈谈对原核表达中的技巧问题。 一、原核表达一般程序 表达前准备-获得目的基因-构建含目的片段的表达载体(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析。 二、原核表达中各操作步骤的关键因素及技巧 1.表达前的准备要素:原核表达注重表达前对目的片段、表达载体及表达菌株的分析、选择。正所谓“磨刀不误砍柴功”,经过细致、周全的分析、准备、设计可带来较为顺当的实验,可免去许多不必要的麻烦。 (1)对表达载体的分析 载体的选择:同样的载体,同样的系统,很可能表达这个蛋白表达量起高,但另外一个就是做不出来,所以表达载体的选择非常重要,没有万能的载体。选择载体通常我们关心质粒上的几个功能组件及所带来的问题:是否为诱导表达型载体,启动子的强弱、多克隆位点、限制性内切酶的位置、终止密码子的有无及位置,融合Tag的有无,筛选报告基因的位置等。所选载体一定要保持原来的遗传背景(有些载体经过多次交换已变异)。选择表达载体时,要根据所表达蛋白的最终应用考虑,如果为了方便纯化,可选择融合表达;如果为了获得天然蛋白,可选择非融合表达。融合表达时在选择外源DNA同载体分子连接反应时,对转录和转译过程中密码结构的阅读不能发生干扰。 翻译的起始位点:要表达目的蛋白,在该基因的5’端必须有一起始位点,现在大部分的表达载体都提供起始位点,起始密码子与核糖体结合位点的距离都已被优化,一般情况下不需要自己再加,实际操作时要留意载体图谱上是否注明有起始密码子和终止密码子,如无,还得根据自己的实际情况加上。 在起始密码子附近的mRNA二级结构:外源基因其始转录后,保持mRNA的有效延伸、终止及稳定存在是外源基因有效表达的关键,尤其是在起始密码子附近的mRNA二级结构可能会抑制翻译的起始或者造成翻译暂停从而产生不完全的蛋白。如果利用Primer Premier软件分析DNA或RNA结构上有柄(stem)结构,并且结合长度超过8个碱基,这种结构会因为位点专一突变等因素而变得不稳定,影响正常的翻译。 (2)对目的片段的分析 基因(或蛋白)的大小:原核表达的成功与否与所要表达的蛋白(或基因)大小有关,一般说来小于5kD或者大于100kD的蛋白都是难以表达的。蛋白越小,越容易被内源蛋白水解酶所降解。在这种情况下可以采取串联表达,在每个表达单位(即单体蛋白)间设计蛋白水解或者是化学断裂位点。如果蛋白较小,那么加入融合标签GST、Trx、MBP或者其它较大的促进融合的蛋白标签就较有可能使蛋白正确折叠,并以融合形式表达。如果蛋白较大,大于60kD的蛋白建议使用较小的标签(如6×组氨酸标签)。对于结构研究较清楚的蛋白可以采取截取表达。当然表达时要根据目的进行截取,如果是要进行抗体制备而截取,那么一定要保证截取的部位抗原性较强。对于抗原性也可以利用软件分析,比如Vector NIT Suite或者一些在线软件,不过在分析之余也要认识到这是一种资料统计的结论,

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

原核表达步骤

1.将已经成功转有重组表达载体pET-28a-CYP83A1的表达菌 E. coli.BL21(DE3)在LB固体培养基(50μg/mL Kan)上划线接种培 2.挑取单菌落,接种于5mL的LB液体培养基(50μg/mL Kan)中,37℃,180r/min振荡培养过夜。 3.取500μL过夜培养的菌液转接入100mL新的LB液体培养基(50μg/mL Kan)中,37℃,190r/min振荡培养到菌液OD600 =0.6~0.8。 4.分组培养:实验组加入终浓度为1mmol/L的IPTG,对照组不加IPTG,37℃,190r/min诱导培养6h。 5.8000r/min离心2min,收集细菌,用1×PBS(0.01mol/L)缓冲液悬浮。 6.冰上超声波破碎,功率30w,工作5s,间歇5s,总时间2min。 7.4℃、12000r/min离心10min,分离上清与沉淀,取100μL上清与等体积的2×上样缓冲液混合;用200μL1×上样缓冲液悬浮沉淀,沸水浴5min后,对上清和沉淀进行SDS-PAGE检测。

