当前位置:文档之家› 重点高中数学直线方程公式

重点高中数学直线方程公式

重点高中数学直线方程公式
重点高中数学直线方程公式

重点高中数学直线方程公式

————————————————————————————————作者:————————————————————————————————日期:

直线方程公式

1.斜率公式

①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2

π≠

) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。

2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11

1

212122112=---=- 3.两条直线的平行和垂直

【1】两直线平行的判断

(1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。

(2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。

(3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。

(4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222

||A B C l l A B C ?

=≠。 【2】两直线垂直的判断

(1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。

(2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。

(3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。

(4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。

【3】两直线相交的判断

(1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。

(2)两直线斜率存在时,斜率不等是两直线相交的充要条件。

(3)两直线倾斜角不相等是两直线相交的充要条件。

(4)直线l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,则A 1B 2-A 2B 1≠0是两直线相交的充要条件。

【4】两直线重合的判断

当两直线斜率与截距都相等时,它们必定重合;当A 1B 2-A 2B 1=0且B 1C 2-B 2C 1=0(或A 1C 2-A 2C 1=0)时,两直线重合。

4..直线的五种方程

(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ).

(2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距).

(3)两点式 112121

y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b

+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0).

5.“到角”及“夹角”公式 :

(1)夹角公式(1l 与2l 的角) (1)2121

tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212

tan ||A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1与l 2的夹角是

2

π. (2)1l 到2l 的角公式 (1)2121tan 1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212

tan A B A B A A B B α-=+. (1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠).

直线12l l ⊥时,直线l 1到l 2的角是

2

π. 6.对称问题

【1】关于点对称问题

(1)求已知点关于点的对称点 P (x 1,y 1)关于点Q (x 0,y 0)的对称点为(2 x 0- x 1,2 y 0- y 1)。

(2)直线关于点的对称直线

设l 的方程为:Ax+By+C=0(A 2+B 2≠0)和点P (x 0,y 0),求l 关于P 点的对称直线方程。设P 1(x 1,y 1)是对称直线l 1任意一点,它关于P (x 0,y 0)的对称点(2 x 0- x 1,2 y 0- y 1)在直线l 上,代入得A (2 x 0- x 1)+B (2 y 0- y 1)+C=0,即Ax 1+By 1+C 1=0为所求对称直线的方程。与已知方程平行。

常见和对称结论有:设直线l :Ax+By+C=0:

※l 关于x 轴的对称直线是Ax+B (-y )+C=0

※l 关于y 轴的对称直线是A (- x )x+By+C=0

※l 关于原点的对称直线是A (- x )x+B (-y )+C=0

※l 关于y=x 的对称直线是Bx+Ay+C=0

※l 关于y=-x 的对称直线是A (-y )+B (- x )+C=0

【2】关于直线对称问题

(1)点关于直线的对称点

※设P (x 0,y 0),l :Ax+By+C=0(A 2+B 2≠0),若P 关于l 的对称点的坐标Q 为(x ,y ),

则l 是PQ 的垂直平分线,即PQ ⊥l ,PQ 的中点在l 上,解方程组???

????=++*++*-=??? ??-*--02210000C y y B x x A B A x x y y 可得Q 点坐标。

※点A (x ,y )关于直线x+y+c=0的对称点A 1的坐标为(-y-c, -x-c ),关于直线x-y+c=0的对称点A 2的坐标为(y-c, x+c ),曲线f (x,y )=0关于直线x+y+c=0的对称曲线为f (-y-c, -x-c )=0,关于直线x-y+c=0的对称曲线为f (y-c, x+c )=0。

※一般地,点A (a,b )关于x 轴的对称点的坐标为A 1(a,-b ),关于y 轴的对称点的坐标为A 2(-a,b ),关于y=x 轴的对称点的坐标为A 3(b,a ),关于y=-x 轴的对称点的坐标为A 4(-b,a ),关于x=m 轴的对称点的坐标为A 5(2m-a,b ),关于y=n 轴的对称点的坐标为A 6(a,2n-b )

。 (2)直线关于直线的对称直线

若直线a 、b 关于直线l 对称,它们具有下列几何性质:

※若a 、b 相交,则l 是a 、b 夹角的平分线;

※若点A 在直线a 上,那么点A 关于直线l 的对称点B 一定在直线b 上,这时,AB ⊥l 且AB 中点D 在l 上;

※a 以l 为轴旋转1800一定与b 重合。

7、两点间的距离公式

若点()y x A 21, , ()y x B 2

2, 则 ()y y x x AB 1212

,--= 即 终点坐标-始点坐标 ()()y y x x AB 12122

2--+=

若()y x a y x a 22,+=

?= 8.点到直线间的距离公式

点()y x p 0

0,到 l : Ax+By+C=0的距离为 B A y x C B

A d 220

0+++=

点到几种特殊直线的距离:

※点P (x 0,y 0)到x 轴的距离d=0y ,

※点P (x 0,y 0)到y 轴的距离d=0x ,

※点P (x 0,y 0)与x 轴平行的直线y=a 的距离d=a y -0,

※点P (x 0,y 0)与y 轴平行的直线x=b 的距离d=b x -0。

9.平行线间的距离公式

0:11=++C l By Ax 与 0:22=++C l By Ax ()c c 21≠ 的距离为B

A c c d 222

1+-= 10.四种常用直线系方程

(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B

是待定的系数.

