当前位置:文档之家› 基于有阻尼自由振动的超声波测距系统的设计

基于有阻尼自由振动的超声波测距系统的设计

超声波测距系统设计

目录 一、课程设计目的 (2) 二、内容及要求 (2) 2.1、设计内容 (2) 2.2、设计要求 (2) 三、超声波传感器的工作原理 (2) 四、系统框图 (3) 五、单元电路设计原理 (3) 5.1、51系列单片机的功能特 (4) 5.2、超声波发射电路 (4) 5.3、超声波检测接收电路 (5) 六、完整的电路图………………………………………………………………… 七、程序流程图 (6) 八、参考文献 (7) 九、设计中的问题及解决方法 (7) 十、总结 (7)

一、课程设计目的 通过《传感器及检测技术》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、内容及要求 超声波测距系统设计 2.1设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LED数码管显示测量距离,精确到小数点后一位(单位:cm)。 2)测量范围:30cm~200cm。 3)误差<0.5cm。 4)其它。 2.2设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。 三、超声波传感器的工作原理 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量。利用超声波检测距离,设计比较方便,计算处理也较简单,并且在测量精度方面也能达到农业生产等自动化的使用要求。 目前在近距离测量方面常用的是压电式超声波换能器。根据设计要求并综合各方面因素,本文采用AT89C51单片机作为控制器,用动态扫描法实现LED数字显示,超声波驱动信号用单片机的定时器。 超声波测距的原理是利用超声波的发射和接受,根据超声波传播的时间来计算出传播距离。实用的测距方法有两种,一种是在被测距离的两端,一端发射,另一端接收的直接波方式,适用于身高计;一种是发射波被物体反射回来后接收的反射波方式,适用于测距仪。此次设计采用反射波方式。 理论计算 如图1所示为反射时间法,是利用检测声波发出到接收到被测物反射回波的时间来测量距离其原理如图所示,对于距离较短和要求不高的场合我们可认为空气中的声速为常数,我们通过测量回波时间T利用公式(T/2) C S=其中,S为被 * 测距离、V为空气中声速、T为回波时间(T2 =),这样可以求出距离: T1 T+

振动信号检测系统的设计1

信号检测综合训练 说明书 题目:振动信号检测系统设计 学院:电气工程与信息工程学院 班级:电子(2)班 姓名: 钱鹏鹏 学号:11260224 指导老师:缑新科 2014.12.07

摘要 机械在运动时,由于旋转体的不平衡、负载的不均匀、结构刚度的各向异性、间隙、润滑不良、支撑松动等因素,总是伴随着各种振动。机械振动在大多情况下是有害的,振动往往会降低机器性能,破坏其正常工作,缩短使用寿命,甚至导致事故。机械振动还伴随着同频率的噪声,恶化环境,危害健康。另一方面,振动也被利用来完成有用工作,如运输、夯实、清洗、粉碎、脱水等。这时必须正确选择振动参数,充分发挥振动机械的性能。在现代企业管理制度中,除了对各种机械设备提出低振动和低噪声要求外,还需随时对机器的运行状况进行监测、分析、诊断,对工作环境进行控制。为了提高机械结构的抗振性能,有必要进行机械机构振动分析和振动设计,这些都离不开振动测试。 本文在此基础上设计了一种专用的振动信号检测系统,具有功耗低、体积小、精度高等优点。 信号检测的内容要求: 通过MCS-51系列单片机设计振动信号检测系统。要求如下: 1 振动信号的特点,选择合适的传感器,并设计相应的检测电路; 2 将设计完成的检测电路,通过软件防真验证; 3 主要设计指标:可测最大加速度:-5m/s~+5m/s;可测最大速度:-0.16m/s~+0.16m/s;可测最大位移:-5mm~+5mm;通频带:0.05Hz~35Hz;转换精度:8bit;采样频率:128Hz 4 利用LCD显示振动信号,有必要的键盘控制。

