当前位置:文档之家› 第14讲-----函数最值与恒成立问题

第14讲-----函数最值与恒成立问题

第14讲-----函数最值与恒成立问题
第14讲-----函数最值与恒成立问题

利用函数的最值求不等式恒成立问题

考点2、利用函数的最值求不等式恒成立问题 例3、已知过函数1)(23++=ax x x f 的图象上一点),1(b B 的切线的斜率为-3. (1)求b a ,的值; (2)求A 的取值范围,使不等式1987)(-≤A x f 对于]4,1[-∈x 恒成立; 【解析】(1)()x f '=ax x 232+ 依题意得3,323)1('-=∴-=+==a a f k ()1323+-=∴x x x f ,把),1(b B 代入得1)1(-==f b 1,3-=-=∴b a (2)令063)(2'=-=x x x f 得0=x 或2=x 31232)2(,1)0(23-=+?-==f f 17)4(,3)1(=-=-f f 17)(3],4,1[≤≤--∈∴x f x 要使1987)(-≤A x f 对于]4,1[-∈x 恒成立,则)(x f 的最大值198717-≤A 2004≥∴A 变式训练1、设函数2()()ln ()f x x a x a R =-∈ (Ⅰ)若x e =为()y f x =的极值点,求实数a . (Ⅱ)求实数a 的取值范围,使得对任意(0,3]x e ∈恒有2()4f x e ≤成立(注:e 为 自然对数的底数). 【解析】(I )求导得2()()2()ln ()(2ln 1)x a a f x x a x x a x x x -=-+=-+-¢ 因为x e =是()f x 的极值点,所以()0f e =¢ 解得a e =或3a e =. 经检验,符合题意,所以a e =,或3a e = (II )①当031a 时即1 3 a > 时,由①知,(0,1]x ?时,不等式恒成立,故下 研究函数在(1,3]a 上的最大值, 首先有22(3)(3)ln34ln3f a a a a a a =-=此值随着a 的增大而增大,故应

函数不等式恒成立问题经典总结

函数、不等式恒成立问题解法(老师用) 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(对于任意实数R 上恒成立) (1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立?? ?>>?0 )(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切 αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成 一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。 解析:我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2 <---x x m ,;令)12()1()(2 ---=x x m m f ,则22≤≤-m 时,0)(

含参不等式恒成立问题中求参数取值范围一般方法(教师版)

恒成立问题是数学中常见问题,也是历年高考的一个热点。大多是在不等式中,已知一个变量的取值范围,求另一个变量的取值范围的形式出现。下面介绍几种常用的处理方法。 一、分离参数 在给出的不等式中,如果能通过恒等变形分离出参数,即:若()a f x ≥恒成立,只须求出()max f x ,则()m ax a f x ≥;若()a f x ≤恒成立,只须求出()min f x ,则()m in a f x ≤,转化为函数求最值。 例1、已知函数()lg 2a f x x x ??=+ - ???,若对任意[)2,x ∈+∞恒有()0f x >,试确定a 的取值范围。 解:根据题意得:21a x x + ->在[)2,x ∈+∞上恒成立, 即:23a x x >-+在[)2,x ∈+∞上恒成立, 设()23f x x x =-+,则()2 3924f x x ??=--+ ??? 当2x =时,()max 2f x = 所以2a > 例2、已知(],1x ∈-∞时,不等式() 21240x x a a ++-?>恒成立,求a 的取值范围。 解:令2x t =,(],1x ∈-∞ (]0,2t ∴∈ 所以原不等式可化为:22 1t a a t +-<, 要使上式在(]0,2t ∈上恒成立,只须求出()2 1t f t t +=在(]0,2t ∈上的最小值即可。 ()22211111124t f t t t t t +????==+=+- ? ? ???? 11,2t ??∈+∞???? ()()min 324f t f ∴== 234a a ∴-< 1322 a ∴-<< 二、分类讨论 在给出的不等式中,如果两变量不能通过恒等变形分别置于不等式的两边,则可利用分类讨论的思想来解决。 例3、若[]2,2x ∈-时,不等式2 3x ax a ++≥恒成立,求a 的取值范围。 解:设()2 3f x x ax a =++-,则问题转化为当[]2,2x ∈-时,()f x 的最小值非负。 (1) 当22a -<-即:4a >时,()()min 2730f x f a =-=-≥ 73 a ∴≤又4a >所以a 不存在;

