当前位置:文档之家› 高分子发光材料

高分子发光材料

高分子发光材料
高分子发光材料

高分子李银凤3110705029

江苏大学

稀土高分子发光

材料的研究进展

高分子1102

3110705029

李银凤

高分子李银凤3110705029

目录

1.引言 (3)

2.稀土高分子发光材料概述 (3)

2.1稀土高分子发光材料的分类 (3)

2.1.1稀土高分子材料光致发光 (3)

2.1.2稀土高分子材料电致发光 (4)

2.2稀土高分子发光材料的合成 (4)

2.2.1掺杂型稀土高分子材料的制备 (4)

2.2.2键合型稀土高分子材料的制备 (4)

2.2.3无机/高分子稀土杂化材料的制备 (5)

3.稀土高分子发光材料的应用 (5)

3.1农用发光材料 (5)

3.2在生物、医学上的应用 (5)

4.结语 (6)

5.参考文献 (6)

高分子李银凤3110705029

稀土高分子发光材料的研究进展

摘要:稀土高分子材料是高分子发光材料中最要的一部分。稀土高分子材料是通过稀土金属与高分子的复合而制备的一类兼具稀土光、电、磁等特性和高分子质轻、抗冲击和易加工等优良综合性能的功能材料。这类兼有稀土离子的光、电、磁特性和有机高分子优良的材料性能的功能材料,因可能作为荧光、激光和磁性材料等而引起人们极大的兴趣。

关键词:高分子发光;研究方法;分类及应用

1.引言

近年来荧光材料已在人们的生活、生产中得到广泛的应用,随着经济的发展和科技的进步,对荧光材料的各项指标也提出了新的要求【1】。在高分子材料科学发展过程中,人们更加关注具有特种性能如耐高低温、耐老化、高强超韧、优越的电性能及一些特殊功能如光、电、磁、声的特种材料的研究和开发, 这些特种材料可以称之为特种高分子复合材料。稀土元素因其电子结构的特殊性而具有光、电、磁等许多特性,已在国民经济和现代科学技术的各个领域得到重要应用。我国是稀土资源大国,对稀土资源进行深度加工制成高附加值的新型功能材料具有重大的意义。

2.稀土高分子发光材料概述

2.1稀土高分子发光材料的分类

物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光【4】。因为稀土元素原子的电子构型中存在4f 轨道,当 4f 电子从高的能级以辐射弛豫的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能.

2.1.1稀土高分子材料光致发光

因为稀土离子本身所具有的独特结构和性质,使得其在与有机配体配合后,具有能发出稀土离子发光强度高、颜色纯正的荧光和有机发光化合物所需能量低、荧光效率高、易溶于有机介质的优点。稀土有机配合物的荧光主要是受激发配体通过无辐射分子内能量传递,将受

高分子李银凤3110705029

激发能量传递给中心离子,中心离子发出特征荧光,稀土离子的这种发光现象称为“稀土敏化发光”【2,3】。

当稀土离子被激发时可发出很强的荧光,它们从基态接受配体传递的能量后过渡到激发态,放出能量,即发出荧光后又回到基态,在这个能量传递过程中既有分子内能量传递,也有分子间能量传递。其中,分子间能量传递的效率可以通过提高体系的温度和配体的浓度得到增强,而稀土有机配合物分子内能量传递过程几十年来一直是无数研究工作的主题。

2.1.2稀土高分子材料电致发光

电致发光是指电场作用于半导体诱导的发光行为,它有直流和交流两种模式【5】。对于有机材料主要是直流模式,电致发光的过程通常是这样的:首先载流子从金属电极注入有机层,在电场作用下,载流子在有机层中传输,然后载流子复合产生单态激子,最后单态激子辐射衰减导致发光。

但稀土有机材料的一个主要的缺陷就是:以小分子稀土配合物作发光层,真空蒸镀成膜困难,器件制备工艺复杂,在成膜和使用过程中容易出现结晶,使层间接触变差,从而影响器件的发光性能和缩短使用寿命。

2.2稀土高分子发光材料的合成

2.2.1掺杂型稀土高分子材料的制备

把有机小分子稀土配合物通过溶剂溶解或熔融共混的方式掺杂于高分子体系中,一方面可以提高配合物的稳定性,另一方面可以改善稀土的荧光性能,制备的材料具有良好的发光性能【6】.对于掺杂型铕高分子配合物 ,除 PSM 配合物Eu3 +的质量分数可达15%,CPS和SPS配合物Eu3+的质量分数可达8%外,其余配合物在Eu3 +的质量分数达4 %~5 %时即发生浓度猝灭现象.这是因为稀土离子具有丰富的5d 和4f 轨道 ,配位数较高 ,以这种掺杂方式合成的稀土高分子配合物中稀土离子的配位数得不到满足,因而发生稀土离子聚集 ,而且稀土离子浓度越高,就有越多的配位结构单元和多重稀土离子聚集成离子簇,使稀土离子相对集中 ,稀土离子间的距离减少 ,其相互作用加强 ,造成稀土的荧光猝灭

2.2.2键合型稀土高分子材料的制备

由于掺杂型稀土高分子发光材料中稀土离子的配位数得不到满足 ,因而无法制备出高

高分子李银凤3110705029

荧光强度的稀土高分子发光材料。【7】近年来 ,人们采用在稀土离子与高分子配体作用的同时引入小分子配体的方法制备键合型稀土高分子发光材料. 该方法大多采用甲基丙烯酸甲酯(MMA) 或苯乙烯等聚合物作为高分子基质 ,丙烯酸类聚合物作为配体 ,配位基为羧基,小分子配体常采用邻菲罗啉(phen) 、8 - 羧基喹啉(oxin) 、α- 噻吩甲酰三氟丙酮(TTA)、2 - 2’- 联吡啶 (bipy) 等.在合成方法上 ,一是先配合再聚合 ,二是先聚合再配合【8】.

2.2.3无机/高分子稀土杂化材料的制备

稀土有机配合物通过有机配体的强紫外吸收和配体向稀土离子的有效能量传递使其产生稀土离子强特征荧光 ,且发光的单色性较好 ,但稀土有机配合物的缺点是其较差的光、热稳定性 ,因而限制了其实际应用. 而无机基质具有良好的光、热稳定性 ,因而二者的复合能改善稀土配合物的性能 ,人们已将稀土配合物吸附在无机固体层状、孔状基质材料或掺杂于溶胶 - 凝胶法所得基质中 ,从而使材料的稳定性得到提高,材料仍存在稀土分散性差、易产生浓度猝灭现象等【9】.