总体设计方案介绍: 本系统由发射电路和接收电路组成。发射电路主要由加速度传感器构成。接收电路由单片机最小系统和外部串口以及显示部分模块三部分组成。。 硬件电路设计: (1)使用MMA8452加速度传感器和STC89C52单片机来实现。 一.设计目的:了解加速度传感器的工作机理,以及单片机的各种性能; 二.设计器材:电源、proteus7.7软件、89C52,MMA8452加速度传感器,导线若干。 三.设计方案介:该系统目的是便于对一些物理量进行监视、控制。本设计以加速度传感器显示出加速度信号即振动信号,再通过单片机将信号从串口接入电脑显示出来,即完成振动信号的检测功能。 (2)振动传感器的分类 1、相对式电动传感器 电动式传感器基于电磁感应原理,即当运动的导体在固定的磁场里切割磁力线时,导体两端就感生出电动势,因此利用这一原理而生产的传感器称为电动式传感器。 相对式电动传感器从机械接收原理来说,是一个位移传感器,由于在机电变换原理中应用的是电磁感应电律,其产生的电动势同被测振动速度成正比,所以它实际上是一个速度传感器。 2、电涡流式传感器 电涡流传感器是一种相对式非接触式传感器,它是通过传感器端部与被测物体之间的距离变化来测量物体的振动位移或幅值的。电涡流传感器具有频率范围宽(0~10 kHZ),线性工作范围大、灵敏度高以及非接触式测量等优点,主要应用于静位移的测量、振动位移的测量、旋转机械中监测转轴的振动测量。 3、电感式传感器 依据传感器的相对式机械接收原理,电感式传感器能把被测的机械振动参数的变化转换成为电参量信号的变化。因此,电感传感器有二种形式,一是可变间隙,二是可变导磁面积。 4、电容式传感器 电容式传感器一般分为两种类型。即可变间隙式和可变公共面积式。可变间隙式可以测量直线振动的位移。可变面积式可以测量扭转振动的角位移。 5、惯性式电动传感器 惯性式电动传感器由固定部分、可动部分以及支承弹簧部分所组成。为了使传感器工作在位移传感器状态,其可动部分的质量应该足够的大,而支承弹簧的刚度应该足够的小,也就是让传感器具有足够低的固有频率。根据电磁感应定律,感应电动势为:u=Blx&r 。式中B为磁通密度,l为线圈在磁场内的有效长度,r x&为线圈在磁场中的相对速度。 从传感器的结构上来说,惯性式电动传感器是一个位移传感器。然而由于其输出的电信号是由电磁感应产生,根据电磁感应电律,当线圈在磁场中作相对运动

汽车振动练习题

判断题 1、系统作与激振力同频率的简谐振动,振幅决定于激振力的幅值、频率以及系统本身的物理特性。 A.对 2、当初始条件为零,即==0时,系统不会有自由振动项。 A.错 3、隔振系统的阻尼愈大,则隔振效果愈好。 A.对 4、任何系统只有当所有自由度上的位移均为零时,系统的势能才可能为零。B.错 5、对于多自由度无阻尼线性系统,其任何可能的自由振动都可以被描述为模态运动的线性组合。对 6、一个周期激振力作用到单自由度线性系统上,系统响应的波形与激振力的波形相同,只是两波形间有一定的相位差。错 7、单自由度线性无阻尼系统的自由振动频率由系统的参数确定,与初始条件无关。对 8、多自由度振动系统的运动微分方程组中,各运动方程间的耦合,并不是振动系统的固有性质,而只是广义坐标选用的结果。对 9、无阻尼振动的固有频率只与质量和刚度有关,是系统的固有特性,与外界初始激励(初始条件)无关。对 10、对数衰减系数可以用来求阻尼比。() A.对 11、单自由度系统在简谐激励力作用下,系统将产生一个与激励力相同频率的简谐振动,但滞后一个相角。 A.对 12、线性系统内各个激励产生的响应是互不影响的。 A.对 13、两个同频率的简谐振动在同方向的合成运动是该频率的简谐振动。 A.对 14、简谐振动的加速度,其大小与位移呈正比,而方向与位移相反,始终指向平衡位置。 A.对 15、所有表示周期振动的周期函数都可以展开成Fourier级数的形式。 B.错 16、广义坐标必须能完整地描述系统的运动。 A.对 17、在欠阻尼和过阻尼的情况下,运动都将衰减为零。()对 18、对于无阻尼系统,速度超前位移90度。() A.对 19、瑞利法的基础是能量守恒定律。() A.对 20、有阻尼系统自由振动的频率有可能是零。() A.对 21、有阻尼系统自由振动的频率有时大于无阻尼系统的固定频率。() A.对 22、能量守恒定律可用于推导有阻尼系统和无阻尼系统的运动微分方程。() A.对 23、当质量块在垂直方向振动时,推导运动微分微分方程时都可以不计重力。() A.对 24、对于单自由度系统而言,无论质量是在水平面还是在斜面上运动,运动微分方程都是相同的。 A.对 25、在空气中振动的系统可以看作是一个阻尼系统。() A.对 26无阻尼系统的振幅不随时间变化。() A.对 27、离散系统和集中参数系统是相同的。() A.对 28、广义坐标不一定是笛卡尔坐标。() A.对 29、几个不同位置质量的等效质量可以用动能等效得到。() A.对 30、简谐运动是周期运动。() A.对

超声波测距仪的设计说明

题目:超声波测距仪的设计 超声波测距仪的设计 一、设计目的: 以51单片机为主控制器,利用超声波模块HC-SR04,设计出一套可在数码管上实时显示障碍物距离的超声波测距仪。 通过该设计的制作,更为深入的了解51的工作原理,特别是51的中断系统及定时器/计数器的应用;掌握数码管动态扫描显示的方法和超声波传感器测距的原理及方法,学会搭建51的最小系统及一些简单外围电路(LED显示电路)。从中提高电路的实际设计、焊接、检错、排错能力,并学会仿真及软件调试的基本方法。 二、设计要求: 设计一个超声波测距仪。要求: 1.能在数码管上实时显示障碍物的实际距离; 2.所测距离大于2cm小于300cm,精度2mm。 三、设计器材: STC89C52RC单片机 HC-SR04超声波模块 SM410561D3B四位的共阳数码管 9014三极管(4) 按键(1) 电容(30PF2,10UF1) 排阻(10K),万用板,电烙铁,万用表,5V直流稳压电源,镊子,钳子,