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题, 也是高中数学非常重要的一个模块, 不管是小题,还 是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后, a f (x )恒成立,则有a f (X )max 2. 对于双变量的恒成立问题 f(x) min g(x)min 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的, (甚至我提出这样 一个观点,所有导数的题目95%3根结底就是带参数二次函数在已知定义域上根的讨论, 3%是 ax b 与ax 3 b 这种形式根的讨论,2%!观察法得到零点,零点通常是1,-,e 之类),所以如果 e 我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一?二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知f (x ) ■ 2x2 2ax a 1定义域为R ,求a 的取值围 思考:①引入定义域(非R ) ② 参数在二次项,就需考虑是否为0 1 ③ 引入高次(3次,4次,—,I nx , e x 等等) x ④ 引入a 2, a 3等项(导致不能分离变量) f (x )恒成立,则有a f ( x) min (若是存在性问题,那么最大变最小, 最小变最大) 如:化简后我们分析得到, a,b , f (x) 0恒成立,那么只需 f ( x) min a,b ,使得 f(x) 0,那么只需f (X )max 0 如:化简后我们分析得到, X i ,X 2 a,b , f(xj g(X 2),那么只需 f (X)min g ( X) max 如:化简后我们分析得到, X i a,b , x 2 c, d 使f (xj gg ),那么只需 如:化简后我们分析得到, X i a,b ,X 2 C,d 使 f (X i ) g(X 2),那么只需 f (X)max g(x)min 还有一些情况了,这里不一一列举, 一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题, 成立问题(2014.03锡常镇一模那题特别典型) 总之一句话 (双变量的存在性与恒成立问题,都是先处理 我们往往先根据函数的单调性,去掉绝对值,再转变成恒

含参不等式恒成立问题学考压轴题(函数专题)

个性化教案 学生姓名 年级 科目 数学 授课教师 日期 时间段 课时 2 授课类型 新课/复习课/作业讲解课 教学目标 教学内容 函数专题:含参不等式恒成立问题 个性化学习问题解决 “含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,知识点多,综合性强,解法灵活等。在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用 恒成立问题的基本类型: 类型1:若所求问题可转化为二次不等式,则可考虑应用判别式法解题。一般地,对于二次函数 ),0()(2R x a c bx ax x f ∈≠++=,有 1)0)(>x f 对R x ∈恒成立?? ??00a ; 2)0)(对x ∈R 恒成立,求实数a 的取值范围。 例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。 类型2:设)0()(2 ≠++=a c bx ax x f (1)当0>a 时,],[0)(βα∈>x x f 在上恒成立?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立? ??>>?0)(0 )(βαf f ],[0)(βα∈-?????对[]1,2x ∈恒成立,求实数a 的取值范围。

(完整word)高中数学恒成立问题.doc

高中数学不等式的恒成立问题 不等式恒成立的问题既含参数又含变量,往往与函数、数列、方程、几何有机结 合起来,具有形式灵活、思维性强、不同知识交汇等特点 . 考题通常有两种设计方式: 一是证明某个不等式恒成立,二是已知某个不等式恒成立,求其中的参数的取 值范围 . 解决这类问题的方法关键是转化化归,通过等价转化可以把问题顺利解 决,下面我就结合自己记得教学经验谈谈不等式的恒成立问题的处理方法。一、构 造函数法 在解决不等式恒成立问题时,一种最重要的思想方法就是构造适当的函数,即构 造函数法,然后利用相关函数的图象和性质解决问题,同时注意在一个含多个变量 的数学问题中,需要确定合适的变量和参数,从而揭示函数关系,使问题更加面目 更加清晰明了,一般来说,已知存在范围的量视为变量,而待求范围的量视为参数. 例 1已知不等式对任意的都成立,求的取值范围. 解:由移项得 :. 不等式左侧与二次函数非常相 的似,于是我们可以设则不等式对满足 一切实数恒成立对恒成立.当时, 即 解得故的取值范围是. 注:此类问题常因思维定势,学生易把它看成关于的不等式讨论,从而因计算繁琐出错或者中途夭折;若转换一下思路,把待求的x 为参数,以为变量,令 则问题转化为求一次函数(或常数函数)的值在内恒为负的问题,再来求解参数应满足的条件这样问题就轻而易举的得到解决了。

二、分离参数法 在不等式中求含参数范围过程中,当不等式中的参数(或关于参数的代数式) 能够与其它变量完全分离出来并,且分离后不等式其中一边的函数(或代数式)的 最值或范围可求时,常用分离参数法. 例2已知函数(为常数)是实数集上的奇函数,函数在区间上是减函数 . 都有在上恒成立,求实数的(Ⅰ)若对(Ⅰ)中的任意实数 取值范围 . 解:由题意知,函数在区间上是减函数. 在上恒成立 注:此类问题可把要求的参变量分离出来,单独放在不等式的一侧,将另一侧 看成新函数,于是将问题转化成新函数的最值问题:若对于取值范围内的任一个数都有恒成立,则;若对于取值范围内的任一个数都有恒成立,则. 三、数形结合法 如果不等式中涉及的函数、代数式对应的图象、图形较易画出时,可通过图象、 图形的位置关系建立不等式求得参数范围 . 例 3已知函数若不等式恒成立,则实数的取值范围是.