重组质粒在大肠杆菌中的诱导表达及SDS-PAGE分析 挑测序正确的单克隆接种到3mLLB(50μg·mL-1Kan)培养基中,振荡培养12h后,将菌液按1﹕100的比例加入到300mL LB(50μg·mL-1Kan)培养基中200r/min37℃振荡培养至OD600为0.5—0.6时,加入IPTG(使终浓度为1mmol·L-1)进行诱导表达,分别在37℃诱导4h,4℃保存备用。未加IPTG诱导的pET-28a-CsFOMT收集作为阴性对照。诱导全部完成后,各取50mL 菌液离心收集细菌,加入SDS上样缓冲液,悬浮混匀,100℃3min,12000r/min离心1min,取上清4℃保存备用。另取50mL菌液离心收集菌体后用1×PBS(PH7.4)将沉菌悬起,经过超声波细胞破碎(20mm的变幅杆,400W,超声2s,间隔5s,重复60次),10000r/min离心10min分离上清和沉淀,上清和沉淀样品中分别加入SDS上样缓冲液,混匀,沸水浴,取上清和沉淀分别进行SDS-PAGE(5%浓缩胶,12%分离胶),然后分析蛋白表达结果

表达蛋白的分离与纯化

表达蛋白的分离与纯化 大肠杆菌表达蛋白以可溶和不溶两种形式存在,需要不同的纯化策略。现在,许多蛋白质正在被发现而事先并不知道它们的功能,这些自然需要将蛋白质分离出来后,进行进一步的研究来获得。分析蛋白质的方法学现已极大的简化和改进。必须承认,蛋白质纯化比起DNA克隆和操作来是更具有艺术性的,尽管DNA序列具有异乎寻常的多样性(因而它是唯一适合遗传物质的),但它却有标准的物理化学性质,而每一种蛋白质则有它自己的由氨基酸序列决定的物理化学性质(因而它具有执行众多生物学功能的用途)。正是蛋白质间的这些物理性质上的差异使它们得以能进行纯化但这也意味着需要对每一种待纯化的蛋白质研发一套新的方法。所幸的是,尽管存在这种固有的困难,但现已有多种方法可以利用,蛋白质纯化策略也已实际可行。目前,待研究蛋白或酶的基因的获得已是相当普遍的事。可诱导表达系统特别是Studier等发展的以噬菌体T7RNA聚合酶为基础的表达系统的出现使人们能近乎常规地获得过表达(overexpression),表达水平可达细胞蛋白的2%以上,有些甚至高达50%。 一、可溶性产物的纯化(融合T7·Tag的表达蛋白) (一)试剂准备 采用T7· Tag Affinity Purification Kit 1.T7·Tag抗体琼脂。 2.B/W缓冲液:4.29mM Na2HPO4,1.47 mM KH2PO4,2.7 mM KCl,3.

0.137mM NaCl,1%吐温-20,pH7.3。 4. 洗脱缓冲液: 0.1M柠檬酸,pH2.2。 5. 中和缓冲液:2M Tris,pH10.4。 1.PEG 20000。 (二)操作步骤 1.100ml 含重组表达质粒的菌体诱导后,离心5000g×5min,弃上清,收获菌体,用10ml预冷的B/W缓冲液重悬。 2. 重悬液于冰上超声处理,直至样品不再粘稠,4℃离心14000g×30min,取上清液,0.45μm膜抽滤后作为样品液。 3. 将结合T7·Tag抗体的琼脂充分悬起,平衡至室温,装入层析柱中。 4. B/W缓冲液平衡后样品液过柱。 5. 10ml B/W缓冲液过柱,洗去未结合蛋白。 6. 用5ml洗脱缓冲液过柱,每次1ml,洗脱液用含150μl中和缓冲液的离心管收集,混匀后置于冰上,直接SDS-PAGE分析。 7. 将洗脱下来的蛋白放入透析袋中,双蒸水透析24hr,中间换液数次。 8.用PEG 20000浓缩蛋白。 (三)注意事项 蛋白在过层析柱前,要0.45μm膜抽滤,否则几次纯化后,柱子中会有不溶物。 二、包涵体的纯化

如何做原核表达

如何做原核表达 人们合成与生物相关的物质是从尿素开始的,1828年,德国化学家维勒人工合成了存在于生物体的这种有机物。在1960年我国科学家采用化学方法首次成功地合成了具有生物活性的蛋白质——胰岛素。随着内切酶的发现和基因工程技术的发展,人们发现用各种不同的载体在原核、真核系统中进行蛋白表达更为行之有效。而这其中大肠杆菌表达系统发展得最为迅速、成熟。原核表达具有操作方便、快捷,需时较短,表达量大,适合工业化生产等优点。虽然也有缺少糖基化和表达后加工等问题,当有了其它多种表达系统后,原核系统仍是我们合成外源蛋白的首选。 在网上看到有人把原核表达技术分成四个等级:初次尝试扫盲、乱棍打枣入门、系统优化中级和自成一体高手,觉得十分有意思。但是根据笔者自己的经验以及耳闻目睹的一些经历告诉我:做表达?那是谋事在人,成事在天。有时候你把克隆做出来了,双酶切鉴定没问题,测序没问题,可是就是看不到表达带。原因当然可以分析,实验也是可以改进,但是窜改一下戈尔泰的话:“成功的实验都是一样的,失败的实验各有各的不幸。”在实验遇到瓶颈的时候要如何进行分析,找到问题的症结是我们的实验关键所在。在准备进行原核表达的时候需要考虑的因素很多,市面上可供选择的载体、菌株也很多,要如何进行正确的选择,找到适合自己的载体是十分重要的。所以,现在要对目前常用的一些载体进行介绍,让我们对其相关产品及其表达原理进行了解,以方便实验设计。 首先来一些大肠杆菌表达的基本概念:一个完整的表达系统通常包括配套的表达载体和表达菌株,如果是特殊的诱导表达还包括诱导剂,如果是融合表达还包括纯化系统或者Tag检测等等。选择表达系统通常要根据实验目的来考虑,比如表达量高低,目标蛋白的活性,表达产物的

