当前位置:文档之家› 高中数学第二章数列2.4等比数列第1课时等比数列的概念及通项公式巩固提升人教A版必修5

高中数学第二章数列2.4等比数列第1课时等比数列的概念及通项公式巩固提升人教A版必修5

高中数学第二章数列2.4等比数列第1课时等比数列的概念及通项公式巩固提升人教A版必修5
高中数学第二章数列2.4等比数列第1课时等比数列的概念及通项公式巩固提升人教A版必修5

第1课时 等比数列的概念及通项公式

[学生用书P105(单独成册)]

[A 基础达标]

1.在数列{a n }中,若a n +1=3a n ,a 1=2,则a 4为( ) A .108 B.54 C .36

D .18

解析:选B.因为a n +1=3a n ,所以数列{a n }是公比为3的等比数列,则a 4=33

a 1=54. 2.在等比数列{a n }中,a 1=1

8,q =2,则a 4与a 8的等比中项为( )

A .±4 B.4 C .±14

D .14

解析:选A.由题意得(±a 6)2

=a 4a 8,因为a 1=18,q =2,所以a 4与a 8的等比中项为±a 6

=±4.

3.如果-1,a ,b ,c ,-9成等比数列,那么( ) A .b =3,ac =9 B.b =-3,ac =9 C .b =3,ac =-9

D .b =-3,ac =-9

解析:选B.因为b 是-1,-9的等比中项,所以b 2

=9,b =±3. 又等比数列奇数项符号相同,得b <0,故b =-3, 而b 又是a ,c 的等比中项, 故b 2

=ac ,即ac =9.

4.(2019·丰台高二检测)数列{a n }是公差不为0的等差数列,且a 1,a 3,a 7为等比数列{b n }的连续三项,则数列{b n }的公比为( )

A. 2

B.4 C .2

D .12

解析:选C.因为a 1,a 3,a 7为等比数列{b n }中的连续三项,所以a 2

3=a 1a 7,设{a n }的公差

为d ,则d ≠0,所以(a 1+2d )2

=a 1(a 1+6d ),所以a 1=2d ,所以公比q =a 3a 1=4d 2d

=2.

5.若正项数列{a n }满足a 1=2,a 2

n +1-3a n +1a n -4a 2

n =0,则{a n }的通项公式a n =( ) A .22n -1

B.2n

C .2

2n +1

D .2

2n -3

解析:选A.由a 2

n +1-3a n +1a n -4a 2

n =0,得(a n +1-4a n )·(a n +1+a n )=0.又{a n }是正项数列,

所以a n +1-4a n =0,

a n +1

a n

=4.由等比数列的定义知数列{a n }是以2为首项,4为公比的等比数列.由等比数列的通项公式,得a n =2×4

n -1

=2

2n -1

.故选A.

6.下面四个数列:

①1,1,2,4,8,16,32,64;

②在数列{a n }中,已知a 2a 1=2,a 3a 2

=2; ③常数列a ,a ,…,a ,…; ④在数列{a n }中,

a n +1a n

=q (q ≠0),其中n ∈N *

. 其中一定是等比数列的有________.

解析:①不符合“每一项与它的前一项的比等于同一常数”,故不是等比数列. ②不一定是等比数列.当{a n }只有3项时,{a n }是等比数列;当{a n }的项数超过3时,不一定符合.

③不一定.若常数列是各项都为0的数列,它就不是等比数列;当常数列各项不为0时,是等比数列.

④等比数列的定义用式子的形式表示:在数列{a n }中,对任意n ∈N *

,有a n +1

a n

=q (q ≠0),那么{a n }是等比数列.

答案:④

7.若等差数列{a n }和等比数列{b n }满足a 1=b 1=-1,a 4=b 4=8,则a 2b 2

=________. 解析:设等差数列{a n }的公差为d ,等比数列{b n }的公比为q .因为a 1=b 1=-1,a 4=b 4

=8,

所以?????-1+3d =8,-1·q 3

=8,所以?

????d =3,q =-2. 所以a 2=2,b 2=2.所以a 2b 2=2

2

=1.

答案:1

8.等比数列{a n }中,若a 2a 5=2a 3,a 4与a 6的等差中项为5

4,则a 1=________.

解析:设等比数列{a n }的公比为q , 因为a 2a 5=2a 3,

所以a 21q 5

=2a 1q 2

,化简得a 1q 3

=2=a 4. 因为a 4与a 6的等差中项为5

4

所以a 4+a 6=2×5

4,

所以a 4(1+q 2

)=52.

所以q 2

=14,解得q =±12

.

则a 1×? ??

??±18=2,解得a 1=±16. 答案:±16

9.在等比数列{a n }中,a 3=32,a 5=8. (1)求数列{a n }的通项公式a n ; (2)若a n =1

2

,求n .

解:(1)因为a 5=a 1q 4

=a 3q 2

所以q 2

=a 5a 3=14

.

所以q =±1

2

.

当q =12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3

=32×? ????12n -3=28-n ;

当q =-12时,a n =a 1q n -1=a 1q 2·q n -3=a 3q n -3

=32×? ????-12n -3.