用导数研究函数的恒成立与存在性问题-答案

用导数研究函数的恒成立与存在问题 1.已知函数23()2ln x f x x x a = -+,其中a 为常数. (1)若1a =,求函数()f x 的单调区间; (2)若函数()f x 在区间[1,2]上为单调函数,求a 的取值范围. 2.已知函数3 2 ()4()f x x ax a R =-+-∈,'()f x 是()f x 的导函数。 (1)当2a =时,对于任意的[1,1]m ∈-,[1,1]n ∈-,求()()f m f n '+的最小值; (2)若存在0(0,)x ∈+∞,使0()f x >0,求a 的取值范围。

3.已知函数x ax x f ln )(+= )(R a ∈. (1)若2=a ,求曲线)(x f y =在点1x =处的切线方程; (2)求)(x f 的单调区间; (3)设22)(2 +-=x x x g ,若对任意1(0,)x ∈+∞,均存在[]1,02∈x ,使得)()(21x g x f <, 求实数a 的取值范围.

4.(2016届惠州二模)已知函数()22ln f x x x =-+. (Ⅰ)求函数()f x 的最大值; (Ⅱ)若函数()f x 与()a g x x x =+ 有相同极值点. ①求实数a 的值; ②对121,,3x x e ???∈???? (e 为自然对数的底数),不等式 ()() 1211 f x g x k -≤-恒成立,求实数k 的取值范围.

5.已知函数2 12 ()()ln ()f x a x x a R =-+∈. (1)当1a =时,01[,]x e ?∈使不等式0()f x m ≤,求实数m 的取值范围; (2)若在区间1(,)+∞,函数()f x 的图象恒在直线2y ax =的下方,求实数a 的取值范围.

关于函数恒成立问题的解题策略

关于恒成立问题的解题策略 整理人:凌彬 一、恒成立问题的基本类型 在数学解题中经常碰到在给定条件下某些结论恒成立的命题. 函数在给定区间上某结论成立问题,其表现形式通常有: ①在给定区间上某关系恒成立;②某函数的定义域为全体实数R ; ③某不等式的解为一切实数; ④某表达式的值恒大于a ,等等 ┅ 恒成立问题,涉及到一次函数、二次函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查综合解题能力,是历届高考的热点之一. 恒成立问题在解题过程中大致可分为以下几种类型: ①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质; ⑤直接根据函数的图像. 二、恒成立问题解决的基本策略 A 、两个基本思想解决“恒成立问题” 思路1:()m f x ≥在x D ∈上恒成立max [()]m f x ?≥; 思路2:()m f x ≤在x D ∈上恒成立min [()]m f x ?≤. 如何在区间D 上求函数()f x 的最大值或者最小值问题,可以通过题目的实际情况,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导,等等方法求函数()f x 的最值. 此类问题涉及的知识比较广泛,在处理上也有许多特殊性,希望大家多多注意积累. B 、赋值型——利用特殊值求解 等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得. 例1.由等式43243212341234(1)(1)(1)(1)x a x a x a x a x b x b x b x b ++++=++++++++; 定义映射f :12341234(, , , )a a a a b b b b →+++,则f :(4,3,2,1)_____→ 解:取0x =,则412341a b b b b =++++,又由已知41a =,所以12340b b b b +++=. 例2.如果函数()sin 2cos2y f x x a x ==+的图像关于直线8x π=- 对称,那么____a = 解:取0x =及4x π=-,则(0)()4 f f π=-,即1a =-. 此法体现了数学中从特殊到一般的转化思想.

教案高中含参不等式的恒成立问题整理版.doc

高中数学不等式的恒成立问题 一、用一元二次方程根的判别式 有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。 基本结论总结 例1 对于x ∈R ,不等式恒成立,求实数m 的取值范围。 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022 a a a 或 (2)?? ? ??<-=-=-0 40)2(20 2a a 解(1)得?? ?<<-<2 22 a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习 1. 已知函数])1(lg[2 2 a x a x y +-+=的定义域为R ,求实数a 的取值范围。 2.若对于x ∈R ,不等式恒成立,求实数m 的取值范围。 3.若不等式的解集是R ,求m 的范围。 4.x 取一切实数时,使3 47 2+++kx kx kx 恒有意义,求实数k 的取值范围.