导线及焊锡若干,电阻(200欧5)。 四、设计原理及设计方案: (一)超声波测距原理 超声测距仪是根据超声波遇到障碍物反射回来的特性进行测量的。超声波发射器向某一方向发射超声波,在发射同时开始计时,超声波在空气中传播,途中碰到障碍物就立即返回来,超声波接收器收到反射波就立即中断停止计时。通过不断检测产生波发射后遇到障碍物所反射的回波,从而测出发射超声波和接收到回波的时间差T,然后求出距离L。基本的测距公式为:L=(△t/2)*C 式中 L——要测的距离 T——发射波和反射波之间的时间间隔 C——超声波在空气中的声速,常温下取为344m/s 声速确定后,只要测出超声波往返的时间,即可求得L。 根据本次设计所要求的测量距离的围及测量精度,我们选用的是HC-SR04超声波测距模块。(如下图所示)。此模块已将发射电路和接收电路集成好了,硬件上不必再自行设计繁复的发射及接收电路,软件上也无需再通过定时器产生40Khz的方波引起压电陶瓷共振从而产生超声波。在使用时,只要在控制端‘Trig’发一个大于15us宽度的高电平,就可以在接收端‘Echo’等待高电平输出。单片机一旦检测到有输出就打开定时器开始计时。 当此口变为低电平时就停止计时并读出定时器的值,此值就为此次测距的时间,再根据传播速度方可算出障碍物的距离。 (二)超声波测距模块HC-SR04简要介绍 HC-SR04超声波测距模块的主要技术参数使用方法如下所述: 1. 主要技术参数: ①使用电压:DC5V ②静态电流:小于2mA ③电平输出:高5V

落点实时光学测量系统的设计与实现

落点实时光学测量系统的设计与实现 飞行器落点的测量是某部队一项重要的任务,落点测量是否及时准确将对飞行试验结果的判别、后续残骸的搜索等产生很大的影响。但受飞行试验落点区域条件限制和机动性要求,超声波、雷达或无线电等定位设备在本文中并不适合,简易的光学测量系统最适合本文的应用。 传统的落点光学测量主要依靠某型望远镜捕获目标,利用人工读数的方式获得角度值信息,再通过数传电台将各观测点的信息传输至计算中心,中心操作手再手工将角度信息录入计算软件,得出交会结果,最后进行结果复核计算。这种传统的方式存在时效低、人为误差大等缺点,需要构建更加自动化、精确度更高的落点实时光学测量系统。 本论文正式针对上述实际问题,将比较成熟的光电编码技术与易于操作的望远镜进行组合,增加微处理器控制电路及收发数据、交会处理的软件,使操作手确认捕获到目标后,能自动完成角度信息采集、传输、交会计算和向上级指挥所发送结果的全过程,提高了测量速度、效率和精度。本文的主要内容为:1.落点实时光学测量系统的关键技术研究。 介绍了该系统中的关键技术,两点前向交会方法、高斯投影、光电编码技术等,并通过推导计算得出一种基于最小二乘法的交会算法的优化方法。2.落点实时光学测量系统的需求分析。 基于落点测量的实际情况,对落点测量的环境、条件及主要流程进行了全面分析。对需要开发的落点实时光学测量系统的需求进行分析。 3.落点实时光学测量系统的设计。在需求分析的基础上,完成系统设计,主要包括体系架构、功能结构、网络拓扑等。

4.落点实时光学测量系统的实现。搭建系统环境,采购并接入光电编码器、数传电台等硬件,完成了数据通信、数据处理、交会计算和辅助决策等功能的实现。 在此基础上,通过模拟计算对优化算法进行了验证。5.落点实时光学测量系统的测试。 为确保系统有较高的可靠性,对系统进行相关测试,发现并解决系统中存在的问题。目前,该系统已实际应用,机动性强、受环境干扰小、性能稳定,实现了提高落点测量速度,减小人为差错的目标。

10米超声波测距仪设计实现

10米超声波测距仪设计实现 一、功能要求 设计一个超声波测距仪,可以测量测距仪与被测物体间的距离。要求测量范围0.1~10.00米,测量精度1cm,测量时与被测物体不接触,并将测量结果显示出来。 二、系统硬件电路 1.单片机系统及显示电路 单片机采用89C51或89S51。采用12MHz高精度晶振,以获得较稳定的时钟频率,减小测量误差。单片机用p1.0端口输出超声波换能器所需的40Hz方波信号,利用外中断0口监测超声波接受电路输出的返回信号。显示电路采用简单实用的4位共阳极LED数码管,段码用74LS244驱动,位用PNP8550驱动。 2.超声波发射电路 主要由74LS04和超声波换能器T构成。这种推挽形式的方波信号可以提高发射强度。反相器并联提高驱动能力。上拉电阻R1、R2提高74LS04输出高电平的驱动能力。 3.超声波接收电路 CX20106A是接收38KHz超声波的芯片,可利用它做接收电路。 4.系统程序 超声波测距仪的软件主要由主程序、超声波发生子程序、超声波接收中断程序及显示子程序组成。 主程序:

开始 系统初始化 发送超声波脉冲 等待反射超声波 计算距离 显示结果 丢系统初始化,设置T0为方式1,EA=1,P0,P2清0。为避免超声波发射器直接接传送到接收器,需要延时0.1ms。由于时钟的频率是12MHz,计数器每计一个数就是1us。如果按声速344m/s,则d=c*t/2=172T0 cm 超声波发生子程序:通过P1.0端口发送2个左右超声波脉冲信号,脉宽12us,同时T0计数。 超声波测距仪利用中断0检测返回的超声波,一旦接收到返回的信号,立即进入中断。中断后就立即关闭T0停止计时。如果计数器益出则测试不成功。 3方案设计和选择 根据本次设计的要求,方案的选择应力求实用性强,性价比高,使用简单。 3.1 超声波测距的基本原理 谐振频率高于20kHz的声波被称为超声波。超声波

超声波测距系统设计

中北大学 物联网工程专业 无线传感器网络课程设计 报告 课题名称:超声波测距系统设计 班级: 13270841 指导教师:马永 开设时间: 2016 年 6 月

目录 一、课程设计目的 (1) 二、课程设计题目 (1) 三、课程设计内容、要求 (1) 1、设计内容 (1) 2、设计要求 (1) 四、传感器工作原理 (1) 1.超声波传感器 (1) 2.温度传感器DS18B20 (3) 五、系统框图 (3) 六、单元电路设计原理 (4) 1、超声波发射电路 (4) 2、超声波检测接收电路 (4) 3、单片机最小系统 (5) 3.1、STC89C52芯片 (5) 3.2 复位电路 (5) 3.3 晶振电路 (6) 4、显示部分 (7) 5、温度检测电路 (7) 七、软件设计与系统调试 (8) 1、主程序流程图 (8) 1.1发射程序与接收程序流程图 (9) 1.2 中断子程序流程图 (10) 1.3 距离计算与显示子程序 (11) 2.系统调试 (12) 八、设计中的问题及解决方法 (12) 九、总结 (13) 十、参考文献 (14)

一、课程设计目的 通过《无线传感器网络》课程设计,掌握传感器及检测系统设计的方法和设计原则及相应的硬件调试的方法。进一步理解传感器及检测系统的设计和应用。 二、课程设计题目 超声波测距系统设计 三、课程设计内容、要求 1、设计内容 采用40KHz的超声波发射和接收传感器测量距离。采用发射和接收平行放在一起,通过反射测量距离。根据温度传感器DS18B20所采集的温度数据来修正测距系统中的声速,从而使超声波测得的距离更准确。 功能:1)所有测距和温度数据均通过液晶显示器LCD1602 显示出来,距离精确到毫米,温度精确到小数点后一位(单位:摄氏度)。 2)测量范围:30mm~2000mm。 3)误差<5mm。 4)其它。 2、设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图 四、传感器工作原理 1. 超声波传感器 本次设计超声波传感器采用电气方式中的压电式超声波传感器分机械方式

汽车倒车系统中超声波测距模块的设计

收稿日期:2006-12-13 作者简介:彭翠云(1979-),女,湖北省荆门市人,硕士生,研究方向为汽车倒车辅助系统。 文章编号: 1004-2474(2008)02-0251-04汽车倒车系统中超声波测距模块的设计 彭翠云1,赵广耀2,戎海龙3 (1.安徽工程科技学院机械学院,安徽芜湖,241000;2.东北大学机械工程与自动化学院, 辽宁沈阳110004;3.东南大学自动化学院,江苏南京,210096) 摘 要:介绍了以Cy gnal 8051F 330单片机为控制器,用于汽车倒车的超声波测距模块的硬件电路和软件设 计方案,在抗干扰设计等方面该模块采用了软硬件综合处理措施,实现了较高的测距精度和较宽的测距范围。在满足倒车系统要求的基础上,体现了简单、经济、实效、实用的特点,文章给出了该模块的实际调试效果和误差分析结果。 关键词:超声波测距;带通滤波;单片机中图分类号:T P212 文献标识码:A The Design of Ultrasonic Distance -Measuring S ystem Used on Car -backing System PENG Cui -yun 1 ,ZHAO Guang -yao 2 ,R ONG Hai -long 3 (1.Dept .of M echanical Engineering ,An hui University of Technology and S cien ce ,Wu hu Anhui 241000,China ; 2.C ollege of M echanical E ngineering an d Automation ,Northeastern University ,Shenyang 110004,China ; 3.College of Automation ,S ou theastern University ,Nanjing 210096,China ) A bstract :A n per so nally desig ned ultr aso nic distance -measuring sy stem is intro duced and its hardw are circuits and softw are design me tho ds are giv en in this pape r ,which ba ses o n Cyg na l 8051F330sing le chip ,a nd is applied to ca rbacking sy stem .In the sy stem ,some impr ovement on bo th ha rdw are a nd softw are is adapted ,w hich makes the sy stem has better precisio n and wider measuring range .M o reove r ,besides its capability o f satisfy the requirement raised by car -backing sy stem ,the system ha s other characters such as briefness ,economy ,actual effect ,practicality e tc ..T he practical debugg ing results and err or a nalyzing results a re given at the end of this paper . Key words :ultrasonic distance -measuring ;bandpass -filtr ation ;sing le chip 超声波测距是利用超声波指向性强、能量消耗缓慢并因而在特定介质中传输距离远的特点,通过发射具有特征频率的超声波实现对被摄目标距离的探测[1]。本文主要探讨倒车系统的超声波测距模块的设计与实现。超声测距模块作为汽车外部环境传感器,其用途是向决策系统实时提供汽车与障碍物的间距,以利于汽车蔽障。为克服以往超声波测距模块因采用超声波专用集成电路而造成的电路固定,应用不灵活,抗干扰和抗噪声能力差等不足,本超声波测距模块以Cy gnal 8051F330单片机为核心,并侧重发送模块和回波接收预处理模块的开发与实验研究,获得了较高的测距精度和较宽的测距范围,能满足倒车系统要求。该模块选用器件较廉价且易获取,体现出简单、经济、实效、实用的特点。 1 硬件设计 为使超声测距模块和决策系统之间的接口线最少,本设计采用模拟口方式而不采用串口、SM Bus 等方式。该方式即决策系统从超声波测距模块获得的距离信息为一模拟电压,该模拟电压正比于被测 距离。 为实现控制系统的简单化,本超声测距模块的中央处理器采用Cyg nal 8051F330单片机[2],该单片机较其他单片机(如F060等)外设规模小,仅有17个I /O 口,虽然功能上显得不够强劲,但其指令执行速度并未降低,加上其20引脚的精简封装,已广泛应用于所需功能较为简单的小规模控制电路中。对于倒车超声波测距系统可谓是合适的选择。 图1为超声测距模块的原理。单片机每隔一定时间间隔向超声波换能器发送一串频率为40kHz (超声波换能器的谐振频率)的激励脉冲,使超声波换能器向需要探测的方向发射出超声波,同时开始定时,一旦接收到返回的超声波信号即停止定时,获得超声波往返时间,由超声波脉冲在空气中传输的速度,便可计算出超声波换能器与目标物体间距离。 第30卷第2期压 电 与 声 光 Vo l .30No .22008年4月 PI EZO EL ECT ECT RICS &ACO U ST OO P T ICS Apr .2008

