当前位置:文档之家› 立体几何-点线面关系

立体几何-点线面关系

立体几何-点线面关系
立体几何-点线面关系

立体几何

第二节

空间点、直线、平面之间的位置关系

本节主要包括2个知识点:

1.平面的基本性质;

2.空间两直线的位置关系.

突破点(一) 平面的基本性质

1.公理1~3

在一个平面内,那么这条

A

且只有一个平面有一个公共点,那么它们P

2.公理2的三个推论

推论1:经过一条直线和这条直线外一点有且只有一个平面;

推论2:经过两条相交直线有且只有一个平面;

推论3:经过两条平行直线有且只有一个平面.

考点贯通 抓高考命题的“形”与“神”

点、线、面的位置关系

1(1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上;

(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上. 2.证明线共点问题的方法

先证两条直线交于一点,再证明第三条直线经过该点. 3.证明点、直线共面问题的常用方法

(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;

(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.

[典例] 已知:空间四边形ABCD (如图所示),E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =1

3

DC .求证:

(1)E ,F ,G ,H 四点共面; (2)三直线FH ,EG ,AC 共点. [方法技巧]

平面的基本性质的应用

公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.

1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )

2.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .至多等于3 B .至多等于4 C .等于5

D .大于5

3.以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;

②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面; ③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面. A .0 B .1 C .2

D .3

4.如图所示,四边形ABEF 和四边形ABCD 都是梯形,BC 綊1

2

AD ,

BE 綊12

FA ,G ,H 分别为FA ,FD 的中点.

(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?

突破点(二) 空间两直线的位置关系

1.空间中两直线的位置关系 (1)空间中两直线的位置关系

??

?

共面直线???

??

平行相交异面直线:不同在任何一个平面内

(2)公理4和等角定理

①公理4:平行于同一条直线的两条直线互相平行.

②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 2.异面直线所成的角

(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).

(2)范围:?

????0,π2.

[例1] (1)①在空间中,若两条直线不相交,则它们一定平行; ②平行于同一条直线的两条直线平行;

③一条直线和两条平行直线中的一条相交,那么它也和另一条相交; ④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c . A .①②③ B .②④ C .③④

D .②③

(2)在图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填上所有正确答案的序号)

[方法技巧]

判断空间两直线位置关系的思路方法

(1)判断空间两直线的位置关系一般可借助正方体模型,以正方体为主线直观感知并准确判断.

(2)异面直线的判定方法

①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.

②定理法:平面外一点A与平面内一点B的连线和平面内不经过点B的直线是异面直线.

异面直线所成的角

[例2] 空间四边形ABCD中,AB=CD且AB与CD所成的角为30°,E,F分别为BC,

AD的中点,求EF与AB所成角的大小.

[方法技巧]

用平移法求异面直线所成的角的步骤

(1)一作:即根据定义作平行线,作出异面直线所成的角;

(2)二证:即证明作出的角是异面直线所成的角;

(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.

能力练通抓应用体验的“得”与“失”

1.[考点一]下列说法正确的是( )

A.若a?α,b?β,则a与b是异面直线

B.若a与b异面,b与c异面,则a与c异面

C.若a,b不同在平面α内,则a与b异面

D.若a,b不同在任何一个平面内,则a与b异面

2.[考点一]l1,l2,l3是空间三条不同的直线,则下列命题正确的是( ) A.l1⊥l2,l2⊥l3?l1∥l3B.l1⊥l2,l2∥l3?l1⊥l3

C.l1∥l2∥l3?l1,l2,l3共面D.l1,l2,l3共点?l1,l2,l3共面

3.[考点二]如图,四边形ABCD和ADPQ均为正方形,它们所在的平面互相垂直,则异面直线AP与BD所成的角为________.

4.[考点一、二]如图所示,三棱锥P-ABC中,PA⊥平面ABC,

∠BAC=60°,PA=AB=AC=2,E是PC的中点.

(1)求证AE与PB是异面直线;

(2)求异面直线AE与PB所成角的余弦值.

[全国卷5年真题集中演练——明规律]

1.(2016·全国乙卷)平面α过正方体ABCD-A1B1C1D1的顶点A,α∥平面CB1D1,α∩平面ABCD=m,α∩平面ABB1A1=n,则m,n所成角的正弦值为( )

A.

3

2

B.

2

2

C.

3

3

D.

1

3

2.(2013·新课标全国卷Ⅱ)已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l?α,l?β,则( )

A.α∥β且l∥α

B.α⊥β且l⊥β

C.α与β相交,且交线垂直于l

D.α与β相交,且交线平行于l

3.(2016·全国甲卷)α,β是两个平面,m,n是两条直线,有下列四个命题:

①如果m⊥n,m⊥α,n∥β,那么α⊥β.

②如果m⊥α,n∥α,那么m⊥n.

③如果α∥β,m?α,那么m∥β.

④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.

其中正确的命题有________.(填写所有正确命题的编号)

[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考

[练基础小题——强化运算能力]

1.四条线段顺次首尾相连,它们最多可确定的平面有( )

A.4个 B.3个 C.2个 D.1个

2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC 和BD不相交,则甲是乙成立的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )

A.b?α

B.b∥α

C.b?α或b∥α

D.b与α相交或b?α或b∥α

4.如图,平行六面体ABCD-A1B1C1D1中既与AB共面又与CC1共面的棱有________条.

[练常考题点——检验高考能力]

一、选择题

1.若直线上有两个点在平面外,则( )

A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内

C.直线上所有点都在平面外D.直线上至多有一个点在平面内

2.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )

A.6 2 B.12 C.12 2 D.24 2

3.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2⊥l3,l3⊥l4,则下列结论一定正确的是( )

A.l1⊥l4B.l1∥l4

C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定

4.已知直线a和平面α,β,α∩β=l,a?α,a?β,且a在α,β内的射影分别为直线b和c,则直线b和c的位置关系是( )

A.相交或平行 B.相交或异面

C.平行或异面 D.相交、平行或异面

5.如图,ABCD -A 1B 1C 1D 1是长方体,O 是B 1D 1的中点,直线A 1C 交平面AB 1D 1于点M ,则

下列结论正确的是( )

A .A ,M ,O 三点共线

B .A ,M ,O ,A 1不共面

C .A ,M ,C ,O 不共面

D .B ,B 1,O ,M 共面

6.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )

A .1条

B .2条

C .3条

D .4条

二、填空题

7.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的

中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =2

3

,则下列说法正

确的是________.(填写所有正确说法的序号)

①EF 与GH 平行②EF 与GH 异面

③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上 ④EF 与GH 的交点M 一定在直线AC 上

8.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.

9.已知a ,b ,c 为三条不同的直线,且a ?平面α,b ?平面β,α∩β=c . ①若a 与b 是异面直线,则c 至少与a ,b 中的一条相交; ②若a 不垂直于c ,则a 与b 一定不垂直; ③若a ∥b ,则必有a ∥c ; ④若a ⊥b ,a ⊥c ,则必有α⊥β.

其中正确的命题有________.(填写所有正确命题的序号)

10.如图,在三棱锥A-BCD中,AB=AC=BD=CD=3,AD=BC=2,点M,N分别为AD,BC的中点,则异面直线AN,CM所成的角的余弦值是________.

三、解答题

11.如图所示,A是△BCD所在平面外的一点,E,F分别是BC,AD的中点.

(1)求证:直线EF与BD是异面直线;

(2)若AC⊥BD,AC=BD,求EF与BD所成的角.

12.如图,在三棱锥P -ABC 中,PA ⊥底面ABC ,D 是PC 的中点.已知∠BAC =π

2

,AB =2,

AC =23,PA =2.求:

(1)三棱锥P -ABC 的体积;

(2)异面直线BC 与AD 所成角的余弦值.

立体几何

第二节

空间点、直线、平面之间的位置关系

本节主要包括2个知识点:

1.平面的基本性质;

2.空间两直线的位置关系.

突破点(一) 平面的基本性质

1.公理1~3

在一个平面内,那么这条

A

且只有一个平面有一个公共点,那么它们P

2.公理2的三个推论

推论1:经过一条直线和这条直线外一点有且只有一个平面;

推论2:经过两条相交直线有且只有一个平面;

推论3:经过两条平行直线有且只有一个平面.