例3.设22)(2 +-=mx x x f ,当),1[+∞-∈x 时,m x f ≥)(恒成立,求实数m 的取值范围。 关键点拨:为了使 在 恒成立,构造一个新函数 是解题的关键,再利用二次 函数的图象性质进行分类讨论,使问题得到圆满解决。若二次不等式中x 的取值范围有限制,则可利用根的分布解决问题。 解:m mx x x F -+-=22)(2 ,则当),1[+∞-∈x 时,0)(≥x F 恒成立 当120)2)(1(4<<-<+-=?m m m 即时,0)(>x F 显然成立; 当0≥?时,如图,0)(≥x F 恒成立的充要条件为: ??? ? ??? -≤--≥-≥?1 220)1(0m F 解得23-≤≤-m 。综上可得实数m 的取值范围为)1,3[-。 例4 。已知1ax x )x (f 2+-=,求使不等式0)x (f <对任意]2,1[x ∈恒成立的a 的取值范围。 解法1:数形结合 结合函数)x (f 的草图可知]2,1[x ,0)x (f ∈<时恒成立? 25a 0 a 25)2(f 0a 2)1(f >?? ?<-=<-=得。所以a 的取值范围是),25 (+∞。 解法2:转化为最值研究 4a 1)2a x ()x (f 22- +-= 1. 若]2,1[)x (f ,3a 232a 在时即≤≤上的最大值,25a ,0a 25)2(f )x (f max ><-==得3a 25 ≤<所以。 2. 若0a 2)1(f )x (f ]2,1[)x (f ,3a 2 3 2a max <-==>>上的最大值在时即,得2a >,所以3a >。 综上:a 的取值范围是),2 5 (+∞。 注:1. 此处是对参a 进行分类讨论,每一类中求得的a 的范围均合题意,故对每一类中所求得的a 的范围求并集。 2. I x ,m )x (f ∈<恒成立)m (m )x (f max 为常数?∈> 解法3:分离参数 ]2,1[x ,x 1x a ]2,1[x ,01ax x 2∈+ >?∈<+-。设x 1 x )x (g +=, 注:1. 运用此法最终仍归结为求函数)x (g 的最值,但由于将参数a 与变量x 分离,因此在求最值时避免了分类讨论,使问题相对简化。 2. 本题若将“]2,1[x ∈”改为“)2,1(x ∈”可类似上述三种方法完成。 仿解法1:?∈<)2,1(x ,0)x (f 25a 0 )2(f 0)1(f ≥?? ?≤≤得即),25 [:a +∞的范围是 读者可仿解法2,解法3类似完成,但应注意等号问题,即此处2 5 a = 也合题。 O x y x -1

导数中恒成立问题(最值问题)

导数中恒成立问题(最值问题) 恒成立问题是高考函数题中的重点问题,也是高中数学非常重要的一个模块,不管是小题,还是大题,常常以压轴题的形式出现。 知识储备(我个人喜欢将参数放左边,函数放右边) 先来简单的(也是最本质的)如分离变量后,()a f x ≥恒成立,则有max ()a f x ≥ ()a f x ≤恒成立,则有min ()a f x ≤ (若是存在性问题,那么最大变最小,最小变最大) 1.对于单变量的恒成立问题 如:化简后我们分析得到,对[],x a b ?∈,()0f x ≥恒成立,那么只需min ()0f x ≥ [],x a b ?∈,使得()0f x ≥,那么只需max ()0f x ≥ 2.对于双变量的恒成立问题 如:化简后我们分析得到,对[]12,,x x a b ?∈,12()()f x g x ≥,那么只需min max ()()f x g x ≥ 如:化简后我们分析得到,对[]1,x a b ?∈,[]2,x c d ?∈使12()()f x g x ≥,那么只需 min min ()()f x g x ≥ 如:化简后我们分析得到,[]1,x a b ?∈,[]2,x c d ∈使12()()f x g x ≥,那么只需max min ()()f x g x ≥ 还有一些情况了,这里不一一列举,总之一句话(双变量的存在性与恒成立问题,都是先处理一个变量,再处理另一个变量) 3.对于带绝对值的恒成立问题,我们往往先根据函数的单调性,去掉绝对值,再转变成恒成立问题(201 4.03苏锡常镇一模那题特别典型) 今天呢,我会花很多时间来讲解一道二次函数,因为二次函数是最本质的,(甚至我提出这样一个观点,所有导数的题目95%归根结底就是带参数二次函数在已知定义域上根的讨论,3%是 ax b +与3ax b +这种形式根的讨论,2%是观察法得到零点,零点通常是1 1,,e e 之类) ,所以如果我们真正弄清楚了二次函数,那么对于千变万化的导数题,我们还会畏惧吗。 那么我们先从一道练习题说起 一.二次函数型(通常方法是讨论对称轴,根据图像求最值) 例题1.已知()f x =R ,求a 的取值范围 思考:① 引入定义域(非R ) ②参数在二次项,就需考虑是否为0 ③引入高次(3次,4次,1 x ,ln x ,x e 等等) ④引入2a ,3a 等项(导致不能分离变量)