3.稀土高分子发光材料的应用

3.1农用发光材料

由于稀土离子发光效率高 ,谱带尖锐 ,作为激光光源及无伤探测已十分普遍【11】,近年来对稀土发光材料应用于农业生产的研究十分活跃 ,目前渗透到农用光转换薄膜、稀土植物生长灯等领域.因为稀土发光材料能有效吸收阳光中的紫外线并将其转换成对农作物生长十分有利的红橙光 ,从而提高植物光合作用的效率 ,有利于农业生产. 王林同等研制了荧光转换农用薄膜(转光膜),可用于蔬菜、育苗、花卉等 ,在大棚种植中 ,与普通膜相比提高棚温3~5℃,地温提高 1~2 ℃,结瓜率提高,西瓜品质变好 ,增产30%~50%,早熟5~15天,黄瓜增产50%.

3.2在生物、医学上的应用

为了研究生命体系 ,人们利用稀土离子荧光探针研究生物大分子的结构.我们知道,很多生物大分子本身含有金属离子如 Ca2+、Mg2+等 ,被稀土离子取代就能形成探测信号,利用这种信号可以研究生物大分子的结构及形态 ,这种技术称之

为荧光探针技术 ,具有灵敏度高,不破坏大分子的结构等优点,因而可广泛用于生物大

高分子李银凤3110705029

分子的研究.稀土离子亦可作为荧光标记应用于医学上,由于稀土荧光寿命比非特异背景长得多,可以大大排除背景光的干扰,同时荧光谱带尖锐且在血清蛋白极稀浓度下仍有很高的灵敏度。这种技术排除了放射性对人体的危害 ,省去了废物处理 ,节省时间及经费 ,其应用前景

非常乐观 ,大有取代放射性免疫分析方法的趋势

4.结语

稀土无机材料存在着难加工成型、价格高等问题;稀土有机小分子配合物则显示稳定性

差等问题,这些因素都限制了稀土发光材料广泛的应用【10】。然而高分子材料本身具有原料丰富、合成方便、成型加工容易、抗冲击能力强、重量轻和成本低等特点,因此将稀土元素引人

到高分子基质中制成稀土高分子光致发光材料,成为目前稀土光致发光材料领域的研究热点。

另外,从稀土高分子发光材料研究进展的总体来看,稀土在高分子材料中的应用是稀土应用研

究的一个新领域,重点在于稀土金属对高分子的性能影响以及含稀土高分子的各种性能及应用,而对于稀土高分子配合物的配位结构的研究并不多,因此仍需对稀土高分子化合物进行更

深层次的研究。

5.参考文献

[1] 李建宁 ,曾红,于群等.稀土配合物 - PAA - g -PE膜的荧光光谱[J].光谱学与光谱分析.2001(1):40~42.

[2] 杨武.镧系(Ea3 +,Tb3 +) -β- 二酮 - 醋酸纤维素荧光膜的的制备与性能[J ].稀

土 ,1998(1) :10~14

[3]张洪杰稀土Π高分子杂化发光材料的研究[J].发光学报,2002 ,23(3) :228~232.

[4] Fu L S, Meng Q G, Zhang H J, et a1 Insitu synthesis of ter bium- benzoic acid complex in sol- gel derived silica by a two-step sol- gel method[ J] Phys Chem So1ids, 2000, 6l( 11) :1 877- 1 881

[5] Fu L S, Xu Q H, Zhang H J, et a1 Preparation and lumines cence properties 、

of the mesoporous MCM24 1 sintercalated with rare earth complex[ J] 、M ater 、Sci Eng, 2002, B88( 11) : 68-72

[6] 刘生桂, 林城右, 王慧慧, 等4, 4, 4- 三氟- 1- ( 4- 间三联苯基) - 1, 3- 、丁二

高分子李银凤3110705029

酮邻菲咯啉铕配合物的合成与发光[ J] 光谱学与光谱分析, 2010, 30( 3) : 612- 615 [7] YUNPU WANG, et al. Synthesis and fluorescence properties of rare eart hmetal、ion- polymer ligand- low molecular weight ligand ternary complexs [J].J Appl Polym Sci, 1992, 45: 1641.

[8] Yan Changhao, Qiu Guanming, Zhang Ming. Study on theCopolymer of PMMA with Eu Complex [C], 04 International ,Conference on Rare Earth Ceramics and Glass,Yangzhou, China, 2004, 9.

[9] 康永,柴秀娟,等稀土高分子发光材料的研究进展,湖南有色金属,第27卷第一期,2011,2,34—38

[10] 任铁刚,补朝阳,李伟杰,黎桂辉,程红彬,等高分子电致发光材料研究进展,中国科技核心期刊,第21卷第6期,2010,11,86—90

[11] 李建宇, 等.稀土配合物- PAA- PE 膜的荧光光谱[J].光谱学与光谱分析,2011, 21( 1)

电致发光高分子功能材料的应用..

电致发光高分子材料及其应用进展 孙东亚*,1,何丽雯2 (1 厦门理工学院材料科学与工程学院福建厦门361024) (2华侨大学材料科学与工程学院福建厦门361021) 摘要:主要介绍了导电高分子的一个重要门类-电致发光(有机EL,也称作OLED)聚合物材料的发光机理、制备工艺及应用现状。结合有机OLED相比于传统显示材料及器件具有发光效率高、波长易调节、寿命长、机械加工性能好等优势,综述了OLED材料及器件在环保照明及平板显示领域取得进展和未来的发展方向。 关键词:电致发光;高分子材料;平板显示; Abstract:An important category of conductive polymer-electroluminescent (organic EL, also known as OLED) luminescence mechanism, preparation process and application status of polymer materials has been introduced. Compared to traditional display materials and devices, the organic combination of OLED has high luminous efficiency, long life, easy to adjust the wavelength, good machining performance and other advantages. At the same time, we summarized the progresses and future development of OLED materials and devices in the green lighting and panel display. 0 前言 有机高分子光电材料由于其诱人的应用前景而得到了人们的广泛关注和研究[1-10]。近年来,导电高分子的研究取得了较大的进展,科学家对其合成、结构、导电机理、性能、应用等方面经过多年的研究,已使其成为一门相对独立的学科。目前,有机电致发光平面显示器(OLED)在一些领域里已经取代了液晶显示器占有平面显示器的主要市场。与液晶平面显示器相比, 有机电致发光平面显示器以及高效率的节能照明设备具有主动发光、轻薄、色彩绚丽、全角度可视、能耗低等显著特点,吸引很多国内外研究机构和国际知名大电子、化学公司都投入了巨大的人力财力研究这一领域[11-15]。虽然在应用研究领域已经取得了巨大的成功,但是无论从综合发光效率、发光波长的调整、稳定性和寿命等方面还有待更进一步的发展。本文综述了近年来OLED材料与器件在制备工艺及品质质量方面所取得的进展及需要解决的主要问题。 1 有机电致发光器件及原理 由电能直接激发产生的发光现象称为电致发光。如图1所示,电致发光材料是通过电极向材料注入空穴和电子,两者通过在材料内部的相对迁移在材料内部发生复合形成激子(激发态分子),然后激子导带中的电子跃迁到价带的空穴中,多余的能量以光的形式放出,产生发光现象。 福建省中青年教师教育科研项目(JB14077) Education Scientific Project of Young Teacher of Fujian Province(JB14077) 作者简介:孙东亚(1982-),男,硕士,工程师,从事光电功能材料制备与表征,E-Mail:

电致发光及原理

电致发光及原理 电致发光ElectroluminescenceEL是物质在一定的电场作用下被相应的电能所激发而产生的发光现象。电致发光EL是一种直接将电能转化为光能的现象。早在20世纪初虞瑟福就发现了SiC晶体在电场作用下的发光。电致发光作为一种平面光源引起了人们的极大爱好。人们企图实现照明光源从点光源、线光源到面光源的革命。自从无机发光板硫化锌和磷砷化镓化合物发明以来电致发光已被广泛应用在很多领域取得了令人瞩目的成就。尽管粉末电致发光现象早在1937年就被发现但直到50年代将硫化锌和有机介质涂敷在透明导电玻璃上再做上第二电极加上交流电压才实现稳定的电致发光。人们逐渐把目光投向了性能更为优良的新一代平板显示器件工艺更简单的新型有机电致发光器件OLED。 1.电致发光材料从发光材料角度可将电致发光分为无机电致发光和有机电致发光。无机电致发光材料一般为等半导体材料。有机电致发光材料依占有机发光材料的分子量的不同可以区分为小分子和高分子两大类。小分子OLED材料以有机染料或颜料为发光材料高分子OLED材料以共轭或者非共轭高分子聚合物为发光材料典型的高分子发光材料为PPV及其衍生物。有机电致发光材料依据在OLED器件中的功能及器件结构的不同又可以区分为空穴注进层HIL、空穴传输层HTL、发光层EML、电子传输层ETL、电子注进层EIL等材料。其中有些发光材料本身具有空穴传输层或者电子传输层的功能这样的发光材料也通常被称为主发光体发光材料层中少量掺杂的有机荧光或者磷光染料可以接受来自主发光体的能量转移和经过载流子捕捉carriertrap的机制而发出不同颜色的光这样的掺杂发光材料通常也称为客发光体或者掺杂发光体英文用Dopant表示。从发光原理角度电致发光可以分为高场电致发光和低场电致发光。 2.电致发光的原理和器件结构从发光原理电致发光可以分为高场电致发光和低场电致发光。高场电致发光是一种体内发光效应。发光材料是一种半导体化合物掺杂适当的杂质引进发光中心或形成某种介电状

溶胶凝胶法合成稀土硅酸盐发光材料(精)

溶胶凝胶法合成稀土硅酸盐发光材料 制备硅酸盐发光材料的传统方法是固相法,该方法存在合成温度高、反应时间长,荧光粉的颗粒度不易控制等缺点。而溶胶—凝胶法由于能很好地解决上述问题,越来越受到人们的关注,目前已经成为发光材料制备技术中的研究热点。本文研究了溶胶—凝胶法(Sol-Gel)制备Ca3SiO5:Eu2+发光材料的工艺条件,系统讨论了PH值、溶剂、灼烧温度和灼烧时间等对样品发光性能的影响。 结果表明,在Eu2+掺杂浓度为0.5%,灼烧温度为1100℃,灼烧时间为4h的条件 下可以得到性能优良的荧光粉。对样品的X射线衍射(XRD)、扫描电镜(SEM)分 析表明,其晶体结构为纯相Ca3SiO5,晶粒尺度在30 nm左右。而从样品的发射 光谱和激发光谱可以看出,Ca3SiO5:Eu2+的发射光谱是峰值位于505 nm的宽带谱,激发谱峰值位于374 nm,说明这种材料是一种很好的近紫外激发的绿色荧光粉。利用溶胶—凝胶法进一步合成了Sr2SiO4:Eu3+红色和Sr2SiO4:Bi3+蓝色荧光粉,对样品进行X射线衍射分析和发光特性研究,确定了掺杂浓度以及各组分 含量对样品发光特性的影响情况。 同主题文章 [1]. 陈永奋,赵斌,杨海. 铜溶胶的制备' [J]. 无机化学学报. 1995.(04) [2]. 新一代发光材料研制成功' [J]. 河南化工. 1999.(07) [3]. 张忱. 多孔硅发光材料' [J]. 材料导报. 1993.(02) [4]. 特种发光材料市场广阔' [J]. 化工生产与技术. 1997.(01) [5]. 李可为,姚熹. Al_2O3-SiO_2 溶胶对PTC 效应的影响' [J]. 无机材料学报. 1993.(02) [6]. 余斌. 新型发光材料问世' [J]. 工程塑料应用. 2001.(04) [7]. 胡兴军. 发光材料时尚新宠' [J]. 上海节能. 2004.(05) [8]. 李振远. 可印刷于纸上的发光材料' [J]. 造纸化学品. 2009.(03) [9]. 我国自发光材料研发走在世界前列' [J]. 陶瓷. 2000.(03)