所以a n =2

8-n

或a n =32×? ??

?

?-12n -3

.

(2)当a n =12时,即28-n

=12或32×? ????-12n -3=12,

解得n =9.

10.已知等比数列{a n }为递增数列,且a 2

5=a 10,2(a n +a n -2)=5a n -1,求数列{a n }的通项公式.

解:设数列{a n }的公比为q . 因为a 2

5=a 10,2(a n +a n -2)=5a n -1,

所以?

????a 2

1·q 8

=a 1·q 9

2(q 2

+1)=5q ②, 由①,得a 1=q , 由②,得q =2或q =12,

又数列{a n }为递增数列,

所以a 1=q =2,所以a n =2n

.

[B 能力提升]

11.在数列{a n }中,已知a 1=1,a n +1=2a n +1,则a n =( ) A .2n

-1 B.2

n -1

-1

C .2n -1

D .2(n -1)

解析:选A.等式两边同时加1,得a n +1+1=2(a n +1),所以数列{a n +1}是以a 1+1=2为首项,q =2为公比的等比数列,所以a n +1=2×2

n -1

=2n ,所以a n =2n

-1.

12.已知等比数列{a n }的各项均为正数,公比q ≠1,k

a 1a 2·…·a k =a 11,则k =( ) A .12 B.15 C .18

D .21

解析:选D.k

a 1a 2·…·a k =a 1q 1+2+3+…+(k -1)k

=a 1q k -1

2=a 1q 10

,因为a 1>0,q ≠1,所以

k -1

2

=10,所以k =21,故选D.

13.已知数列{a n }是等差数列,且a 2=3,a 4+3a 5=56,若log 2b n =a n . (1)求证:数列{b n }是等比数列; (2)求数列{b n }的通项公式.

解:(1)证明:由log 2b n =a n ,得b n =2a n .因为数列{a n }是等差数列,不妨设公差为d ,则

b n b n -1=2a n 2a n -1

=2a n -a n -1=2d ,2d 是与n 无关的常数, 所以数列{b n }是等比数列.

(2)由已知,得?????a 1+d =3,

a 1+3d +3(a 1+4d )=56,

解得?

????a 1=-1,

d =4,

于是b 1=2-1=12,公比q =2d =24

=16,

所以数列{b n }的通项公式b n =12

·16n -1=24n -5

.

14.(选做题)已知数列{a n }的前n 项和为S n ,a n =3S n +1(n ∈N *

). (1)求a 1,a 2;

(2)求数列{a n }的通项公式.

解:(1)由题意,知a 1=3S 1+1,即a 1=3a 1+1, 所以a 1=-1

2

.

又a 2=3S 2+1,即a 2=3(a 1+a 2)+1,解得a 2=1

4.

(2)由a n =3S n +1,① 得a n -1=3S n -1+1(n ≥2),② 由①-②,得

a n -a n -1=3(S n -S n -1)=3a n ,得a n a n -1=-1

2

所以数列{a n }是首项为-12,公比为-1

2

的等比数列,

所以a n =? ????-12×? ??

?

?-12n -1

=? ??

??-12n

.

高一数列通项公式常见求法

数列通项公式的常见求法 一、公式法 高中重点学了等差数列和等比数列,当题中已知数列是等差或等比数列,在求其通项公式时我们就可以直接利用等差或等比数列的公式来求通项,只需求得首项及公差公比。 1、等差数列公式 例1、已知等差数列{a n }满足a 2=0,a 6+a 8=-10,求数列{a n }的通项公式。 解:(I )设等差数列{}n a 的公差为d ,由已知条件可得 11 0,21210,a d a d +=??+=-? 解得11,1.a d =??=-? 故数列{}n a 的通项公式为2.n a n =- 2、等比数列公式 例2、设{}n a 是公比为正数的等比数列,12a =,324a a =+,求{}n a 的通项公式。 解:设q 为等比数列{}n a 的公比,则由21322,4224a a a q q ==+=+得, 即220q q --=,解得21q q ==-或(舍去),因此 2.q = 所以{}n a 的通项为1*222().n n n a n N -=?=∈ 3、通用公式 若已知数列的前n 项和n S 的表达式,求数列{}n a 的通项n a 可用公式 ?? ?≥-==-2 1 1n S S n S a n n n n 求解。一般先求出11S a =,若计算出的n a 中当n=1适合时可以合并为一个关系式,若不适合则分段表达通项公式。 例3、已知数列}{n a 的前n 项和12 -=n S n ,求}{n a 的通项公式。 解:011==s a ,当2≥n 时 12]1)1[()1(221-=----=-=-n n n s s a n n n 由于1a 不适合于此等式 。 ∴?? ?≥-==) 2(12)1(0 n n n a n

高中数学-等比数列练习题(含答案)