求解恒成立问题的常见方法

求解恒成立问题的常见方法 摘要:恒成立问题是高考中常见的一类问题,常见类型有:第一类是关于x的一元二次不等式对任意x∈R恒成立,求参数取值范围;第二类是不等式在给定区间上恒成立求参数的取值范围。因这类问题综合性强,思维容量大,因而成为高考一直常考不衰的热点问题。 关键词:恒成立;参数;解题方法 一、一元二次不等式中的恒成立问题 例1.已知函数f(x)=x2+ax+3对任意x∈R时恒有f(x)≥a成立,求a的取值范围。 解:∵f(x)≥a对x∈R恒成立,∴x2+ax+3-a≥0对x ∈R恒成立 ∵x∈R,∴Δ≥0,即a2-4(3-a)≥0∴a≤-6或a≥2 例2.已知函数y=lg(mx2-6mx+m+8)的定义域为R,求m的取值范围。 解:由已知得mx2-6mx+m+8>0对任意x∈R恒成立 ①当m=0时显然成立 ②当m≠0时有m>0(6m)2+4m(m+8)<0∴00(或f(x)

≥0)对任意x∈R恒成立,则有a>0Δ0Δ≤0),若f(x)<0(或f(x)≤0)对任意x∈R恒成立,则有a<0Δ<0(或a<0Δ≤0)等价转化即可。 二、在给定区间上恒成立问题 例3.已知函数f(x)= (x≠0)在(4,+∞)上恒大于0,求a的取值范围。 解:令f(x)=0则>0,∴a>-(x+ ) 令g(x)=x+ ,易知g(x)在(4,+∞)上为增函数,∴g(x)min=g(4)=5∴g(x)>5 ∴-(x+ )<-5∴a≥-5 例4.已知函数f(x)=x2+2x+a lnx,在区间(0,1]上为单调函数,求实数a的取值范围。 分析:求f ′(x)→由题意转化为恒成立问题→求最值→求得a的取值范围 解:易知f ′(x)=2x+2+ ,∵f ′(x)在f ′(x)上单调 ∴f ′(x)≥0或f ′(x)<0在(0,1]上恒成立, 即2x2+2x+a≥0或2x2+2x+a≤0恒成立 ∴a≥-(2x2+2x)或a≤-(2x2+2x)在(0,1]上恒成立又-(2x2+2x)=-2(x+ )2+ ∈[-4,0) ∴a≥0或a≤-4 方法归纳:解决此类恒成立问题通常分离参变量通过等

高考数学压轴难题归纳总结提高培优专题2.8 函数图象高与低差值正负恒成立

2.8 函数图象高与低差值正负恒成立 【题型综述】
数形结合好方法:
对于函数 f (x) 与 g(x) 的函数值大小问题,常常转化为函数 y f x 的图象在 y g x 上方(或下
方)的问题解决,而函数值的大小论证则常以构造函数 y f (x) g(x) ,即利用作差法,转化为论证恒成
立问题. 【典例指引】
例 1.设函数 f x 1 mxln 1 x .
(1)若当 0 x 1时,函数 f x 的图象恒在直线 y x 上方,求实数 m 的取值范围;
(2)求证:
e

1001 1000
1000.4
.
【思路引导】
(1)将问题转化为不等式 1 mx ln 1 x x 在 0 x 1上恒成立,求实数 m 的取值范围的问题。可构
造函数 F x f x x 1 mx ln 1 x x ,经分类讨论得到 F x 0 恒成立时 m 的取值范围即可。
(2)先证明对于任意的正整数 n ,不等式 1
1 n
n 2 5
e
恒成立,即

n
2 5

ln
1
1 n

1
0 恒成立,也

1
2 5n

ln 1
1 n

1 n
0
恒成立,结合(1)③的结论,当
m2 5

1 x0 2

F
x
1
2 5
x

ln
1
x
x
0

x

0,
1 2

上成立,然后令
x 1 n 2
n
可得

n
2 5

ln
1
1 n

1
0
成立,再令
n
1000
即可得不等式成立。
1

(完整版)函数恒成立问题(端点效应)