(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数.

(3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.

(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.

11、求最大值与最小值

在直线l 上求一点P 使PB PA +取得最小值时,“同侧对称异侧连”,即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可。

在直线l 上求一点P 使PB PA -取得最大值时,“异侧对称同侧连”。

(推荐)高中数学直线与方程知识点总结

直线与方程 1、直线的倾斜角的概念:当直线l与x轴相交时, 取x轴作为基准, x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.特别地,当直线l与x 轴平行或重合时, 规定α= 0°. 2、倾斜角α的取值范围: 0°≤α<180°. 当直线l与x轴垂直时, α= 90°. 3、直线的斜率: 一条直线的倾斜角α(α≠90°)的正切值叫做这条直线的斜率,斜率常用小写字母k表示,也就是 k = tanα ⑴当直线l与x轴平行或重合时, α=0°, k = tan0°=0; ⑵当直线l与x轴垂直时, α= 90°, k 不存在. 由此可知, 一条直线l的倾斜角α一定存在,但是斜率k不一定存在. 4、直线的斜率公式: 给定两点P1(x1,y1),P2(x2,y2),x1≠x2,用两点的坐标来表示直线P1P2的斜率: 斜率公式: k=y2-y1/x2-x1 两条直线的平行与垂直 1、两条直线都有斜率而且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,那么它们平行,即 注意: 上面的等价是在两条直线不重合且斜率存在的前提下才成立的,缺少这个前提,结论并不成立.即如果k1=k2, 那么一定有L1∥L2 2、两条直线都有斜率,如果它们互相垂直,那么它们的斜率互为负倒数;反之,

如果它们的斜率互为负倒数,那么它们互相垂直,即

直线的点斜式方程 1、 直线的点斜式方程:直线l 经过点),(000y x P ,且斜率为k )(00x x k y y -=- 2、、直线的斜截式方程:已知直线l 的斜率为k ,且与y 轴的交点为),0(b b kx y += 3.2.2 直线的两点式方程 1、直线的两点式方程:已知两点),(),,(222211 y x P x x P 其中),(2121y y x x ≠≠ y-y1/y-y2=x-x1/x-x2 2、直线的截距式方程:已知直线l 与x 轴的交点为A )0,(a ,与y 轴的交点为B ),0(b ,其中0,0≠≠b a 3.2.3 直线的一般式方程 1、直线的一般式方程:关于y x ,的二元一次方程0=++C By Ax (A ,B 不同时为0) 2、各种直线方程之间的互化。 3.3直线的交点坐标与距离公式 3.3.1两直线的交点坐标 1、给出例题:两直线交点坐标 L1 :3x+4y-2=0 L1:2x+y +2=0 解:解方程组 3420 2220x y x y +-=??++=? 得 x=-2,y=2

最新高中数学参数方程大题(带答案)精选

参数方程极坐标系 解答题 1.已知曲线C:+=1,直线l:(t为参数) (Ⅰ)写出曲线C的参数方程,直线l的普通方程. (Ⅱ)过曲线C上任意一点P作与l夹角为30°的直线,交l于点A,求|PA|的最大值与最小值. +=1 , , 的距离为 则 取得最小值,最小值为 2.已知极坐标系的极点在直角坐标系的原点处,极轴与x轴的正半轴重合,直线l的极坐标方程为: ,曲线C的参数方程为:(α为参数). (I)写出直线l的直角坐标方程; (Ⅱ)求曲线C上的点到直线l的距离的最大值. 的极坐标方程为: cos= ∴

y+1=0 ( d= 的距离的最大值. 3.已知曲线C1:(t为参数),C2:(θ为参数). (1)化C1,C2的方程为普通方程,并说明它们分别表示什么曲线; (2)若C1上的点P对应的参数为t=,Q为C2上的动点,求PQ中点M到直线C3:(t为参数)距离的最小值. :(化为普通方程得:+ t=代入到曲线 sin =,),﹣

4.在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立直角坐标系,圆C的极坐标方程为 ,直线l的参数方程为(t为参数),直线l和圆C交于A,B两点,P是圆C 上不同于A,B的任意一点. (Ⅰ)求圆心的极坐标; (Ⅱ)求△PAB面积的最大值. 的极坐标方程为,把 ,利用三角形的面积计算公式即可得出. 的极坐标方程为,化为= 把 ∴圆心极坐标为; (t , = 距离的最大值为 5.在平面直角坐标系xoy中,椭圆的参数方程为为参数).以o为极点,x轴正半轴为极轴建立极坐标系,直线的极坐标方程为.求椭圆上点到直线距离的最大值和最小值. 由题意椭圆的参数方程为为参数)直线的极坐标方程为