原核表达

原核表达 一、原理 1、E . coli 表达系统 E . coli 是重要的原核表达体系。在重组基因转化入E . coli 菌株以后,通过温度的控制,诱导其在宿主菌内表达目的蛋白质,将表达样品进行SDS-PAGE 以检测表达蛋白质。 2、外源基因的诱导表达 提高外源基因表达水平的基本手段之一,就是将宿主菌的生长与外源基因的表达分成两个阶段,以减轻宿主菌的负荷。常用的有温度诱导和药物诱导。本实验采用异丙基硫代-β-D-半乳糖昔(IPTG)诱导外源基因表达。 不同的表达质粒表达方法并不完全相同,因启动子不同,诱导表达要根据具体情况而定。 二、材料 1、诱导表达材料 ( 1 ) LB (Luria—Bertani))培养基 酵母膏(Yeast extract) 5g 蛋白胨(Peptone) 10g NaCl 10g 琼脂(Agar) 1-2% 蒸馏水(Distilled water) 1000ml pH 7.0 适用范围:大肠杆菌 ( 2 ) IPTG 贮备液:2 g IPTG溶于10 mL 蒸馏水中,0 . 22 μm 滤膜过滤除菌,分装成1 mL /份,-20 ℃保存。 ( 3 ) l×凝胶电泳加样缓冲液: 50 mmol / L Tris -CI ( pH 6 . 8 ) 50 mmol / L DTT 2 % SDS (电泳级) 0.1 %溴酚蓝 10 %甘油 2、大肠杆菌包涵体的分离与蛋白纯化材料 1 )酶溶法 (1)裂解缓冲液: 50 mmol / L Tris-CI ( pH 8 . 0 ) 1 mmol / L EDTA 100 mmol / LNaCI (2)50 mmol / L 苯甲基磺酰氟(PMSF )。 (3)10 mg / mL 溶菌酶。 (4)脱氧胆酸。 (5)1 mg / mL DNase I。 2 )超声破碎法 ( 1 ) TE 缓冲液。 ( 2 ) 2×SDS -PAGE 凝胶电泳加样缓冲液: 100 mmol / L Tris-HCI ( pH 8 . 0 ) 100 mmol / L DTT 4 %SDS 0.2 %溴酚蓝 20 %甘油

基因工程知识点总结归纳(更新版)

基因工程 绪论 1、克隆(clone):作名词:含有目的基因的重组DNA分子或含有重组分子的无性繁殖。作动词:基因的分离和重组的过程。 2、基因工程(gene engineering):体外将目的基因插入病毒、质粒、或其他载体分子中,构成遗传物质的新组合,并使之掺入到原先没有这些基因的宿主细胞内,且能稳定的遗传。供体、受体和载体是基因工程的三大要素。 3、基因工程诞生的基础 三大理论基础:40年代发现了生物的遗传物质是DNA;50年代弄清楚DNA 的双螺旋结构和半保留复制机理;60年代确定遗传信息的遗传方式。以密码方式每三个核苷酸组成一个密码子代表一个氨基酸。 三大技术基础:限制性内切酶的发现;DNA连接酶的发现;载体的发现 3、基因工程的技术路线:切:DNA片段的获得;接:DNA片段与载体的连接;转:外源DNA片段进出受体细胞;选:选择基因;表达:目的基因的表达;基因工程的工具酶 1、限制性内切酶(restriction enzymes):主要是从原核生物中分离纯化出来的,是一类能识别双链DNA分子中某种特定核苷酸序列,并由此切割DNA双链的核酸内切酶。 2、限制酶的命名:属名(斜体)+种名+株系+序数 3、II型限制性内切酶识别特定序列并在特定位点切割 4、同裂酶:来源不同,其识别位点与切割位点均相同的限制酶。 5、同尾酶:来源不同,识别的靶序列不同,但产生相同的黏性末端的酶形成的新位点不能被原来的酶识别。 6、限制性内切酶的活性:在适当反应条件下,1小时内完全酶解1ug特定的DNA 底物,所需要的限制性内切酶的量为1个酶活力单位。 7、星号活性:改变反应条件,导致限制酶的专一性和酶活力的改变。 8、DNA连接酶的特点:具有双链特异性,不能连接两条单链DNA分子或闭合单链DNA,连接反应是吸能反应,最适反应温度是4至15度,最常用的是T4连接酶。 9、S1核酸酶:特异性降解单链DNA或RNA。

