当前位置:文档之家› 汽车发动机凸轮轴的设计-精品

汽车发动机凸轮轴的设计-精品

汽车发动机凸轮轴的设计-精品
汽车发动机凸轮轴的设计-精品

汽车发动机凸轮轴的设计-精品

2020-12-12

【关键字】目录、建议、意见、方法、动力、成绩、空间、领域、质量、计划、运行、系统、机制、现代、平稳、快速、持续、保持、统一、发展、建立、提出、掌握、研究、规律、位置、关键、基础、需要、工程、方式、作用、办法、标准、结构、水平、任务、速度、关系、分析、简化、凝聚、推广、严格、开展、保证、指导、帮助、支持、教育、优化、调整、方向、适应、实现、提高、不改变、中心、创造性

毕业设计(论文)

论文题目:汽车发动机凸轮轴的设计

学习中心(或办学单位):电子科技大学重庆学习中心

指导老师:樊磊职称:讲师

学生姓名:周勇学号: V053

2009年 5月 1日

电子科技大学

毕业设计(论文)任务书

题目:汽车发动机凸轮轴的设计

任务与要求:

本文是对汽车发动机凸轮轴的设计论述,其中对凸轮轴的凸轮设计做了

详细讲解,要求对现代汽车发动机的凸轮轴的性能更高,通过设计来实

现它的性能。

时间: 2009 年 2 月8 日至 2009 年 5 月 10 日共 13 周学习中心:(或办学单位)电子科技大学重庆学习中心

学生姓名:周勇学号:V053

专业:机械设计制造及自动化

指导单位或教研室:电子科技大学重庆学习中心

2009年 3月 20日

毕业设计(论文)进度计划表

电子科技大学毕业设计(论文)中期检查记录表

摘要

内燃机凸轮轴优化设计的优劣直接影响到其动力性,经济性,可靠性,振动,噪声与排放特性的好坏。凸轮轴的丰满系数越大,则进气量越多,内燃机的动力性能与经济性能越好,排气烟度与热负荷越底;凸轮形线的圆滑性越好,内燃机的振动与噪声越小;

凸轮轴与挺柱间的接触应力越小;润滑特性越好,内燃机配气机构的冲击载荷及摩擦磨损越小。随着内燃机不断地向轻巧化,高速化,高性能与高寿命方向发展,对配气凸轮轴设计与制造的要求越来越高。然而,现代内燃机的配气机构,大都采用多项动力凸轮,n次谐波凸轮或复合摆线凸轮。但这些凸轮形线方程不仅计算复杂,而且与内燃机结构参数无关,有的n阶导数不连续。尽管不少研究者对上述几种形线凸轮进行了各种优化设计,但其丰满系数均达不到0.59,还不能适应内燃机高速化与高性能的要求。显然,研究出具有n 阶导数连续,自变量为内燃机主要结构参数,充气性能好,振动小,噪声低,设计简单的新型配气凸轮形线方程,是一个极其重要的研究课题。

凸轮机构是工程中用以实现机械和自动化的一种主要驱动和控制机构。以在轻工、纺织、食品、医药、印刷、标准零件制造、交通运输等领域运行的工作机械中获得广泛应用。为了提高产品的质量和生产率。就凸轮而言,必须进一步提高其设计水平。在解析法设计的基础上开展计算机辅助设计的研究和推广应用。为适应高速凸轮机构分析和设计的需要,我在凸轮轮廓曲线方程试上对各指数和系数进行了外部输入。从而提高了设计工作效率和设计计算准确性。同时还对各系统与凸轮输出数据之间的联系进行了研究,掌握了某些基本规律,对凸轮设计优化起到了很好的效果。

关键词凸轮轴发动机设计

Abstract

I.C. engine cam the stalk be directly excellent to turn the good and bad of design to influence its motive, economy, credibility, vibration, the quality of the Zao voice and emissions characteristic.Cam the plentiful full coefficient of the stalk be more big and then enter tolerance more many, the motive function of I.C. engine and economic function is more good, row spirit smoke degree and hot burden more bottom;The tactful of the cam form line is more good and vibration and voice of I.C. engine are more small,Cam stalk with stand the contact of pillar more small in response to the dint,Lubricate characteristic more good, the I.C. engine goes together with impact of annoy the organization to carry lotus and friction to wear away more small.Along with I.C. engine constantly to agile turn, the high speed turn, high performance and high life span direction the development be more and more high to go together with the spirit cam request of stalk design and manufacturing.However, the modern I.C. engine goes together with spirit organization, mostly adopt several motive cams and n time the Xie wave cam or compound put a line cam.But these cam form line square distance not only compute complications, and with I.C. engine structure the parameter be irrelevant and have of the n rank don't in a row lead number.Though not a few researchers carried on to a few above-mentioned form line cams various excellent turn a design, it the plentiful full coefficient all could not reach 0.59, can't also adapt I.C. engine high speed to turn and the request of high performance.Obviously, the research submits a n rank to lead number continuous, from change to measure for the I.C. engine main structure parameter, Chong spirit function good, vibrate small, the voice is low and design in brief new go together with spirit the cam form line square distance, is a very and important research topic.

The cam organization is 1 kind that the engineering is convenient to carry out machine and automation to mainly drive with control organization.With acquire in the light work, spinning, food, medicine, printing, standard spare parts manufacturing, transportation etc. the realm the movement of the work machine extensively applied.For raising the quality and rate of production of product.Have to raise it to design level further in regard to cam.Open research and expansion application of the assistance design of the exhibition calculator in analyzing the foundation of method design.In order to adapt the demand of

high-speed analysis and design of the cam organization, I carried on exterior an importation to each index number and the coefficient in trying the curve square distance of the cam outline.Raised design work efficiency and design to compute accuracy thus.The contact which returns a to output the data to each system and the cam in the meantime carried on a research, controled some and basic regulation, excellent to cam design started to turn to arrive good effect.

KEY WORD Convex axle Deliver motive design

目录

第一章绪言............................................................................................................ 错误!未定义书签。

第一节凸轮轴的作用.................................................................................... 错误!未定义书签。

第二节凸轮轴分类........................................................................................ 错误!未定义书签。第二章发动机凸轮轴的配置................................................................................ 错误!未定义书签。

第一节凸轮轴成为发动机的重要标志 ........................................................ 错误!未定义书签。

第二节凸轮轴配置........................................................................................ 错误!未定义书签。第三章设计论述.................................................................................................... 错误!未定义书签。

第一节优化设计............................................................................................ 错误!未定义书签。

第二节凸轮轮廓曲线的设计........................................................................ 错误!未定义书签。结束语...................................................................................................................... 错误!未定义书签。谢辞.......................................................................................................................... 错误!未定义书签。参考文献.................................................................................................................. 错误!未定义书签。

第一章绪言

第一节凸轮轴的作用

凸轮轴是发动机配气机构的一部分,专门负责驱动气门按时开启和关闭,作用是保证发动机在工作中定时为汽缸吸入新鲜的可燃混合气,并及时将燃烧后的废气排出汽缸。凸轮轴直接通过摇臂驱动气门,很适用于高转速的轿车发动机,由于转速较高,为保证进排气和传动效率、简化传动机构、降低高转速的振动和噪音,多采用顶置式气门和顶置式凸轮轴,这样,发动机的结构也比较紧凑。但任何事物都有两面性,顶置式凸轮轴的缺点是由于部件的布置设计比较复杂,维修起来也比较麻烦。但衡量利弊,它还是比较适合于汽车。

第二节凸轮轴分类

汽车发动机按照顶置凸轮轴的数目,分为顶置单凸轮轴和顶置双凸轮轴。当每缸采用两个以上气门时,气门排列形式一般有两种:一是进气门和排气门混合排列在一根凸轮轴上,即顶置单凸轮轴(SOHC),另一种是进气门与排气门分列在两根凸轮轴上。前者的所有气门由一根凸轮轴通过顶杆驱动,但因气门在进气道中所处位置不同,所以不能保持动作的精确性,效果要稍差一些,而后者则无此缺点,可以获得更好的性能,但需多配备一根凸轮轴,这就是顶置式双凸轮轴(DOHC),近年来推出的新型发动机多采用这种形式。一般来说,DOHC的运动性比较高,F1赛车应用较多,但是由于制造工艺复杂,成本较高;SOHC的相对配置较简易、使用耐久性较好,既可以适应一般客户的动力性要求,也可以适应其对经济性的要求。

第二章发动机凸轮轴的配置

第一节凸轮轴成为发动机的重要标志

汽车发动机是由曲柄连杆机构,配气机构,冷却系,燃油系,润滑系,电气系和机体等组成,大大小小零件有近千个,它们之中最具有代表性的就是凸轮轴了。在现代轿车的技术规格表上,经常可以看见“凸轮轴”这个名词出现在发动机性能栏里面。