新高中数学直线方程公式

欢迎阅读 直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

最新高考数学解题技巧-极坐标与参数方程

2018高考数学解题技巧 解答题模板3:极坐标与参数方程 1、 题型与考点(1){极坐标与普通方程的互相转化 极坐标与直角坐标的互相转化 (2) {参数方程与普通方程互化参数方程与直角坐标方程互化 (3) {利用参数方程求值域参数方程的几何意义 2、【知识汇编】 参数方程:直线参数方程:00cos ()sin x x t t y y t θθ=+??=+?为参数 00(,)x y 为直线上的定点, t 为直线上任一点(,)x y 到定 点00(,)x y 的数量; 圆锥曲线参数方程:圆的参数方程:cos ()sin x a r y b r θθθ=+?? =+?为参数(a,b)为圆心,r 为半径; 椭圆22221x y a b +=的参数方程是cos ()sin x a y b θθθ=??=? 为参数; 双曲线2222-1x y a b =的参数方程是sec ()tan x a y b φθφ=??=? 为参数; 抛物线22y px =的参数方程是2 2()2x pt t y pt ?=?=?为参数 极坐标与直角坐标互化公式: 若以直角坐标系的原点为极点,x 轴正半轴为极轴建立坐标系,点P 的极坐标为(,)ρθ,直角坐标为(,)x y , 则cos x ρθ=, sin y ρθ=, 222x y ρ=+, tan y x θ=。 解题方法及步骤 (1)、参数方程与普通方程的互化 化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法;化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系()x f t =(或()y g t =,再代入普通方程(),0F x y =,求得另一关系()y g t =(或()x f t =).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标) 例1、方程?????+=-=--t t t t y x 2 222(t 为参数)表示的曲线是( ) A. 双曲线 B.双曲线的上支 C.双曲线的下支 D.圆 解析:注意到2t t 与2t -互为倒数,故将参数方程的两个等式两边分别平方,再相减,即可消去含t 的项,4)22()22(2222-=+--=---t t t t y x ,即有422=+y x ,又注意到 02>t ,222222=?≥+--t t t t ,即

高中数学直线方程公式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ?=≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。 (2)两直线斜率存在时,斜率不等是两直线相交的充要条件。 (3)两直线倾斜角不相等是两直线相交的充要条件。

高二线性回归方程试题及答案

回归直线方程 1、某公司为了解广告投入对销售收益的影响,在若干地区各投入万元广告费用,并将各地的销售收益绘制成频率分布直方图(如图所示).由于工作人员操作失误,横轴的数据丢失,但可以确定横轴是从开始计数的. [附:回归直线的斜率和截距的最小二乘估计公式分别为 .] (1)根据频率分布直方图计算图中各小长方形的宽度; (2)试估计该公司投入万元广告费用之后,对应销售收益的平均值(以各组的区间中点值代表该组的取值); (3)该公司按照类似的研究方法,测得另外一些数据,并整理得到下表: 由表中的数据显示,与之间存在着线性相关关系,请将(2)的结果填入空白栏,并求出关于的回归直线方程. 401 22 1???,n i i i n i i x y nx y b a y bx x nx ==-==--∑∑4x y y x

2、某校在规划课程设置方案的调研中,随机抽取160名理科学生,想调查男生、女生对“坐标系与参数方程”与“不等式选讲”这两道题的选择倾向性,调研中发现选择“坐标系与参数方程”的男生人数与选择“不等式选讲”的总人数相等,且选择“坐标系与参数方程”的女生人数比选择“不等式选讲”的女生人数多25人,根据调 ()完成列联表,并判断在犯错误的概率不超过的前提下,能否认为选题与性 别有关. (Ⅱ)按照分层抽样的方法,从选择“坐标系与参数方程”与选择“不等式选讲”的学生中 共抽取8人进行问卷.若从这8人中任选3人,记选择“坐标系与参数方程”与选择“不等式选讲”的人数的差为,求的分布列及数学期望. 附: ,其中. ξξE ξ()()()()() 2 2n ad bc K a b c d a c b d -=++++n a b c d =+++