原核表达步骤

Chi l 原核表达基本试验步骤 将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件: (1)选择标志的编码序列; (2)可控转录的启动子; (3)转录调控序列(转录终止子,核糖体结合位点); (4)一个多限制酶切位点接头; (5)宿主体内自主复制的序列。 原核表达一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测,其中包括: 一、试剂准备 (1)LB培养基。 (2)1M IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于10ml ddH2O

中,0.22μm滤膜抽滤,-20℃保存。 CCY的IPTG是1M的,用时进行1000倍稀释。 二、操作步骤 (一)获得目的基因 1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。 2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA 为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。 (二)构建重组表达载体 1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。 2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。我们用Soultion I连接。 (三)获得含重组表达质粒的表达菌种 1、将连接产物转化大肠杆菌BL21,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 3、以此重组质粒DNA转化表达宿主菌的感受态细胞。

分子生物学总结

SectionA 1 三个域:真细菌,古细菌,真核生物 2 组装中的主要作用力:非共价健作用力 SectionB 1 蛋白质纯化的分析方法 2

正电荷:天冬氨酸谷氨酸 负电荷:赖氨酸精氨酸组氨酸 极性:天冬酰胺谷氨酰胺苏氨酸丝氨酸半胱氨酸 非极性:脂肪族甘氨酸丙氨酸缬氨酸亮氨酸异亮氨酸甲硫氨酸脯氨酸芳香族苯丙氨酸酪氨酸色氨酸 Cys 二硫键 Gly 无手性 Pro 亚氨基酸 芳香族氨基酸最大吸收峰280mm 3 蛋白质的一级(决定蛋白折叠及其最后的形状的最重要的因素):氨基酸脱水缩合形成肽链N端到C端共价键 二级:多肽链中空间结构邻近的肽链骨架通过氢键形成的特殊结构。 α转角 β螺旋氢键为主要作用力 三级:多肽链中的所有二级结构和其他松散肽链区域(散环结构)通过各种分子间作用力(非共价键为主),弯曲、折叠成具有特定走向的紧密球状构象。 非共价键 四级:许多蛋白分子由多条多肽链(亚基,subunits )构成。组成蛋白的各亚基以各种非共价键作用力为主,结合形成的立体空间结构即为四级结构。非共价键 4 偶极:电子云在极性共价键的两原子间不均匀分布,使共价键两端的原子分别呈现不同的电性 兼性离子:具有正电荷(碱性),又具有负电荷(酸性)的分子 双极性分子:

Section C 1核酸的光学特性: 增色性:一种化合物随着结构的改变对光的吸收能力增加的现象 减色性:一种化合物随着结构的改变对光的吸收能力减少的现象 Reason: 碱基环暴露在环境中的越多,对紫外的吸收力越强 Absorbance(吸收值):Nucleotide > ssDNA/RNA > dsDNA 核酸的最大吸收峰260mm(碱基有芳香环) 芳香族氨基酸最大吸收峰280mm A260/A280: 纯的dsDNA:1.8 纯的RNA:2.0 纯的Protein:0.5 2 Tm 值(熔解温度):热变性时,使得DNA双链解开一半所需要的温度。 Tm=2x(A+T) + 4x(G+C) Tm值与DNA分子的长度,及GC的含量成正比 Annealing(退火):热变性的DNA经过缓慢冷却后复性 快速冷却:Stay as ssDNA 缓慢冷却: 复性成dsDNA 3 脱氧核糖核酸与核糖核苷酸得到画法 4 支持双螺旋结构的两个实验:查戈夫规则X射线晶体衍射 5 双螺旋的内容: 双链之间的关系:DNA分子由两条链组成 双链反向平行(5’3’方向) 两链的碱基通过氢键互补配对,A:T; G:C。 双链序列反向互补 各基团排列方式:糖-磷酸骨架DNA分子排列在外; 碱基对平面相互平行,排列在DNA分子的内部。 空间结构为:右手双螺旋结构 每转一圈~10个碱基对,每一圈长度33.2A 双链螺旋中形成大沟,小沟。 6 碱对DNA的影响:高pH值对DNA的影响比低pH值的要小。 高pH 值(pH>11)会改变碱基构象,使DNA变性(双链解旋,成单链)RNA的影响:高pH值,2’羟基会攻击磷酸二酯键,使其断裂,形成2’,3’-环式磷酸二酯键,从而使RNA分子断裂 7 共价闭合环状DNA (convalently closed circular DNA, cccDNA)。即通过共价键结合形成的封闭环状DNA分子。 8 超螺旋DNA(Supercoil DNA):松弛型双链DNA进一步旋转后,再形成闭环结构时,就会形成DNA超螺旋结构 L=T+W 判断是否为超螺旋正负超螺旋 9 拓扑异构酶:暂时断裂DNA分子中一条或两条单链上的磷酸二酯键,改变DNA分子的连接数及拓扑状态。 功能:消除DNA复制和转录等过程产生的超螺旋。 细胞中,Ⅰ型酶与Ⅱ型酶的活性保持一种平衡状态。Ⅱ型酶的“使DNA超螺旋化”与