光学测量技术详解

光学测量技术详解(图文) 光学测量是生产制造过程中质量控制环节上重要的一步。它包括通过操作者的观察进行的快速、主观性的检测,也包括通过测量仪器进行的自动定量检测。光学测量既可以在线下进行,即将工件从生产线上取下送到检测台进行测量;还可以在线进行,即工件无须离开产线;此外,工件还可以在生产线旁接受检测,完成后可以迅速返回生产线。 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。当物体靠近眼球时,物体的尺寸感觉上会增加,这是因为图像在视网膜上覆盖的“光感器”数量增加了。在某一个位置,图像达到最大,此时再将物体移近时,图像就会失焦而变得模糊。这个距离通常为10英寸(250毫米)。在这个位置上,图像分辨率大约为0.004英寸(100微米)。举例来说,当你看两根头发时,只有靠得很近时才能发现它们之间是有空隙的。如果想进一步分辨更加清楚的细节的话,则需要进行额外的放大处理。 本部分设定了隐藏,您已回复过了,以下是隐藏的内容 人的眼睛其实就是一台光学检测仪器;它可以处理通过晶状体映射到视网膜上的图像。本图显示了人眼成 像的原理图。 人眼之外的测量系统 光学测量是对肉眼直接观察获得的简单视觉检测的强化处理,因为通过光学透镜来改进或放大物体的图像,可以对物体的某些特征或属性做出准确的评估。大多数的光学测量都是定性的,也就是说操作者对放大的图像做出主观性的判断。光学测量也可以是定量的,这时图像通过成像仪器生成,所获取的图像数据再用于分析。在这种情况下,光学检测其实是一种测量技术,因为它提供了量化的图像测量方式。 无任何仪器辅助的肉眼测量通常称为视觉检测。当采用光学镜头或镜头系统时,视觉检测就变成了光学测量。光学测量系统和技术有许多不同的种类,但是基本原理和结构大致相同。

高精度超声波测距系统设计

高精度超声波测距系统设计。 引言 利用超声波测量距离的原理可简单描述为:超声波定期发送超声波,遭遇障碍物时发生反射,发射波经由接收器接收并转化为电信号,这样测距技术只要测出发送和接收的时间差, 然后按照下式计算,即可求出距离: 由于超声波指向性强,能量消耗缓慢,在介质中传播的距离较远,因而超声波经常用于距离的测量,如测距仪和物位测量仪等都可以通过超声波来实现。利用超声波检测往往比较迅速、方便、计算简单、易于做到实时控制,并且在测量精度方面能达到工业实用的要求, 因此,广泛应用于倒车提醒、建筑工地、工业现场等的距离测量。目前的测距量程上能达到百米数量级,测量的精度往往能达到厘米数量级。本文在分析现有超声波测距技术基础之上, 给出了一种改进方案,测量精度可达毫米级。 2 系统方案分析与论证 2.1 影响精度的因素分析 根据超声波测距式(1)可知测距的误差主要是由超声波的传播速度误差和测量距离传播 的时间误差引起的。 对于时间误差主要由发送计时点和接收计时点准确性确定,为了能够提高计时点选择的准确性,本文提出了对发射信号和加收信号通过校正的方式来实现准确计时。此外,当要求测距误差小于 1 mm时,假定超声波速度C=344 m/s(20℃室温),忽略声速的传播误差。则测距误差s△t<0.000 002 907 s,即2.907 ms。根据以上过计算可知,在超声波的传播速度是准确的前提下,测量距离的传播时间差值精度只要在达到微秒级,就能保证测距误差小于1 mm的误差。使用的12 MHz晶体作时钟基准的89C51单片机定时器能方便的计数到1μs的精度,因此系统采用AT89S51的定一时器能保证时间误差在 1 mm的测量范围内。