高中数学直线方程公式电子教案

高中数学直线方程公 式

直线方程公式 1.斜率公式 ①若直线的倾斜角为α(00≤α<1800), 则k=tan α (α2π≠ ) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则2121y y k x x -=- 解题时,要从斜率存在与不存在两个方面分类讨论。点P 1(x 1,y 1),P 2(x 2,y 2)的中点P 0(x 0,y 0),则x 0=(x 1+ x 2)/2,y 0=(y 1+ y 2)/2。 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,11 1 212122112=---=- 3.两条直线的平行和垂直 【1】两直线平行的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1∥l 2充要条件是k 1=k 2,且b 1≠b 2。 (2)若l 1:x=x 1, l 2:x=x 2,则l 1∥l 2充要条件是x 1≠x 2。 (3)不重合的两条直线l 1、l 2倾斜角分别为α1、α2,则l 1∥l 2充要条件是α1=α2。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1∥l 2充要条件是A 1B 2-A 2B 1=0且B 1C 2-B 2C 1≠0(或A 1C 2-A 2C 1≠0)。11112222 ||A B C l l A B C ? =≠。 【2】两直线垂直的判断 (1)若111:l y k x b =+,222:l y k x b =+,则l 1⊥l 2充要条件是k 1·k 2=-1。 (2)若l 1的斜率不存在,则l 1⊥l 2充要条件是l 2的斜率为零。 (3)两条直线l 1、l 2倾斜角分别为α1、α2,则l 1⊥l 2充要条件是21a -a =900。 (4)l 1:A 1x+B 1y+C 1=0, l 2:A 2x+B 2y+C 2=0,且A 1、A 2、B 1、B 2都不为零,则l 1⊥l 2充要条件是A 1A 2+B 1B 2=0。 【3】两直线相交的判断 (1)两直线方程组成的方程组有唯一解是两直线相交的充要条件。

高中数学全参数方程知识点大全

高考复习之参数方程 一、考纲要求 1.理解参数方程的概念,了解某些常用参数方程中参数的几何意义或物理意义,掌握参数方 程与普通方程的互化方法.会根据所给出的参数,依据条件建立参数方程. 2.理解极坐标的概念.会正确进行点的极坐标与直角坐标的互化.会正确将极坐标方程化为 直角坐标方程,会根据所给条件建立直线、圆锥曲线的极坐标方程.不要求利用曲线的参数 方程或极坐标方程求两条曲线的交点. 二、知识结构 1.直线的参数方程 (1)标准式 过点Po(x 0,y 0),倾斜角为α的直线l(如图)的参数方程是 ? ? ?+=+=a t y y a t x x sin cos 00 (t 为参数) (2)一般式 过定点P 0(x 0,y 0)斜率k=tg α= a b 的直线的参数方程是 ?? ?+=+=bt y y at x x 00(t 不参数) ② 在一般式②中,参数t 不具备标准式中t 的几何意义,若a 2 +b 2 =1,②即为标准式,此 时, | t |表示直线上动点P 到定点P 0的距离;若a 2+b 2 ≠1,则动点P 到定点P 0的距离是 22b a +|t |. 直线参数方程的应用 设过点P 0(x 0,y 0),倾斜角为α的直线l 的参数方程是 ? ??+=+=a t y y a t x x sin cos 00 (t 为参数) 若P 1、P 2是l 上的两点,它们所对应的参数分别为t 1,t 2,则 (1)P 1、P 2两点的坐标分别是 (x 0+t 1cos α,y 0+t 1sin α) (x 0+t 2cos α,y 0+t 2sin α); (2)|P 1P 2|=|t 1-t 2|; (3)线段P 1P 2的中点P 所对应的参数为t ,则 t= 2 2 1t t + 中点P 到定点P 0的距离|PP 0|=|t |=|2 2 1t t +| (4)若P 0为线段P 1P 2的中点,则 t 1+t 2=0.

(完整)高中数学知识点:线性回归方程,推荐文档

高中数学知识点:线性回归方程 1.回归直线方程 (1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。求出的回归直线方程简称回归方程。 2.回归直线方程的求法 设与n 个观测点(,i i x y )()1,2,,i n =???最接近的直线方程为$ ,y bx a =+,其中a 、b 是待定系数. 则$,(1,2,,)i i y bx a i n =+=L .于是得到各个偏差 μ(),(1,2,,)i i i i y y y bx a i n -=-+=L . 显见,偏差$i i y y -的符号有正有负,若将它们相加会造成相互抵 消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和. 2222211)()()(a bx y a bx y a bx y Q n n --++--+--=Λ 表示n 个点与相应直线在整体上的接近程度. 记21()n i i i Q y bx a ==--∑. 上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即 1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====?---??==??--??=-??∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11

相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。 要点诠释: 1.对回归直线方程只要求会运用它进行具体计算a、b,求出回归直线方程即可.不要求掌握回归直线方程的推导过程. 2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性. 3.求回归直线方程,关键在于正确地求出系数a、b,由于求a、b的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误. 4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.

高中数学直线方程公式21447

1.斜率公式 ①若直线的倾斜角为α, 则k=tan α (α2π ≠) ②若直线过点111(,)P x y 和222 (,)P x y 两点. 则21 21 y y k x x -=- 2.方向向量坐标 : ( )()k y y x x x x p p x x ,1,1 11 2 121 22112=---=- 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111 12222 ||A B C l l A B C ? =≠ ; ②1212120l l A A B B ⊥?+= 4..直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 11 2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 5.“到角”及“夹角”公式 : 设 l 1 :b k x y 11+= ; l 2 :b k x y 22 += () (1)当121-≠k k 时 ??? ? ???+ -=+-=k k k k l l k k k k l l 212 1212 11 2 2 11tan 1tan θθθθ,则的角为与,则的角为到 (2)当121-=k k 时,两直线的夹角为 2 π 6.两点间的距离公式 若点()y x A 21, , ()y x B 2 2 , 则 ()y y x x AB 1 2 1 2 ,--= 即 终点坐标-始点坐标 ()()y y x x 1 2122 2--+=