高分子发光材料

高分子发光材料 有机发光材料与无机发光材料相比,以其易合成、易加工、成本低、质轻、发光颜色全等特点越来越受到关注。近几年以有机发光材料制备的发光器件已临近应用阶段,成为当前流行的液晶显示器件的强力竞争对手。目前研究比较活跃的有聚噻吩、聚苯胺、聚吡咯、聚芴【7】等。 2.1高分子光致发光材料 2.1.1简介 高分子光致发光材料是将荧光物质(芳香稠环、电荷转移络合物或金属)引入高分子骨架的功能高分子材料。高分子光致发材料均为含有共轭结构的高聚物材料。 2.1.2发光机理 高分子在受到可见光、紫外光、X一射线等照射后吸收光能,高分子电子壳层内的电子向较高能级跃迁或电子基体完全脱离,形成空穴和电子.空穴可能沿高分子移动,并被束缚在各个发光中心上,辐射是由于电子返回较低能量级或电子和空穴在结合所致。高分子把吸收的大部分能量以辐射的形式耗散,从而可以产生发光现象[8]。 2.1.3分类 按照引入荧光物质而分为三类 2.1.3.1高分子骨架上连接了芳香稠环结构的荧光材料,应稠环芳烃具有较大的共轭体系和平面刚性结构,从而具有较高的荧光量子效率。其中广泛应用的是芘的衍生物,如图1。 图1 芘的衍生物 2.1.3.2共轭结构的分子内电荷转移化合物有以下几类 2.1. 3.2.1两个苯环之间以一C=C一相连的共轭结构的衍生物[9]如图2。吸收光能激发至激发态时,分子内原有的电荷密度分布发生了变化。这类化合物是荧光增白剂中用量最大的荧光材料,常被用于太阳能收集和染料着色。 图2 共轭结构的衍生物 2 .1.3.2 .2香豆素衍生物[10-12]如图3。在香豆素母体上引入胺基类取代基

可调节荧光的颜色,它们可发射出蓝绿岛红色的荧光,已用作有机电致发光材料。但是,香豆索类衍 生物往往只在溶液中有高的量子效率,而在固态容易发生荧光猝灭,故常以混合掺杂形式使用。 图3 香豆素衍生物 2.1.3.3高分子金属配合物发光材料,许多配体分子在自由状态下并不发光,但与金属离子形成配合物后却能转变成强的发光物质。8一羟基喹啉与Al、Be、Ga、In、Sc、Yb、Zn、Zr等金属离子形成发光配合物[13]。 2.1.3.3.1掺杂 目前,掺杂小分子的高分光致发光材料被广泛应用于PELD中。常见用于掺杂的小分子有:发蓝光的吡唑磷衍生物、发黄光的萘酰亚胺衍生物以及发红光的DCM 等。把有机小分子稀土络合物通过溶剂溶解或熔融共混的方式掺杂到高分子体系中,一方面可以提高络合物稳定性.另一方面可以改善稀土的荧光性能。 2.1.3.3.2化学键合法 汪联辉等人先后研究了烷氧基钕,烷氧基钐单体与甲基丙烯酸甲酯、苯乙烯等共聚及其荧光性质。发现在共聚物中三价钕离子的荧光特性受其基质影响很小,且其荧光强度随钕含量增加而线性增大,在钕含量高达8%时仍未出现荧光浓度淬灭现象。 2.2电致发光高分子材料 2.2.1简介 有机半导体的电致发光现象早就被人们所熟知。电致发光高分子材料是指电流通过材料时能导致发光现象的一类功能材料。目前,有机高分子电致发光器件(PLED)材料以其独特的光电性能和易加工性吸引了众多学者的研究兴趣。 2.2.2发光机理 与光致发光的电子跃迁机理不同,电致发光是通过正负电极向发光层的最高占有轨道(HOMO)和最低空轨道(LUMO)分别注入空穴和电子,这些在电极附近生成的空

白光LED用硅酸盐荧光粉的研究进展

关于探讨白光LED用硅酸盐荧光粉的 研究进展 指导老师:陈国华 学号:0901010137 姓名:吴相锐

目录 第一部分:引言 (1) 第二部分:白光LED用硅酸盐荧光粉的研究现状 (2) 一、被蓝色InGaN管芯激发的硅酸盐荧光粉 (2) 二、被近紫外(370一41 Onm)InGaN管芯激发发射红、绿和蓝光的 3 三基色硅酸盐荧光粉 (3) 三、被近紫外光激发发射白光的单一基质的硅酸盐荧光粉 (4) 第三部分:结束语 (5) 第四部分:参考文献 (6)

探讨白光LED用硅酸盐荧光粉的 研究进展 [摘要]本文参考了大量文献,根据各项文献及各个学者的科研成果,探讨近几年来半导体白色发光二极管(WLED)用硅酸盐荧光粉的研究进展【1】。重点介绍了蓝光芯片激发和近紫外光芯片激发用的黄粉、三基色荧光粉以及单基质白色荧光粉的研究概况,对性能较好的荧光粉做了重点推介,同时指出了目前该领域中硅酸盐荧光粉所存在的问题并对其发展趋势做了展望。 [关键词]白光LED;硅酸盐荧光粉;综述、 第一部分:引言 LED经过几十年的发展,从目前的技术发展现状看,日本和美国最具有技术实力,德国Osram公司在某些领域则拥有世界领先技术,韩国也是在LED技术方面有一定实力的国家。从全球的LED市场份额看,日本不低于50%,中国台湾地区约占20%。虽然中国台湾地区在LED市场份额方面世界排名第二,但在LED芯片和封装产量方面则聚世界第一,不过产品以中低档的红光和黄光LED为主。【2】 目前国际上通常采用波长为350~470 nm的GaInN基发光二极管作为激发光源,因此要求荧光粉的激发光谱也在此范围之内。白光LED(White Light Emitting Diode,WLED)作为一种新型的绿色环保型固体照明光源,被誉为21世纪最有价值的新光源,在诸多领域有着广阔的应用前景【3、4】。 同时优质荧光粉还应该满足以下特点:发射峰集中在某些合适的波长范围内,有好的热稳定性,高量子效率和激发光吸收率,粉末颗粒细小均匀。然而,迄今为止,能满足具有宽激发带(特别是蓝光激发这一条件)的发光材料种类很少,除Ynl5012:Ce3+(YAG:Ce)【5、6】,很少有在450~480 nm蓝光激发下有较高发光效率材料的报道。因而,WLED用发光材料的研究与新体系探索已成为发