超声波测距系统设计

摘要 随着科技的发展,人们生活水平的提高,城市发展建设加快,城市给排水系统也有较大发展,其状况不断改善。但是,由于历史原因合成时间住的许多不可预见因素,城市给排水系统,特别是排水系统往往落后于城市建设。因此,经常出现开挖已经建设好的建筑设施来改造排水系统的现象。城市污水给人们带来了困扰,因此箱涵的排污疏通对大城市给排水系统污水处理,人们生活舒适显得非常重要。而设计研制箱涵排水疏通移动机器人的自动控制系统,保证机器人在箱涵中自由排污疏通,是箱涵排污疏通机器人的设计研制的核心部分。控制系统核心部分就是超声波测距仪的研制。因此,设计好的超声波测距仪就显得非常重要了。 介绍了一种以A T 89C2051 单片机为核心, 利用超声波的特性设计出低成本、高精度测距仪的方法。给出了这种测距仪的硬件原理电路和主要的软件设计思路,用Psp ice 对硬件的主要部分进行了模拟仿真。根据理论分析和试验统计对设计进行改进, 电路达到了预期的效果。 关键词:AT89C2051; 超声波;测距 Abstract With the development of science and technology, the improvement of people's tandard of living, speeding up the development and construction of the city. Urban rainage system have greatly developed their situation is constantly improving. However,due to historical reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction.Therefore, there are often good building excavation has been building facilities to upgrade the drainage system phenomenon. It brought to the city sewage, and it is clear to the city sewage and drainage culvert in the sewage treatment system. comfort is very important to people's lives. Mobile robots designed to clear the drainage culvert and the automatic control system Free sewage culvert clear guarantee robot, the robot is designed to clear the culvert sewage to the core. Control System is the core component of the development of ultrasonic range finder. Therefore, it is very important to design a good ultrasonic range finder. A kind of u lt rason ic telem eter based on A T 89C205 is in t roduced. Th is telem eter is provided w ith som e m er it s such as low co st and h igh2accu racy becau se of the u lt rason ic w ave character ist ic. The hardw are p r incip le elect r ic circu it and them ain sof tw are design idea are show ed. The sim u lat ion of the m ain par t of the hardw are has been done w ith P sp ice. A t last, acco rding to the theo ret ical analysis and the exper ience som e imp rovem en t s of the design are m ade. The system has ach ieved the an t icipated effect. Key words:AT89C2051; Silent Wave;Measure Distance

光学投影层析三维成像测量实验系统的设计概述

光学投影层析三维成像测量实验系统的设计

摘要 光学投影式三维轮廓测量在机器/机器人视觉、CAD/CAM以及医疗诊断等领域有重要的应用,这种测量方法具有非接触性、无破坏、数据获取速度快等优点,其测量系统是宏观光学轮廓仪中最有发展前途的一种。 本课题拟采用激光光源(或普通卤素灯作为光源),应用光学系统、计算机控制,进行图像采集、图像处理,设计成像系统的断层图像重建及三维图像显示实验系统,并对其成像理论、成像质量及成像误差进行理论分析。该项目完成的光学投影层析三维成像测量实验系统适用于光学教学演示,其理论分析有利于学生积极的汲取现代光学发展的科研成果、思路和方法,从而潜移默化的培养学生的科学素养和创新能力。 关键词:光学投影层析,三维成像,CT技术

目录 1.引言 (1) 2.CT原理及重建算法 (2) 整个实验用到的理论相关联名称 2.1 CT技术原理 (3) 2.2 OPT原理简介 (4) 3.1 滤波反投影算法的快速实现 3. 光学投影层析三维成像测量实验系统 (5) 3.1实验系统的设计 (6) 3.2 光学投影层析三维成像测量实验系统 3.3 影响图像重建质量的因素分析 (7) 4. 结论 (11) 5. 参考文献 (13)