原核表达步骤

原核表达步骤

Chi l 原核表达基本试验步骤 将克隆化基因插入合适载体后导入大肠杆菌用于表达大量蛋白质的方法一般称为原核表达。这种方法在蛋白纯化、定位及功能分析等方面都有应用。大肠杆菌用于表达重组蛋白有以下特点:易于生长和控制;用于细菌培养的材料不及哺乳动物细胞系统的材料昂贵;有各种各样的大肠杆菌菌株及与之匹配的具各种特性的质粒可供选择。但是,在大肠杆菌中表达的蛋白由于缺少修饰和糖基化、磷酸化等翻译后加工,常形成包涵体而影响表达蛋白的生物学活性及构象。 表达载体在基因工程中具有十分重要的作用,原核表达载体通常为质粒,典型的表达载体应具有以下几种元件: (1)选择标志的编码序列; (2)可控转录的启动子; (3)转录调控序列(转录终止子,核糖体结合位点); (4)一个多限制酶切位点接头; (5)宿主体内自主复制的序列。 原核表达一般程序如下:获得目的基因-准备表达载体-将目的基因插入表达载体中(测序验证)-转化表达宿主菌-诱导靶蛋白的表达-表达蛋白的分析-扩增、纯化、进一步检测,其中包括: 一、试剂准备 (1)LB培养基。 (2)1M IPTG(异丙基硫代-β-D-半乳糖苷):2.38g IPTG溶于10ml ddH2O

中,0.22μm滤膜抽滤,-20℃保存。 CCY的IPTG是1M的,用时进行1000倍稀释。 二、操作步骤 (一)获得目的基因 1、通过PCR方法:以含目的基因的克隆质粒为模板,按基因序列设计一对引物(在上游和下游引物分别引入不同的酶切位点),PCR循环获得所需基因片段。 2、通过RT-PCR方法:用TRIzol法从细胞或组织中提取总RNA,以mRNA 为模板,逆转录形成cDNA第一链,以逆转录产物为模板进行PCR循环获得产物。 (二)构建重组表达载体 1、载体酶切:将表达质粒用限制性内切酶(同引物的酶切位点)进行双酶切,酶切产物行琼脂糖电泳后,用胶回收Kit或冻融法回收载体大片段。 2、PCR产物双酶切后回收,在T4DNA连接酶作用下连接入载体。我们用Soultion I连接。 (三)获得含重组表达质粒的表达菌种 1、将连接产物转化大肠杆菌BL21,根据重组载体的标志(抗Amp或蓝白斑)作筛选,挑取单斑,碱裂解法小量抽提质粒,双酶切初步鉴定。 2、测序验证目的基因的插入方向及阅读框架均正确,进入下步操作。否则应筛选更多克隆,重复亚克隆或亚克隆至不同酶切位点。 3、以此重组质粒DNA转化表达宿主菌的感受态细胞。

蛋白的纯化

第二部分:蛋白的纯化 如何区分蛋白表达在上清还是包涵体? 破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。 根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。 对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。 沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。 取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。 无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。 包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。 电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。 包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体; 建议: 还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