等比数列练习(含答案) 一、选择题 1.(广东卷文)已知等比数列}{n a 的公比为正数,且3a ·9a =22 5a ,2a =1,则1a = A. 2 1 B. 22 C. 2 D.2 【答案】B 【解析】设公比为q ,由已知得( )2 2 8 41112a q a q a q ?=,即2 2q =,又因为等比数列}{n a 的公比为 正数,所以q = 故212a a q = == ,选B 2、如果1,,,,9a b c --成等比数列,那么( ) A 、3,9b ac == B 、3,9b ac =-= C 、3,9b ac ==- D 、3,9b ac =-=- 3、若数列}{ n a 的通项公式是=+++-=1021),23()1(a a a n a n n Λ则 (A )15 (B )12 (C )-12 D )-15 答案:A 4.设{n a }为等差数列,公差d = -2,n S 为其前n 项和.若1011S S =,则1a =( ) A.18 B.20 C.22 D.24 答案:B 解析: 20 ,100,1111111110=∴+==∴=a d a a a S S Θ 5.(四川)已知等比数列()n a 中21a =,则其前3项的和3S 的取值范围是() A.(],1-∞- B.()(),01,-∞+∞U C.[)3,+∞ D.(][),13,-∞-+∞U 答案 D 6.(福建)设{a n }是公比为正数的等比数列,若n 1=7,a 5=16,则数列{a n }前7项的和为( ) A.63 B.64 C.127 D.128 答案 C 7.(重庆)在等比数列{a n }中,a 2=8,a 5=64,,则公比q 为( ) A .2 B .3 C .4 D .8 答案 A 8.若等比数列{a n }满足a n a n +1=16n ,则公比为 A .2 B .4 C .8 D .16 答案:B 9.数列{a n }的前n 项和为S n ,若a 1=1,a n +1 =3S n (n ≥1),则a 6= (A )3 × 44 (B )3 × 44+1 (C )44 (D )44+1 答案:A 解析:由a n +1 =3S n ,得a n =3S n -1(n ≥ 2),相减得a n +1-a n =3(S n -S n -1)= 3a n ,则a n +1=4a n (n ≥ 2),a 1=1,a 2=3,则a 6= a 2·44=3×44,选A . 10.(湖南) 在等比数列{}n a (n ∈N*)中,若11a =,41 8 a =,则该数列的前10项和为( ) A .4122- B .2122- C .10122- D .111 22 - 答案 B 11.(湖北)若互不相等的实数 成等差数列, 成等比数列,且 310a b c ++=,则a = A .4 B .2 C .-2 D .-4 答案 D 解析 由互不相等的实数,,a b c 成等差数列可设a =b -d ,c =b +d ,由310a b c ++=可得b =2,所以a =2-d ,c =2+d ,又,,c a b 成等比数列可得d =6,所以a =-4,选D 12.(浙江)已知{}n a 是等比数列,4 1 252= =a a ,,则13221++++n n a a a a a a Λ=( ) A.16(n --41) B.6(n --21) ,,a b c ,,c a b

高中数学数列公式大全(很齐全哟~!)之欧阳数创编

一、高中数列基本公式:1、一般数列的通项an与前n项和Sn的关系:an=2、等差数列的通项公式:an=a1+(n-1)d an=ak+(n-k)d (其中a1为首项、ak为已知的第k项) 当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。3、等差数列的前n项和公式:Sn=Sn= Sn=当d≠0时,Sn是关于n 的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式。4、等比数列的通项公式:an= a1qn-1an= akqn-k (其中a1

为首项、ak为已知的第k项, an≠0)5、等比数列的前n项和公式:当q=1时,Sn=n a1 (是关于n的正比例式);当q≠1时, Sn=Sn=三、高中数学中有关等差、等比数列的结论1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m- S3m、……仍为等差数列。2、等差数列{an}中,若m+n=p+q,则 3、等比数列{an}中,若 m+n=p+q,则4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m-

S3m、……仍为等比数列。5、两个等差数列{an}与{bn}的和差的数列{an+bn}、{an-bn}仍为等差数列。6、两个等比数列{an}与{bn}的积、商、倒数组成的数列{an bn}、、仍为等比数列。7、等差数列{an}的任意等距离的项构成的数列仍为等差数列。8、等比数列{an}的任意等距离的项构成的数列仍为等比数列。9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法: a-3d,a-d,,a+d,a+3d10、三个数成等比数列的设法:a/q,a,aq;四个

高中数学人教版必修等比数列教案(系列三)

课题: 2.4等比数列 授课类型:新授课 (第1) ●教学目标 知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导; 过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。 情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 ●教学重点 等比数列的定义及通项公式 ●教学难点 灵活应用定义式及通项公式解决相关问题 ●教学过程 Ⅰ.课题导入 复习:等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +) 等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。 课本P41页的4个例子: ①1,2,4,8,16,… ②1,12,14,18,116 ,… ③1,20,220,320,420,… ④10000 1.0198?,210000 1.0198?,310000 1.0198?,410000 1.0198?,510000 1.0198?,…… 观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:从第二项起,第一项与前一项的比都等于同一个常数。 Ⅱ.讲授新课 1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表