高中数学选修4-4-极坐标与参数方程-知识点与题型

一、极坐标系 1.极坐标系与点的极坐标 (1)极坐标系:如图4-4-1所示,在平面内取一个定点O ,叫做极点,自极点O 引一条射线Ox ,叫做极轴;再选定一个长度单位,一个角度单位(通常取弧度)及其正方向(通常取逆时针方向),这样就建立了一个极坐标系. (2)极坐标:平面上任一点M 的位置可以由线段OM 的长度ρ和从Ox 到OM 的角度θ来刻画,这两个数组成的有序数对(ρ,θ)称为点M 的极坐标.其中ρ称为点M 的极径,θ称为点M 的极角. 2 题型一 极坐标与直角坐标的互化 1、已知点P 的极坐标为,则点P 的直角坐标为 ( ) A.(1,1) B.(1,-1) C.(-1,1) D.(-1,-1) 2、设点的直角坐标为,以原点为极点,实轴正半轴为极轴建立极坐标系,则点的极坐标为( ) A . B . C . D . 3.若曲线的极坐标方程为ρ=2sin θ+4cos θ,以极点为原点,极轴为x 轴正半轴建立直角坐标系,则该曲线的直角坐标方程为________. 4.在极坐标系中,过点(1,0)并且与极轴垂直的直线方程是( ) A .ρ=cos θ B .ρ=sin θ C .ρcos θ=1 D .ρsin θ=1 5.曲线C 的直角坐标方程为x 2+y 2-2x =0,以原点为极点,x 轴的正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为________. 6. 在极坐标系中,求圆ρ=2cos θ与直线θ=π 4 (ρ>0)所表示的图形的交点的极坐标. 题型二 极坐标方程的应用 由极坐标方程求曲线交点、距离等几何问题时,如果不能直接用极坐标解决,可先转化为直角坐标方程,然后求解.

高中数学 《参数方程的概念》教案 新人教A版选修4-4

参数方程 目标点击: 1.理解参数方程的概念,了解某些参数的几何意义和物理意义; 2.熟悉参数方程与普通方程之间的联系和区别,掌握他们的互化法则; 3.会选择最常见的参数,建立最简单的参数方程,能够根据条件求出直线、圆锥曲线等常用曲线的一些参数方程并了解其参数的几何意义; 4.灵活运用常见曲线的参数方程解决有关的问题. 基础知识点击: 1、曲线的参数方程 在取定的坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数,?? ?==)()(t g y t f x (1) 并且对于t 的每一个允许值,由方程组(1)所确定的点M(x,y)都在这条曲线上,那么方程组(1)叫做这条曲线的参数方程. 联系x 、y 之间关系的变数叫做参变数,简称参数. 2、求曲线的参数方程 求曲线参数方程一般程序: (1) 设点:建立适当的直角坐标系,用(x,y)表示曲线上任意一点M 的坐标; (2) 选参:选择合适的参数; (3) 表示:依据题设、参数的几何或物理意义,建立参数与x ,y 的关系 式,并由此分别解出用参数表示的x 、y 的表达式. (4) 结论:用参数方程的形式表示曲线的方程 3、曲线的普通方程 相对与参数方程来说,把直接确定曲线C 上任一点的坐标(x,y )的方程F (x,y )=0叫做曲线C 的普通方程. 4、参数方程的几个基本问题 (1) 消去参数,把参数方程化为普通方程. (2) 由普通方程化为参数方程. (3) 利用参数求点的轨迹方程. (4) 常见曲线的参数方程. 5、几种常见曲线的参数方程 (1) 直线的参数方程 (ⅰ)过点P 0(00,y x ),倾斜角为α的直线的参数方程是 ? ??+=+=αα s i n c o s 00t y y t x x (t 为参数)t 的几何意义:t 表示有向线段P P 0的数量,P(y x ,) 为直线上任意一点. (ⅱ)过点P 0(00,y x ),斜率为a b k =的直线的参数方程是 ???+=+=bt y y at x x 00 (t 为参数) (2)圆的参数方程

高考数学参数方程所有经典类型

高考数学参数方程所有经典类型(必刷题) 1.极坐标系与直角坐标系xoy 有相同的长度单位,以原点O 为极点,以x 轴正半轴为 极轴.已知直线l 的参数方程为1222 x t y ?=+????=??(t 为参数),曲线C 的极坐标方程为 2sin 8cos ρθθ=. (Ⅰ)求C 的直角坐标方程; (Ⅱ)设直线l 与曲线C 交于,A B 两点,求弦长||AB . 2.已知直线l 经过点1 (,1)2P ,倾斜角α=6 π,圆C 的极坐标方程为)4πρθ=-. (1)写出直线l 的参数方程,并把圆C 的方程化为直角坐标方程; (2)设l 与圆C 相交于两点A 、B ,求点P 到A 、B 两点的距离之积. 3.在平面直角坐标系xOy 中,已知曲线1C :cos sin θθ=??=? x y (θ为参数),将1C 上的所有 和2倍后得到曲线2C .以平面直角坐标系xOy 的原点O 为极点,x 轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l :sin )4ρθθ+=. (1)试写出曲线1C 的极坐标方程与曲线2C 的参数方程; (2)在曲线2C 上求一点P ,使点P 到直线l 的距离最小,并求此最小值. 4.在直角坐标系xoy 中,直线l 的方程为40x y -+=,曲线C 的参数方程为