考点贯通 抓高考命题的“形”与“神”

点、线、面的位置关系

1(1)公理法:先找出两个平面,然后证明这些点都是这两个平面的公共点,再根据公理3证明这些点都在交线上;

(2)同一法:选择其中两点确定一条直线,然后证明其余点也在该直线上. 2.证明线共点问题的方法

先证两条直线交于一点,再证明第三条直线经过该点. 3.证明点、直线共面问题的常用方法

(1)纳入平面法:先确定一个平面,再证明有关点、线在此平面内;

(2)辅助平面法:先证明有关的点、线确定平面α,再证明其余元素确定平面β,最后证明平面α,β重合.

[典例] 已知:空间四边形ABCD (如图所示),E ,F 分别是AB ,AD 的中点,G ,H 分别是BC ,CD 上的点,且CG =13BC ,CH =1

3

DC .求证:

(1)E ,F ,G ,H 四点共面; (2)三直线FH ,EG ,AC 共点. [证明] (1)连接EF ,GH ,

∵E ,F 分别是AB ,AD 的中点, ∴EF ∥BD .

又∵CG =13BC ,CH =1

3DC ,

∴GH ∥BD ,∴EF ∥GH , ∴E ,F ,G ,H 四点共面.

(2)易知FH 与直线AC 不平行,但共面, ∴设FH ∩AC =M ,

∴M ∈平面EFHG ,M ∈平面ABC . 又∵平面EFHG ∩平面ABC =EG , ∴M ∈EG ,

∴FH ,EG ,AC 共点. [方法技巧]

平面的基本性质的应用

公理1是判断一条直线是否在某个平面内的依据,公理2及其推论是判断或证明点、线共面的依据,公理3是证明三线共点或三点共线的依据.

1.如图是正方体或四面体,P ,Q ,R ,S 分别是所在棱的中点,则这四个点不共面的一个图是( )

解析:选D A 、B 、C 图中四点一定共面,D 中四点不共面.

2.若空间中n 个不同的点两两距离都相等,则正整数n 的取值( ) A .至多等于3 B .至多等于4 C .等于5

D .大于5

解析:选B n =2时,可以;n =3时,为正三角形,可以;n =4时,为正四面体,可以;n =5时,为四棱锥,侧面为正三角形,底面为菱形且对角线长与边长相等,这种情况不可能出现,所以正整数n 的取值至多等于4.

3.以下四个命题中,正确命题的个数是( ) ①不共面的四点中,其中任意三点不共线;

②若点A ,B ,C ,D 共面,点A ,B ,C ,E 共面,则A ,B ,C ,D ,E 共面; ③若直线a ,b 共面,直线a ,c 共面,则直线b ,c 共面; ④依次首尾相接的四条线段必共面. A .0 B .1 C .2

D .3

解析:选 B ①显然是正确的,可用反证法证明;②中若A ,B ,C

三点共线,则A ,B ,C ,D ,E 五点不一定共面;③构造长方体或正方体,如图显然b ,c 异面,故不正确;④中空间四边形中四条线段不共面.故只有①正确.

4.如图所示,四边形ABEF 和四边形ABCD 都是梯形,BC 綊1

2

AD ,

BE 綊1

2

FA ,G ,H 分别为FA ,FD 的中点.

(1)证明:四边形BCHG 是平行四边形; (2)C ,D ,F ,E 四点是否共面?为什么?

解:(1)证明:由已知FG =GA ,FH =HD ,可得GH 綊12AD .又∵BC 綊1

2AD ,∴GH 綊BC ,∴

四边形BCHG 为平行四边形.

(2)C ,D ,F ,E 四点共面,证明如下:

由BE 綊1

2AF ,G 为FA 的中点知BE 綊FG ,∴四边形BEFG 为平行四边形,∴EF ∥BG .由(1)

知BG ∥CH ,∴EF ∥CH .∴EF 与CH 共面.又D ∈FH ,∴C ,D ,F ,E 四点共面.

突破点(二) 空间两直线的位置关系

1.空间中两直线的位置关系 (1)空间中两直线的位置关系

??

?

共面直线???

??

平行

相交异面直线:不同在任何一个平面内

(2)公理4和等角定理

①公理4:平行于同一条直线的两条直线互相平行.

②等角定理:空间中如果两个角的两边分别对应平行,那么这两个角相等或互补. 2.异面直线所成的角

(1)定义:设a ,b 是两条异面直线,经过空间任一点O 作直线a ′∥a ,b ′∥b ,把a ′与b ′所成的锐角(或直角)叫做异面直线a 与b 所成的角(或夹角).

(2)范围:?

????0,π2.

[例1] (1)①在空间中,若两条直线不相交,则它们一定平行; ②平行于同一条直线的两条直线平行;

③一条直线和两条平行直线中的一条相交,那么它也和另一条相交; ④空间四条直线a ,b ,c ,d ,如果a ∥b ,c ∥d ,且a ∥d ,那么b ∥c . A .①②③ B .②④ C .③④

D .②③

(2)在图中,G ,N ,M ,H 分别是正三棱柱的顶点或所在棱的中点,则表示直线GH ,MN 是异面直线的图形有________.(填上所有正确答案的序号)

[解析] (1)①错,两条直线不相交,则它们可能平行,也可能异面;②由公理4可知正确;③错,若一条直线和两条平行直线中的一条相交,则它和另一条直线可能相交,也可能异面;④由平行直线的传递性可知正确.故选B.

(2)图①中,直线GH ∥MN ;图②中,G ,H ,N 三点共面,但M ?平面GHN ,因此直线GH 与MN 异面;图③中,连接MG ,GM ∥HN ,因此GH 与MN 共面;图④中,G ,M ,N 共面,但H ?平面GMN ,因此GH 与MN 异面.所以在图②④中,GH 与MN 异面.

[答案] (1)B (2)②④ [方法技巧]

判断空间两直线位置关系的思路方法

(1)判断空间两直线的位置关系一般可借助正方体模型,以正方体为主线直观感知并准确判断.

(2)异面直线的判定方法

①反证法:先假设两条直线不是异面直线,即两条直线平行或相交,由假设的条件出发,经过严格的推理,导出矛盾,从而否定假设,肯定两条直线异面.

②定理法:平面外一点A 与平面内一点B 的连线和平面内不经过点B 的直线是异面直线.

异面直线所成的角

[例2] 空间四边形ABCD 中,AB =CD 且AB 与CD 所成的角为30°,E ,F 分别为BC ,

AD 的中点,求EF 与AB 所成角的大小.

[解] 取AC 的中点G ,连接EG ,FG ,则EG 綊12AB ,FG 綊1

2CD ,

由AB =CD 知EG =FG ,

∴∠GEF (或它的补角)为EF 与AB 所成的角,∠EGF (或它的补角)为AB 与CD 所成的角.

∵AB 与CD 所成的角为30°,∴∠EGF =30°或150°. 由EG =FG 知△EFG 为等腰三角形, 当∠EGF =30°时,∠GEF =75°;

当∠EGF =150°时,∠GEF =15°.故EF 与AB 所成的角为15°或75°. [方法技巧]

用平移法求异面直线所成的角的步骤

(1)一作:即根据定义作平行线,作出异面直线所成的角;

(2)二证:即证明作出的角是异面直线所成的角;

(3)三求:解三角形,求出作出的角.如果求出的角是锐角或直角,则它就是要求的角;如果求出的角是钝角,则它的补角才是要求的角.

能力练通 抓应用体验的“得”与“失” 1.[考点一]下列说法正确的是( ) A .若a ?α,b ?β,则a 与b 是异面直线 B .若a 与b 异面,b 与c 异面,则a 与c 异面 C .若a ,b 不同在平面α内,则a 与b 异面 D .若a ,b 不同在任何一个平面内,则a 与b 异面 解析:选D 由异面直线的定义可知D 正确.

2.[考点一]l 1,l 2,l 3是空间三条不同的直线,则下列命题正确的是( ) A .l 1⊥l 2,l 2⊥l 3?l 1∥l 3B .l 1⊥l 2,l 2∥l 3?l 1⊥l 3

C .l 1∥l 2∥l 3?l 1,l 2,l 3共面

D .l 1,l 2,l 3共点?l 1,l 2,l 3共面

解析:选B 若l 1⊥l 2,l 2⊥l 3,则l 1,l 3有三种位置关系,可能平行、相交或异面,A 不正确;当l 1∥l 2∥l 3或l 1,l 2,l 3共点时,l 1,l 2,l 3可能共面,也可能不共面,C ,D 不正确;当l 1⊥l 2,l 2∥l 3时,则有l 1⊥l 3,故选B.