示(q ≠0即:1 -n n a a =q (q ≠0) 1?“从第二项起”与“前一项”之比为常数(q ) {n a }成等比数列?n n a a 1+=q (+∈N n ,q ≠0) 2? 隐含:任一项00≠≠q a n 且 “n a ≠0”是数列{n a }成等比数列的必要非充分条件. 3? q = 1时,{a n }为常数。 2.等比数列的通项公式1: )0(111≠??=-q a q a a n n 由等比数列的定义,有: q a a 12=; 21123)(q a q q a q a a ===; 312134)(q a q q a q a a ===; … … … … … … … )0(1111≠??==--q a q a q a a n n n 3.等比数列的通项公式2: )0(11≠??=-q a q a a m m n 4.既是等差又是等比数列的数列:非零常数列 探究:课本P56页的探究活动等比数列与指数函数的关系 等比数列与指数函数的关系: 等比数列{n a }的通项公式)0(111≠??=-q a q a a n n ,它的图象是分布在曲线1x a y q q =(q >0)上的一些孤立的点。 当10a >,q >1时,等比数列{n a }是递增数列; 当10a <,01q <<,等比数列{n a }是递增数列; 当10a >,01q <<时,等比数列{n a }是递减数列; 当10a <,q >1时,等比数列{n a }是递减数列; 当0q <时,等比数列{n a }是摆动数列;当1q =时,等比数列{n a }是常数列。 [范例讲解] 课本P57例1、例2、P58例3 解略。 Ⅲ.课堂练习

数列.版块三.等比数列-等比数列的通项公式与求和.学生版

【例1】 在等比数列{}n a 中,22a =,5128a =,则它的公比q =_______,前n 项和n S =_______. 【例2】 等差数列{}n a 的前n 项和为n S ,且53655-=S S ,则4=a . 【例3】 设等比数列{}n a 的前n 项和为n S ,若 63 3S S =,则96=S S ( ) A .2 B . 7 3 C .83 D .3 【例4】 设{}n a 是公比为q 的等比数列,1>q ,令1(12)=+=L n n b a n , ,,若数列{}n b 有连续四项在集合{}5323193782--, ,,,中,则6=q . 【例5】 等比数列{}n a 的首项11a =-,前n 项和为n S ,公比1q ≠,若 105S S =31 32 ,则105a a 等于 . 【例6】 等比数列{}n a 中,1512a =,公比1 2 q =-,用n ∏表示它前n 项的积:12...n n a a a ∏=, 则1∏,2∏,…,n ∏中最大的是_______. 【例7】 已知数列{}n a 的前n 项和为n S ,1 (1)()3 N n n S a n *=-∈. ⑴求1a ,2a ,3a 的值; ⑵求n a 的通项公式及10S . 典例分析 等比数列的通项公式与求和

【例8】 在等比数列{}n a 中,12327a a a ??=,2430a a += 试求:⑴1a 和公比q ;⑵前6项的和6S . 【例9】 在等比数列{}n a 中,已知对任意正整数n ,有21n n S =-,则22212 n a a a +++=L ________. 【例10】 求和:2(1)(2)(),(0)n a a a n a -+-++-≠L . 【例11】 在等比数列{}n a 中,423a = ,35209a a +=.若数列{}n a 的公比大于1,且3log 2 n n a b =,求数列{}n b 的前n 项和n S . 【例12】 在各项均为正数的等比数列{}n b 中,若783b b ?=,则3132log log b b ++……314log b +等于( ) A .5 B .6 C .7 D .8 【例13】 等比数列}{n a 中,已知对任意自然数n ,=+?+++n a a a a 32121n -, 则222 12n a a a ++???+=( ) A .()221n - B .()1213n - C .41n - D .()1 413 n -

高中数学数列通项公式的求法(方法总结)

(1)主题:求数列通项n a 的常用方法总结 一、 形如:特殊情况:当n+11,n n A B C A a a A =*+*+≠,常用累加法。 (n n a a +-,z 构建等比数列()1y n z *++z ; 的通项公式,进而求得n a 。 二、 形n a a * ;

三、 形 ()x f x =) 情形1:1n n A B a a +=*+型。设λ是不动点方程的根,得数列 {}n a λ-是 以公比为A 的等比数列。 情形2:1*n n n A B C D a a a +*+=+型。 设1λ和2λ 是不动点方程 *A x B x C x D *+=+的两个根; (1)当12λλ≠时,数列n 12n a a λλ??-?? ??-????是以12 A C A C λλ -*-*为公比的等比数列; (2)当12 =λλλ =时,数列1n a λ???? ??-???? 是以2*C A D +为公差的等差数列。 【推导过程:递推式为a n+1= d ca b aa n n ++(c ≠0,a,b,c,d 为常数)型的数列 a n+1-λ= d ca b aa n n ++-λ= d ca c a d b a c a n n +--+ -) )((λλλ,令λ=-λ λc a d b --,可得λ=d c b a ++λλ ……(1)。(1)是a n+1=d ca b aa n n ++中的a n ,a n+1都换成λ后的不动点方程。 ○ 1当方程(1)有两个不同根λ1,λ2时,有 a n+1-λ1= d ca a c a n n +--))((11λλ,a n+1-λ2=d ca a c a n n +--) )((22λλ ∴ 2111λλ--++n n a a =21λλc a c a --?21λλ--n n a a ,令b n =21λλ--n n a a 有b n +1= 2 1 λλc a c a --?b n ○ 2当方程(1)出现重根同为λ时, 由a n+1-λ= d ca a c a n n +--))((λλ得λ-+11n a =))((λλ--+n n a c a d ca =λ c a c -+))((λλλ--+n a c a c d ( “分离常数”)。设c n =λ-n a 1 得c n +1= λ λc a c d -+?c n + λ c a c -】