原核表达详细步骤

原核表达详细步骤 PartⅠ选择表达的目的基因 一、基因序列 1. 得到靶基因DNA(cDNA)序列,有几种方式寻找正确的读码顺序: ①利用生物信息学在NCBI上blast同源基因,找到同源蛋白,再在DNA 的ORF中找到正确的读码。 ②实验方法,即得到蛋白,进行测序,然后在DNA上找到正确的读码。 ③利用mRNA的特征,找到启动子,编码区,终止子。在编码区中找到翻译起始密码子与终止密码子(cDNA)。 2. 注意事项: ①区别ORF和CDS→ORF一般在DNA上的定义,寻找原则是翻译起始密码子和终止密码子;CDS可以是DNA上的定义,也可以是mRNA上的定义,分为complete CDS和partial CDS,是从第一个核酸开始读,连续读下去,complete CDS读码是“M、、、、、、、、、*”,partial CDS的读码是相应的AA ②在进行试验设计时,充分利用生物信息学的信息后,在进行试验设计。 二、抗原决定簇的预测 1、原理: 蛋白质表面部分可以使免疫系统产生抗体的区域叫抗原决定簇。一般抗原决定簇是由6-12 氨基酸或碳水基团组成,它可以是由连续序列(蛋白质一级结构)组成或由不连续的蛋白质三维结构组成。变性蛋白只是天然蛋白伸直的了产物,用来免疫动物具有更强的抗原性。只是天然蛋白中被包在内部的抗原决定簇也会暴露出来,如果用该变性抗原制备的抗体来检测变性抗原是可以的,如果用来检测天然蛋白,可能会有假阳性。做单抗也可以,同样道理,筛选出的单抗可能对抗的抗原决定簇处于天然抗原的内部,是否能用还要看将来该单抗用来干什么。 2、选择原则: (1)、亲水性:大部分抗原决定簇是亲水性的。

重组蛋白IFNGA在大肠杆菌中的表达与纯化

高中组 11年级 生物化学 3人项目 重组蛋白IFNGA在大肠杆菌中的表达与纯化

重组蛋白IFNGA在大肠杆菌中的表达与纯化 摘要: 干扰素γ(Interferon gamma,IFN-γ)是体内重要的细胞因子,能够通过调控免疫相关基因的转录协调机体的免疫反应,具有抗病毒、抗肿瘤、增强免疫力能功能。目前对于IFN-α、IFN-β重组表达的较多,而关于IFN-γ 蛋白的纯化表达较少.因此,本研究使用PCR方法扩增IFN-γ基因,将IFN-γ基因分别插入原核表达载体pET-30构建重组表达质粒pET-30--IFN-γ,转化大肠杆菌BL21和Rosetta菌株,在IPTG诱导下表达IFN-γ,SDS-PAGE分析重组表达蛋白。结果表明:成功构建重组表达质粒pET-30-IFN-γ;表达产物主要以包涵体形式存在;经Ni2+-NTA亲和层析纯化,获得高纯度重组蛋白。本实验纯化的蛋白有望在今后用于医学和生物学研究中。 关键词:干扰素;IFN-γ 蛋白;大肠杆菌表达系统;重组表达;蛋白纯化; 一、研究背景 干扰素(IFN)是一种广谱抗病毒剂,并不直接杀伤或抑制病毒,而主要是通过细胞表面受体作用使细胞产生抗病毒蛋白,从而抑制病毒(比如:乙肝病毒)的复制。其类型分为三类,α-(白细胞)型、β-(成纤维细胞)型,γ-(淋巴细胞)型;同时还可增强自然杀伤细胞(NK细胞)、巨噬细胞和T淋巴细胞的活力,从而起到免疫调节作用,并增强抗病毒能力。干扰素是一组具有多种功能的活性蛋白质(主要是糖蛋白),是一种由单核细胞和淋巴细胞产生的细胞因子。它们在同种细胞上具有广谱的抗病毒、影响细胞生长,以及分化、调节免疫功能等多种生物活性。 其中,IFN-γ是体内重要的免疫调节因子,能通过与细胞表面受体结合,诱导病毒感染细胞产生多种抗病毒蛋白,使细胞内产生抗病毒状态而发挥抗病毒作用。在诱导效应因子表达的同时,由于IFN-γ能够提高细胞表面MHC分子的表达,增强免疫活性细胞对病原体的杀伤作用,从而协同促进了机体对病毒感染细胞的杀灭,而使机体处于抗病毒状态。虽然各种类型的干扰素均能介导细胞对病毒感染的反应,但IFN-γ 的免疫调节活性在协调免疫反应和确定机体长期的抗病毒状态中发挥更为重要的作用。其作用可大致总结为以下几点:①