3.[考点二]如图,四边形ABCD 和ADPQ 均为正方形,它们所在的平面互相垂直,则异面直线AP 与BD 所成的角为________.

解析:如图,将原图补成正方体ABCD -QGHP ,连接GP ,AG ,则GP ∥BD ,所以∠APG 为异

面直线AP 与BD 所成的角,在△AGP 中AG =GP =AP ,所以∠APG =π

3

.

答案:π3

4.[考点一、二]如图所示,三棱锥P -ABC 中, PA ⊥平面ABC ,∠

BAC =60°,PA =AB =AC =2,E 是PC 的中点.

(1)求证AE 与PB 是异面直线;

(2)求异面直线AE 与PB 所成角的余弦值.

解:(1)证明:假设AE 与PB 共面,设平面为α,∵A ∈α,B ∈α,

E ∈α,

∴平面α即为平面ABE ,∴P ∈平面ABE ,

这与P ?平面ABE 矛盾,所以AE 与PB 是异面直线.

(2)取BC 的中点F ,连接EF ,AF ,则EF ∥PB ,所以∠AEF (或其补角)就

是异面直线AE 与PB 所成的角.

∵∠BAC =60°,PA =AB =AC =2,PA ⊥平面ABC ,∴AF =3,AE =2,EF =2,cos

∠AEF =AE 2+EF 2-AF 22·AE ·EF =2+2-32×2×2=14

,故异面直线AE 与PB 所成角的余弦值为1

4.

[全国卷5年真题集中演练——明规律] 1.(2016·全国乙卷)平面α过正方体ABCD -A 1B 1C 1D 1的顶点A ,α∥平面CB 1D 1,α∩平面

ABCD =m ,α∩平面ABB 1A 1=n ,则m ,n 所成角的正弦值为( )

A.

32 B.22C.33D.13

解析:选A 如图,在正方体ABCD -A 1B 1C 1D 1的上方接一个同等大小

的正方体ABCD -A 2B 2C 2D 2,则过A 与平面CB 1D 1平行的是平面AB 2D 2,即平面α就是平面AB 2D 2,平面AB 2D 2∩平面ABB 1A 1=AB 2,即直线n 就是直线

AB 2,由面面平行的性质定理知直线m 平行于直线B 2D 2,故m ,n 所成的

角就等于AB 2与B 2D 2所成的角,在等边三角形AB 2D 2中,∠AB 2D 2=60°,故其正弦值为

3

2

.故选A. 2.(2013·新课标全国卷Ⅱ)已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β.直线l 满足l ⊥m ,l ⊥n ,l ?α,l ?β,则( )

A .α∥β且l ∥α

B .α⊥β且l ⊥β

C .α与β相交,且交线垂直于l

D .α与β相交,且交线平行于l

解析:选D 由于m ,n 为异面直线,m ⊥平面α,n ⊥平面β,则平面α与平面β必相交,但未必垂直,且交线垂直于直线m ,n ,又直线l 满足l ⊥m ,l ⊥n ,则交线平行于l ,故选D.

3.(2016·全国甲卷)α,β是两个平面,m ,n 是两条直线,有下列四个命题: ①如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. ②如果m ⊥α,n ∥α,那么m ⊥n . ③如果α∥β,m ?α,那么m ∥β.

④如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等. 其中正确的命题有________.(填写所有正确命题的编号)

解析:对于①,α,β可能平行,也可能相交但不垂直,故错误.对于②,由线面平行的性质定理知存在直线l ?α,n ∥l ,又m ⊥α,所以m ⊥l ,所以m ⊥n ,故正确.对于③,

因为α∥β,所以α,β没有公共点.又m?α,所以m,β没有公共点,由线面平行的定义可知m∥β,故正确.对于④,因为m∥n,所以m与α所成的角和n与α所成的角相等.因为α∥β,所以n与α所成的角和n与β所成的角相等,所以m与α所成的角和n与β所成的角相等,故正确.

答案:②③④

[课时达标检测] 重点保分课时——一练小题夯双基,二练题点过高考

[练基础小题——强化运算能力]

1.四条线段顺次首尾相连,它们最多可确定的平面有( )

A.4个 B.3个 C.2个 D.1个

解析:选A 首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.

2.已知A,B,C,D是空间四点,命题甲:A,B,C,D四点不共面,命题乙:直线AC 和BD不相交,则甲是乙成立的( )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

解析:选A 若A,B,C,D四点不共面,则直线AC和BD不共面,所以AC和BD不相交,充分性成立;若直线AC和BD不相交,若直线AC和BD平行,则A,B,C,D四点共面,必要性不成立,所以甲是乙成立的充分不必要条件.

3.若直线a⊥b,且直线a∥平面α,则直线b与平面α的位置关系是( )

A.b?α

B.b∥α

C.b?α或b∥α

D.b与α相交或b?α或b∥α

解析:选D 结合正方体模型可知b与α相交或b?α或b∥α都有可能.

4.如图,平行六面体ABCD-A

1B1C1D1中既与AB共面又与CC1共面的棱

有________条.

解析:依题意,与AB和CC1都相交的棱有BC;与AB相交且与CC1平

行有棱AA1,BB1;与AB平行且与CC1相交的棱有CD,C1D1.故符合条件的

棱有5条.

答案:5

[练常考题点——检验高考能力]

一、选择题

1.若直线上有两个点在平面外,则( )

A.直线上至少有一个点在平面内B.直线上有无穷多个点在平面内

C.直线上所有点都在平面外D.直线上至多有一个点在平面内

解析:选D 根据题意,两点确定一条直线,那么由于直线上有两个点在平面外,则直线在平面外,只能是直线与平面相交,或者直线与平面平行,那么可知直线上至多有一个点在平面内.

2.空间四边形两对角线的长分别为6和8,所成的角为45°,连接各边中点所得四边形的面积是( )

A.6 2 B.12 C.12 2 D.24 2

解析:选A 如图,已知空间四边形ABCD,对角线AC=6,BD=8,

易证四边形EFGH为平行四边形,∠EFG或∠FGH为AC与BD所成的角,

大小为45°,故S四边形EFGH=3×4×sin 45°=62,故选A.

3.若空间中四条两两不同的直线l1,l2,l3,l4,满足l1⊥l2,l2

⊥l3,l3⊥l4,则下列结论一定正确的是( )

A.l1⊥l4B.l1∥l4

C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定

解析:选D 构造如图所示的正方体ABCD-A

1B1C1D1,取l1为AD,l2

为AA1,l3为A1B1,当取l4为B1C1时,l1∥l4,当取l4为BB1时,l1⊥l4,

故排除A、B、C,选D.

4.已知直线a和平面α,β,α∩β=l,a?α,a?β,且a在α,

β内的射影分别为直线b和c,则直线b和c的位置关系是( )

A.相交或平行 B.相交或异面

C.平行或异面 D.相交、平行或异面

解析:选D 依题意,直线b和c的位置关系可能是相交、平行或异面.

5.如图,ABCD-A1B1C1D1是长方体,O是B1D1的中点,直线A1C交平面AB1D1

于点M,则下列结论正确的是( )

A .A ,M ,O 三点共线

B .A ,M ,O ,A 1不共面

C .A ,M ,C ,O 不共面

D .B ,B 1,O ,M 共面

解析:选A 连接A 1C 1,AC ,则A 1C 1∥AC ,所以A 1,C 1,C ,A 四点共面,所以A 1C ?平面ACC 1A 1,因为M ∈A 1C ,所以M ∈平面ACC 1A 1,又M ∈平面AB 1D 1,所以M 在平面ACC 1A 1与平面AB 1D 1的交线上,同理O 在平面ACC 1A 1与平面AB 1D 1的交线上,所以A ,M ,O 三点共线.