凸轮轴是属于发动机的配气机构,配气机构是保证发动机在工作中定时将新鲜的可燃混合气充入气缸,并及时将燃烧后的废气排出气缸的机构。它由进气门,排气门,气门挺杆,挺柱,摇臂,凸轮轴等组成,其中凸轮轴因其横截面形状近似桃子,又称桃子轴或偏心轴,是配气机构中的驱动件,专门驱动气门按时开启和关闭。各种车型发动机的凸轮轴的结构大同小异,主要差别在于安装的位置,凸轮的数目和形状尺寸不尽相同,特别是凸轮轴的安装位置,被列为区别发动机构造和性能的重要标志。目前发动机的凸轮安装位置分为下置,中置,顶置三种形式。

第二节凸轮轴配置

发动机上凸轮轴的有几个不同配置。我们来谈谈几个通用部件。你可能听到过这些术语:顶置凸轮轴(SOHC)、双顶置式凸轮轴(DOHC)、推杆。

一、顶置凸轮轴的配置

这一配置相当于一个发动机每头有一个凸轮。如果是一个单列式四气缸或单列式六气缸发动机,这里会有一个凸轮。如果是V-6或V-8发动机,这里会有二个凸轮。凸轮开动摇臂按到阀门上,打开它们。弹簧使阀门回到它们闭合的位置。这些弹簧必须相当坚固因为发动机速度很快,阀门被按下很快,弹簧必须使摇臂与这些阀门接触。如果弹簧不是很坚固,阀门可能会脱离摇臂同时迅速跳回。这将导致凸轮和摇臂额外的磨损。在顶置凸轮轴和双顶置式凸轮轴发动机上,凸轮由凸轮轴驱动,通过一根到皮带或链条,称为正时皮带或正时链。这些皮带和链子在固定间隔必须被更换或调整。如果正时皮带断了,凸轮会停止旋转,活塞会撞到排气阀上。

二、双顶置式凸轮轴的配置

一个双顶置式凸轮轴发动机每头有两个凸轮。所以单列式发动机有两个凸轮,V发动机有四个凸轮。通常双顶置式凸轮轴用于每个气缸有四个或更多阀门的发动机上一个凸轮轴不能驱动所有的阀门。采用双顶置式凸轮轴的主要原因是可以使用更多的进气和排气阀。更多的阀门意味着进气和排气流动更自由,因为它有更多可以流通的升程。这就增加了发动机的功率。就像顶置式凸轮轴发动机和双顶置式凸轮轴发动机,在推杆发

动机阀门位于顶部,在气缸的上面。在推杆发动机的关键区别是凸轮位于发动机气缸体内部而不是在气缸的顶部。凸轮驱动推杆经过气缸箱体并进入气缸顶部移动摇臂。这些推杆又增加了系统的质量,从而增加了阀门弹簧的载荷。这能限制推杆发动机速度;顶置式凸轮轴发动机在系统取消了推杆,从而使更快速度的发动机成为可能。推杆发动机中的凸轮通常由齿轮或短链驱动。齿轮驱动通常与皮带驱动相比不易断裂,所以在顶置式凸轮轴发动机经常看到。

三、可变式气门正时

这里有几种凸轮制造商改变气门正时的办法。用在本田发动机上的一个系统称为可变气门正时和升程电子控制系统(VTEC)

可变气门正时和升程电子控制系统(VTEC)是本田发动机上一个电子机械系统,它能允许发动机有多个凸轮轴。VTEC发动机有一个额外的进气凸轮并有一个与之相连的摇臂。凸轮的形状能使进气阀升程比其它凸轮形状大。在发动机速度较低时,这个摇臂不与任何阀门相连。在高速时,活塞锁住额外摇臂,让两个摇臂控制两个进气阀。一些汽车采用先进的气门正时装置。这不会使阀门升程更大,它打开和闭合它们更迟。它通过旋转凸轮几度来实现。

如果进气阀通常在活塞到达上止点(TDC)旋转10度,并在到达上止点(TDC)后旋转90度关上,总的持续时间为200度。打开和关闭的时间可以通过在凸轮旋转时旋转到前面一点的机构转移。所以可以在活塞到达上止点(TDC)旋转10度,并在到达上止点(TDC)后旋转210度关上。在随后20度时关闭阀门是好的,但如果它能在进气阀打开时增加持续时间会更好。

但已经有一个做到一点的好方法。凸轮在发动机上有一个三维形状可以随凸轮的长度而变化。在凸轮的一端是一个较不灵巧的凸轮形状,而在另一端是一个灵巧的凸轮形状。凸轮平稳地把这两种形状结合在一起。一个机构能侧面地滑动整个凸轮从而使阀门能采用凸轮的不同的部分。轴仍然像普通凸轮一样旋转——但随着发动机速度和载荷增加逐渐侧面地滑动凸轮,从而气门正时被优化。一些发动机制造商正在试验气门正时无限可变系统。比如,想象每个阀门有一个电磁开关,它能过计算机而不是凸轮控制打开和关闭阀门。有了这类系统,你就能在发动机每个转速时达到最大的发动机性能。盼望将来能实现的东西。

第三章设计论述

第一节优化设计

内燃机凸轮轴凸轮优化设计的优劣直接影响到其动力性,经济性,可靠性,振动,噪声与排放特性的好坏。凸轮的丰满系数越大,则进气量越多,内燃机的动力性能与经济性能越好,排气烟度与热负荷越底;凸轮形线的圆滑性越好,内燃机的振动与噪声越小;凸轮与挺柱间的接触应力越小;润滑特性越好,内燃机配气机构的冲击载荷及摩擦磨损越小。随着内燃机不断地向轻巧化,高速化,高性能与高寿命方向发展,对配气凸轮设计与制造的要求越来越高。然而,现代内燃机的配气机构,大都采用多项动力凸轮,n次谐波凸轮或复合摆线凸轮。但这些凸轮形线方程不仅计算复杂,而且与内燃机结构参数无关,有的n阶导数不连续。尽管不少研究者对上述几种形线凸轮进行了各种优化设计,但其丰满系数均达不到0.59,还不能适应内燃机高速化与高性能的要求。显然,研究出具有n阶导数连续,自变量为内燃机主要结构参数,充气性能好,振动小,噪声低,设计简单的新型配气凸轮形线方程,是一个极其重要的研究课题。

凸轮机构是工程中用以实现机械和自动化的一种主要驱动和控制机构。就凸轮而言,必须进一步提高其设计水平。在解析法设计的基础上开展计算机辅助设计的研究和推广应用。为适应高速凸轮机构分析和设计的需要,我在凸轮轮廓曲线方程试上对各指数和系数进行了外部输入。从而提高了设计工作效率和设计计算准确性。同时还对各系统与凸轮输出数据之间的联系进行了研究,掌握了某些基本规律,对凸轮设计优化起到了很好的效果。详细设计过程本系统的设计,主要是对凸轮曲线方程进行求导处理,然后对得出来的数据进行数据分析,用辅助工具如:AutoCAD2004进行会图,把凸轮轮廓画出来。

第二节凸轮轮廓曲线的设计

凸轮轴上的圆柱凸轮(如图1)的廓线虽属空间曲线,但由于圆柱面可展成平面,所以也可以借用平面盘形凸轮轮廓曲线的设计方法设计圆柱凸轮的展开轮廓。本节分别介绍用几何法和解析法设计凸轮轮廓曲线的原理和步骤。

图1 凸轮轴

一、几何法

(一)反转法设计原理

以尖底偏置直动从动件盘形凸轮机构为例,凸轮机构工作时,凸轮和从动件都在运动。为了在图纸上画出凸轮轮廓曲线,应当使凸轮与图纸平面相对静止,为此,可采用

如下的反转法(如图2):使整个机构以角速度(-w)绕O转动,其结果是从动件与凸轮的相对运动并不改变,但凸轮固定不动,机架和从动件一方面以角速度(-w)绕O转动,同时从动件又以原有运动规律相对机架往复运动。根据这种关系,不难求出一系列从动件尖底的位置。由于尖底始终与凸轮轮廓接触,所以反转后尖底的运动轨迹就是凸轮轮廓曲线。

图2 反转法

运用反转法绘制尖底直动从动件盘形凸轮机构凸轮轮廓曲线的方法和步骤如下:为半径作基圆,以e为半径作偏距圆,点K为从动件导路线与偏距圆的切点,(1)以r

导路线与基圆的交点B0(C0)便是从动件尖底的初始位置。

(2)将位移线图s-f的推程运动角和回程运动角分别作若干等分(图中各为四等分)。(3)自OC0开始,沿w的相反方向取推程运动角(1800)、远休止角(300)、回程运动角(1900)、近休止角(600),在基圆上得C4、C5、C9诸点。将推程运动角和回程运动角分成与从动件位移线图对应的等分,得C1、C2、C3和C6、C7、C8诸点。

(4)过C1、C2、C3等作偏距圆的一系列切线,它们便是反转后从动件导路的一系列位置。

(5)沿以上各切线自基圆开始量取从动件相应的位移量,即取线段C1B1=11、C2B2=22等,得反转后尖底的一系列位置B1、B2等。

(7)将B0、B1、B2等连成光滑曲线(B4和B5之间以及B9和B0之间均为以O为圆心的圆弧),便得到所求的凸轮轮廓曲线。

图2 凸轮轮廓曲线

(二)滚子直动从动件盘形凸轮机构

首先取滚子中心为参考点,把该点当作尖底从动件的尖底,按照上述方法求出一条轮廓曲线h。再以h上各点为中心画一系列滚子,最后作这些滚子的内包络线h(对于凹槽凸轮还应作外包络线h,如图3所示)。它便是滚子从动件盘形凸轮机构凸轮的实际轮廓曲线,或称为工作轮廓曲线,而h称为此凸轮的理论轮廓曲线。由作图过程可知,在滚子从动件凸轮机构设计中,r0是指理论轮廓曲线的基圆半径。