原核表达步骤总结

原核表达步骤 原核表达先要将基因克隆到原核表达载体上,然后通过转化到 JM109或BL21等菌株中,诱导表达蛋白,然后进行蛋白纯化。本实验方案的前提是,目的基因已克隆到载体,并已转进入JM109菌株中。 1.鉴定目的蛋白是否在大肠杆菌JM109或BL21中大量表达 (1)制样 1 . 挑取经过双酶切鉴定的单克隆菌落于700ul LB培养基,加入0.7ul Amp(100mg/mL),37o C200r/min摇床培养,过夜活化。 2. 以1:50比例(200ul),将活化的过夜培养物加入10mL LB液体培养基中,加入10uLAmp(100mg/ml),37o C200r/min摇床扩大培养2h-3h,期间取样监控菌液的OD值,控制菌液OD600在0.6-1.0之间,以使大肠杆菌处于最适合表达外源蛋白的生长状态。(一般3h时,菌液浓度及达到标准,但是不同的基因对菌的影响不同,所以第一次实验时需要确定这个最佳时间) 3. 从10ml扩大培养物中取3ml菌液作为不加IPTG的空白对照(CK),其余7ml菌液加入7ul IPTG(储存浓度为0.5mol/l),使IPTG 终浓度达到0.5mmol/l。以200r/min的转速,37o C摇床培养3h。 4. 以5000r/min离心2min收集菌体,倾倒上清,每个离心管收集3ml培养物。 5. 加入1ml dH2O,将管底沉淀用振荡器打散以充分洗涤,8000r/min 离心2min,倾倒上清。 6. 重复步骤5。将离心管中的水倒干净。 (二)菌落SDS-PAGE 1. 在收集的菌体中加入200ul 1×SDS PAGE loading buffer(可根据沉淀的量增加或减少loading buffer的量,一般200ul比较合适)。用漩涡器剧烈震荡,确保将管底沉淀震散。 2. 将样品于100℃恒温加热器上开盖加热10min(Marker也要加热)。样品凉后,12000r/min离心3min,取每管的上清点样。上样量一般30ul—40ul,marker 20ul。 (3)SDS-PAGE分析 1. 根据目的片段的大小,制作不同浓度的分离胶 蛋白分子量 (kDa)凝胶浓度 (%) 4-4020

原核表达步骤

实验方法与步骤 1 表达质粒的构建及测序分析 1.1 cofilin-1的片段的准备 1.1.1 引物设计 根据在GenBank上查找人源cofilin-1的基因序列,用Primer Premier 5.0软件进行上下游引物的设计,并送往上海生物工程技术服务有限公司合成的PCR 引物。引物如下: 引物名称序列 F-cofilin-1 5′-AAGTCGACATATGGCCTCCGGTGTG-3′ R-cofilin-1 5′-TCTCTCGAGGGCTCACAAAGGCTTG-3′将以上引物用灭菌的三蒸水稀释成10μmol/L,分装于Eppendorf管中,-20℃冰箱中保存备用。 1.1.2 cofilin-1片段PCR 1 反应体系: 2.5μl KOD polymerase(3’-5’核酸外 切酶活性) KOD polymerase buffer 5μl MgSO4 2.5μl DMSO(“万能溶剂”) 2.5μl dNTPMixture 5μl PrimerF(底物) 1.5μl PrimerR 1.5μl Template(模板)5μl ddH2O 25μl Total 50μl 2PCR反应条件:

①94℃预变性3min ②94℃退火30s ③65℃延伸40s ④68℃40s ⑤go to②30个循环 ⑥68℃5min ⑦4℃forever 3 琼脂糖凝胶电泳对PCR产物进行检测 (1)配置浓度为1%的凝胶。称取琼脂糖0.3g,加入30ml 1×TAE电泳缓冲液(Tris-乙酸电泳缓冲液)中,用微波炉加热2min,待凝胶稍冷却,加入2μl EB(溴化乙锭,荧光染色剂)混匀后倾入凝胶铸槽中,插入梳子,并用玻璃棒驱除气泡,待凝胶完全凝结后拔除梳子。 (2)把凝胶置于1×TAE电泳缓冲液的电泳槽中,加样孔置于负极一侧,然后依次在加样孔中加入50μl Marker、50μl样品+10μl loading buffer(上样缓冲液,可以显示两条带,前面的蓝色的条带是溴酚蓝,代表的片段大小是300bp,后面的有点绿色的条带是二甲苯青,代表的片段大小在4000bp左右),盖上电泳盖,以100V电压进行电泳。 (3)当Marker条带充分分开后即可停止电泳,将凝胶移至保鲜膜上,置于凝胶自动成像仪中分析。 4 割胶回收PCR反应体系的扩增产物,用Omega Bio-Tek公司的Gel Extrection Kit进行回收: (1)将PCR扩增产物经1%的琼脂糖凝胶电泳,在紫外灯下迅速切取含有目的条带的琼脂糖凝胶,放入灭菌的EP管中。DNA在紫外灯下曝光时间不超过30s。 (2)称量凝胶块重量,以1g=1ml进行计算,加入适量体积的binding buffer,55-65℃加热至凝胶完全融化(约7~10min),每隔2~3min震荡一次。 (3)将Hibind DNA柱子套在2ml的收集管。将上述步骤(2)的溶液转移至Hibind DNA柱子中,10000×g离心1min,弃滤液。 (4)将柱子装回收集管中,加入300μl binding buffer,10000×g离心1min,