图表清单

1.引言 2002年4月英国科学家Sharpe在《Science》上首次报道了光学投影层析技术(optical projection tomography,OPT),这是一种新的三维显微成像技术,是显微技术和CT技术的结合。光学投影层析巧妙的利用了光学成像中“景深”的概念,实现了光学CT,和其它光学三维成像技术相比,结构简单、成本较低、成像速度快,在对成像分辨率要求不高的情况下,容易建立起光学投影层析三维成像测量系统。 光学三维成像代表着光学领域的前沿技术,这些技术涉及光学、计算机和图像处理等相关领域的知识,通过本项目--光学投影层析三维成像测量实验系统的设计,将是基础光学通向现代光学科技的不可多得的窗口之一,不仅显示基础知识的生命力,也反映基础知识的时代性,而且本项目实现所需成本较低、物理思想清晰,适用于物理实验教学,并适合作为大学生的综合设计性物理实验项目进行开发研究,同时对于激发大学生的学习兴趣、开阔大学生的视野和思路、培养综合科研素养均有很大的帮助。 2 CT技术原理及重建算法 2.1 CT技术原理 CT(计算机断层成像,mography ComputerTo的缩写)技术的研究自20世纪50至70年代在美国和英国发起,美国科学家A.M. Cormark和英国科学家G. N. Hounsfield在研究核物理、核医学等学科时发明的,他们因此共同获得1979年的诺贝尔医学奖。第一代供临床应用的CT设备自1971年问世以来,随着电子技术的不断发展,CT技术不断改进,诸如螺旋式CT机、电子束扫描机等新型设备逐渐被医疗机构普遍采用。除此之外,CT技术还在工业无损探测、资源勘探、生态监测等领域也得到了广泛的应用。 与传统的X射线成像不同,CT有自己独特的成像特点。下面以一个一般的图示来说明。 如图1所示,假设有一个半透明状物体,如琼脂等,在其内部嵌入5个不同透明度的球,如果按照图1中(a)所示那样单方向地观察,因为其中有2个球被前面的1个球挡住,我们会误解为只有3个球,尽管重叠球的透明度比较低,但我们仍无法确定球的数目,更不可能知道每个球的透明度。而如果按照图1(b)

超声波测距系统设计

(一)题目 超声波测距系统设计 (二)内容及要求 1)设计内容 采用40KHz的超声波发射和接收传感器测量距离。可采用发射和接收之间的距离,也可将发射和接收平行放在一起,通过反射测量距离。 功能:1)LCD液晶显示测量距离,精确到小数点后一位(单位:cm)。 2)测量方式可通过硬件开关预置。 3)测量范围:30cm~200cm, 4)误差<0.5cm。 5)其它。 2)设计要求 1)掌握传感器的工作原理及相应的辅助电路设计方法。 2)独立设计原理图及相应的硬件电路。 3)设计说明书格式规范,层次合理,重点突出。并附上详细的原理图。(三)传感器工作原理 超声波测距是通过不断检测超声波发射后遇到障碍物所反射的回波,从而测出发射和接收回波的时间差t,然后求出距离S=Ct/2,式中的C为超声波波速。由于超声波也是一种声波,其声速C与温度有关,表1列出了几种不同温度下的声速。在使用时,如果温度变化不大,则可认为声速是基本不变的。如果测距精度要求很高,则应通过温度补偿的方法加以校正。声速确定后,只要测得超声波往返的时间,即可求得距离。这就是超声波测距仪的机理。 (四)系统框图 图1 超声波测距系统框图 (五)单元电路设计原理

1、AT89C2051的功能特点 AT89C2051是一个2k字节可编程EPROM的高性能微控制器。它与工业标准MCS-51的指令和引脚兼容,因而是一种功能强大的微控制器,它对很多嵌入式控制应用提供了一个高度灵活有效的解决方案。AT89C2051有以下特点:2k字节EPROM、128字节RAM、15根I/O线、2 个16位定时/计数器、5个向量二级中断结构、1个全双向的串行口、并且内含精密模拟比较器和片内振荡器,具有4.25V至5.5V的电压工作范围和12MHz/24MHz工作频率,同时还具有加密阵列的二级程序存储器加锁、掉电和时钟电路等。此外,AT89C2051还支持二种软件可选的电源节电方式。空闲时,CPU停止,而让RAM、定时/计数器、串行口和中断系统继续工作。可掉电保存RAM的内容,但可使振荡器停振以禁止芯片所有的其它功能直到下一次硬件复位。 AT89C2051有2个16位计时/计数器寄存器Timer0t Timer1。作为一个定时器,每个机器周期寄存器增加1,这样寄存器即可计数机器周期。因为一个机器周期有12个振荡器周期,所以计数率是振荡器频率的1/12。作为一个计数器,该寄存器在相应的外部输入脚P3.4/T0和P3.5/T1上出现从1至0的变化时增1。由于需要二个机器周期来辨认一次1到0的变化,所以最大的计数率是振荡器频率的1/24,可以对外部的输入端P3.2/INT0和P3.3/INT1编程,便于测量脉冲宽度的门。 图2 ATC2051示意图 2、LCD的工作原理 在两片玻璃基板上装有配向膜,所以液晶会沿着沟槽配向,具有偶极矩的液晶棒状分子在外加电场的作用下其排列状态发生变化,使得通过液晶显示器件的光被调制,从而呈现明与暗或透过与不透过的显示效果。液晶显示器件中的每个显示像素都可以单独被电场控制,不同的显示像素按照控制信号的“指挥”便可以在显示屏上组成不同的字符、数字及图形。因此建立显示所需的电场以及控制显示像素的组合就成为液晶显示驱动器和液晶显示控制器的功能。 LCD器件是由背光源发射的光通过偏振片和液晶盒时,控制投