x 3cos y sin ααα ?=??=??(为参数). (1)已知在极坐标系(与直角坐标系xoy 取相同的长度单位,且以原点O 为极点,以x 轴正半轴为极轴)中,点P 的极坐标为(4,)2π ,判断点P 与直线l 的位置关系; (2)设点Q 是曲线C 上的一个动点,求它到直线l 的距离的最小值. 5.在平面直角坐标系xOy 中,以O 为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐V 标方程为πcos =13ρθ? ?- ??? ,M ,N 分别为曲线C 与x 轴、y 轴的交点. (1)写出曲线C 的直角坐标方程,并求M ,N 的极坐标; (2)求直线OM 的极坐标方程. 6.(本小题满分10分)选修4-4:坐标系与参数方程 已知曲线 (为参数),(为参数). (1)化 的方程为普通方程; (2)若上的点P 对应的参数为为上的动点,求中点到直线 (为参数)距离的最小值.

高中数学直线方程公式

1.斜率公式 ①若直线的倾斜角为α, 则k=tan α (α2 π ≠) ②若直线过点111(,)P x y 和222(,)P x y 两点. 则21 21 y y k x x -= - 2.方向向量坐标 : ()()k y y x x x x p p x x ,1,111 2 1 2 1 22 1 1 2=---= - 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①111 12222 ||A B C l l A B C ? =≠ ; ? ②1212120l l A A B B ⊥?+= 4..直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 11 2121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 5.“到角”及“夹角”公式 : 设 l 1 :b k x y 11+= ; l 2 :b k x y 22 += () (1)当121-≠k k 时 ??? ? ???+ -=+-=k k k k l l k k k k l l 212 1212 11 2 2 11tan 1tan θθθθ,则的角为与,则的角为到 / (2)当 121-=k k 时,两直线的夹角为 2 π 6.两点间的距离公式 若点()y x A 21, , ()y x B 2 2 , 则 ()y y x x AB 1 2 1 2 ,--= 即 终点坐标-始点坐标 ()()y y x x 1 2122 2--+=

高考数学参数方程大题

高考数学参数方程大题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

高三最后一题 1、以平面直角坐标系的原点为极点,x 轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的长度单位,设点A 的极坐标为)6 ,2(π ,直线l 过点A 且与极轴成角 为 3π,圆C 的极坐标方程为)4 cos(2πθρ-=. (1)写出直线l 参数方程,并把圆C 的方程化为直角坐标方程; (2)设直线l 与曲线圆C 交于B 、C 两点,求AC AB .的值. 【答案】(1)直线l C 的直角坐标方程为02222=--+y x y x ;(2 2、已知曲线C 的参数方程为31x y α α ?=+??=+??(α为参数),以直角坐标系原点 为极点,x 轴正半轴为极轴建立极坐标系. (1)求曲线C 的极坐标方程,并说明其表示什么轨迹. (2)若直线的极坐标方程为1 sin cos θθρ -= ,求直线被曲线C 截得的弦长. 【答案】(1)6cos 2sin ρθθ=+(2 3、在直角坐标系xOy 中,直线l 的参数方程为t t y t x (22522 5??? ??? ?+=+ -=为参数),若以 O 点为极点,x 轴正半轴为极轴建立极坐标系,则曲线C 的极坐标方程为 θρcos 4=。 (1)求曲线C 的直角坐标方程及直线l 的普通方程; (2)将曲线C 上各点的横坐标缩短为原来的 2 1 ,再将所得曲线向左平移1个单位,得到曲线1C ,求曲线1C 上的点到直线l 的距离的最小值 【答案】(1)() 422 2 =+-y x ,052=+-y x (2 )

高中数学线性回归方程检测试题(附答案)

高中数学线性回归方程检测试题(附答案) 高中苏教数学③ 2. 4线性回归方程测试题 一、选择题 1.下列关系属于线性负相关的是() A.父母的身高与子女身高的关系 B.身高与手长 C.吸烟与健康的关系 D.数学成绩与物理成绩的关系 答案:C 2.由一组数据得到的回归直线方程,那么下面说法不正确的是() A.直线必经过点 B.直线至少经过点中的一个点 C.直线 a的斜率为 D.直线和各点的总离差平方和是该坐标平面上所有直线与这些点的离差平方和中最小的直线 答案:B 3.实验测得四组的值为,则y与x之间的回归直线方程为() A.B. C.D.