图3 凸轮的理论轮廓曲线

在以上两例中,当e=0时,即得对心直动从动件凸轮机构。这时,偏距圆的切线化为过点O的径向射线,其设计方法与上述相同。

(三)平底从动件盘形凸轮机构

凸轮实际轮廓曲线(如图4所示)的求法也与上述相仿。首先取平底与导路的交点B0为参考点,将它看作尖底,运用尖底从动件凸轮的设计方法求出参考点反转后的一系列位置B1、B2、B3等;其次,过这些点画出一系列平底,得一直线族;最后作此直线族的包络线,便可得到凸轮实际轮廓曲线。由于平底上与实际轮廓曲线相切的点是随机构位置变化的,为了保证在所有位置平底都能与轮廓曲线相切,平底左右两侧的宽度必

须分别大于导路至左右最远切点的距离b'和b''。

从作图过程不难看出,对于平底直动从动件,只要不改变导路的方向,无论导路对心或偏置,无论取哪一点为参考点,所得出的直线族和凸轮实际轮廓曲线都是一样的。

图4 凸轮实际轮廓曲线

(四)摆动从动件盘形凸轮机构

以尖底摆动从动件盘形凸轮机构(如图5)为例。

图5 尖底摆动从动件盘形凸轮机构

已知凸轮以等角速w顺时针回转,凸轮基圆半径为r0,凸轮与摆动从动件的中心距为a,从动件长度l,从动件最大摆角ymax,以及从动件的运动规律(位移线图y-f),求作此凸轮的轮廓曲线。

当运用反转法给整个机构以(-w)绕O转动后,凸轮不动,一方面机架上的支承A将以(-w)绕点O转动,另一方面从动件仍按原有规律相对机架摆动。因此,这种凸轮轮廓曲线的设计可按下述步骤进行:

(1)将y-f线图的推程运动角和回程运动角分为若干等分(图中各为四等分)。

(2)根据给定的a定出O、A0的位置。以r0为半径作基圆,与以A0为中心及l为半径所作的圆弧交于点B0(C0)(如要求从动件推程逆时针摆动,B0在OA0右方;反之,则在左方),它便是从动件尖底的起始位置。

(3)以O为中心及OA0为半径画圆。沿(-w)方向顺次取1800、300、900、600。再将推程运动角和回程运动角各分为与图b对应的等分,得A1、A2、A3等。它们便是反转后从动件回转轴心的一系列位置。

(4)以A1、A2、A3等为中心及l为半径作一系列圆弧,分别与基圆交于C1、C2、C3等。自A1C1、A2C2、A3C3等开始,向外量取与位移线图对应的从动件摆角y1、y2、y3等,得从动件相对于凸轮的一系列位置A1B1、A2B2、A3B3等。

(5)将点B1、B2、B3等连成光滑曲线,便得到尖底摆动从动件盘形凸轮机构的凸轮轮廓曲线。此轮廓曲线与直线AB在某些位置(如A3B3等)已经相交,故在考虑具体结构时,应将从动件做成弯杆以避免干涉。

同前所述,如采用滚子或平底从动件,那么上述B1、B2、B3等点即为参考点的运动轨迹。过这些点作一系列滚子或平底,最后作其包络线便可得到实际轮廓曲线。(五)摆动从动件圆柱凸轮机构

圆柱凸轮展开成平面后便成为移动凸轮(如图6所示),因此,可以用平面凸轮的设计方法来绘制其展开轮廓曲线。

图6 圆柱凸轮展开成平面图

已知平均圆柱半径rm,从动件长度l,滚子半径rT,从动件运动规律y=y(f)及凸轮回转方向,其展开轮廓曲线可近似绘制如下:

(1)作O-A线垂直于凸轮回转轴线,作∠OAB0=ymax/2,从而得出从动件的初始位置

AB0。再根据y -f 线图画出从动件的各个位置AB1'、AB2'、AB3'等。

(2)取线段B0B0之长为2prm 。沿(-v1)方向将B0B0分为与从动件位移线图横轴对应的等分,得点C1、C2、C3等,过这些点画一系列中心在O -A 线上、半径等于l 的圆弧。

(3)自B1'作水平线交过C1的圆弧于点B1,自B2'作水平线交过C2的圆弧于点B2等。将B0、B1、B2等连成光滑曲线,便得到展开图的理论轮廓曲线。

(4)以理论轮廓曲线上诸点为圆心画一系列滚子,而后作两条包络线,即得该凸轮展开图的实际轮廓曲线。

因圆柱凸轮轮廓凹槽位于圆柱面上,当与凹槽接触的圆柱滚子随从动件作平面圆弧运动时,滚子将以不同深度插入凸轮槽中。由于上述设计过程未考虑滚子与凸轮之间在从动件摆动轴线方向的相对运动,由此所得凸轮机构,其从动件实际运动规律与预期运动规律在理论上即存在偏差,所以是一种近似设计方法。欲消除设计偏差,必须对理论轮廓曲线进行修正,或者根据滚子与凸轮间的相对空间运动关系,采用解析法对凸轮轮廓曲面进行精确设计。

(六)为减小滚子插入凸轮槽深度的变化量,可采用如下方法:

(1)减小从动件最大摆角

(2)使从动件的中间位置AB 与凸轮轴线交错垂直

(3)取从动件摆动轴线与凸轮轴线之间的距离为(1)式所示

)2

cos 1(21max ψα+= (1) 直动从动件圆柱凸轮机构可看作是摆动从动件圆柱凸轮机构的特例,其凸轮轮廓曲线的设计方法与上述类似,但凸轮理论轮廓曲线无需修正。

二、解析法

(一)直动从动件盘形凸轮机构

偏置直动滚子从动件盘形凸轮机构,偏距e 、基圆半径r0和从动件运动规律s=s(f)均已给定。以凸轮回转中心为原点、从动件推程运动方向为x 轴正向建立右手直角坐标系。为获得统一的计算公式,引入凸轮转向系数h 和从动件偏置方向系数d ,并规定:当凸轮转向为顺时针时h=1,逆时针时h=-1;经过滚子中心的从动件导路线偏于y 轴正侧时d=1,偏于y 轴负侧时d=-1,与y 轴重合时d=0。当凸轮自初始位置转过角f 时,滚子中心将自点B0外移s 到达B'(s+s0,de)。根据反转法原理,将点B'沿凸轮回转相反方向绕原点转过角f ,即得凸轮理论轮廓曲线上的对应点B ,其坐标为:

式(2)即为凸轮理论轮廓曲线的直角坐标参数方程。

(二)摆动从动件盘形凸轮机构

图7 摆动从动件盘形凸轮机构

摆动滚子从动件盘形凸轮机构,基圆半径r0、从动件长度l 、中心距a 和从动件运

动规律y=y(f)均已给定。以凸轮回转中心O 为原点、O →A 为x 轴正向建立右手直角坐标系。为使计算公式统一,引入凸轮转向系数h 和从动件推程摆动方向系数d ,并规定:当凸轮转向为顺时针时h=1,逆时针时h=-1;从动件推程摆动方向为顺时针时d=1,逆时针时d=-1。当凸轮自初始位置转过角f 时,从动件摆过角y ,滚子中心由B0到达B'{a-lcos[d(y0+y)],lsin[d(y0+y)]}。根据反转法原理,将点B'沿凸轮回转相反方向绕原点转过角f ,便可得到凸轮理论轮廓曲线上的对应点B ,其坐标为:

式(3)即为凸轮理论轮廓曲线的直角坐标参数方程。

o o o al

r l a ψψ?-+=2arccos 222 (4) 式(4)中,s0、e 和a 、l 、y0均为常数,s 和y 是f 的函数,显然x 和y 也是凸轮转角f 的函数。于是凸轮理论轮廓曲线的直角坐标参数方程一般可以表示为式(5):

}

)

()(??x x y y == (5) (三) 实际轮廓曲线方程

滚子从动件盘形凸轮机构的实际轮廓曲线是滚子圆族的包络线。由微分几何可得,以f 为参数的曲线族的包络线方程为式(6)所示:

此即凸轮实际轮廓曲线的参数方程。式中:上面一组加、减号表示一条外包络线,下面一组加、减号表示另一条内包络线;为滚子半径;而dx/df 、dy/df 可求导得到。

结束语

本文在查阅诸多文献以及老师帮助下完成,我也多次仔细构思本文,力图有所收获。我认为发动机的凸轮轴安装位置有下置、中置、顶置三种形式,汽车发动机由于转速较快,每分钟转速可达5000转以上,为保证进排气效率,都采用进气门和排气门倒挂的形式,即顶置式气门装置。这种装置都适合用凸轮轴的三种安装形式。但是,如果采用下置式或者中置式的凸轮轴,由于气门与凸轮轴的距离较远,需要气门挺杆和挺柱等辅助零件,造成气门传动机件较多,结构复杂,发动机体积大,而且在高速运转下还容易产生噪声,而采用顶置式凸轮轴则可以改变这种现象。所以,现代汽车发动机一般都采用了顶置式凸轮轴,将凸轮轴配置在发动机的上方,缩短了凸轮轴与气门之间的距离,省略了气门的挺杆和挺柱,简化了凸轮轴到气门之间的传动机构,将发动机的结构变得更加紧凑。更重要的是,这种安装方式可以减少整个系统往复运动的质量,提高了传动效率。

谢辞

本论文设计在论文指导老师的悉心指导和严格要求下业已完成,从课题选择到具体的写作过程,无不凝聚着论文指导老师的心血和汗水,在我的毕业论文写作期间,论文指导老师为我提供了种种专业知识上的指导和一些富于创造性的建议,没有这样的帮助和关怀,我不会这么顺利的完成毕业论文。在此向论文指导老师表示深深的感谢和崇高的敬意。在临近毕业之际,我还要借此机会向在这四年中给予了我帮助和指导的所有老师表示由衷的谢意,感谢他们四年来的辛勤栽培。不积跬步何以至千里,各位任课老师认真负责,在他们的悉心帮助和支持下,我能够很好的掌握和运用专业知识,并在设计中得以体现顺利完成毕业论文。同时,在论文写作过程中,我还参考了有关的书籍和论文,在这里一并向有关的作者表示谢意。在毕业设计的这段时间里,你们给了我很多的启发,提出了很多宝贵的意见,对于你们帮助和支持,在此我表示深深地感谢。

参考文献

[1]王明武编,内燃机配气凸轮的研究与应用[M],北京:机械工业出版社,1997.4:30-51.

[2]崔国华编,计算方法[M],武汉:华中理工大学出版社,1996.5:12-53.

[3]郑人杰、殷人昆编,实用软件工程[M],北京:清华大学出版社,1997.9:23-49.

[4]石永刚编,凸轮机构设计[M],上海:上海科学技术出版社,1995.5:39-83.

[5]彭玉芳编,线性代数[M],北京:高等教育出版社,1993.6:50-103.

[6]盛祥耀编,高等数学(上,下) [M],北京:高等教育出版社,1992.6:42-93.

[7]吴宗泽编,机械设计使用手册[M],北京:化学工业出版社,2003.3:145-152.

[8]邹慧君、傅祥志等编,机械原理[M],北京:高等教育出版社,1999.3:125-134.

[9]杨柯桢、程光蕴编,机械设计基础[M],北京:高等教育出版社,1999.4:89-93.

汽车发动机凸轮轴加工工艺及专用夹具设计

摘要 我的毕业设计课题是凸轮轴的工艺工装,凸轮轴对其工作要求、部分精度较高,如轴上的油孔的加工、法兰盘孔的加工等。凸轮轴的工艺过程,我们尽量做到清晰明了,在保证表达清楚的基础上,尽量做到简练。在此设计中,巩固了机械制造专业的专业知识,学习机械加工工艺、夹具设计、金属切削原理与刀具及金属切削机床。在此,我们设计了两套钻床夹具,并进行了一些机构的设计,如分度机构、顶尖机构、液压传动机构等,还借用了机床尾座、手轮等大量通用件,既有利于加工,又节省不少力气。其中,夹具设计需要保证被加工面的位置精度;减少辅助时间,提高劳动生产虑;扩大机床的使用范围;实现工件的装夹加工并减轻劳动强度,改善工作条件,保证了生产安全。此次设计,由于我的水平有限,难免会出现错误,望读者进行批评指正。 关键词:凸轮轴;钻床夹具;分度机构;液压传动机构

Abstract My graduation project subject is a craft frock of the camshaft, the camshaft is by their job requirements. To the precision being relatively high, for instance, oil processing of hole of axle. Processing of the hole of the ring flange, etc., the course of the camshaft, we try our best to accomplish clearly, on the ground of guaranteeing to express clearly. Try one’s best to accomplish as perfect as crystal. In the course of design, consolidate our knowledge about mechanism manufacturing, and I have grasped mechanic craft, tongs design, the principle of metal cutting tools and the metals cutting the machine tools. In this design, we have designed two sets of drilling machines digs. In the design, I have designed some sets of mechanisms. Such as, graduation organization, top structure, hydraulic transmission mechanism and so on. I take advantage of lathe tail flat also, as large amount of common parts, such as handwheel favorable to process and so on. Save much strength. Among them, the tongs design demand guarantee which is processed the position accuracy; Reduce to lend support the time and increasements labor produce, extend the usage scope of the machine tools. Realize the work piece pack to clip to process to combine alleviative labor strength, improve the work term and guarantee the production safety. This design, because we have limited level. Unavoidable to appear some mistakes, so I hope that readers can make some re-comments. Keyword:camshaft; drilling machines digs; graduation organization; hydraulic transmission mechanism

凸轮轴加工工艺资料

凸轮轴加工工艺

凸轮轴加工工艺分析 粗基准的选择: 常选择其支承轴颈的毛坯外柱圆面及其一个侧面作为定位基准 端面加工:国内各厂家采用铣削加工。国外一些(美国福特)以磨代铣 1、对于毛坯是模锻件尤其是精磨锻件来说,毛坯精度是由锻模来保证的,其精度较高,加工余量也较小。毛坯锻造后已经过喷丸处理,表面平整、光洁、无飞边、毛刺等缺陷 2、对于毛坯是铸件尤其是精铸件来说,不仅具有较好的加工性,而且加工余量也较精确,其毛坯精度比锻件还高,完全能保证定位可靠 3、在凸轮轴加工过程中,选择粗基准还要考虑加工余量的分配均匀、合理。这对于工件长径比较大、刚度低的特点来说,不仅有利于减小因切削余量不均、切削力剧烈变化而使工件产生的弯曲变形,对于保证精加工质量和提高劳动生产率具有重要的意义 精基准的选择 对于各支承轴、正时齿轮、齿轮轴颈和连接轴颈外圆表面的粗加工、半精加工、精加工及支承轴、正时齿轮轴颈的光整加工凸轮、偏心轮的半精加工、精加工及光整加工,均是以两顶尖孔作为精基准 对于凸轮、偏心轮的粗加工,一般是以经过加工后的支承轴颈、正时齿轮轴颈作为定位基准 各表面精加工之前、热处理之后,通常安排中心孔的修整工序修整中心孔时以支承轴进行定位,常用的方法是研磨 二、加工阶段的划分和工序顺序的安排

1、加工阶段的划分 四个阶段: 粗加工:各支承轴颈、正时齿轮轴颈和螺纹轴颈外圆、车凸轮、偏心轮等 半精加工:粗磨凸轮、偏心轮等 精加工:精磨正时齿轮轴颈和止推面、四个支承轴颈外圆,精磨凸轮、偏心轮光整加工:抛光支承轴颈、凸轮和偏心轮 四、凸轮形面的加工 凸轮形面粗加工: 按刀具:单刀仿形;多刀仿形 按车床:双靠模切削:单靠模切削 定位:以一个支承轴颈端面作为轴向定位;以正时齿轮和一个支承轴外圆作为定位基准;加工中采用滚轴式辅助支承。 也可用铣削加工或者磨削加工代替车削 凸轮形面精加工: 1、双靠模凸轮磨床 机床有两套靠模:靠模自动更换,通过对砂轮直径的控制提高凸轮外形的精度。 2、双循环凸轮磨床:可在一次安装后对凸轮轴上全部凸轮连续粗精磨削。 先以60m/s的速度大进给量粗磨全部凸轮,以30m/s的磨削速度依次精磨全部凸轮,结束后进行修正 凸轮轴加工工艺分析

实用文档之汽车发动机的发展历程

实用文档之" 汽车发动机的发展历程" 摘要:汽车在现代社会生产生活中发挥着重要作用,而汽车发动机更是其核心部分;可以说汽车发动机的发展历程在一定程度上就是汽车的完善过程。本文阐述了汽车发动机的构造及原理,并讲述了汽车发动机的发展历程。而且笔者还对汽车发动机未来的发展趋势进行了合理预测。 【关键字】汽车发动机原理发展历程新技术 自从第二次工业革命以来,汽车得到迅猛发展。如今,汽车已经渗透到人类社会的各个方面。每天,数以千万计的汽车行驶在大大小小的公路上,而汽车生产所需的零件更是数以亿计。其广阔的市场使得汽车成为各种高科技应用的载体。汽车发动机为汽车提供动力,更是汽车的核心。汽车发动机的发展能极大地促进汽车的发展。在环境日益恶化的今天,传统发动机面临这巨大挑战。 1.发动机的类别 发动有很多种类,按不同划分方法有不同的类型。 按发动机所使用燃料来划分,发动机主要可分为汽油发动机、柴油发动机、天然气发动机、液化石油气发动机、混合动力发动机;根据发动机可分为四冲程发动机和二冲程发动机;按照气缸数,发动机可分为单缸发动机、两缸发动机、多缸(三缸以上)发动机;按照冷却方式不同,发动机可分为水冷式发动机(见图1)和风冷式发动机(见图2);根据排列方式,发动机可分为直列L型发动机、H型发动机、W型发动机、V型发动机等;按照发动机在车身上的布局不同,发动机可分为前置发动机,中置发动机和后置发动机。