浅谈对高分子材料的认识

浅谈对高分子材料的认识 214——马欢欢

高分子材料,顾名思义,是指以高分子化合物为基本组成,加入适当助剂,经过一定的加工制成的材料。高分子材料与我们的生活息息相关。我们身边天然的高分子材料,例如棉花、毛、蚕丝和木材中的纤维素等,是我们生活中重要的一部分。随着社会的发展,开始出现了改性天然高分子材料和合成高分子材料,例如塑料、树脂等,极大地改善了我们的生活条件,推动了社会进步。下面我就简单谈一下我对于高分子材料的认识,主要是高分子材料的分类和应用。 高分子材料有很多种类。从来源来分,可以分为天然高分子材料、改性天然高分子材料和合成高分子材料。举例来说,蛋白质、天然橡胶、纤维素等属于天然高分子材料,改性淀粉、硝化纤维等为改性天然高分子材料,有机玻璃、涤纶、尼龙等为合成高分子材料。 如果根据使用性质来分,可以将高分子材料分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 塑料是用途最广泛的合成高分子。人们常用的塑料是以合成树脂为基础,再加入塑料辅助剂(如填料、增韧剂、稳定剂、交联剂等)制得的。通常,按塑料的受热行为和是否具备反复成型加工性,可以将塑料分为热塑性塑料和热固性塑料。热塑性塑料受热时熔融,可进行各种成型加工,冷却时硬化。再受热,又可熔融、加工,即具有多次重复加工性。如,PE,PET等。热固性塑料受热熔化成型的同时发生交联固化反应,形成立体网状结构,再受热不熔融,在溶剂中也不溶解,当温度超过分解温度时将被分解破坏,即不具备重复加工性。如果按照用途来分,可分为通用塑料、工程塑料和特种塑料。通用塑料一般指产量大、用途广、成型性好、价格便宜、力学性能一般,主要作为非结构材料使用的塑料,如PE、PP、PVC、PS等。工程塑料具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并且在此条件下能够长时间使用,且可作为结构材料。如PC、PPO、PPS等。特种塑料一般指具有特种功能,可用于航空航天等特殊应用领域的塑料,如氟塑料、有机硅等。 早期的橡胶是取自橡胶树、橡胶草等植物的胶乳,加工后制成的具有弹性、绝缘性、不透水和空气的材料,是一种高弹性的高分子化合物。橡胶按照来源可以分为天然橡胶和合成橡胶两大类。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶是由人工合成方法而制得的,采用不同的原料(单体)可以合成出不同种类的橡胶。合成橡胶又分为通用合成橡胶和特种合成橡胶。通用合成橡胶是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。

长余辉发光材料概述

长余辉发光材料概述 摘要 本文综述了长余辉材料的发光机理及制备方法,并简单介绍了硫化物长余辉发光材料、铝酸盐长余辉发光材料及硅酸盐长余辉发光材料。 关键词:长余辉;发光材料 1.长余辉发光材料简介 长余辉发光材料简称长余辉材料,又称夜光材料、蓄光材料。它是一类吸收太阳光或人工光源所产生的光的能量后,将部分能量储存起来,然后缓慢地把储存的能量以可见光的形式释放出来,在光源撤除后仍然可以长时间发出可见光的物质[1]。 2.长余辉发光材料的基本机理 长余辉材料被激发以后,能长时间持续发光,其关键在于有适当深度的陷阱能态(即能量存储器)。光激发时产生的自由电子(或自由空穴)落入陷阱中储存起来,激发停止后,靠常温下的热扰动而释放出被俘的陷阱电子(或陷阱空穴)与发光中心复合产生余辉光。随着陷阱逐渐被腾空,余辉光也逐渐衰减至消失。而陷阱态来源于晶体的结构缺陷,换言之,寻求最佳的晶体缺陷以形成最佳陷阱(种类、深度、浓度等)是获得长余辉的主要因素。余辉时间的长短决定于陷阱深度与余辉强度,余辉光的强度依赖于陷阱浓度、容量与释放电子(或空穴)的速率。而晶体缺陷的产生除了材料制备过程中自然形成的结构缺陷外,主要是掺杂。 长余辉发光机理实际是发光中心与缺陷中心间如何进行能量传递的过程,具体的长余辉材料有不同的发光模型,但最流行的是两类:一是载流子传输;二是隧穿效应。前者包含电子传输、空穴传输和电子空穴共传输,后者包括激发、能量存储与热激励产生发射的全程隧穿和仅是“热激励”发射的半程隧穿。除这两类外,学术界还有学者提出位形坐标[2]、能量传递、双光子吸收和Vk传输模型。至今为止,上述模型都是根据已有的实验结果提出的假设,可以解释一定的实验现象,但缺乏足够的论据,也存在若干不确定因素,难以让人信服,而发光机理的研究又是为新材料设计提供物理依据所必须的,有待进一步深入。

光致发光高分子材料

光致发光高分子材料 摘要:稀土高分子发光材料由于兼具稀土离子发光强度高、色纯度高和高分子材料优良的加工成型性能等优点而倍受瞩目。本文就稀土光致发光材料进行了分类,对其发光特性作了简要介绍,综述了其开发与应用的历史与现状,并介绍了其目前在各个领域的应用产品。 关键词:稀土;高分子;光致发光材料;长余辉材料 1前言 光致发光材料又称超余辉的蓄光材料。长余辉光致发光材料是吸收光能后进行蓄光而后发光的物质。它是一种性能优良,无需任何电源就能自行发光的材料。可利用其制成各种危险标识、警告牌;做成各种安全、逃生标志;在应付突发事件、事故中可发挥巨大的作用。在发生突发事故时,电源往往被切断,这使得许多依靠电源发光照明的安全标志失去了作用,而采用长余辉发光材料的安全标志此时将发挥其特殊的作用。因此长余辉光致发光材料的研究,具有重要的科学意义和实用性[1]。现在我们已开发出很多实用的发光材料。在这些发光材料中,稀土元素起的作用非常大[2,3]根据激发源的不同,稀土发光材料可分为光致发光材料、阴极射线(CRT)发光材料、X射线发光材料以及电致发光材料[4]。本文主要介绍光致发光材料. 2光致发光材料的发光原理[5] 发光材料被外加能量(光能)照射激发后,能量可以直接被发光中心吸收(激活剂或杂质),也可被发光材料的基质吸收。在第一种情况下,吸收或伴有激活剂电子壳层内的电子向较高能级的跃迁或电子与激活剂完全脱离及激活剂跃迁到离化态(形成“空穴”)。在第二种情况下,基质吸收能量时,在基质中形成空穴和电子,空穴可能沿晶体移动,并被束缚在各个发光中心上,辐射是由于电子返回到较低(初始)能量级或电子和离子中心(空穴)再结合(复合)所致。即当外加能量(光能)的粒子与发光基质的原子发生碰撞而引起它们激发电离。电离出来的自由电子具有一定的能量,又可引起其他原子的激发电离,当激发态或电离态的原子重新回到稳定态时,就引起发光[6]。发光基质将所吸收的能量转换为光辐射,这