函数恒成立 专题01:可求最值型 基础知识:(1)不等式0)(≥x f 在定义域内恒成立,等价于()0≥min x f ; (2)不等式0)(≤x f 在定义域内恒成立,等价于()0≤max x f 。 【例1】【重庆文】若对任意的0>x ,24423ln 12)(c c x x x x f ->--=恒成立,求c 的取值范 围。 【例2】函数1)1ln()1()(+-++=kx x x x f 在区间),1(+∞-上恒有0)(>x f ,求k 可以取到的最 大整数。 【变式1】函数)0(ln )(,42)(2>=+-=a x a x g x x x f ,若)(4)(x g x x f -≤恒成立,求a 的取值 范围。 【变式2】【2012新课标文】设函数()2--=ax e x f x Ⅰ 求)(x f 的单调区间; Ⅱ 若1=a ,k 为整数,且当0>x 时,01)()(>++'-x x f k x ,求k 的最大值。 【变式3】【2012新课标理】已知函数)(x f 满足212 1)0()1()(x x f e f x f x +-'=- Ⅰ 求)(x f 的解析式及单调区间; Ⅱ 若b ax x x f ++≥2 2 1)(,求b a )1(+的值。

专题02:分离变量型 基础知识:分离变量的核心思想就是为了简化解题,希望同学通过以下例子有所感悟 【例1】【2010天津】函数1)(2-=x x f ,对任意 )(4)1()(4)(,,232m f x f x f m m x f x +-≤-?? ? ???+∞∈ 恒成立,求实数m 的取值范围。 【变式1】【2010安徽】若不等式0)1)((22≤++-x x a a 对一切(]2,0∈x 恒成立,求a 的取值范 围。 【例2】若函数x ax x x f 1)(2++=在?? ? ???+∞,21上单调递增,求a 的取值范围。 【变式2】【2012湖北】若)2ln(2 1 )(2++-=x b x x f 在),1(+∞-上是减函数,求b 的取值范围。 【变式3】【2014江西】已知函数)(21)()(2R b x b bx x x f ∈-++=,若)(x f 在区间)3 1 ,0(上单 调递增,求b 的取值范围。

关于函数恒成立问题的解题

恒成立问题 二、恒成立问题解决的基本策略 A 、两个基本思想解决“恒成立问题” 思路1:()m f x ≥在x D ∈上恒成立max [()]m f x ?≥; 思路2:()m f x ≤在x D ∈上恒成立min [()]m f x ?≤. 如何在区间D 上求函数()f x 的最大值或者最小值问题,可以通过题目的实际情况,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导,等等方法求函数()f x 的最值. 此类问题涉及的知识比较广泛,在处理上也有许多特殊性,希望大家多多注意积累. C 、分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型 若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷. 给定一次函数() (0)y f x ax b a ==+≠,若()y f x =在[, ]m n 恒有()0f x >,则等价于:()0()0f m f n >??>?;同理,若在[, ]m n 恒有()0f x <,则等价于:()0()0f m f n +恒成立的x 的取值围. 解:原不等式转化为:2(1)210x a x x -+-+>在2a ≤时恒成立, 设2()(1)21f a x a x x =-+-+,则()f a 在[2, 2]-上恒大于0, 故有:(2)0(2)0f f ->??>?即2243010 x x x ?-+>??->??,解得:3111x x x x ><-?或或; ∴1x <-或3x >,即x ∈(-∞,-1)∪(3,+∞). 2、二次函数型 例4.若函数()f x =R ,数a 的取值围. 解:由题意可知,当x R ∈时,222(1)(1)01 a x a x a -+-+≥+恒成立, ①当210a -=且10a +≠时,1a =;此时,222(1)(1)101a x a x a -+-+ =≥+,适合;