高中数学数列公式大全很齐全哟

高中数学数列公式大全 很齐全哟 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

一、数列基本公式: 1、一般数列的通项a n 与前n项和S n 的关系:a n = 2、等差数列的通项公式:a n =a 1 +(n-1)d a n =a k +(n-k)d (其中a 1 为首项、 a k 为已知的第k项) 当d≠0时,a n 是关于n的一次式;当d=0时,a n 是 一个常数。 3、等差数列的前n项和公式:S n =S n = S n = 当d≠0时,S n 是关于n的二次式且常数项为0;当d=0时(a 1 ≠0), S n =n a 1 是关于n的正比例式。 4、等比数列的通项公式:a n =a 1 q n-1a n =a k q n-k (其中a 1为首项、a k 为已知的第k项,a n ≠0) 5、等比数列的前n项和公式:当q=1时,S n =n a 1 (是关于n的正比例 式); 当q≠1时,S n =S n =

三、高中中有关等差、等比数列的结论 1、等差数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等差数列。 2、等差数列{a n }中,若m+n=p+q,则 3、等比数列{a n }中,若m+n=p+q,则 4、等比数列{a n }的任意连续m项的和构成的数列S m 、S 2m -S m 、S 3m -S 2m 、S 4m -S 3m 、……仍为等比数列。 5、两个等差数列{a n }与{b n }的和差的数列{a n+ b n }、{a n -b n }仍为等差数列。 6、两个等比数列{a n }与{b n }的积、商、倒数组成的数列 {a n b n }、、仍为等比数列。 7、等差数列{a n }的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n }的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3 d 10、三个数成等比数列的设法:a/q,a,a q;四个数成等比的错误设法:a/q3,a/q,a q,a q3(为什么?)

高中数学等比数列教案(完整版).doc

天津职业技术师范大学 人教A版数学必修5第48-52页 2.4等比数列 理学院数学0801 刘瑞平

等比数列教案 一、 课题:等比数列 二、 课型:新授课 三、 教材分析 等比数列的学习在本章中占很大的比重。在日常生活中,人们经常遇到的像存款利息等问题,都需要用有关等比数列的知识来解决。本节内容可以类比等差数列进行教学。 四、 学情分析 学生已经已经有了必要的数学知识储备和一定的数学思维能力,在学完等差数列的基础上,也已经具有了必要的与数列相关的知识。因此,可以通过生活中的例子引入等比数列的概念;然后,再类比等差通项的迭加思想引导学生用迭乘的思想推导等比数列的通项公式。这样,学生既学习了知识又培养了能力。 五、 教学目标: 1) 知识目标:使学生理解等比数列的概念;学会利用等比数列的定义判断一个 数列是否为等比数列;利用通向公式求项。 2) 能力目标:让学生感知数学与生活的普遍联系,培养学生类比的思想方法, 掌握迭乘的思想,调动学生积极观察思考。 3) 情感目标:使学生体验数学活动充满着探索,感受数学思维的严谨性,提高 学生数学思维的情趣。 4) 教学重点与教学难点 教学重点:等比数列的概念 教学难点:等比数列通项的推导,有关等比数列的证明。 六、 教学方法:讲授法,讨论法 七、 教学过程: 1、导入,设问激疑 设问激疑 引出课题 巩固定义 严谨思维 类比等差 推导通项 证明等比 揭示内涵 设问思考 积极探索 反思小结 培养能力

师:上课之前,先问大家一个问题:一张报纸(厚度大约为0.1mm ),将它对折50次会有多厚?如果拿它做云梯能到哪? (师生互动,一起来分析这道题目)报纸厚度为 初始 0.1mm 折叠1次 0.1?2 = 0.1?21 折叠2次 0.1?2?2 = 0.1?22 折叠3次 0.1?2?2?2 = 0.1?23 折叠4次 0.1?2?2?2?2 = 0.1?24 …… 可以猜想得出 ,折叠50次之后,报纸厚度为 0.1?250 。lg 250 ≈15.05 ,也就是说250 是一个15位整数,2 50 ?0.1mm=1000 10001 .0250??km ,这个数字我们不 知道他确切的值是多少,但可以知道它是一个八位数。而地球到月球的距离仅有 385400km (六位数)。(让学生感受事实与想象之间的差距) 2、新课引入 回过头来,再次分析报纸的折叠问题。将报纸每次折叠后的厚度,看成是一个数列。 初始 0.1mm 折叠1次 0.1?2 = 0.1?21 折叠2次 0.1?2?2 = 0.1?22 折叠3次 0.1?2?2?2 = 0.1?23 折叠4次 0.1?2?2?2?2 = 0.1?24 ……