答案:A 4.为了考查两个变量x和y之间的线性关系,甲、乙两位同学各自独立作了10次和15次试验,并且利用线性回归方法,求得回归直线分别为l1,l2,已知两人所得的试验数据中,变量x和y的数据的平均值都相等,且分别是,那么下列说法正确的是() A.直线和一定有公共点 B.直线和相交,但交点不一定是 C.必有直线 D.和必定重合 答案:A 二、填空题 5.有下列关系: (1)人的年龄与他(她)拥有的财富之间的关系 (2)曲线上的点与该点的坐标之间的关系 (3)苹果的产量与气候之间的关系 (4)森林中的同一种树木,其断面直径与高度之间的关系(5)学生与他(她)的学号之间的关系 其中,具有相关关系的是. 答案:(1)(3)(4) 6.对具有相关关系的两个变量进行的方法叫做回归分析.用直角坐标系中的坐标分别表示具有的两个变量,将数据表

中的各对数据在直角坐标系中描点得到的表示具有相关关 系的两个变量的一组数据的图形,叫做. 答案:统计分析;相关关系;散点图 7.将一组数据同时减去3.1,得到一组新数据,若原数据的平均数、方差分别为,则新数据的平均数是,方差是,标准差是. 答案:;; 8.已知回归直线方程为,则可估计x与y增长速度之比约为. 答案: 三、解答题 9.某商店统计了近6个月某商品的进价x与售价y(单位:元)的对应数据如下: 3 5 2 8 9 12 4 6 3 9 12 14 求y对x的回归直线方程. 解:,, 回归直线方程为. 10.已知10只狗的血球体积及红血球的测量值如下: 45 42 46 48 42 6.53 6.30 9.25 7.580 6.99 35 58 40 39 50

高一数学直线方程知识点归纳及典型例题

直线的一般式方程及综合 【学习目标】 1.掌握直线的一般式方程; 2.能将直线的点斜式、两点式等方程化为直线的一般式方程,并理解这些直线的不同形式的方程在表示直线时的异同之处; 3.能利用直线的一般式方程解决有关问题. 【要点梳理】 要点一:直线方程的一般式 关于x和y的一次方程都表示一条直线.我们把方程写为Ax+By+C=0,这个方程(其中A、B不全为零)叫做直线方程的一般式. 要点诠释: 1.A、B不全为零才能表示一条直线,若A、B全为零则不能表示一条直线. 当B≠0时,方程可变形为 A C y x B B =--,它表示过点0, C B ?? - ? ?? ,斜率为 A B -的直线. 当B=0,A≠0时,方程可变形为Ax+C=0,即 C x A =-,它表示一条与x轴垂直的直线. 由上可知,关于x、y的二元一次方程,它都表示一条直线. 2.在平面直角坐标系中,一个关于x、y的二元一次方程对应着唯一的一条直线,反过来,一条直线可以对应着无数个关于x、y的一次方程(如斜率为2,在y轴上的截距为1的直线,其方程可以是2x―y+1=0, 也可以是 11 22 x y -+=,还可以是4x―2y+2=0等.) 要点二:直线方程的不同形式间的关系 直线方程的五种形式的比较如下表: 要点诠释: 在直线方程的各种形式中,点斜式与斜截式是两种常用的直线方程形式,要注意在这两种形式中都要求直线存在斜率,两点式是点斜式的特例,其限制条件更多(x1≠x2,y1≠y2),应用时若采用(y2―y1)(x―x1)―(x2―x1)(y―y1)=0的形式,即可消除局限性.截距式是两点式的特例,在使用截距式时,首先要判断是否满足“直线在两坐标轴上的截距存在且不为零”这一条件.直线方程的一般式包含了平面上的所有直线形式.一般式常化为斜截式与截距式.若一般式化为点斜式,两点式,由于取点不同,得到的方程也不同. 要点三:直线方程的综合应用 1.已知所求曲线是直线时,用待定系数法求. 2.根据题目所给条件,选择适当的直线方程的形式,求出直线方程. 对于两直线的平行与垂直,直线方程的形式不同,考虑的方向也不同.

高中数学《线性回归方程》教案

线性回归方程 教学目标: (1)了解非确定性关系中两个变量的统计方法; (2)掌握散点图的画法及在统计中的作用; (3)掌握回归直线方程的实际应用。 教学重点: 线性回归方程的求解。 教学难点: 回归直线方程在现实生活与生产中的应用。 教学过程: 一、复习练习 1.下例说法不正确的是( B ) A.在线性回归分析中,x 和y 都是变量; B.变量之间的关系若是非确定关系,那么x 不能由y 唯一确定; C.由两个变量所对应的散点图,可判断变量之间有无相关关系; D.相关关系是一种非确定性关系. 2.已知回归方程81.05.0?-=x y ,则x =25时, y 的估计值为__11.69____. 3.三点)24,11(),20,7(),10,3(的线性回归方程是 ( D ) A x y 75.175.1?-= B x y 75.575.1? += C x y 75.575.1?-= D x y 75.175.1?+= 4.我们考虑两个表示变量x 与y 之间的关系的模型,δ为误差项,模型如下: 模型1:x y 46+=:;模型2:e x y ++=46. (1)如果1,3==e x ,分别求两个模型中y 的值; (2)分别说明以上两个模型是确定性模型还是随机模型. 解 (1)模型1:y=6+4x=6+4×3=18; 模型2:y=6+4x+e=6+4×3+1=19. (2)模型1中相同的x 值一定得到相同的y 值.所以是确定性模型;模型2中相同的x 值,因 δ不同,且δ为误差项是随机的,所以模型2是随机性模型。 二、典例分析 例1、一个车间为了规定工时定额,需要确定加工零件所花费的时间.为此进行了10次试验,测得数据如下:

高考数学参数方程和普通方程的互化练习精选.