导数中含参数问题与恒成立问题的解题技巧

函数、导数中含参数问题与恒成立问题的解题技巧与方法 含参数问题及恒成立问题方法小结: 1、分类讨论思想 2、判别法 3、分离参数法 4、构造新函数法 一、分离讨论思想: 例题1: 讨论下列函数单调性: 1、()x f =();1,0,≠>-a a a a x 2、()x f =)0,11(1 2≠<<--b x x bx 二、判别法 例2:已知不等式04)2(2)2(2 <--+-x a x a 对于x ∈R恒成立,求参数a 的取值范围. 解:要使04)2(2)2(2<--+-x a x a 对于x ∈R恒成立,则只须满足: (1)???<-+-<-0)2(16)2(4022a a a 或 (2)?? ???<-=-=-040)2(202a a 解(1)得???<<-<2 22a a ,解(2)a =2 ∴参数a 的取值范围是-2<a ≤2. 练习1. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围。 三、分离法参数: 分离参数法是求参数的取值范围的一种常用方法,通过分离参数,用函数观点讨论主变量的变化情况,由此我们可以确定参数的变化范围.这种方法可以避免分类讨论的麻烦,从而使问题得以顺利解决.分离参数法在解决有关不等式恒成立、不等式有解、函数有零点、函数单调性中参数的取值范围问题时经常用到. 解题的关键是分离出参数之后将原问题转化为求函数的最值或值域问题.即: (1) 对任意x 都成立()min x f m ≤ (2)对任意x 都成立。 例3.已知函数]4,0(,4)(2∈--=x x x ax x f 时0)(

恒成立问题——最值分析

恒成立问题——最值分析法 最值法求解恒成立问题是三种方法中最为复杂的一种,但往往会用在解决导数综合题目中的恒成立问题。此方法考研学生对所给函数的性质的了解,以及对含参问题分类讨论的基本功。是导数中的难点问题。 一、基础知识: 1、最值法的特点: (1)构造函数时往往将参数与自变量放在不等号的一侧,整体视为一个函数,其函数含参 (2)参数往往会出现在导函数中,进而参数不同的取值会对原函数的单调性产生影响——可能经历分类讨论 2、理论基础:设()f x 的定义域为D (1)若x D ?∈,均有()f x C ≤(其中C 为常数),则()max f x C ≤ (2)若x D ?∈,均有()f x C ≥(其中C 为常数),则()min f x C ≥ 3、技巧与方法: (1)最值法解决恒成立问题会导致所构造的函数中有参数,进而不易分析函数的单调区间,所以在使用最值法之前可先做好以下准备工作: ① 观察函数()f x 的零点是否便于猜出(注意边界点的值) ② 缩小参数与自变量的范围: 通过代入一些特殊值能否缩小所求参数的讨论范围(便于单调性分析) 观察在定义域中是否包含一个恒成立的区间(即无论参数取何值,不等式均成立),缩小自变量的取值范围

(2)首先要明确导函数对原函数的作用:即导函数的符号决定原函数的单调性。如果所构造的函数,其导数结构比较复杂不易分析出单调性,则可把需要判断符号的式子拿出来构造一个新函数,再想办法解决其符号。 (3)在考虑函数最值时,除了依靠单调性,也可根据最值点的出处,即“只有边界点与极值点才是最值点的候选点”,所以有的讨论点就集中在“极值点”是否落在定义域内。 二、典型例题: 例1:设()222f x x mx =-+,当[)1,x ∈-+∞时,()f x m ≥恒成立,求m 的取值范围 思路:恒成立不等式为2220x mx m -+-≥,只需()2min 220x mx m -+-≥,由于左端是关于x 的二次函数,容易分析最值点位置,故选择最值法 解:恒成立不等式为2220x mx m -+-≥,令()222g x x mx m =-+-则对称轴为x m = (1)当1m ≤-时,()g x 在[)1,-+∞单调递增, ()()m i n 11220g x g m m ∴=-=++-≥ 3m ∴≥-即[]3,1m ∈-- (2)当1m >-时,()g x 在()1,m -单调递减,在(),m +∞单调递增 ()()22min 22021g x g m m m m m ∴==-+-≥?-≤≤ (]1,1m ∴∈- 终上所述:[]3,1m ∈- 小炼有话说:二次函数以对称轴为分解,其单调性与最值容易分析。所以二次恒成立不等式往往可考虑利用最值法,此题中对称轴是否在

函数、不等式恒成立问题完整解法

函数、不等式恒成立问题完整解法 恒成立问题的基本类型: 类型1:设)0()(2 ≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00?且a ; (2)R x x f ∈<在0)(上恒成立00a 时, ] ,[0)(βα∈>x x f 在上恒成立 ?????>>-?????<- ?0 )(2020)(2βββαααf a b a b f a b 或或, ],[0)(βα∈x x f 在上恒成立? ? ?>>?0)(0 )(βαf f ],[0)(βα∈- ?????<-?0 )(2020)(2βββαααf a b a b f a b 或或 类型3: αα>?∈>min )()(x f I x x f 恒成立对一切αα>?∈?∈>的图象的上方或的图象在恒成立对一切 恒成一、用一次函数的性质 对于一次函数],[,)(n m x b kx x f ∈+=有: ?? ?<>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122 ->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