高中数学数列复习题型归纳解题方法整理

数列 一、等差数列与等比数列 1.基本量的思想: 常设首项、(公差)比为基本量,借助于消元思想及解方程组思想等。转化为“基本量”是解决问题的基本方法。 2.等差数列与等比数列的联系 1)若数列{}n a 是等差数列,则数列}{n a a 是等比数列,公比为d a ,其中a 是常数,d 是{}n a 的公差。 (a>0且a ≠1); 2)若数列{}n a 是等比数列,且0n a >,则数列{}log a n a 是等差数列,公差为log a q ,其中a 是常数且 0,1a a >≠,q 是{}n a 的公比。 3)若{}n a 既是等差数列又是等比数列,则{}n a 是非零常数数列。 3.等差与等比数列的比较

4、典型例题分析 【题型1】等差数列与等比数列的联系 例1 (2010陕西文16)已知{}是公差不为零的等差数列,a1=1,且a1,a3,a9成等比数列.(Ⅰ)求数列{}的通项;(Ⅱ)求数列{2}的前n项和. 解:(Ⅰ)由题设知公差d≠0, 由a1=1,a1,a3,a9成等比数列得12 1 d + = 18 12 d d + + , 解得d=1,d=0(舍去),故{}的通项=1+(n-1)×1=n. (Ⅱ)由(Ⅰ)知2m a=2n,由等比数列前n项和公式得 2+22+23+…+22(12) 12 n - - 21-2. 小结与拓展:数列{}n a是等差数列,则数列} {n a a是等比数列,公比为d a,其中a是常数,d是{}n a的公差。(a>0且a≠1). 【题型2】与“前n项和与通项”、常用求通项公式的结合 例2 已知数列{}的前三项与数列{}的前三项对应相同,且a1+2a2+22a3+…+2n-1=8n对任意的n∈N*都成立,数列{+1-}是等差数列.求数列{}与{}的通项公式。 解:a1+2a2+22a3+…+2n-1=8n(n∈N*) ① 当n≥2时,a1+2a2+22a3+…+2n-2-1=8(n-1)(n∈N*) ② ①-②得2n-1=8,求得=24-n, 在①中令n=1,可得a1=8=24-1, ∴=24-n(n∈N*).由题意知b1=8,b2=4,b3=2,∴b2-b1=-4,b3-b2=-2, ∴数列{+1-}的公差为-2-(-4)=2,∴+1-=-4+(n-1)×2=2n-6,

高中数学《等比数列》教案设计

教案设计 高中数学 《等比数列》 ●教学目标 知识与技能:掌握等比数列的定义;理解等比数列的通项公式及推导; 过程与方法:通过实例,理解等比数列的概念;探索并掌握等比数列的通项公式、性质,能在具体的问题情境中,发现数列的等比关系,提高数学建模能力;体会等比数列与指数函数的关系。 情感态度与价值观:充分感受数列是反映现实生活的模型,体会数学是来源于现实生活,并应用于现实生活的,数学是丰富多彩的而不是枯燥无味的,提高学习的兴趣。 ●教学重点 等比数列的定义及通项公式 ●教学难点 灵活应用定义式及通项公式解决相关问题 ●教学过程 Ⅰ.课题导入 复习:等差数列的定义: n a -1-n a =d ,(n ≥2,n ∈N +) 等差数列是一类特殊的数列,在现实生活中,除了等差数列,我们还会遇到下面一类特殊的数列。 课本P41页的4个例子: ①1,2,4,8,16,… ②1,12,14,18,116 ,… ③1,20,220,320,420,… ④10000 1.0198?,210000 1.0198?,310000 1.0198?,410000 1.0198?,510000 1.0198?,…… 观察:请同学们仔细观察一下,看看以上①、②、③、④四个数列有什么共同特征? 共同特点:从第二项起,第一项与前一项的比都等于同一个常数。 Ⅱ.讲授新课

1.等比数列:一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列.这个常数叫做等比数列的公比;公比通常用字母q 表示(q ≠0),即:1 -n n a a =q (q ≠0) 1?“从第二项起”与“前一项”之比为常数(q) {n a }成等比数列?n n a a 1+=q (+∈N n ,q ≠0)2? 隐含:任一项00≠≠q a n 且 “n a ≠0”是数列{n a }成等比数列的必要非充分条件. 3? q= 1时,{a n }为常数。 2.等比数列的通项公式1: ) 0(111≠??=-q a q a a n n 由等比数列的定义,有: q a a 12=; 21123)(q a q q a q a a ===; 312134)(q a q q a q a a ===; … … … … … … … ) 0(1111≠??==--q a q a q a a n n n 3.等比数列的通项公式2: ) 0(11≠??=-q a q a a m m n 4.既是等差又是等比数列的数列:非零常数列 探究:课本P56页的探究活动——等比数列与指数函数的关系 等比数列与指数函数的关系: 等比数列{n a }的通项公式)0(111≠??=-q a q a a n n ,它的图象是分布在曲线1x a y q q =(q>0)上的一些孤立的点。 当10a >,q >1时,等比数列{n a }是递增数列; 当10a <,01q <<,等比数列{n a }是递增数列;