2.发动机构造及原理 发动机是一个热能转换机构,通过在密封汽缸内燃烧汽油(柴油)或天然气,使气体膨胀并推动活塞做往复运动,从而使物质的内能转

化为机械能。发动机是一种有许多机构和系统组成的复杂的机械设备。无论是哪种类型的发动机,要想完成热能转化为机械能的能量转化过程,实现工作循环,保证发动机能持续正常工作,都离不开发动机中各个机构和系统之间的配合。 汽油机是由五大系统和两大连杆组成,即曲柄连杆机构、配气机构、燃料供给系、润滑系、冷却系、点火系和起动系组成。 曲柄连杆机构是发动机实现工作循环,完成能量转换的主要运动零件。它由机体组、活塞连杆组和曲轴飞轮组等组成。在作功行程中,活塞承受燃气压力在气缸内作直线运动,通过连杆转换成曲轴的旋转运动,并从曲轴对外输出动力。而在进气、压缩和排气行程中,飞轮释放能量又把曲轴的旋转运动转化成活塞的直线运动。 配气机构的功用是根据发动机的工作顺序和工作过程,定时开启和关闭进气门和排气门,使可燃混合气或空气进入气缸,并使废气从气缸内排出,实现换气过程。配气机构大多采用顶置气门式配气机构,一般由气门组、气门传动组和气门驱动组组成。 汽油机燃料供给系的功用是根据发动机的要求,配制出一定数量和浓度的混合气,供入气缸,并将燃烧后的废气从气缸内排出到大气中去;柴油机燃料供给系的功用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。 润滑系的功用是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦,减小摩擦阻力,减轻机件的磨损。并对零件表面进行清洗和冷却。润滑系通常由润滑油道、机油泵、机油滤清器和一些阀门等组成。 冷却系的功用是将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。水冷发动机的冷却系通常由冷却水套、水泵、风扇、水箱、节温器等组成。 在汽油机中,气缸内的可燃混合气是K电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。能够按时在火花塞电极间产生电火花的全部设备称为点火系,点火系通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。 要使发动机由静止状态过渡到工作状态,必须先用外力转动发动机的曲轴,使活塞作往复运动,气缸内的可燃混合气燃烧膨胀作功,推动活塞向下运动使曲轴旋转。发动机才能自行运转,工作循环才能自动进行。因此,曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系。

12-进气凸轮轴执行器P0011故障诊断流程

12-进气凸轮轴执行器P0011故障诊断流程-截图 (进气凸轮正时——过于提前故障) 一、前期准备 1.清洁工作场地,将被修车辆就位停放。 2.工具、量具、检测仪器及相关辅助材料准备。 3.目视车辆停放位置,确定工位安全。 4.填写车辆识别VIN代码。(丰田卡罗拉VIN码在右前门的门柱上)

5.安装底盘垫块。 6.安装车轮档块。 7.安装尾气抽气管。 8.打开左前车门,安装车内三件套,(并拉紧手制动,将变速杆放置在P档位置,降下前车窗玻璃)

9.拉开引擎盖锁,下车后打开引擎盖,安装车外三件套。 二、安全检查 10.检查记录机油液位,记录:机油液位正常。(若发现不足应及时加注)

11.检查记录冷却液液位,记录:冷却液液位偏低,应加注。 12.检查记录制动液液位,记录:制动液液位偏低,应加注。 13.拆卸发动机罩盖﹑蓄电池罩板及散热器上的空气道流板,放置于零件箱内。

14.取出万用表和表笔,连接后进行阻值校对。(即:校对红黑两表笔之间所存在的电阻差值) 记录:两表笔的阻值为:0.020Ω,正常。(若发现阻值不正常,则应及时检查或更换)。 15.测量记录蓄电池电压, 记录:蓄电池电压为:12.62V,正常。(若发现蓄电池电压低于规定值11V则应及时进行补充充电)。

16.检查蓄电池电极桩柱的连接状况, 记录:电极桩柱连接正常,没有硫化物。(若发现松动和有硫化物时应及时紧固和处理)。 三、仪器连接及故障现象确认 17.打开故障诊断仪盒,取出故障诊断仪,选择OBD—Ⅱ专用插头及专用传输线后连接故障诊断仪。 18.打开左前车门,进入车内,踩紧制动踏板后启动发动机,观察仪表显示状态及发动机各工况的运 行状态。 (即:发动机启动时是否困难,怠速时转速是否稳定,加速时是否流畅,故障指示灯是否常亮等。) 19.关闭点火开关,填写故障症状及故障现象记录表。 记录:刚刚启动发动机后失速,故障指示灯常亮。

汽车设计-汽车发动机盖性能校核规范模板

汽车设计- 发动机盖(罩)性能校核规范模板

发动机盖(罩)性能校核规范 1范围 本规范定义了发动机盖性能设计校核工作的内容及要求。 本规范适用于公司轿车、SUV等新车型开发的发动机盖性能设计校核工作。 2规范性引用文件 下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些文件的最新版本,凡是不注日期的引用文件,其最新版本适用于本规范。 2003/102/EC 欧洲行人碰撞保护技术指令 3对于产品设计的校核要求 3.1 结构性能 3.1.1 模态频率 图1 发动机盖一阶模态图2 发动机盖二阶模态 边界条件 ——自由,无约束。 试验样件要求 ——具有代表性的整车(车身状态稳定,尺寸符合要求); ——试验发动机盖:材料合格,尺寸合格,焊接,涂装,总装工艺符合要求,装配完整的发动机盖。目标 一阶自由模态≥20Hz。 3.1.2 扭转刚度

图3 扭转刚度约束条件图4 扭转刚度分析结果 试验样件要求 ——具有代表性的整车(车身状态稳定,尺寸符合要求); ——试验发动机盖:材料合格,尺寸合格,焊接,涂装,总装工艺符合要求,装配完整的发动机盖。目标 >120 N.m/° 3.1.3 横向刚度 图5 横向刚度约束条件图6 横向刚度分析结果 试验样件要求 ——具有代表性的整车(车身状态稳定,尺寸符合要求); ——试验发动机盖:材料合格,尺寸合格,焊接,涂装,总装工艺符合要求,装配完整的发动机盖。目标 ≥150 N/mm。 3.1.4 铰链安装点刚度

汽车发动机曲轴机械加工工艺规程与夹具设计

毕业论文 (科学研究报告) 题目汽车发动机四缸曲轴加工工艺 及夹具设计 院(系)别机电及自动化学院 专业机械工程及自动化 级别2009 学号***** 姓名*** 指导老师*** 副教授 ** 大学教务处 2013年6月

摘要 曲轴是汽车发动机的重要零件。它的作用是把活塞的往复直线运动变成传动轴的旋转运动,将作用在活塞的气体压力变成扭矩,用来驱动工作机械和发动机各辅助系统进行工作。曲轴在工作时承受着不断变化的压力、惯性力和它们的力矩作用,因此要求曲轴具有强度高、刚度大、耐磨性好,轴颈表面加工的尺寸精确,且润滑可靠。 本设计是根据被加工曲轴的技术要求基准先行,先主后次,先粗后精,先面后孔的工艺设计准则。先加工出基准,再用精基准定位加工其它工序。在夹具设计时,选择的是车曲轴连杆轴颈的工序,定位时选择两个V形块和周向定位钉定位,用压板夹紧,并且在夹具上设置合适的偏心距。通过本次设计我查阅了许多书籍和行业资料,了解到行业的发展进程和部分先进技术,扩展了我的专业视野,为将来的学习生活都有着重要的影响。 关键词

ABSTRACT Crankshaft is a very important parts of diesel engine. Ist action is change the to and fro straight-line motion of the piston into rotary motion,and change the gas pressure on the piston into torque, that is used to drive executive body and accessory system of the diesel engine. Crankshaft is withstanding the changing pressure, inertia force and the torque. So the crankshaft mast have high strength, high rigidity, high abrasion resistance and the surface of axle journal must have high precision with well lubricating. This design is on the basis of technical requirement of the crankshaft to design the technological procedure. And then use the fundamental and method of the fixture design to fix the fixture design programme,and complete the structural of the fixture. The main work is: Parts drawing, understand the characteristic of structure and technical requirement; Accroding to the types of manufacturing and the plant conditions of the company we will analyse the structure and craft of the crankshaft; Fix the type and manufacturing method of the roughcast; Fix the processing technic of the crankshft,select device and equipment fix the machining allowance and working procedure size and count the cutting specifications and time allowance.; Fix the Processing technological process card and Machine-finishing operation card; Design the special fixture and plan the assembling drawing and main parts drawing. This design is in order to improve the crankshaft parts production efficiency, and the machining accuracy. Therefore,when drawing up the process we strict accordance with the design criteria that benchmark first,main first then secondary, rough first then essence, surface first ,hole after . First, work out benchmark, again with pure reference positioning processing other processes. In fixture design,I choose the car process of crankshaft connecting rod , When location,I choose two V block and circumferential locating pin to positioning, pressed powder compact, and set up appropriate eccentricity on the jig. Accroding to this design I looked through many books and industry information, understand some of the industry development process and advanced technologies,and also expanded my professional field.It has important influence on my future study and life. KEYWORDS:Machine manufacture Processing craft Crankshaft fixture