函数恒成立、能成立问题及课后练习(含答案)

恒成立、能成立问题专题 一、基础理论回顾 1、恒成立问题的转化:()a f x >恒成立?()max a f x >;()()min a f x a f x ≤?≤恒成立 2、能成立问题的转化:()a f x >能成立?()min a f x >;()()max a f x a f x ≤?≤能成立 3、恰成立问题的转化:()a f x >在M 上恰成立?()a f x >的解集为M ()()R a f x M a f x C M ?>??? ≤?? 在上恒成立 在上恒成立 另一转化方法:若A x f D x ≥∈)(,在D上恰成立,等价于)(x f 在D上的最小值 A x f =)(min ,若 ,D x ∈B x f ≤)(在D上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则 ()()x g x f min min ≥ 5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则 ()()x g x f max max ≤ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 8、若不等式()()f x g x >在区间D 上恒成立,等价于在区间D 上函数()y f x =和图象在函数 ()y g x =图象上方; 9、若不等式()()f x g x <在区间D上恒成立,等价于在区间D上函数()y f x =和图象在函数 ()y g x =图象下方; ?二、经典题型解析 题型一、简单型

含参数的一元二次不等式的解法以及含参不等式恒成立问题(专题复习)

含参数的一元二次不等式的解法 解含参数的一元二次不等式,通常情况下,均需分类讨论,那么如何讨论呢?对含参一元 二次不等式常用的分类方法有三种: 一、按2 x 项的系数a 的符号分类,即0,0,0<=>a a a ; 例1 解不等式:()0122 >+++x a ax 分析:本题二次项系数含有参数,()04422 2 >+=-+=?a a a ,故只需对二次项 系数进行分类讨论。 解:∵()04422 2 >+=-+=?a a a 解得方程 ()0122 =+++x a ax 两根,24221a a a x +---=a a a x 24 222++--= ∴当0>a 时,解集为?? ????????+---<++-->a a a x a a a x x 242242|22或 当0=a 时,不等式为012>+x ,解集为? ?????> 21|x x 当0+-a a ax ax 分析 因为0≠a ,0>?,所以我们只要讨论二次项系数的正负。 解 ()()032)65(2 >--=+-x x a x x a ∴当0>a 时,解集为{}32|>?; 例3 解不等式042 >++ax x 分析 本题中由于2 x 的系数大于0,故只需考虑?与根的情况。 解:∵162 -=?a ∴当()4,4-∈a 即0

函数中存在与恒成立问题

函数中存在与恒成立问题 一、考情分析 函数内容作为高中数学知识体系的核心,也是历年高考的一个热点.在新课标下的高考越来越注重对学生的综合素质的考察,恒成立与存在性问题便是一个考察学生综合素质的很好途径,它主要涉及到一次函数、二次函数、三角函数、指数函数和对数函数等常见函数的图象和性质及不等式等知识,渗透着换元、化归、数形结合、函数与方程等思想方法,在培养思维的灵活性、创造性等方面起到了积极的作用,故备受高考命题者的青睐,成为高考能力型试题的首选. 二、经验分享 (1) 设)0()(2 ≠++=a c bx ax x f ,(1)R x x f ∈>在0)(上恒成立00?且a ;(2)R x x f ∈<在0)(上恒成立00>?>0 )(0 )(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 (3)根据方程有解求参数范围,若参数能够分离出来,可把求参数范围转化为求函数值域. (4) 利用分离参数法来确定不等式(),0f x λ≥,( D x ∈,λ为实参数)恒成立中参数λ的取值范围的基本步骤: ①将参数与变量分离,即化为()()g f x λ≥(或()()g f x λ≤)恒成立的形式; ②求()f x 在x D ∈上的最大(或最小)值; ③解不等式()max ()g f x λ≥(或()()min g f x λ≤) ,得λ的取值范围. (5) 对于参数不能单独放在一侧的,可以利用函数图象来解.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围. (6) 某些含参不等式恒成立问题,在分离参数会遇到讨论的麻烦或者即使能容易分离出参数与变量,但函数的最值却难以求出时,可考虑变换思维角度.即把主元与参数换个位置,再结合其它知识,往往会取得出奇制胜的效果.

相关主题
文本预览
相关文档 最新文档