数列通项公式和前n项和求解方法全

数列通项公式的求法详解 一、 观察法(关键是找出各项与项数n 的关系.) 例1:根据数列的前4项,写出它的一个通项公式: (1)9,99,999,9999, (2) ,1716 4,1093 ,542,21 1(3) ,52,21,32 ,1(4) ,5 4 ,43,32 ,21-- 答案:(1)110-=n n a (2);122++=n n n a n (3);12+=n a n (4)1 )1(1+? -=+n n a n n . 二、 公式法 公式法1:特殊数列 例2: 已知数列{a n }是公差为d 的等差数列,数列{b n }是公比为q 的(q ∈R 且q ≠1)的等比数列,若函数f (x ) = (x -1)2 ,且a 1 = f (d -1),a 3 = f (d +1),b 1 = f (q +1),b 3 = f (q -1),求数列{ a n }和{ b n }的通项公式。 答案:a n =a 1+(n -1)d = 2(n -1); b n =b ·q n -1=4·(-2)n -1 例3. 等差数列{}n a 是递减数列,且432a a a ??=48,432a a a ++=12,则数列的通项公式是( ) (A) 122-=n a n (B) 42+=n a n (C) 122+-=n a n (D) 102+-=n a n 答案:(D) 例4. 已知等比数列{}n a 的首项11=a ,公比10<

高中数学数列公式及结论总结

高中数学数列公式及结论总结 一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式: S n=S n=S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n 的正比例式。 4、等比数列的通项公式:a n= a1 q n-1 a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n的正比例式); 当q≠1时,S n=S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则 4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq;

高考数学等比数列专题复习(专题训练)doc

一、等比数列选择题 1.已知q 为等比数列{}n a 的公比,且1212a a =-,31 4a =,则q =( ) A .1- B .4 C .12- D .12 ± 2.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9=( ) A .4 B .5 C .8 D .15 3.已知等比数列{}n a 中,1354a a a ??= ,公比q =,则456a a a ??=( ) A .32 B .16 C .16- D .32- 4.在等比数列{}n a 中,132a =,44a =.记12(1,2,)n n T a a a n ==……,则数列{}n T ( ) A .有最大项,有最小项 B .有最大项,无最小项 C .无最大项,有最小项 D .无最大项,无最小项 5.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”你的计算结果是( ) A .80里 B .86里 C .90里 D .96里 6.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个 单音,从第二个单音起,每一个单音的频率与它前一个单音的频率的比都等于六个单音的频率为f ,则( ) A .第四个单音的频率为1 122f - B .第三个单音的频率为1 42f - C .第五个单音的频率为162f D .第八个单音的频率为112 2f 7.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( ) A .40 B .81 C .121 D .242 8.已知各项均为正数的等比数列{}n a 的前4项和为30,且53134a a a =+,则3a =( ) A .2 B .4 C .8 D .16 9.已知等比数列{}n a 的前n 项和为,n S 且63 9S S =,则42a a 的值为( ) A B .2 C .D .4 10.各项为正数的等比数列{}n a ,478a a ?=,则2122210log log log a a a +++=( )

等比数列的通项公式

等比数列的通项公式 例1 已知{a n}为等比数列, 求证:当m+n=p+l时 a m·a n=a p·a l 证明: 设等比数列的首项a1,公比为q, ∵m+n=p+l ∴a m·a n=a p·a l得证. 评注: 本题证明过程并不难,但结论:等比数列中,下标之和相等则对应项之积相等,这在解决有关等比数列的问题时常使解决的过程变得很简捷. 例2 在等比数列{a n}中 (1)已知:a1+a2+a3=6,a2+a3+a4=-3,求a3+a4+a5+a6+a7+a8的值; (2)已知a1+a2+a3+a4+a5=31,a2+a3+a4+a5+a6=62,求通项a n. 分析:利用等比数列的定义和性质整体观察. 解 (1)不难看出a1+a2+a3,a2+a3+a4,a3+a4+a5,a4+a5+a6,a5+a6+a7,a6+a7+a8成等比数列,且公比为q(即数列{a n}的公比).

设为{A n},即A1=6,A2=-3, (2)由已知可以看到 ∴a1(1+2+4+8+16)=31,a1=1 ∴a n=2n-1. 评注: 以上二题均可用列方程和方程组解决,但掌握等比数列有关性质整体考虑问题会使运算更简捷. 例3 在各项均为正数的等比数列{a n}中,若a5a6=9,则log3a1+log3a2+…+log3a10= [ ] A.12 B.10 C.8 D.2+log35 解: 根据等比中项的性质, a5a6=a1a10=a2a9=a3a8=a4a7=9.