QC 544-2019汽车发动机凸轮轴技术条件共16页文档

QC/T 544-2000 (2000-07-07发布,2001-01-01实施) 前言 本标准是在QC/T 544-1999《汽车发动机凸轮轴技术条件》基础上修订的,QC/T 544-1999是1999年国家机械工业局将原机械部标准JB 3900-1985转号后的标准代号,内容与JB 3900-1985完全相同。 本标准与QC/T 544-1999标准的主要区别在于: 1)重点补充了铸铁凸轮轴的技术要求; 2)增加了试验方法; 3)对凸轮轴的尺寸公差、形位公差、表面粗糙度等的最低要求作了适当补充和调整 本标准从实施之日起,同时代替QC/T 544-1999。 本标准由国家机械工业局提出。 本标准由全国汽车标准化技术委员会归口。 本标准由成都汽车配件总厂负责起草。 本标准主要起草人:裴家襄、刘梅、龙嘉。 中华人民共和国汽车行业标准QC/T 544-2000 汽车发动机凸轮轴技术条件代替QC/T 544-1999 1 范围

本标准规定了汽车发动机、凸轮轴的技术要求、试验方法、检验规则和标志、包装、运输及贮存。 本标准适用于汽车发动机配气凸轮轴(以下简称凸轮轴)。 2 引用标准 下列标准所包含的条文,通过在本标准中引用而构成为本标准的条文。本标准出版时,所示版本均为有效。所有标准都会被修订,使用本标准的各方应探讨使用下列标准最新版本的可能性。 GB/T 223*钢铁化学分析标准方法 GB/T 228-1987 金属拉伸试验方法 GB/T 230-1991 金属洛氏硬度试验方法 GB/T 231-1984 金属布氏硬度试验方法 GB/T 699-1988 优质碳素结构钢技术条件 GB/T 1182-1996 形状和位置公差通则、定义、符号和图样表示法 GB/T 1184-1996 形状和位置公差未注公差值 GB/T 1348-1988 球墨铸铁件 GB/T 1800.3-1998 极限与配合基础第3部分:标准公差和基本偏差数值 GB/T 1804-1992 一般公差线性尺寸的未注公差 GB/T 1958-1980 形状和位置公差检测规定 GB/T 2828-1987 逐批检查计数抽样程序及抽样表 GB/T 2829-1997 周期检查计数抽样程序及抽样表

汽车发动机的发展史.docx

发动机,汽车中最重要的部分,可以说没有发动机的存在,就不存在汽 车。发动机的发展即是汽车的发展。 发动机作为汽车的心脏,为汽车的行走提供动力和汽车的动力性、经济 性、环保性。简单讲发动机就是一个能量转换机构,即将汽油 ( 柴油 ) 的热能,通过在密封气缸内燃烧气体膨胀时,推动活塞做功,转变为机械能,这是发动机最基本原理。发动机所有结构都是为能量转换服务的,虽然发 动机伴随着汽车走过了 100 多年的历史,无论是在设计上、制造上、工艺上 还是在性能上、控制上都有很大的提高,其基本原理仍然未变,这是一 个富于创造的时代,那些发动机设计者们,不断地将最新科技与发动机融 为一体,把发动机变成一个复杂的机电一体化产品,使发动机性能达到近 乎完善的程度,各世界著名汽车厂商也将发动机的性能作为竞争亮点。 所以可以说发动机的发展史即是汽车的发展史。 而发动机的发展也经历了无数人的努力,无数人的智慧与汗水。 发动机是汽车的动力源。汽车发动机大多是热能动力装置,简称热力机。热力机是借助工质的状态变化将燃料燃烧产生的热能转变为机械能。 往复活塞式四冲程汽油机是德国人奥托在大气压力式发动机基础上,于 1876 年发明并投入使用的。由于采用了进气、压缩、做功和排气四个冲程,发动机的热效率从大气压力式发动机的11%提高到14%,而发动机的质量却降低了70%。 1892年德国工程师狄塞尔发明了压燃式发动机( 即柴油机) ,实现了内燃机历史上的第二次重大突破。由于采用高压缩比和膨胀比,热效率比当 时其他发动机又提高了 1 倍。1956 年,德国人汪克尔发明了转子式发动机, 使发动机转速有较大幅度的提高。1964 年,德国NSU公司首次将转子式发 动机安装在轿车上。 1926 年,瑞士人布希提出了废气涡轮增压理论,利用发动机排出的废 气能量来驱动压气机,给发动机增压。50 年代后,废气涡轮增压技术开始 在车用内燃机上逐渐得到应用,使发动机性能有很大提高,成为内燃机发 展史上的第三次重大突破。 1967 年德国博世公司首次推出由电子计算机控制的汽油喷射系统,开 创了电控技术在汽车发动机上应用的历史。经过30 年的发展,以电子计算

汽车发动机进气凸轮轴

汽车发动机进气凸轮轴 申请号:200820100088.4 申请日:2008-09-24 摘要:一种汽车发动机进气凸轮轴,在凸轮轴(1)的中心开设有贯通其前、后端面的润滑油孔(9),凸轮轴(1)的轴身上从前往后分布有四对凸轮,分别为第一进气凸轮(4)、第二进气凸轮(5)、第三进气凸轮(6)和第四进气凸轮(7),在所述凸轮轴(1)的后端部设有轴颈(3),该轴颈(3)形成为环形凸台,且环形凸台的直径大于凸轮轴(1)轴身的直径;在所述轴颈(3)的前端及中部各设有一圈凸棱(10),两凸棱(10)之间形成环形卡槽(11),在所述轴颈(3)的后端面沿轴线向前开设有定位销孔(12),该定位销孔(12)位于润滑油孔(9)的旁边。本实用新型在不改变缸盖结构的前提下能适应VVT机构安装,具有构思巧妙、结构简单、实施容易、改造成本低等特点。 申请人:力帆实业(集团)股份有限公司 地址: 400037重庆市沙坪坝区上桥张家湾60号 发明(设计)人:魏勇张渝余海洋王亮 主分类号: F01L1/34(2006.01)I 分类号:F01L1/34(2006.01)I F01M9/10(2006.01)I F01L1/047(2006.01)I F01L1/08(2006.01)I 法律状态 2011-02-02 避免重复授权放弃专利权IPC(主分类):F01L 1/34申请日:20080924授权公告日:20090708放弃生效日:20080924 2009-07-08 授权 注:本法律状态信息仅供参考,即时准确的法律状态信息须到国家知识产权局办理专利登记簿副本。 其他信息 主权项 1、一种汽车发动机进气凸轮轴,在凸轮轴(1)的中心开设有贯通其前、后端面的润滑油孔(9),凸轮轴(1)的轴身上从前往后分布有四对凸轮,分别为第一进气凸轮(4)、第二进气凸轮(5)、第三进气凸轮(6)和第四进气凸轮 (7),其特征在于:在所述凸轮轴(1)的后端部设有轴颈(3),该轴颈(3) 形成为环形凸台,且环形凸台的直径大于凸轮轴(1)轴身的直径;在所述轴颈 (3)的前端及中部各设有一圈凸棱(10),两凸棱(10)之间形成环形卡槽(11),在所述轴颈(3)的后端面沿轴线向前开设有定位销孔(12),该定位销孔(12) 位于润滑油孔(9)的旁边。 公开号 201269116 公开日 2009-07-08 专利代理机构重庆市前沿专利事务所

某轿车引擎盖外板拉深模具毕业设计及成形模拟

摘要............................................................. I 绪论 ............................................................... I I 汽车覆盖件的成形特点[7]. (3) 1 冲压件的工艺设计 (4) 1.1零件总体分析 (4) 1.2零件材料的选择 (4) 1.3冲压方向的选择 (5) 1.4 工艺补充部分的设计 (7) 1.6拉延筋的设计[1] (9) 2 拉深件成型工艺CAE分析 (10) 3 拉深模结构与零件设计 (13) 3.2拉深模材料的选择 (14) 3.3冲压设备的选择 (14) 3.3.1拉深力的计算 (14) 3.3.2压料力的计算 (14) 3.3.3冲压设备的选择 (15) 3.4模具操作 (15) 3.5 凹模结构 (16) 3.6凸模结构 (18) 3.8导向部分 (22) 3.9起吊装置 (22) 3.10拉深模的结构和原理说明 (22) 4 总结 (24) 致谢 (25) 参考文献 (26) 文献综述 (26)