硅酸盐材料

硅酸盐材料、高分子材料 主讲:黄冈中学优秀化学教师汪响林 知识讲解 一、硅酸盐材料——传统无机非金属材料 1、硅酸盐材料简介 在材料家族里,有一类非常重要的材料叫做无机非金属材料。 最初无机非金属材料主要是指硅酸盐材料,所以硅酸盐材料也称为 传统无机非金属材料。像陶瓷、玻璃、水泥等材料及它们的制品在 我们日常生活中随处可见。由于这些材料的化学组成多属硅酸盐 类,所以一般称为硅酸盐材料。 2、玻璃

(1)原料:纯碱、石灰石、石英砂 (2)设备:玻璃窑 (3)工序:原料粉碎→加热熔融→澄清→成型→缓冷→玻璃 (4)原理:高温下,复杂的物理、化学变化。 主要反应: (5)玻璃态物质 玻璃态物质是一种特殊的混合物,是介于结晶态和无定形态之间的一种物质状态。玻璃态物质的结构特点是:它的粒子不像晶体那样有严格的空间排列,但又不像无定形体那样无规则排列,人们把玻璃态的这种结构特征称为“短程有序,远程无序”,就是说,从小范围来看,它有一定的晶型排列,从整体来看,却像无定形物质那样无晶形的排列规律。所以玻璃态物质没有一定熔点,而是在某一温度范围内逐渐软化变为液态。 (6)种类及特性 种类组成或制造方法特性用途 普通玻璃在较高温度下易软化窗玻璃、玻璃器皿等

石英玻璃膨胀系数小、耐酸碱、强 度大、滤光 化学仪器、高压 水银灯、紫外灯 罩等 硼酸玻璃 在制造玻璃的过 程中添加了提高玻璃的化学稳定性和 降低它的热膨胀系数,耐 高温和抗化学腐蚀 高级的化学反 应容器 光学玻璃 在制造玻璃的过 程中添加了PbO 透光性好、有折光性和色 散性 眼镜、照相机、 显微镜和望远 用透镜等 玻璃纤维以玻璃为原料经高 温熔制、拉丝、络 纱等工艺制造成 耐腐蚀、耐高温、绝缘、 隔热、防虫蛀 复合材料中的 增强材料如玻 璃钢;绝热保温 材料如宇航服; 光导通信材料 钢化玻璃普通玻璃在电炉里加热软化 后急速冷却而成的 耐高温、耐腐蚀、高强度、 抗震裂 运动器材、汽 车、火车用窗玻 璃等 有色玻璃 在制造玻璃的过程中 加入金属氧化物制成蓝色(含)、红色 (含)、紫色(含 )、绿色(含 )、普通玻璃的淡 绿色(含二价铁) 艺术玻璃、装饰 材料 变色玻璃在制玻璃过程中掺进了对光 敏感的物质如卤化银和少量 CuO催化剂 光线强时,卤化银见光分 解生成的银微粒吸光而使 玻璃变暗;光线弱时,在 氧化铜的催化下,银和卤 素又化合成卤化银,玻璃 又变透明 变色眼镜等 3、陶瓷 (1)原料:黏土

高分子材料的分类

高分子材料的分类 高分子材料分类标准有:①按来源分类②按应用分类③按应用功能分类④高分子主链结构分类等等 高分子材料按来源分类:高分子材料按来源分为天然高分子材料和合成高分子材料。 高分子材料按应用分类:高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 ①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。 ③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。 ⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。 ⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。高分子复合材料也称为高分子改性,改性分为分子改性和共混改性。 ⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、磁性、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。 高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 高分子材料按应用功能分类:高分子材料分为通用高分子材料、特种高分子材料和功能高分子材料三大类。 按高分子主链结构分类:①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC ②杂链高聚物:分子主链由C、O、N、P等原子构成。如:聚酰胺、聚酯、硅油。③元素有机高聚物:分子主链不含C原子,仅由一些杂原子组成的高分子。如:硅橡胶 其它分类:按高分子主链几何形状分类:线型高聚物,支链型高聚物,体型高聚物。 按高分子微观排列情况分类:结晶高聚物,半晶高聚物,非晶高聚物。

稀土硅酸盐长余辉发光材料的合成与性质(精)

稀土硅酸盐长余辉发光材料的合成与性质 20世纪90年代制备出的铝酸盐体系长余辉发光材料因其优良的发光性能而倍受关注。然而,该体系耐水性差,限制了其应用。为此,近年来又开发出化学性质更稳定的硅酸盐体系长余辉发光材料,但其发光性能有待进一步提高,仍有许多理论问题亟待解决。目前,长余辉发光材料多用高温固相法制备,该法具有反应不完全,灼烧温度高,反应时间长,产物晶粒大,硬度高,粉碎后发光强度明显降低等诸多缺点,限制了其应用。因而,开发新的合成方法受到越来越多人的关注。本论文以稀土焦硅酸盐长余辉材料为研究对象,探索出合成该类材料的一种新方法一凝胶燃烧法。与高温固相法相比,该法具有离子分散均匀,合成温度低,操作简单,晶粒度小等优点。借助KRD, SEM,荧光光谱等现代测试手段,对合成产物进行了分析和表征,得出以下成果和结论:(1)研究发现溶液的pH值,水浴温度,起火温度,H3B03用量,尿素用量等对材料的物相结构、形貌粒度、发光性能等有着显著的影响,通过一系列实验确定了最佳工艺条件。(2)在最佳工艺条件下,对Sr_2MgSi_2O_7:Eu~(2+)进行了系列稀土离子Ln3+的共掺杂。研究发现:Sr_2MgSi_2O_7:Eu~(2+),Ln~(3+)(Ln=La,Ce,Nd,Sm,Gd,Tb,Dy,Ho,Er,Tm)的晶体结构均为四方晶系结构;其激发、发射光谱的峰形、峰位基本无变化,主激发峰位于402nm,次激发峰位于415nm,与高温固相法和溶胶-凝胶法制得的 Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)的激发峰相比,出现了明显的红移现象;发射光谱也为一宽带,最大发射峰位于468nm附近,是典型的Eu~(2+)的4f5d-4f跃迁导致的。共掺杂稀土离子Ln~(3+)的种类对材料发光强度、余辉性能有着明显的影响,其中Dy~(3+)是最理想的共掺杂离 子,Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)的发光亮度最高、余辉时间最长,可达5h 以上;而Sr_2MgSi_2O_7:Eu~(2+),Sm~(3+)的发光亮度最低、余辉时间最短,不到1 min。(3)在Sr_2MgSi_2O_7:Eu~(2+),Dy~(3+)基质中,掺入不同量的 Ca~(2+),制得Sr_(2-x)Ca_xMgSi_2O_7:Eu~(2+),Dy~(3+)(x=0,0.5,1,1.5,2)系列样品。研究发现:此系列样品的晶体结构均属四方晶系,但晶胞参数随 Ca~(2+)的增加而减小。激发和发射光谱均为宽带连续谱,最大激发峰位于 400nm左右,随着Ca~(2+)含量的增加,Sr_(2- x)Ca_xMgSi_2O_7:Eu~(2+),Dy~(3+)(x=0,0.5,1,1.5,2)的发射峰位依次为 468nm,483nm,500nm,512nm,520nm,发光颜色依次呈现蓝,蓝绿,绿,黄绿,黄色;初始亮度逐渐降低,余辉时间逐渐缩短。(4)用“位型坐标”模型合理解释了 M_2MgSi_2O_7:Eu~(2+),Ln~(3+)(M=Sr, Ca)长余辉发光行为。 同主题文章 [1]. 周传仓,卢忠远,戴亚堂,王兵. 共沉淀法制备超细长余辉发光材料铝酸锶铕镝的研究' [J]. 稀有金属. 2005.(01) [2]. 崔景强,陈永杰,杨英,耿秀娟,石爽. 掺杂B对长余辉发光材料 SrAl_2O_4:Eu~(2+),Dy~(3+)发光性能的影响' [J]. 沈阳化工学院学报. 2006.(02) [3].