6.过正方体ABCD -A 1B 1C 1D 1的顶点A 作直线l ,使l 与棱AB ,AD ,AA 1所成的角都相等,这样的直线l 可以作( )

A .1条

B .2条

C .3条

D .4条

解析:选D 如图,连接体对角线AC 1,显然AC 1与棱AB ,AD ,AA 1

所成的角都相等,所成角的正切值都为 2.联想正方体的其他体对角线,如连接BD 1,则BD 1与棱BC ,BA ,BB 1所成的角都相等,∵BB 1∥AA 1,BC ∥AD ,∴体对角线BD 1与棱AB ,AD ,AA 1所成的角都相等,同理,体对角

线A 1C ,DB 1也与棱AB ,AD ,AA 1所成的角都相等,过A 点分别作BD 1,A 1C ,DB 1的平行线都满足题意,故这样的直线l 可以作4条.

二、填空题

7.如图所示,在空间四边形ABCD 中,点E ,H 分别是边AB ,AD 的

中点,点F ,G 分别是边BC ,CD 上的点,且CF CB =CG CD =2

3

,则下列说法正

确的是________.(填写所有正确说法的序号)

①EF 与GH 平行②EF 与GH 异面

③EF 与GH 的交点M 可能在直线AC 上,也可能不在直线AC 上 ④EF 与GH 的交点M 一定在直线AC 上

解析:连接EH ,FG (图略),依题意,可得EH ∥BD ,FG ∥BD ,故EH ∥FG ,所以E ,F ,G ,

H 共面.因为EH =12BD ,FG =23

BD ,故EH ≠FG ,所以EFGH 是梯形,EF 与GH 必相交,

设交点为M .因为点M 在EF 上,故点M 在平面ACB 上.同理,点M 在平面ACD 上, ∴点M 是平面ACB 与平面ACD 的交点,

又AC 是这两个平面的交线,所以点M 一定在直线AC 上. 答案:④

8.如图为正方体表面的一种展开图,则图中的AB ,CD ,EF ,GH 在原正方体中互为异面直线的有________对.

高中数学-立体几何-线面角知识点

WORD文档 立体几何知识点整理 一.直线和平面的三种位置关系: 1. 线面平行 2. 线面相交 3. 线在面内 l l A l α α α 二.平行关系: 1. 线线平行: 方法一:用线面平行实现。 l l // l l // m m m 方法二:用面面平行实现。 // l l l // m β m γ m α 方法三:用线面垂直实现。 若l ,m ,则l // m 。 方法四:用向量方法: 若向量l 和向量m 共线且l、m 不重合,则l // m 。 2. 线面平行: 方法一:用线线平行实现。 l // m m l // l

l β// l // α l 方法三:用平面法向量实现。n l 若n为平面的一个法向量,n l 且l,则l // 。 α 2.面面平行: 方法一:用线线平行实现。 l // // , m ', m l l 且相交 且相交 // α l βm l' m' 方法二:用线面平行实现。l // // m // β l m l ,m 且相交 α三.垂直关系: 3.线面垂直:

l AC l l AC AC, A l A α C B 方法二:用面面垂直实现。 β l m l m l m,l α

3.面面垂直: 方法一:用线面垂直实现。 l βl C θ l α A B 方法二:计算所成二面角为直角。 4.线线垂直: 方法一:用线面垂直实现。 l l m l m α m 方法二:三垂线定理及其逆定理。 P PO l OA l PA l A O l α 方法三:用向量方法: 若向量l 和向量m 的数量积为0,则l m 。 三.夹角问题。 (一)异面直线所成的角: (1)范围:(0 ,90 ] (2)求法: 方法一:定义法。 步骤1:平移,使它们相交,找到夹角。 步骤2:解三角形求出角。(常用到余弦定理) 余弦定理: a c cos 2 a 2 b 2ab 2 c θ b (计算结果可能是其补角)

立体几何——点线面位置关系

点线面的位置关系 (1)四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。 公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。 符号语言:,,P P l P l αβα β∈∈?=∈且。 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 (2)空间中直线与直线之间的位置关系 1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把a '与b '所成的角(或直角)叫异面直线,a b 所成的夹角。 (易知:夹角范围090θ<≤?) 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形) 2.位置关系:???? ??? ?相交直线:同一平面内,有且只有一个公共点; 共面直线平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点 (3)空间中直线与平面之间的位置关系

高中数学必修2立体几何专题线面角典型例题求法总结

线面角的求法 1.直接法 :平面的斜线与斜线在平面内的射影所成的角即为直线与平面所成的角。通常是解由斜线段,垂线段,斜线在平面内的射影所组成的直角三角形,垂线段是其中最重要的元素,它可以起到联系各线段的作用。 例1 ( 如图1 )四面体ABCS 中,SA,SB,SC 两两垂直,∠SBA=45°, ∠SBC=60°, M 为 AB 的中点,求(1)BC 与平面SAB 所成的角。(2)SC 与平面ABC 所成的角。 B M H S C A 解:(1) ∵SC ⊥SB,SC ⊥SA, 图1 ∴SC ⊥平面SAB 故 SB 是斜线BC 在平面SAB 上的射影, ∴∠SBC 是直线BC 与平面SAB 所成的角为60°。 (2) 连结SM,CM ,则SM ⊥AB, 又∵SC ⊥AB,∴AB ⊥平面SCM, ∴面ABC ⊥面SCM 过S 作SH ⊥CM 于H, 则SH ⊥平面ABC ∴CH 即为 SC 在面ABC 内的射影。 ∠SCH 为SC 与平面ABC 所成的角。 sin ∠SCH=SH /SC ∴SC 与平面ABC 所成的角的正弦值为√7/7 (“垂线”是相对的,SC 是面 SAB 的垂线,又是面 ABC 的斜线. 作面的垂线常根据面面垂直的性质定理,其思路是:先找出与已知平面垂直的平面,然后一面内找出或作出交线的垂线,则得面的垂线。) 2. 利用公式sin θ=h /ι 其中θ是斜线与平面所成的角, h 是 垂线段的长,ι是斜线段的长,其中求出垂线段的长(即斜线上的点到面的距离)既是关键又是难点,为此可用三棱锥的体积自等来求垂线段的长。 例2 ( 如图2) 长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角。 A 1 C 1 D 1 H 4 C B 1 23 B A D 解:设点 B 到AB 1C 1D 的距离为h ,∵V B ﹣AB 1C 1 =V A ﹣BB 1C 1 ∴1/3 S △AB 1C 1 ·h= 1/3 S △BB 1C 1 ·AB,易得h=12/5 ,

立体几何证明垂直专项含练习题及答案

立体几何证明------垂直 一.复习引入 1.空间两条直线的位置关系有:_________,_________,_________三种。 2.(公理4)平行于同一条直线的两条直线互相_________. 3.直线与平面的位置关系有_____________,_____________,_____________三种。 4.直线与平面平行判定定理:如果_________的一条直线和这个平面的一条直线平行, 那么这条直线和这个平面平行 5.直线与平面平行性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这 个平面相交,那么_________________________. 6.两个平面的位置关系:_________,_________. 7.判定定理1:如果一个平面有_____________直线都平行于另一个平面,那么这两 个平面平行. 8.线面垂直性质定理:垂直于同一条直线的两个平面________. 9.如果两个平行平面同时和第三个平面相交,那么它们的________平行. 10.如果两个平面平行,那么其中一个平面的所有直线都_____于另一个平面. 二.知识点梳理 要点诠释:定义中“平面的任意一条直线”就是指“平面的所有直线”,这与“无数条直线”不同(线 线垂直线面垂直) Ⅰ.二面角:从一条直线出发的两个半平面所组成的图形叫二面角(dihedral angle ). 这条直线叫做二 面角的棱,这两个半平面叫做二面角的面. 记作二面角AB αβ--. (简记P AB Q --)

二面角的平面角的三个特征: ⅰ. 点在棱上 ⅱ. 线在面 ⅲ. 与棱垂直 Ⅱ.二面角的平面角:在二面角αβ-l -的棱l 上任取一点O ,以点O 为垂足,在半平面,αβ分别作垂直于棱l 的射线OA 和OB ,则射线OA 和OB 构成的AOB ∠叫做二面角的平面角. 作用:衡量二面角的大小;围:000180θ<<. 知识点四、平面和平面垂直的定义和判定 (垂直问题中要注意题目中的文字表述,特别是“任何”“ 随意”“无数”等字眼) 三.常用证明垂直的方法 立体几何中证明线面垂直或面面垂直都可转化为线线垂直,而证明线线垂直一般有以下的一些方法: (1) 通过“平移”。 (2) 利用等腰三角形底边上的中线的性质。 (3) 利用勾股定理。 (4) 利用直径所对的圆周角是直角 (1) 通过“平移”,根据若则a //b,且b⊥平面α,a⊥平面α 1.在四棱锥P-ABCD 中,△PBC 为正三角形,AB ⊥平面PBC ,AB ∥CD ,AB=2 1 DC ,中点为PD E . 求证:AE ⊥平面PDC. 2.如图,四棱锥P -ABCD 的底面是正方形,PA ⊥底面ABCD , ∠PDA=45°,点E 为棱AB 的中点.求证:平面PCE ⊥平面PCD ; (第2题