通过对某轿车车身覆盖件的引擎盖外板拉深模具型面的设计,介绍了复杂型面拉深件拉深模具型面的设计流程,研究了复杂型面拉深件拉深模具型面的造型设计方法和原则。利用板料成形分析有限元软件Dynaform对引擎盖外板的拉深成形过程进行仿真模拟,探讨了仿真过程中出现的质量缺陷(如破裂、起皱、变形不足等)的原因,并针对这些现象对拉深模具型面进行优化设计改进。并根据仿真模拟结果,制造加工了合格的拉深件模具。对于复杂型面拉深件的拉深模具的设计和制造具有一定的指导意义。 关键词:车身覆盖件;冲压成形;模具;优化设计;

汽车发动机凸轮轴的主要机械加工工艺规划设计样本

汽车发动机凸轮轴的主要机械加工工艺规划设计

毕业设计(论文) 汽车发动机凸轮轴的主要机械加工工艺 设计 教学单位:机电工程学院 专业名称:机械设计制造及其自动化 学号: 学生姓名: 指导教师: 指导单位: 完成时间:

汽车发动机凸轮轴的主要机械加工工艺 设计 摘要 凸轮轴作为发动机的重要组成部分,对其配气功能有着举足轻重的作用。当发动机工作运转的时候,凸轮轴负责控制进排气门的开合和开合量,但是由于工作时转速比较高,需要承受的扭矩的比较大,所以对凸轮轴的强度和支撑力的要求也比较高,因此在材质的选择上必须满足凸轮轴对强度等性能的要求。凸轮轴作为一个重要的零部件,它的改进和发展对汽车发动机的配气性能的提高和进步意义重大。 本课题选取直列四缸顶置气门式发动机F3000,对它的凸轮轴加工工艺进行分析与设计,而工艺路线的拟定是工艺规程制定中的关键阶段,是工艺规程制定的总体设计。撰写一条合理科学的工艺路线,既可以保证加工质量和生产效率,也可以有效合理的安排工人、设备、工艺装备,最终有利于降低整个生产周期和生产成本。所以,本次设计是在仔细分析凸轮轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关书籍、手册、图标、标准、等技术资料,确定工艺的机械加工余量、工序尺寸及公差,最终定制凸轮轴零件的加工工序卡片。 关键词: 发动机;凸轮轴;工艺设计

The Main Machining Process Design Of The Automobile Engine Camshaft Abstract The camshaft as an important part of engine, has a pivotal role on its distribution. When the engine running at work, camshaft is responsible for controlling the exhaust opening and closing and opening and closing of the door, however, because of the high speed in the work, it needs to bear large torque and also has a high strength and support of the camshaft. On the choice of the material must meet the requirements of camshaft on the strength of performance. The camshaft as an important component, its improvement and development is of great significance. In this paper, the camshaft of the OHV engine processing technology for analysis and design. operational path routing is the key stage and general design. Write a reasonable scientific process route are have many advantage. This design is the careful analysis of CAM shaft parts processing technical requirements and processing accuracy, reasonable blank type, after consulting related books, manuals, ICONS, standards, technical data, determine the process of machining allowance, process dimension and tolerance, and customize the camshaft parts machining process card finally. Keyword: Engine; Camshaft; Process Design

凸轮轴设计开题报告

开题报告 题目名称凸轮轴结构设计及工艺编制 题目来源 A 题目类型 4 导师姓名 学生姓名班级学号专业 凸轮轴的功用是通过凸轮轴的不断旋转,推动气门顶杆上下运动,进而控制气门的开启与关闭。通过改变凸轮轴的曲线,可精确调整气门开启、关闭时间。 1、课题背景和意义: 凸轮轴是活塞发动机里的一个部件。它的作用是控制气门的开启和闭合动作。虽然在四冲程发动机里凸轮轴的转速是曲轴的一半(在二冲程发动机中凸轮轴的转速与曲轴相同),不过通常它的转速依然很高,而且需要承受很大的扭矩,因此设计中对凸轮轴在强度和支撑方面的要求很高,其材质一般是特种铸铁,偶尔也有采用锻件的。由于气门运动规律关系到一台发动机的动力和运转特性,因此凸轮轴设计在发动机的设计过程中占据着十分重要的地位。 2、凸轮轴的国内外发展趋势: 2.1凸轮轴的结构、位置及转动方式 凸轮轴的主体是一根与气缸组长度相同的圆柱形棒体。上面套有若干个凸轮,用于驱动气门。凸轮轴的一段时轴承支撑点,另一端与驱动轮相连接凸轮的侧面呈鸡蛋形。其设计的目的在于保证汽缸充分的进气和排气,具体来说就是在尽可能短的时间内完成气门的开、闭动作。另外考虑到发动机的耐久性和运转的平顺性,气门也不能因开闭动作中的加减速过程产生过多过大的冲击,否则就会造成气门的严重磨损、噪声增加或是其他严重后果。因此,凸轮和发动机的功率、扭矩输出以及运转的平顺性有很直接的关系。在以前的很长的一段时间里,底置式凸轮轴在内燃机中最为常见。通过这样的发动机中,气门位于发动机的顶部,即所谓的OHV(OverHeadValve,顶置气门)式发动机。此时通常凸轮轴位于曲轴箱的侧面,通过配气机构(如挺杆、推杆、摇臂等)对气门进行控制。因此底置式凸轮轴一般也叫侧置式凸轮轴。由于在这样的发动机凸轮轴距离气门较远,而且每个气缸通常只有2个气门,因此转速通常较慢,平顺性不佳,输出功率也较低。不过这种结构的引擎输出扭矩和低速性能比较出色,结构也比较简单,易于维修。按凸轮轴的数目多少,可分为单顶置凸轮轴(SOHC)和双顶置凸轮轴(DOHC)2种。单顶置凸轮轴就只有1根凸轮轴,双顶置凸轮轴有2根凸轮轴。底置式凸轮轴通常次用星形齿轮组(即所谓的“控制论”),辊子链或齿条与曲轴相连。为了控制噪声,直径大的凸轮轴端传动轮通常由塑料或者轻金属制造,而相对直径较小的曲

发动机盖

发动机盖 发盖在汽车碰撞中主要起到两个关键作用:一是吸能,二是行人保护。由这两个作用决定了发盖设计的整体思路:不能太硬。昊锐的发动机盖发动机盖一般有发动机外板、内板、铰链加强板和发盖锁加强板组成。其中,外板是表面覆盖件,主要起到美观的作用;而铰链加强板和锁加强板只是作为局部加强件;内板则是最为关键的发盖件了。发盖内板上一般都会开溃缩槽,以便发盖在撞击中在此处折弯,避免发盖向后切入乘员舱内板则一般是0.8mm的钢板,在设计时会在内部上沿着车身宽度方向开一道溃缩槽,以便在汽车发生正面碰撞时发盖能沿此槽向上折弯变形,在吸收部分能力的同时还以防止发盖受力后向后切入乘员舱。撞击时发盖向上折起吸能的同时有避免发盖向后移动 此外,处于行人保护的目的,发盖内部不能做的太强,特别是在行人保护区域,不能出现硬点,以防止对受到撞击的行人头部造成致命伤害。发盖处于保护行人的角度决定了其本身不能太硬四、笼形车身前面我们说到不论是发生正面碰撞还是后部以及侧面碰撞,除去被各种吸能装置吸收的能量外,剩余的能量都要传递到车身乘员舱上。如果说吸能盒以及纵梁和前防撞梁是可以收缩变形的“软组织”的话,乘员舱则必须是坚固不可变形的“硬组织”。乘员舱一般由

车身立柱、底板总成和车顶总成三部分组成。车身立柱一般汽车车身有三个立柱,从前往后依次为前柱(A柱)、中柱(B柱)和后柱(C柱),SUV和MPV等部分车型还有另外一根立柱D柱。这些立柱除了有支撑车身顶盖、保证车身车顶强度的共同作用外,立柱的刚度又很大程度上决定了车身的整体刚度,因此在整个车身结构中,立柱是关键件,它要有很高的刚度。除此之外,在设计上它们也有一个共同点,那就是在保证其他条件的情况下,其截面越大越好!车身3大立柱前挡风玻璃和前车门之间的斜立柱叫A 柱(又称前柱),前车门和后车门之间的立柱叫B柱(又称中柱),后车门和后挡风玻璃之间的斜立柱叫C柱(又称后柱)。小轿车的A柱、B柱和C柱有不同的功能,但各自又伴随功能有必然的矛盾,比如A柱有视野与刚度之间的矛盾,B柱有刚度与便利性之间的矛盾等。B柱截面的大小会对乘员上下车的方便性产生影响,B柱一般是下粗上细前挡风玻璃和前车门之间的斜立柱叫A柱。A柱对于汽车安全起着极为关键的作用,特别是在发生正面碰撞时,强度足够高的A柱能够有效的避免变形,从而能够保证乘员在发生事故后顺利打开车门逃生。而现实中,因为A柱变形导致车门打不开,乘员被困死在车内的例子比比皆是。另外,拥有较高抗剪强度的A柱在轿车追尾大货车车能有效的避免A柱被货车尾部切断,从而最大限度保护乘员安全。在轿车追尾大货车