蛋白表达纯化流程

第一章蛋白表达纯化 一、诱导表达分析 1) 把测序正确的表达质粒转化到合适的表达宿主菌中并涂布在相应抗性的LB 平板上培养过夜; 2) 分别挑两个单克隆于3ml含抗生素的LB培养基中培养过夜; 3) 按1%接种过夜培养的菌液于4ml含抗生素LB培养基中37度培养2-3小时; 4) 加入终浓度为0.1mM的IPTG诱导表达3个小时左右,取样做蛋白电泳分析目标蛋白的表达情况。 二、蛋白纯化 2.1重组蛋白的提取 2.1.1 提取缓冲液 20 mM Tris-HCl (pH8.0) 或者其他推荐使用的缓冲体系。如需溶解难溶蛋白或者包涵体还可加入8 M urea 或 6 M guanidine hydrochloride 。 Note: 处理(His)6融合蛋白时可以加入5–50 mM imidazole 以减少上柱时的非特异性吸附。 2.1.2 方法 1)发酵液离心收集菌体(at 7 000–8 000 g for 10 minutes or 1 000–1 500 g for 30 minutes at +4 °C)。 2)弃去上清液,加入适当的20 mM Tris-HCl (pH8.0),重悬; 3)离心收集菌体同上,弃去上清液,将装有菌体的离心管置于冰中。 4)每ml菌体加入50ul冰冷的提取缓冲液重悬菌体。 5)冰浴中超声裂解菌体(超声2秒,停止6秒),之后取样进行SDS-PAGE电泳分 析。 Note:超声破菌应尽量使用最短的时间,长时间的进行可能会破坏蛋白功能。还应避免产生泡沫,因为这样会使蛋白变性和导致宿主蛋白与融合蛋白协同纯化。 6)离心使细胞碎片沉降(at 12 000 g for 10 minutes at +4 °C)。 7)小心将上清液移到干净的容器中,并取样进行SDS-PAGE电泳分析。

基因工程总结

简述Southern blot,northern blot,western blot的原理,比较它们的不同. 答:Southern Blot 原理:将待检测的DNA分子用/不用限制性内切酶消化后,通过琼脂糖凝胶电泳进行分离,继而将其变性并按其在凝胶中的位置转移到硝酸纤维素薄膜或尼龙膜上,固定后再与同位素或其它标记物标记的DNA或RNA探针进行反应。如果待检物中含有与探针互补的序列,则二者通过碱基互补的原理进行结合,游离探针洗涤后用自显影或其它合适的技术进行检测,从而显示出待检的片段及其相对大小。用途:检测样品中的DNA及其含量,了解基因的状态, 如是否有点突变、扩增重排等。DNA => 琼脂糖电泳=> 印迹转移=> 预杂交=> 杂交(变性探针)=> 洗膜=> 放射自显影或显色Northern Blot 原理:在变性条件下将待检的RNA样品进行琼脂糖凝胶电泳,继而按照同Southern Blot相同的原理进行转膜和用探针进行杂交检测。用途:检测样品中是否含有基因的转录产物(mRNA)及其含量。 mRNA提取=> 甲醛变性电泳=> 印迹转移=> 预杂交=> 杂交(变性探针)=> 洗膜=> 放射自显影或化学发光 Western Blot 与 Southern Blot或 Northern Blot杂交方法类似,但Western Blot采用的是聚丙烯酰胺凝胶电泳,被检测物是蛋白质,“探针”是抗体,“显色”用标记的二抗。经过PAGE分离的蛋白质样品,转移到固相载体(例如硝酸纤维素薄膜)上,固相载体以非共价键形式吸附蛋白质,且能保持电泳分离的多肽类型及其生物学活性不变。以固相载体上的蛋白质或多肽作为抗原,与对应的抗体起免疫反应,再与酶或同位素标记的第二抗体起反应,经过底物显色或放射自显影以检测电泳分离的特异性目的基因表达的蛋白成分。该技术也广泛应用于检测蛋白水平的表达。 不同:所用于分析的对象不同。 Northern杂交用于分析RNA; Southern杂交用于分析DNA; Western杂交用于分析蛋白质。 转基因动物与转基因植物的产生有什么不同? 答:技术原理相同,用转基因技术将具体特殊经济价格的外源基因导入动植物体内,不但表达出人类所需要的优良性状(如抗虫,抗病,抗除草剂,抗倒伏,产肉,产蛋量高),还可以通过蛋白质重新组合得到新的品种。但是,对动物和植物进行目的基因导入的方法不同。动物一般采用显微注射法将带有目的基因的病毒注入细胞;而植物一般采用农杆菌转化法或基因枪法将目的基因导入受体细胞。

相关主题
文本预览
相关文档 最新文档