立体几何之点线面之间位置关系

C B A l 3 l 2 l 1 第六讲 立体几何之点线面之间的位置关系 考试要求: 1、 熟练掌握点、线、面的概念; 2、 掌握点、线、面的位置关系,以及判定和证明过程; 3、 掌握点、线、面垂直、平行的性质 知识网络: 知识要点: 1、公理 (1)公理 1:对直线 a 和平面α,若点 A 、B ∈a , A 、B ∈α,则 (2)公理 2:若两个平面α、β有一个公共点P ,则α、β有且只有一条过点P 的公共直线 a (3)公理 3: 不共线的三点可确定一个平面 推论:① 一条直线和其外一点可确定一个平面 ②两条相交直线可确定一个平面 ③两条平行直线可确定一个平面 (4)公理 4:平行于同一条直线的两条直线平行 等角定理:如果一个角的两边和另一个角的两边分别平行且方向相同,那么这两个角相等. 2、空间两条不重合的直线有三种位置关系:相交、平行、异面 3、异面直线所成角θ的范围是 00<θ≤900 例1、已知直线1l 、2l 和3l 两两相交,且三线不共点. 求证:直线1l 、2l 和3l 在同一平面上. 空间图形的关系 空间基本关系与公理 平行关系 垂直关系 公理 点、线、面的位置关系 判定 性质 应用 应用 性质 判定

例2、三个平面将空间分成k个部分,求k的可能取值. 分析: 可以根据三个平面的位置情况分类讨论,按条件可将三个平面位置情况分为5种: (1)三个平面相互平行 (2)两个平面相互平行且与第三个平面相交 (3)三个平面两两相交且交线重合 (4)三个平面两两相交且交线平行 (5)三个平面两两相交且交线共点 例3、已知棱长为a的正方体中,M、N分别为CD、AD中点。 求证:四边形是梯形。 例4、如图,A是平面BCD外的一点,G H分别是, ABC ACD ??的重心, 求证:// GH BD. 例5、如图,已知不共面的直线,, a b c相交于O点,, M P是直线a上的两点,,N Q分别是,b c上的一点求证:MN和PQ是异面直线 例6、已知正方体ABCD-A 1B 1 C 1 D 1 的棱长为a,则棱A 1 B 1 N M H G D C B A α c b a Q P N M O A1 C1 D1

专题08 立体几何第二十讲 空间点线面的位置关系(原卷版)

专题08立体几何 第二十讲空间点线面的位置关系 2019年 1.(2019全国III文8)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥平面ABCD, M是线段ED的中点,则 A.BM=EN,且直线BM、EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM、EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线 2.(2019全国1文19)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点. (1)证明:MN∥平C1DE; (2)求点C到平面C1DE的距离. 3.(2019全国II文7)设α,β为两个平面,则α∥β的充要条件是 A.α内有无数条直线与β平行 B.α内有两条相交直线与β平行 C.α,β平行于同一条直线 D.α,β垂直于同一平面

4.(2019北京文13)已知l ,m 是平面α外的两条不同直线.给出下列三个论断: ①l ⊥m ;②m ∥α;③l ⊥α. 以其中的两个论断作为条件,余下的一个论断作为结论,写出一个正确的命题:__________. 5.(2019江苏16)如图,在直三棱柱ABC -A 1B 1C 1中,D ,E 分别为BC ,AC 的中点,AB =BC .求证:(1)A 1B 1∥平面DEC 1; (2)BE ⊥C 1E . 6.(2019全国II 文17)如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1. (1)证明:BE ⊥平面EB 1C 1; (2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.

新课标高考立体几何线面角的计算归类分析知识分享

新课标高考立体几何——线面角的计算归类分析 深圳市第二实验学校 李平 作者简介 李平,男,1970年12月生,硕士研究生,高级教师,现任深圳市第二实验学校总务处副主任。深圳市“技术创新能手”称号、深圳市高考先进个人。在教材教法、高考研究、教材编写等方面成效显著。主持和参与省、市级课题多项,主编和参编教育类书籍多部,发表教研论文多篇,辅导学生参加各类竞赛有多人次获奖。 摘 要 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解,这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分地展示了平移法、射影法、补形法这些立体几何特有方法的威力. 关键词 线面角 空间角 平移法 等体积法 空间向量方法 线面角——直线和平面所成的角 1.定义: 平面的一条斜线和它在平面上的射影所成的锐角, 叫做这条斜线和这个平面所成的角. 若直线l ⊥平面α, 则l 与α所成角为90?; 若直线l //平面α或直线l ?平面α, 则l 与α所成角为0?. 2.线面角的范围: [0]2 π ,. 3.线面角的求法: (1)定义法(垂线法). (2)虚拟法(等体积法). (3)平移法. (4)向量法. 线面角是立体几何中的一个重要概念, 它是空间图形的一个突出的量化指标, 是空间位置关系的具体体现, 是培养学生逻辑推理能力, 树立空间观念的重要途径, 故线面角一直以高频率的姿态出现在历年高考试题中. 求解线面角问题一般遵循(找)、证、算三个步骤, 并多以棱锥与棱柱作为考查的载体. 求解线面角的方法主要有两种: 一是利用传统几何方法; 二是利用空间向量方法. 总之, 求线面角的基本思想方法是将空间角的计算转化为计算平面内的角, 然后再用代数、三角的方法求解, 这种将空间问题向平面问题转化的思想方法, 是立体几何中十分重要的思想方法, 同时它也体现了等价转化、数形结合的思想, 充分

§3.2 立体几何中的向量方法(二)——空间向量与垂直关系

§3.2立体几何中的向量方法(二) ——空间向量与垂直关系 课时目标 1.能利用平面法向量证明两个平面垂直.2.能利用直线的方向向量和平面的法向量判定并证明空间中的垂直关系. 1.空间垂直关系的向量表示 空间中的垂直关系 线线垂直线面垂直面面垂直 设直线l的方向向量为a =(a1,a2,a3),直线m 的方向向量为b=(b1,b2,b3),则l⊥m?______ 设直线l的方向向量是a= (a1,b1,c1),平面α的法向量 u=(a2,b2,c2),则l⊥α? ________ 若平面α的法向量u=(a1,b1 , c1),平面β的法向量为v= (a2,b2,c2),则α⊥β? ________ 线线垂直线面垂直面面垂直 ①证明两直线的方向向量的数 量积为______. ①证明直线的方向向量与平面的法向 量是______. ①证明两 个平面的 法向量 _________ ___. ②证明两直线所成角为 ______. ②证明直线与平面内的相交直线 ________. ②证明二 面角的平 面角为 ________._ _______. 一、选择题 1.设直线l1,l2的方向向量分别为a=(1,2,-2),b=(-2,3,m),若l1⊥l2,则m等于() A.1B.2C.3D.4 2.已知A(3,0,-1),B(0,-2,-6),C(2,4,-2),则△ABC是() A.等边三角形B.等腰三角形 C.直角三角形D.等腰直角三角形 3.若直线l的方向向量为a=(1,0,2),平面α的法向量为n=(-2,0,-4),则() A.l∥αB.l⊥α C.l?αD.l与α斜交

4.平面α的一个法向量为(1,2,0),平面β的一个法向量为(2,-1,0),则平面α与平面β的位置关系是( ) A .平行 B .相交但不垂直 C .垂直 D .不能确定 5.设直线l 1的方向向量为a =(1,-2,2),l 2的方向向量为b =(2,3,2),则l 1与l 2的关系是( ) A .平行 B .垂直 C .相交不垂直 D .不确定 6. 如图所示,在正方体ABCD —A 1B 1C 1D 1中,E 是上底面中心,则AC 1与CE 的位置关系 是( ) A .平行 B .相交 C .相交且垂直 D .以上都不是 二、填空题 7.已知直线l 与平面α垂直,直线l 的一个方向向量为u =(1,-3,z ),向量v =(3,-2,1)与平面α平行,则z =______. 8.已知a =(0,1,1),b =(1,1,0),c =(1,0,1)分别是平面α,β,γ的法向量,则α,β,γ三个平面中互相垂直的有______对. 9.下列命题中: ①若u ,v 分别是平面α,β的法向量,则α⊥β?u·v =0; ②若u 是平面α的法向量且向量a 与α共面,则u·a =0; ③若两个平面的法向量不垂直,则这两个平面一定不垂直. 正确的命题序号是________.(填写所有正确的序号) 三、解答题 10.已知正三棱柱ABC —A 1B 1C 1的各棱长都为1,M 是底面上BC 边的中点,N 是侧棱 CC 1上的点,且CN =1 4 CC 1.求证:AB 1⊥MN . 11.已知ABC —A 1B 1C 1是各条棱长均为a 的正三棱柱,D 是侧棱CC 1的中点,求证:平面AB 1D ⊥平面ABB 1A 1.