振动测试技术方案设计

振动测试技术案 采用加速度计作为振动传感器,在各种工况下,对被测系统多个测点的加速度信号进行测量,通过FFT频谱分析,得到结构的固有频率,描述系统的振动特性。 却迪哎怯嗟惟悟号追辿蟹數赛紫蚩胖讣竿机 图1振动测试硬件流程图 、传感器指标分析 最常用的振动测量传感器按各自的工作原理可分为压电式、压阻式、电容式、电感式以及光电式。压电式加速度传感器因为具有测量频率围宽、量程大、体积小、重量轻、对被测件的影响小以及安装使用便,所以成为最常用的振动测量传感器。在一般通用振动测量时,用户主要关心的是加速度计传感器的技术指标,包括灵敏度、带宽、量程、分辨率、输出电气特性等。 (1)灵敏度 传感器的灵敏度是传感器的最基本指标之一,灵敏度的大小直接影响到传感器对振动信号的测量。不难理解,传感器的灵敏度应根据被测振动量(加速度值)大小而定,但由于加速度传感器是测量振动的加速度值,而在相同的位移幅值条件下加速度值与信号的频率平成正比,所以不同频段的加速度信号大小相差甚大。选择加速度传感器灵敏度时应对信号有充分的估计,最常用的振动测量压电式加速度计

灵敏度,电压输出型(IEPE型)为50?100 mV/g,电荷输出型为 1 ?50 PC/g。 (2)带宽 传感器的带宽是指传感器在规定的频率响应幅值误差( 士5%, 士10%, 士3dB)传感器所能测量的频率围。频率围的高,低限分别称为高、低频截止频率。截止频率与误差直接相关,所允的误差围大则其频率围也就宽。作为一般原则,传感器的高频响应取决于传感器的机械特性,而低频响应则由传感器和后继电路的综合电气参数所决定。高频截止频率高的传感器必然是体积小,重量轻,反之用于低频测量的高灵敏度传感器相对来说则一定体积大和重量重。 (3)量程 加速度传感器的测量量程是指传感器在一定的非线性误差围所能测量的最大测量值。通用型压电加速度传感器的非线性误差大多为1%。作为一般原则,灵敏度越高其测量围越小,反之灵敏度越小则测量围越大。IEPE(电压)输出型压电加速度传感器的测量围是由在线性误差围所允的最大输出信号电压所决定,最大输出电压量值一般 都为士5V。通过换算就可得到传感器的最大量程,即等于最大输出电压与灵敏度的比值。需要指出的是IEPE压电传感器的量程除受非线性误差大小影响外,还受到供电电压和传感器偏置电压的制约。当 供电电压与偏置电压的差值小于传感器技术指标给出的量程电压时,传感器的最大输出信号就会发生畸变。因此IEPE型加速度传感器的偏置电压稳定与否不仅影响到低频测量也可能会使信号失真,这种现 象在高低温测量时需要特别注意,当传感器的置电路在非室温条件下不稳定时,传感器的偏置电压很可能不断缓慢地漂移而造成测量信号忽大忽小。 (4)分辨率 即能测量到的最小加速度变化量。加速度传感器的分辨率受其噪声的限制,输出噪声的大小随频带宽度而变化。 (5)输出电气特性

第四节有阻尼的自由振动

第四节有阻尼自由振动 (Damped Free Vibration) 前面的自由振动都没有考虑运动中阻力的影响。实际系统的机械能不可能守恒,因为总存在着各种各样的阻力。振动中将阻力称为阻尼,例如粘性阻尼、库伦阻尼(干摩擦阻尼)、和结构阻尼及流体阻尼等。尽管已经提出了许多种数学上描述阻尼的方法,但是实际系统阻尼的物理本质仍然极难确定。 一、粘性阻尼(Viscous Damping) ------------- 最常见的阻尼力学模型 在流体中低速运动或沿润滑表面滑动的物体,通常就认为受到粘性阻尼。粘性阻尼力与相对速度成正比,即 =& F cx F--- 粘性阻尼力,x&--- 相对速度 ? c--- 粘性阻尼系数(阻尼系数),单位:N S m

二、粘性阻尼自由振动 () k x ?+ 以静平衡位置为坐标原点建立坐标系。由牛顿运动定律,得运动方程 mx cx kx ++= &&&(2-10) 设方程的解为 ()st x t Ae = 代入式(2-10),得 2 ()0 st ms cs k Ae ++= 因为0 A≠,所以在任一时间时均能满足上式条件为 20 ms cs k ++=(2-11) ------ 系统的特征方程(频率方程) 它的两个根为 1,22 c s m =-±(2-12)

则方程(2-10)的通解为 1211212s t s t c t m x A e A e e A A e =+?? ?=+ ??? (2-13) 式中1A 和2A 为任意常数,由初始条件 00(0),(0)x x x x ==&& 确定。显然方程(2-10)的解(2-13)的性质取决于 是实数、零,还是虚数。 当 2 02c k m m ??-= ??? 时的阻尼系数称为临界阻尼系数,用0c 表示。因此 02n c m ω== 令 02n c c c c m ζω=== 叫做阻尼比。 ∵ 022n c c m m ζζω==

相关主题
文本预览
相关文档 最新文档