∴a1a2…a9a10=(a5a6)5=95. ∴log3a1+log3a2+…+log3a10 =log3(a1a2 (10) =log395 =5log39 =10. 故正确答案为(B). 评注: (1)应用等比中项求解某些等比数列问题,简便快捷. (2)对等比数列{a n},有以下结论: 例4 若{a n}为等比数列,且a n>0,已知a5a6=128 则log2a1+log2a2+…+log2a10的值为 [ ] A.5 B.28 C.35 D.40

求数列通项公式的十种方法

求数列通项公式的十种方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 1 1==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为 113 222 n n n n a a ++-=,说明数列{}2 n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。 二、利用 { 1(2)1(1) n n S S n S n n a --≥== 例2.若n S 和n T 分别表示数列{}n a 和{}n b 的前n 项和,对任意正整数 2(1)n a n =-+,34n n T S n -=.求数列{}n b 的通项公式; 解 : 22(1) 4 2 31a n a d S n n n n =-+∴=-=-=-- 23435T S n n n n n ∴=+=--… …2分 当1,35811n T b ===--=-时 当2,62 6 2.1n b T T n b n n n n n ≥=-=--∴=---时……4分 练习:1. 已知正项数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6且a 1,a 3,a 15成等 比数列,求数列{a n }的通项a n 解: ∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6,解之得a 1=2或a 1=3 又10S n -1=a n -12+5a n -1+6(n ≥2),② 由①-②得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0 ∵a n +a n -1>0 , ∴a n -a n -1=5 (n ≥2) 当a 1=3时,a 3=13,a 15=73 a 1, a 3,a 15不成等比数列∴a 1≠3; 当a 1=2时, a 3=12, a 15=72, 有 a 32=a 1a 15 , ∴a 1=2, ∴a n =5n -3 2.(2006年全国卷I )设数列{}n a 的前n 项的和

高中数学数列公式大全(很齐全哟~)

一、高中数列基本公式: 1、一般数列的通项a n与前n项和S n的关系:a n= 2、等差数列的通项公式:a n=a1+(n-1)d a n=a k+(n-k)d (其中a1为首项、a k为已知的第k项) 当d≠0时,a n是关于n的一次式;当d=0时,a n是一个常数。 3、等差数列的前n项和公式:S n= S n= S n= 当d≠0时,S n是关于n的二次式且常数项为0;当d=0时(a1≠0),S n=na1是关于n的正比例式。 4、等比数列的通项公式: a n= a1 q n-1a n= a k q n-k (其中a1为首项、a k为已知的第k项,a n≠0) 5、等比数列的前n项和公式:当q=1时,S n=n a1 (是关于n 的正比例式); 当q≠1时,S n= S n= 三、高中数学中有关等差、等比数列的结论 1、等差数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等差数列。 2、等差数列{a n}中,若m+n=p+q,则 3、等比数列{a n}中,若m+n=p+q,则

4、等比数列{a n}的任意连续m项的和构成的数列S m、S2m-S m、S3m-S2m、S4m - S3m、……仍为等比数列。 5、两个等差数列{a n}与{b n}的和差的数列{a n+b n}、{a n-b n}仍为等差数列。 6、两个等比数列{a n}与{b n}的积、商、倒数组成的数列 {a n b n}、、仍为等比数列。 7、等差数列{a n}的任意等距离的项构成的数列仍为等差数列。 8、等比数列{a n}的任意等距离的项构成的数列仍为等比数列。 9、三个数成等差数列的设法:a-d,a,a+d;四个数成等差的设法:a-3d,a-d,,a+d,a+3d 10、三个数成等比数列的设法:a/q,a,aq; 四个数成等比的错误设法:a/q3,a/q,aq,aq3 (为什么?) 11、{a n}为等差数列,则 (c>0)是等比数列。 12、{b n}(b n>0)是等比数列,则{log c b n} (c>0且c 1) 是等差数列。 13. 在等差数列中: (1)若项数为,则 (2)若数为则,, 14. 在等比数列中:

高中数学求数列通项的常用方法

求数列通项公式的方法 本文章总结了求数列通项公式的几种常见的方法,分别有: 公式法,累加法,累乘法,待定系数法,对数变换法,迭代法,数学归纳法,换元法。 希望对大家有所帮助~~~ 关键字:数列,通项公式,方法 一、公式法 例1 已知数列{}n a 满足1232n n n a a +=+?,12a =,求数列{}n a 的通项公式。 解:1232n n n a a +=+?两边除以1 2 n +,得 113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2n n a 是以1222a 11==为首项,以2 3 为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222 n n a n =-。 评注:本题解题的关键是把递推关系式1232n n n a a +=+?转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出3 1(1)22 n n a n =+-,进而求出数列{}n a 的通项公式。 二、累加法 例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。 解:由121n n a a n +=++得121n n a a n +-=+则 11232211 2 ()()()()[2(1)1][2(2)1](221)(211)1 2[(1)(2)21](1)1(1)2(1)1 2 (1)(1)1n n n n n a a a a a a a a a a n n n n n n n n n n n ---=-+-++-+-+=-++-+++?++?++=-+-++++-+-=+-+=-++= 所以数列{}n a 的通项公式为2n a n =。 评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出 11232211()()()()n n n n a a a a a a a a a ----+-++-+-+ ,即得数列{}n a 的通项公式。 例3 已知数列{}n a 满足112313n n n a a a +=+?+=,,求数列{}n a 的通项公式。

相关主题
文本预览
相关文档 最新文档