功能高分子材料的分类

功能高分子材料的分类 功能高分子材料一般指具有传递、转换或贮存物质、能量和信息作用的高分子及其复合材料,或具体地指在原有力学性能的基础上,还具有化学反应活性、光敏性、导电性、催化性、生物相容性、药理性、选择分离性、能量转换性、磁性等功能的高分子及其复合材料。 按照高分子的功能特性,功能高分子材料可分为以下几种: 1.分离材料和化学功能材料 2.电磁功能高分子材料 3.光功能高分子材料 4.生物医用高分子材料 现对这几种材料进行简单的介绍一下。 分离材料和化学功能材料 以化学功能为主的功能高分子材料称为化学功能高分子材料。化学功能包括生成离子键、配位键、共价键的化学反应,上述价键断裂的分解反应,以及与上述反应有关的催化作用等,包括具有离子交换功能的离子交换树脂,对各种阳离子有络合吸附作用的螯合聚合物,光化学性聚合物,具有氧化还原能力的聚合物,在有机合成反应中使用的高分子试剂和高分子催化剂,降解型高分子等。化学功能高分子材料的制备主要通过在高分子骨架上引入具有特定化学功能的官能团或者结构片段,也可以将具有类似功能的小分子功能材料高分子化得到化学功能高分子材料。高分子材料经过功能化或者小分子功能材料经过高分子化以后,材料的溶解度一般均有下降,熔点提高。对于化学试剂,经过高分子化后稳定性增加,均相反应转变成多相反应,产物与试剂和催化剂的分离过程简化,同时还产

生许多小分子材料所不具备的其他性质。化学功能高分子材料是固相合成的基础。 电磁功能高分子材料 电磁功能材料主要指导电聚合物材料。复合型导电高分子材料是以有机高分子材料为基体,加入一定数量的导电物质(如炭黑、石墨、碳纤维、金属粉、金属纤维、金属氧化物等)组合而成。该类材料兼有高分子材料的易加工特性和金属的导电性。与金属相比较,导电性复合材料具有加工性好、工艺简单、耐腐蚀、电阻率可调范围大、价格低等优点。 与金属和半导体相比较,导电高分子的电学性能具有如下特点: (1)通过控制掺杂度,导电高分子的室温电导率可在绝缘体-半导体-金属态范围内变化。目前最高的室温电导率可达105S/cm,它可与铜的电导率相比,而重量仅为铜的1/12; (2)导电高分子可拉伸取向。沿拉伸方向电导率随拉伸度而增加,而垂直拉伸方向的电导率基本不变,呈现强的电导各向异性; (3)尽管导电高分子的室温电导率可达金属态,但它的电导率-温度依赖性不呈现金属特性,而服从半导体特性; (4)导电高分子的载流子既不同于金属的自由电子,也不同于半导体的电子或空穴,而是用孤子、极化子和双极化子概念描述。应用主要有电磁波屏蔽、电子元件(二极管、晶体管、场效应晶体管等)、微波吸收材料、隐身材料等。 光功能高分子材料 指在光的作用下能够产生物理(如光导电、光致变色)或化学变化(如光交联、