【参数方程和普通方程的互化】 例1求曲线(为参数)与曲线(为参数)的交点. 解:把代入 得:两式平方相加可得 ∴(舍去) 于是即所求二曲线的交点是(,-). 说明:在求由参数方程所确定的两曲线的交点时,最好由参数方程组求解,如果化为普通方程求交点时要注意等价性.如该例若化为普通方程求解时要注意点(-,)是增解. 例2化直线的普通方程为参数方程(其中倾斜角满足且) 解法一:因,,故 ∴ 设。取为参数,则得所求参数方程 解法二:如图,()为直线上的定点,为直线上的动点.因动点M 与的数量一一对应(当M在的向上方向或正右方时,;当M在的下方或正左方时,;当M与重合时,),故取为参数.

过点M作y轴的平行线,过点作轴的平行线,两直线相交于点Q(如图).则有 ∴ 即为所求的参数方程。 说明:①在解法二中,不必限定,,即不必限定,.由 此可知,无论中任意值时,所得方程都是经过(),倾斜角为的直线的参数方程.可称它是直线参数方程的“点角式”或“标准式”. ②要充分理解解法二所示的参数的几何意义,这对解决某些问题较为方便. ③如果取为参数,则得直线参数方程 一般地,直线的参数方程的一般形式是 (,为参数) 但只有当且仅当,且时,这个一般式才是标准式,参数才具有上述的几何意义. 例3求椭圆的参数方程. 分析一:把与对比,不难发现,可设,也可设

解法一:设(为参数),则 ∴ 故 因此,所得参数方程是 (Ⅰ)或(Ⅱ) 由于曲线(Ⅱ)上的点(,),就是曲线(Ⅰ)上的点(,),所以曲线(Ⅱ)上的点都是曲线(Ⅰ)上的点. 显然.椭圆的参数方程是 分析二:借助于椭圆的辅助圆,可明确椭圆参数方程中的几何意义. 解法二:以原点O为圆心,为半径作圆,如图.设以轴正半轴为始边,以动半径OA为终边的变角为,过点A作轴于N,交椭圆于M,取为参数,则点M()的横坐标(以下同解法一). 由解法二知,参数是点M所对应的圆半径OA的转角,而不是OM的转角,因而称为椭圆的离角.(如果以O为圆心,为半径作圆,过M作,交圆于B,由 可知也是半径OB的转角). 例4用圆上任一点的半径与x轴正方向的夹角为参数,把圆化为参数方程。 分析:由圆的性质及三角函数的定义可把圆上任意一点化为的参数形式。 解:如图所示,圆方程化为,设圆与x轴正半轴交于A,为圆上任一点,过P作轴于B,OP与x轴正半轴所成角为,,则:

高中数学直线方程练习题集

高中数学直线方程练习题 一?选择题(共12小题) 1 .已知A (- 2, - 1) , B ( 2 , - 3),过点P (1 , 5)的直线I与线段AB有交点, 则I的斜率的范围是( ) A.(-x, 8] - B. [2 , + x) C.(-汽8] -u [2, +呵 D.8) -U(2 , + x) 2.已知点A (1, 3), B (- 2, - 1).若直线I: y=k (x- 2) +1与线段AB相交,则k的取值范围是( ) A. [ , + x) B.(-x, 2] - C .(-x, 2]-U [ , +x) D. [ - 2,] 3 .已知点A (- 1, 1) , B (2, - 2),若直线I: x+my+m=O 与线段AB (含端点) 相交,则实数m的取值范围是( ) A ?(-x, ]U [2 , + x) B . [ , 2] C. (-x, 2] u- [-, + x) D . [- , - 2] 1 1 t 1 4 ?已知M ( 1 , 2) , N (4, 3)直线I过点P (2 , - 1)且与线段M N相交,那么 直线I的斜率k的取值范围是( ) A.(-x, 3] -U [2 , +x) B. [-, ] C .[-3, 2] D.(-x,- ] U [ + x) 1 A 1 1 5 .已知M (- 2, - 3) , N (3 , 0),直线I过点(-1 , 2)且与线段MN相交,则直 线I的斜率k的取值范围是( ) A. 或k>5 B. C. D. 6.已知A (- 2, ) , B (2, ), P (- 1 , 1),若直线I过点P且与线段 K^h A J n V ■iH、科

相关主题
文本预览
相关文档 最新文档