立体几何空间点线面关系题

立体几何空间点线面关系题1 / 10 立体几何空间点线面关系题 1、(08天津):设,a b 是两条直线,,a b 是两个平面,则a b ^的一个充分条件是( )。 A 、,//,a b a b a b ^^ B 、,,//a b a b a b ^^ C 、,,//a b a b a b 蘜 D 、,//,a b a b a b 蘜 2、(08安徽)已知,m n 是两条不同的直线,,,a b g 是三个不同的平面,下列命题正确的是 ( ) A 、//,//,m//n m n a a 若则 B 、,//a g b g a b ^^若,则 C 、//,//,//m m a b a b 若则 D 、,,//m n m n a a ^^若则 3、(08江西)设直线m 与平面a 相交但不垂直,则下列说法正确的是( ) A 、在平面a 内有且只有一条直线与直线m 垂直 B 、过直线m 有且只有一个平面与平面a 垂直 C 、与直线m 垂直的直线不可能与平面a 平行 D 、与直线m 平行的平面不可能与平面a 垂直 4、(08湖南)已知直线m,n 和平面,a b 满足,,m n m a a b ^^^,则( ) A 、n b ^ B 、//n b b ì或n C 、n a ^ D 、//n a a ì或n 5、对于两条不相交的空间直线,a b ,必存在平面a ,使得( ) A 、,a b a a 烫 B 、,//a b a a ì C 、,a b a a ^^ D 、,a b a a 蘜 6、平面//a b 的一个充分条件是( ) A 、存在一条直线,//,//a a a a b B 、存在一条直线,,//a a a a b ì C 、存在两条平行直线,,,,//,//a b a b a b a b b a 烫 D 、存在两条异面直线,,,,//,//a b a b a b a b b a 烫 7、(07浙江):若P 是两条异面直线,l m 外任意一点,则( )

立体几何空间中的垂直关系及答案

空间中的垂直关系 1.线线垂直 如果两条直线所成的角是______(无论它们是相交还是异面),那么这两条直线互相垂直. 2.直线与平面垂直 (1)定义:如果直线l与平面α内的任意一条直线都垂直,我们就说______________________,记作______.直线l叫做______________,平面α叫做______________.直线与平面垂直时,它们惟一的公共点P叫做______.垂线上任意一点到垂足间的线段,叫做这个点到这个平面的垂线段,垂线段的长度叫做这个点到平面的________. (2)判定定理:一条直线与一个平面内的______________都垂直,则该直线与此平面垂直. 推论:如果在两条平行直线中,有一条垂直于平面,那么另一条直线也垂直于这个平面.用符号表示:a∥b,a⊥α?b⊥α. (3)性质定理:垂直于同一个平面的两条直线__________. 3.直线和平面所成的角 平面的一条斜线和它在平面上的射影所成的________,叫做这条直线和这个平面所成的角. 一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0°的角.任一直线与平面所成角θ的范围是____________. 4.二面角的有关概念 (1)二面角:从一条直线出发的______________________叫做二面角. (2)二面角的平面角:以二面角的棱上任一点为端点,在两个半平面内分别作______________的两条射线,这两条射线所成的角叫做二面角的平面角.二面角的范围是__________. 5.平面与平面垂直 (1)定义:一般地,两个平面相交,如果它们所成的二面角是____________,就说这两个平面互相垂直. (2)判定定理:一个平面过另一个平面的________,则这两个平面垂直. (3)性质定理:两个平面垂直,则一个平面内垂直于______的直线与另一个平面垂直. 自查自纠: 1.直角 2.(1)直线l与平面α互相垂直l⊥α平面α的垂线 直线l的垂面垂足距离(2)两条相交直线(3)平行 3.锐角[0°,90°] 4.(1)两个半平面所组成的图形(2)垂直于棱[0°,180°] 5.(1)直二面角(2)垂线(3)交线 (2018·广东清远一中月考)已知直线l⊥平面α,直线m?平面β,给出下列命题:①α⊥β?l ∥m;②α∥β?l⊥m;③l⊥m?α∥β;④l∥m?α⊥β,其中正确命题的序号是() A.①②③B.②③④C.①③D.②④ . (2017·全国卷Ⅲ)在正方体ABCD-A1B1C1D1中,E为棱CD的中点,则() A.A1E⊥DC1B.A1E⊥BD

立体几何点线面位置关系习题精选

同步练习 第I 卷(选择题) 1.已知,m n 是两条不同直线,,,αβγ是三个不同平面,则下列命题正确的是( ). A 、若m ∥,n α∥α,则m ∥n B 、若,αγβγ⊥⊥,则α∥β C 、若n ∥,n α∥β,则α∥β D 、若,m n αα⊥⊥,则m ∥n 2.已知,m n 是两条不同的直线,,,αβγ是三个不同的平面, 则下列命题中正确的是 ( ) A .//,//m n αα,则//m n B .,m m αβ⊥⊥,则//αβ C .//,//m n m α,则//n α D .,αγβγ⊥⊥,则//αβ 3.已知m 、n 为两条不同的直线,α、β为两个不同的平面,下列命题中正确的是( ) A .若α∥β,m ∥α,则m ∥β B .若α⊥β,m ⊥β,则m ⊥α C .若m ⊥α,m ⊥β,则α∥β D .若m ∥α,m ⊥n ,则n ⊥α 4.已知l ,m 是两条不同的直线,α是一个平面, 则下列命题正确的是( ) A .若l α⊥,m α?,则l m ⊥ B .若l m ⊥,m α?,则l α⊥ C .若l ∥α,m α?,则l ∥m D .若l ∥α,m ∥α,则l ∥m 5.设l ,m 是两条不同的直线,α是一个平面,则下列命题正确的是( ) A .若l α⊥,l m //,则m α⊥ B .若l m ⊥,m α?,则l α⊥ C .若l α//,m α?,则l m // D .若l α//,m α//,则l m // 6.设b a ,表示直线,γβα,,表示不同的平面,则下列命题中正确的是( ) A .若α⊥a 且b a ⊥,则α//b B .若αγ⊥且βγ⊥,则βα// C .若α//a 且β//a ,则βα// D .若αγ//且βγ//,则βα// 7.关于空间两条直线a 、b 和平面α,下列命题正确的是( ) A .若//a b ,b α?,则//a α B .若//a α,b α?,则//a b C .若//a α,//b α,则//a b D .若a α⊥,b α⊥,则//a b 8.给定空间中的直线l 及平面,条件“直线l 与平面 内无数条直线都垂直”是“直线l 与平面 垂直”的( )条件 A .充要 B .充分非必要 C .必要非充分 D .既非充分又非必要 9.设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中为真命题的个数( ) ①若m α⊥,//m n ,//n β,则αβ⊥ ②若αβ⊥,m α?,m β⊥,则//m α ③若m β⊥,m α?,则αβ⊥ ④若αβ⊥,m α?,n β?,则m n ⊥ A .0个 B .1个 C .2个 D .3个

立体几何线面关系的常见规律解剖

立体几何线面关系的常见规律 规律一:线线平行与线线垂直的判定 1、直线与直线平行的判定方法: 公理4:平行与同一条直线的两条直线互相平行 直线与平面垂直的性质定理:如果两条直线垂直与同一个平面,那么这两条直线平行 直线与平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行 两个平面平行的性质定理:如果两个平行平面同时和第三个平面相交,那么所得的两交线平行 2、直线与直线垂直的判定方法: 利用直线与平面垂直的定义来判定:如果一条直线垂直于一个平面,那么它就与平面内的任意一条直线垂直 例题1:(2012·南通调研)如图,在六面体ABCD-A1B1C1D1中,AA1∥CC1,A1B =A1D,AB=AD.求证: (1)AA1⊥BD; (2)BB1∥DD1. 证明(1)取BD的中点M,连结AM,A1M.因为A1D=A1B,AD=AB,所以BD ⊥AM,BD⊥A1M.又AM∩A1M=M,AM,A1M?平面A1AM, 所以BD⊥平面A1AM. 因为AA1?平面A1AM,所以AA1⊥BD. (2)因为AA1∥CC1,AA1?平面D1DCC1,CC1?平面D1DCC1,所以AA1∥平面 D1DCC1. 又AA1?平面A1ADD1,平面A1ADD1∩平面D1DCC1=DD1,所以AA1∥DD1.