发动机曲轴加工工艺分析与设计

发动机曲轴加工工艺分析与设计 摘要 曲轴是汽车发动机的关键零件之一,其性能好坏直接影响到汽车发动机的质量和寿命.曲轴在发动机中承担最大负荷和全部功率,承受着强大的方向不断变化的弯矩及扭矩,同时经受着长时间高速运转的磨损,因此要求曲轴材质具有较高的刚性、疲劳强度和良好的耐磨性能。发动机曲轴的作用是将活塞的往复直线运动通过连杆转化为旋转运动,从而实现发动机由化学能转变为机械能的输出。 本课题仅175Ⅱ型柴油机曲轴的加工工艺的分析与设计进行探讨。工艺路线的拟定是工艺规程制订中的关键阶段,是工艺规程制订的总体设计。所撰写的工艺路线合理与否,不但影响加工质量和生产率,而且影响到工人、设备、工艺装备及生产场地等的合理利用,从而影响生产成本。 所以,本次设计是在仔细分析曲轴零件加工技术要求及加工精度后,合理确定毛坯类型,经过查阅相关参考书、手册、图表、标准等技术资料,确定各工序的定位基准、机械加工余量、工序尺寸及公差,最终制定出曲轴零件的加工工序卡片。 关键词:发动机,曲轴,工艺分析,工艺设计 目录 第一章概述1 第二章确定曲轴的加工工艺过程3 2.1曲轴的作用3 2.2曲轴的结构及其特点3 2.3曲轴的主要技术要求分析4 2.4曲轴的材料和毛坯的确定4 2.5曲轴的机械加工工艺过程4 2.6曲轴的机械加工工艺路线5 第三章曲轴的机械加工工艺过程分析 6 3. 1曲轴的机械加工工艺特点6 3. 2曲轴的机械加工工艺特点分析7 3. 3曲轴主要加工工序分析 (8) 3.3.1铣曲轴两端面,钻中心孔 (8) 3.3.2曲轴主轴颈的车削 (8) 3.3.3曲轴连杆轴颈的车削 (8) 3.3.4键槽加工 (9) 3.3.5轴颈的磨削 (9) 第四章机械加工余量、工序尺寸及公差的确定9 4.1曲轴主要加工表面的工序安排9 4.2机械加工余量、工序尺寸及公差的确定10 4.2.1主轴颈工序尺寸及公差的确定10 4.2.2连杆轴颈工序尺寸及公差的确定10 4.2.3φ22 -00.12外圆工序尺寸及公差的确定10 4.2.4φ20 0-0.021外圆工序尺寸及公差的确定11 4.3 确定工时定额11 4.4 曲轴机械加工工艺过程卡片的制订12 谢辞13

汽车凸轮轴零件工艺规程设计

汽车凸轮轴零件工艺规程设计 发表时间:2018-07-09T17:26:10.607Z 来源:《基层建设》2018年第14期作者:谭鑫[导读] 摘要:汽车的凸轮轴在汽车发动机中占据了非常重要的位置,并且随着近几年来汽车发动机行业的蓬勃飞速发展,汽车发动机的制造已经实现了自动化生产,那么,凸轮轴的性能好坏成为了评价发动机性能好坏的一项重要指标。 贵州大学明德学院摘要:汽车的凸轮轴在汽车发动机中占据了非常重要的位置,并且随着近几年来汽车发动机行业的蓬勃飞速发展,汽车发动机的制造已经实现了自动化生产,那么,凸轮轴的性能好坏成为了评价发动机性能好坏的一项重要指标。因此,如何对凸轮轴进行生产,需要进行什么样的加工工艺具有非常大的现实意义,不仅在于可以降低成本、提高利润,还可以促进更好流水生产线的布置。本文主要介绍了凸轮 轴的加工过程,并对其加工工艺进行了详细的分析与研究。 关键词:凸轮轴;发动机;工艺分析 1凸轮轴生产线工艺设计 1.1生产线布置 汽车的凸轮轴在整个汽车发动机的结构布局中占据了非常重要的位置,通常其在流水线的生产过程中选择进行U型布置的方式,U型的中间空间的部分用来放置安装备件的设备,各种仪器的操作面板一般也要面对着该走道,这些开口中间要连接着相应的滑道。整个车间为整体地基。这种形式使安装以及移动相关设备变得更加便利,这在对产品进行更换的时候,对提高移动设备的过程和时间是一种非常便利的安排,在对流水线的安排上也能有更大的自主选择权。 1.2工艺设计 1. 2.1定位基准的选择 凸轮轴作为汽车发动机的重要组成部分在其设计过程中必须要保持轴线基准,因为凸轮轴各部分零件的加工很难完成于一次装夹里,故而,要想使加工凸轮轴的精度得到保障,最重要的就是要将多次装夹的定位差距降到最低。常规方法是采用两顶尖孔来当作定位轴类零件的相关基准,这样不但能够防止在多次装夹的过程中工件因转换定位基准而在定位上产生误差,更能当作定位之后工序的基准,这就与“基准统一”原则相符了。从凸轮轴的整个结构可以看出,其与一般的轴类零件是完全不一样的。其具有一些不同的特色,比如整个凸轮是一个沿其轴线为非对称的回转表面,除此之外,凸轮在基圆尺寸、凸轮曲线升程和相位角等方面也有非常高的精度要求。 1.2.2加工阶段的划分与工序顺序的安排 1、加工阶段的划分 凸轮轴的加工过程一般可以分为三个阶段。(1)粗加工阶段。该阶段的加工对象主要面向的是各种大型的车各支承轴颈、要求不是很严格的齿轮外圆轴颈和粗磨凸轮这几个部分进行加工制造。在这个阶段过程中,对机床的要求主要包括具有极好的刚性,并且选择尽可能大的削切用量,使得在整个加工过程中将大量的加工余量得以切除,从而进一步提高凸轮轴的生产效率。(2)半精加工。该阶段主要就是对齿轮外圆轴颈进行精磨,并对各支承轴颈进行精车的加工制造过程。在这个阶段,主要是准备好加工支承轴颈齿轮的相关工作。(3)精加工。该阶段则涉及到三个方面的内容,其一是各支承轴颈的精磨,其二是止推面的加工,其三是斜齿轮以及凸轮的加工。在这个阶段,削切量以及加工余量都不大,加工有着很高的精度。 2、工序顺序的安排 在对凸轮轴进行加工制造的整个流水线生产过程中,对凸轮轴的加工顺序对最终生产成型的凸轮轴也有着非常重要的影响,影响着凸轮轴的质量、效率和经济性。一般来说,我们对各类支撑轴颈的加工顺序是按照粗车——精车——精磨加工的生产流程进行操作的,对凸轮的加工顺序是按照粗磨——精磨加工的生产流程进行操作的,对斜齿轮的加工顺序是按照粗车——精车——精磨——滚齿加工的生产流程进行操作的。对各种零件表面的加工顺序是按照先粗后精、主要与次要交叉进行的生产流程进行操作的。从以上可以看出,不管是对什么配件的加工过程,都是按照先粗后精的加工顺序。 1.2.3凸轮形面的加工 在对凸轮轴进行加工制造的整个过程中,最麻烦的就是对其形面的加工。目前主要使用的两种加工方法,其一是磨削,其二是车削。 由于汽车发动机的凸轮轴在制造上要求毛坯达到极高的精度要求,并利用精铸将切削量控制在较低标准,因此可利用削磨相关加工工艺,以此来实现对加工形面的简化。利用削磨法来加工凸轮形面,然后将粗磨和精磨加工都完成在磨床上。一般来说,加工过程中经常使用的砂轮是立方氮化硼(CBN)砂轮,这种砂轮的使用寿命普遍高于其他种类的砂轮,它的优势是,砂轮的直径发生变化的同时所引起的凸轮形状的变化明显很小,这可以使得在加工过程中,凸轮形面的磨削精度得到非常大的提高。 2.凸轮轴凸轮的廓形要求 汽车发动机的凸轮轴的凸轮轮廓如图1所示,其主要结构包括进气段C(开启弧)、排气段E(关闭弧)、缓冲段B、缓冲段C、基圆A、顶弧D六个部分。 (1)从动件半径(mm):首先设定一个基本值,用来对整个轮廓进行初步的计算和测定。 (2)凸轮基圆直径(mm):然后再设定一个基本值,用来对凸轮尺寸进行初步的微调。 (3)角度升程值(mm/deg):因为从凸轮顶点旋转180度之后就是0度了,因此只需要输入有增量的两个角度之间(90~270)的任意一个增量数据就可以,每隔1度进行一个设定(机内密化系统)。 在对凸轮轴的整个加工制造过程的升程段中,由于我们需要得到的圆形滚珠以及廓形滚珠的切点D1,D2都不是处于滚珠与凸轮的连心线的位置上,同时磨床砂轮进行加工时又必须将这两个切点D1,D2点磨出来,再加上由于磨床砂轮的半径又比滚珠半径要大得多,所以在整个加工过程中,首先要做的就是将凸轮廓形的(D1,D2)坐标计算出来,然后进行换算成砂轮中心的坐标,最终在根据具体的坐标进行加工制造。

相关主题
文本预览
相关文档 最新文档