同理可得AA 1∥BB 1,所以BB 1∥DD 1. 例题2:(13泰州期末)在三棱锥S-ABC 中,SA ⊥平面ABC ,SA=AB=AC= 3 BC ,点D 是BC 边的中点,点E 是线段AD 上一点,且AE=4DE,点M 是线段SD 上一点,求证:BC ⊥AM 方法小结: (1)要证明线线垂直有两条思路:第一条:把其中一条直线平移,使得两条直线在同一个平面,然后用平面几何的知识证明垂直即可;第二条:通过证明线面垂直证明。即证明其中一条直线垂直另一个直线所在的平面。第二条思路用的较多,要熟练,第一条用的较少,但也不能忘 (2)证明线线垂直也主要有两条思路,第一条:证明其中一条直线平行另一条直线所的平面,在用线面平行的性质;第二条:先证明两条直线所在的平面平行,再证明这两条直线为第三个平面与两平行平面所交的交线,即运用面面平行的性质定理。面面平行与线面平行的性质定理在证明过程中容易被学生忽视,所以教学过程中应引起重视 同步练习1:在如图所示的多面体中,11//AA BB ,11CC AC CC BC ⊥⊥,. (1)求证:1CC AB ⊥; A 1A

立体几何线面平行垂直,线面角二面角的证明方法

A P B C E D 一:线面平行的证明方法: 1、用“近似平行法”先找到面上与已知直线平行的直线(一般为表示面的三角形的边界直线,或三角形某边上的中线) 看找到的这条线与已知线的长度关系,1)若相等应该构造平行四边形;2)若不相等一般利用三角形中位线的性质(将这两个不相等的线段的端点连结并延长即会出现关键三角形)。 2、若既不能构造平行四边形也不能性用中位线性质,则应再构造一个此直线所在的平面,证明此平面与已知平面平行(先证面面平行,推出线面平行) 例一:如图,已知菱形ABCD ,其边长为2, 60BAD ∠= ,ABD ?绕着BD 顺时针旋转120 得到PBD ?,M 是PC 的中点. (1)求证://PA 平面MBD ; (2)求直线AD 与平面PBD 所成角的正弦值. 例二:已知四棱锥P-ABCD ,底面ABCD 是 60=∠A 、 边 长为a 的菱形,又ABCD PD 底⊥,且PD=CD ,点M 、N 分别是 棱AD 、PC 的中点. (1)证明:DN//平面PMB ; (2)证明:平面PMB ⊥平面PAD ; (3)求点A 到平面PMB 的距离. 例三:如图,已知点P 是平行四边形ABCD 所在平面外的一点, 上的点且PE EA BF FD =∶∶,求证:EF //平面PBC . 二:线面垂直的证明方法: 通过线线垂直,证明线面垂直 1) 利用勾股定理逆定理及三角形中两个角和为90°; 2) 利用等边、等腰三角形(中线即高线),正方形、矩形邻边垂直,正方形菱形对角线垂 直等; 3) 通过线面垂直,反推线线垂直; 4) 利用面面垂直的性质,证明垂直于交线即垂直于另一个平面。 例四:如图,四边形ABCD 为矩形,CF ⊥平面ABCD ,DE ⊥平面ABCD , AB=4a ,BC= CF=2a,P 为AB 的中点. (1)求证:平面PCF ⊥平面PDE ; (2)求四面体PCEF 的体积. C

历年高考数学真题精选31 立体几何中的垂直关系

历年高考数学真题精选(按考点分类) 专题31 垂直关系(学生版) 1.(2019?北京)如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为菱形,E 为CD 的中点. (Ⅰ)求证:BD ⊥平面PAC ; (Ⅱ)若60ABC ∠=?,求证:平面PAB ⊥平面PAE ; (Ⅲ)棱PB 上是否存在点F ,使得//CF 平面PAE ?说明理由. 2.(2015?重庆)如图,三棱锥P ABC -中,平面PAC ⊥平面ABC ,2 ABC π ∠= ,点D 、E 在线段AC 上,且2AD DE EC ===,4PD PC ==,点F 在线段AB 上,且//EF BC . (Ⅰ)证明:AB ⊥平面PFE . (Ⅱ)若四棱锥P DFBC -的体积为7,求线段BC 的长. 3.(2015?福建)如图,AB 是圆O 的直径,点C 是圆O 上异于A ,B 的点,PO 垂直 于圆O 所在的平面,且1PO OB ==, (Ⅰ)若D 为线段AC 的中点,求证;AC ⊥平面PDO ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =E 在线段PB 上,求CE OE +的最小值.

4.(2014?四川)在如图所示的多面体中,四边形11ABB A 和11ACC A 都为矩形 (Ⅰ)若AC BC ⊥,证明:直线BC ⊥平面11ACC A ; (Ⅱ)设D 、E 分别是线段BC 、1CC 的中点,在线段AB 上是否存在一点M ,使直线//DE 平面1A MC ?请证明你的结论. 5.(2014?福建)如图,三棱锥A BCD -中,AB ⊥平面BCD ,CD BD ⊥. (Ⅰ)求证:CD ⊥平面ABD ; (Ⅱ)若1AB BD CD ===,M 为AD 中点,求三棱锥A MBC -的体积. 6.(2014?广东)如图1,四边形ABCD 为矩形,PD ⊥平面ABCD ,1AB =,2BC PC ==作如图2折叠;折痕//EF DC ,其中点E ,F 分别在线段PD ,PC 上,沿EF 折叠后点P 叠在线段AD 上的点记为M ,并且MF CF ⊥. (1)证明:CF ⊥平面MDF ; (2)求三棱锥M CDE -的体积.

2018高三高考数学专题复习17+立体几何中线面位置关系

1.【2017课标1,文6】如图,在下列四个正方体中,A ,B 为正方体的两个顶点,M ,N ,Q 为所在棱的中点,则在这四个正方体中,直接AB 与平面MNQ 不平行的是 A . B . C . D . 【答案】A 【考点】空间位置关系判断 【名师点睛】本题主要考查线面平行的判定定理以及空间想象能力,属容易题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面. 2.【2017课标3,文10】在正方体1111ABCD A B C D -中,E 为棱CD 的中点,则( ) A .11A E DC ⊥ B .1A E BD ⊥ C .11A E BC ⊥ D .1A E AC ⊥ 【答案】C 【解析】根据三垂线逆定理,平面内的线垂直平面的斜线,那也垂直于斜线在平面内的射影,A.若11A E DC ⊥,那么11D E DC ⊥,很显然不成立;B.若1A E BD ⊥,那么BD AE ⊥,显然不成立;C.若11A E BC ⊥,那么11BC B C ⊥,成立,反过来11BC B C ⊥时,也能推出11BC A E ⊥,所以C 成立,D.若1A E AC ⊥,则AE AC ⊥,显然不成立,故选C.

【考点】线线位置关系 【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型. (1)证明线面、面面平行,需转化为证明线线平行. (2)证明线面垂直,需转化为证明线线垂直. (3)证明线线垂直,需转化为证明线面垂直.学~ 3.【2014高考广东卷.文.9】若空间中四条直线两两不同的直线...,满足12l l ⊥,23//l l ,34l l ⊥,则下列结论一定正确的是( ) A .14l l ⊥ B .14//l l C ..既不平行也不垂直 D ..的位置关系不确定 【答案】D 【考点定位】本题考查空间中直线的位置关系的判定,属于中等题. 【名师点晴】本题主要考查的是空间点、线、面的位置关系,属于中等题.解题时一定要注意选“正确”还是选“错误”, 否则很容易出现错误.解决空间点、线、面的位置关系这类试题时一定要万分小心,除了作理论方面的推导论证外,利用特殊图形进行检验,也可作必要的合情推理. 4.【2016高考山东文数】已知直线a ,b 分别在两个不同的平面α,内,则“直线a 和直线b 相交”是“平面α和平面相交”的( ) (A )充分不必要条件(B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件 【答案】A 【解析】 试题分析: “直线和直线相交”?“平面α和平面β相交”,但“平面α和平面β相交”?“直线和直线相交”,所以“直线和直线相交”是“平面α和平面β相交”的充分不必要条件,故选A .

立体几何中二面角和线面角

立体几何中的角度问题 一、 异面直线所成的角 1、如图,在四棱锥ABCD P -中,底面ABCD 是矩形,⊥PA 底面ABCD ,E 是PC 的中点,已知2=AB ,22=AD ,2=PA ,求: (1)三角形PCD 的面积; (2)异面直线BC 与AE 所成的角的大小。 2、如图6,已知正方体1111ABCD A B C D -的棱长为2,点E是正方形11BCC B 的中心,点F、G分别是棱111,C D AA 的中点.设点11,E G 分别是点E,G在平面11DCC D 内的正投影. (1)求以E为顶点,以四边形FGAE 在平面11DCC D 内的正投影为底面边界的棱锥的体积; (2)证明:直线11FG FEE ⊥平面; (3)求异面直线11E G EA 与所成角的正弦值

二、直线与平面所成夹角 1、如图,在四棱锥P ABCD -中,底面为直角梯形,//AD BC , 90BAD ∠=,PA ⊥ 底面ABCD ,且2P A A D A B B C ===,M N 、分别为PC 、PB 的中点。 求CD 与平面ADMN 所成的角的正弦值。 2、长方体ABCD-A 1B 1C 1D 1 , AB=3 ,BC=2, A 1A= 4 ,求AB 与面 AB 1C 1D 所成的角的正弦值。 三、二面角与二面角的平面角问题 1、如图5.在椎体P-ABCD 中,ABCD 是边长为1的棱形, 且∠DAB=60?,PA PD == E,F 分别是BC,PC 的中点. (1) 证明:AD ⊥平面DEF; (2) 求二面角P-AD-B 的余弦值.

2、如图5,?AEC 是半径为a 的半圆,AC 为直径,点E 为?AC 的中点,点B 和点C 为线 段AD 的三等分点,平面AEC 外一点F 满足FB FD ==,EF =。 (1)证明:EB FD ⊥; (2已知点,Q R 为线段,FE FB 上的点,23FQ FE =,2 3 FR FB =,求平面BED 与平面RQD 所成二面角的正弦值。

立体几何——点线面的位置关系

点线面的位置关系 (1)四个公理 公理1:如果一条直线上的两点在一个平面内,那么这条直线在此平面内。 符号语言:,,,A l B l A B l ααα∈∈∈∈ ? ∈且。 公理2:过不在一条直线上的三点,有且只有一个平面。 三个推论:① 经过一条直线和这条直线外一点,有且只有一个平面 ② 经过两条相交直线,有且只有一个平面 ③ 经过两条平行直线,有且只有一个平面 它给出了确定一个平面的依据。 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线(两个平面的交线)。 符号语言:,,P P l P l αβα β∈∈?=∈且。 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 (2)空间中直线与直线之间的位置关系 1.概念 异面直线及夹角:把不在任何一个平面内的两条直线叫做异面直线。 已知两条异面直线,a b ,经过空间任意一点O 作直线//,//a a b b '',我们把 a '与 b '所成的角(或直角)叫异面直线,a b 所成的夹角。(易知:夹角范围 090θ<≤?) 公理4:(平行线的传递性)平行与同一直线的两条直线互相平行。 符号语言://,////a l b l a b ?且。 定理:空间中如果一个角的两边分别与另一个角的两边分别平行,那么这两个角相等或互补。(注意:会画两个角互补的图形) 2.位置关系:???? ??? ?相交直线:同一平面内,有且只有一个公共点;共面直线平行直线:同一平面内,没有公共点; 异面直线:不同在任何一个平面内,没有公共点 (3)空间中直线与平面之间的位置关系

高中数学立体几何线面关系经典

立体几何线面关系 一、柱、锥、球图形画法、基本性质、表面积及体积公式 概念基本性质表面积

二、线面关系及判定 1、线线平行的判断: (1)、平行于同一直线的两直线平行。 (2)、如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 (3)、如果两个平行平面同时和第三个平面相交,那么它们的交线平行。 (4)、垂直于同一平面的两直线平行。 2、线线垂直的判断: (1)在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。 (2)在平面内的一条直线,如果和这个平面的一条斜线垂直那么它和这条斜线的射影垂直。 (3)、若一直线垂直于一平面,这条直线垂直于平面内所有直线。补充:一条直线和两条平行直线中的一条垂直,也必垂直平行线中的另一条。 3、线面平行的判断: (1)、如果平面外的一条直线和平面内的一条直线平行,那么这条直线和这个平面平行。 (2)、两个平面平行,其中一个平面内的直线必平行于另一个平面。 4、线面垂直的判断:(1)如果一直线和平面内的两相交直线垂直,这条直线就垂直于这个平面。(2)如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于这个平面。 (3)一直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面。 (4)如果两个平面垂直,那么在—个平面内垂直于交线的直线必垂直于另—个平面。 5、面面平行的判断: (1)一个平面内的两条相交直线分别平行于另一个平面,这两个平面平行。(2)垂直于同一条直线的两个平面平行。 6、面面垂直的判断: (1)一个平面经过另一个平面的垂线,这两个平面互相垂直。

高中数学-立体几何位置关系-平行与垂直证明方法汇总

高中数学-立体几何位置关系-平行与垂直证明方法汇总 (一)立体几何中平行问题 证明直线和平面平行的方法有: ①利用定义采用反证法; ②平行判定定理; ③利用面面平行,证线面平行。 主要方法是②、③两法 在使用判定定理时关键是确定出面内的 与面外直线平行的直线. 常用具体方法:中位线和相似 例1、P是平行四边形ABCD所在平面外一点,Q是PA的中点. 求证:PC∥面BDQ. 证明:如图,连结AC交BD于点O. ∵ABCD是平行四边形, ∴A O=O C.连结O Q,则O Q在平面BDQ内, 且O Q是△APC的中位线, ∴PC∥O Q. ∵PC在平面BDQ外, ∴PC∥平面BDQ. 例2、在棱长为a的正方体ABCD-A1B1C1D1中,设M、N、E、F分别是棱A1B1、A1D1、C1D1、B1C1的中点.求证: (1)E、F、B、D四点共面; (2)面AMN∥面EFBD.

证明:(1)分别连结B 1D 1、ED 、FB ,如图, 则由正方体性质得 B 1D 1∥BD. ∵E 、F 分别是D 1C 1和B 1C 1的中点, ∴EF ∥ 21B 1D 1.∴EF ∥2 1 BD. ∴E 、F 、B 、D 对共面. (2)连结A 1C 1交MN 于P 点,交EF 于点Q ,连结AC 交BD 于点O ,分别连结PA 、Q O . ∵M 、N 为A 1B 1、A 1D 1的中点, ∴MN ∥EF ,EF ?面EFBD. ∴MN ∥面EFBD. ∵PQ ∥A O , ∴四边形PA O Q 为平行四边形. ∴PA ∥O Q. 而O Q ?平面EFBD , ∴PA ∥面EFBD.且PA ∩MN=P ,PA 、MN ?面AMN , ∴平面AMN ∥平面EFBD. 例3如图(1),在直角梯形P 1DCB 中,P 1D//BC ,CD ⊥P 1D ,且P 1D=8,BC=4,DC=4 6, A 是P 1D 的中点,沿A B 把平面P 1AB 折起到平面PAB 的位置(如图(2)),使二面角P —CD —B 成45°,设E 、F 分别是线段AB 、PD 的中点. 求证:AF//平面PE C ; 证明:如图,设PC 中点为G ,连结FG ,

相关主题
文本预览
相关文档 最新文档