高分子材料按应用分类

高分子材料按应用分类 高分子材料按特性分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。①橡胶是一类线型柔性高分子聚合物。其分子链间次价力小,分子链柔性好,在外力作用下可产生较大形变,除去外力后能迅速恢复原状。有天然橡胶和合成橡胶两种。 ②高分子纤维分为天然纤维和化学纤维。前者指蚕丝、棉、麻、毛等。后者是以天然高分子或合成高分子为原料,经过纺丝和后处理制得。纤维的次价力大、形变能力小、模量高,一般为结晶聚合物。③塑料是以合成树脂或化学改性的天然高分子为主要成分,再加入填料、增塑剂和其他添加剂制得。其分子间次价力、模量和形变量等介于橡胶和纤维之间。通常按合成树脂的特性分为热固性塑料和热塑性塑料;按用途又分为通用塑料和工程塑料。 ④高分子胶粘剂是以合成天然高分子化合物为主体制成的胶粘材料。分为天然和合成胶粘剂两种。应用较多的是合成胶粘剂。⑤高分子涂料是以聚合物为主要成膜物质,添加溶剂和各种添加剂制得。根据成膜物质不同,分为油脂涂料、天然树脂涂料和合成树脂涂料。 ⑥高分子基复合材料是以高分子化合物为基体,添加各种增强材料制得的一种复合材料。它综合了原有材料的性能特点,并可根据需要进行材料设计。⑦功能高分子材料。功能高分子材料除具有聚合物的一般力学性能、绝缘性能和热性能外,还具有物质、能量和信息的转换、传递和储存等特殊功能。已实用的有高分子信息转换材料、高分子透明材料、高分子模拟酶、生物降解高分子材料、高分子形状记忆材料和医用、药用高分子材料等。高聚物根据其机械性能和使用状态可分为上述几类。但是各类高聚物之间并无严格的界限,同一高聚物,采用不同的合成方法和成型工艺,可以制成塑料,也可制成纤维,比如尼龙就是如此。而聚氨酯一类的高聚物,在室温下既有玻璃态性质,又有很好的弹性,所以很难说它是橡胶还是塑料。 按高分子主链结构分类 ①碳链高分子:分子主链由C原子组成,如:PP、PE、PVC②杂链高聚物:分子主链由C、O、N等原子构成。如:聚酰胺、聚酯③元素有机高聚物:分子主链不含C 原子,仅由一些杂原子组成的高分子。如:硅橡胶 新型高分子材料 高分子材料包括塑料、橡胶、纤维、薄膜、胶粘剂和涂料等。其中,被称为现代高分子三大合成材料的塑料、合成纤维和合成橡胶已经成为国民经济建设与人民日常生活所必不可少的重要材料。尽管高分子材料因普遍具有许多金属和无机材料所无法取代的优点而获得迅速的发展,但目前业已大规模生产的还是只能寻常条件下使用的高分子物质,即所谓的通用高分子,它们存在着机械强度和刚性差、耐热性低等缺点。而现代工程技术的发展,则向高分子材料提出了更高的要求,因而推动了高分子材料向高性能化、功能化和生物化方向发展,这样就出现了许多产量低、价格高、性能优异的新型高分子材料。 高分子分离膜 高分子分离膜是用高分子材料制成的具有选择性透过功能的半透性薄膜。采用这样的半透性薄膜,以压力差、温度梯度、浓度梯度或电位差为动力,使气体混合物、液体混合物或有机物、无机物的溶液等分离技术相比,具有省能、高效和洁净等特点,因而被认为是支撑新技术革命的重大技术。膜分离过程主要有反渗透、超滤、微滤、电渗析、压渗析、气体分离、渗透汽化和液膜分离等。用来制备分离、渗透汽化和液膜分离等。用来制备分离膜的高分子材料有许多种类。现在用的较多的是聚枫、聚烯烃、纤维素脂类和有机硅等。膜的形式也有多种,一般用的是平膜和空中纤维。推广应用高分子分离膜能获得巨大的经济效益和社

浅谈对高分子材料的认识

浅谈对高分子材料的认识 20132640214——马欢欢

高分子材料,顾名思义,是指以高分子化合物为基本组成,加入适当助剂,经过一定的加工制成的材料。高分子材料与我们的生活息息相关。我们身边天然的高分子材料,例如棉花、毛、蚕丝和木材中的纤维素等,是我们生活中重要的一部分。随着社会的发展,开始出现了改性天然高分子材料和合成高分子材料,例如塑料、树脂等,极大地改善了我们的生活条件,推动了社会进步。下面我就简单谈一下我对于高分子材料的认识,主要是高分子材料的分类和应用。 高分子材料有很多种类。从来源来分,可以分为天然高分子材料、改性天然高分子材料和合成高分子材料。举例来说,蛋白质、天然橡胶、纤维素等属于天然高分子材料,改性淀粉、硝化纤维等为改性天然高分子材料,有机玻璃、涤纶、尼龙等为合成高分子材料。 如果根据使用性质来分,可以将高分子材料分为橡胶、纤维、塑料、高分子胶粘剂、高分子涂料和高分子基复合材料等。 塑料是用途最广泛的合成高分子。人们常用的塑料是以合成树脂为基础,再加入塑料辅助剂(如填料、增韧剂、稳定剂、交联剂等)制得的。通常,按塑料的受热行为和是否具备反复成型加工性,可以将塑料分为热塑性塑料和热固性塑料。热塑性塑料受热时熔融,可进行各种成型加工,冷却时硬化。再受热,又可熔融、加工,即具有多次重复加工性。如,PE,PET等。热固性塑料受热熔化成型的同时发生交联固化反应,形成立体网状结构,再受热不熔融,在溶剂中也不溶解,当温度超过分解温度时将被分解破坏,即不具备重复加工性。如果按照用途来分,可分为通用塑料、工程塑料和特种塑料。通用塑料一般指产量大、用途广、成型性好、价格便宜、力学性能一般,主要作为非结构材料使用的塑料,如PE、PP、PVC、PS等。工程塑料具有较高的力学性能,能够经受较宽的温度变化范围和较苛刻的环境条件,并且在此条件下能够长时间使用,且可作为结构材料。如PC、PPO、PPS等。特种塑料一般指具有特种功能,可用于航空航天等特殊应用领域的塑料,如氟塑料、有机硅等。 早期的橡胶是取自橡胶树、橡胶草等植物的胶乳,加工后制成的具有弹性、绝缘性、不透水和空气的材料,是一种高弹性的高分子化合物。橡胶按照来源可以分为天然橡胶和合成橡胶两大类。天然橡胶是从橡胶树、橡胶草等植物中提取胶质后加工制成;合成橡胶是由人工合成方法而制得的,采用不同的原料(单体)可以合成出不同种类的橡胶。合成橡胶又分为通用合成橡胶和特种合成橡胶。通用合成橡胶是指部分或全部代替天然橡胶使用的胶种,如丁苯橡胶、顺丁橡胶、异戊橡胶等,主要用于制造轮胎和一般工业橡胶制品。通用橡胶的需求量大,是合成橡胶的主要品种。

磁性高分子材料的分类

磁性高分子材料的分类 磁性高分子材料通常可分为复合型和结构型两种。前者是指以高分子材料与各种无机磁性物质通过混合粘结、填充复合、表面复合、层积复合等方式加工制得的磁性体,如磁性橡胶、磁性树脂、磁性薄膜、磁性高分子微球等;后者是指不用加入无机磁性物,高分子结构自身具有强磁性的材料,由于比重小、电阻率高,其强磁性来源与传统无机磁性材料很不相同,因此具有重要的理论意义和应用前景。 1、复合型磁性高分子材料 复合型磁性高分子材料主要是指在塑料或橡胶中添加磁粉和其他助剂,均匀混合后加工而成的一种复合型材料。复合型高分子磁性材料分为树脂基铁氧体类高分子共混磁性材料和树脂基稀土填充类高分子共混磁性材料两类,简称为铁氧体类高分子磁性材料和稀土类高分子磁性材料,目前以铁氧体类高分子磁性材料为主。 (1)铁氧体类高分子磁性材料 铁氧体类高分子磁性材料具有质轻、柔韧、成型后收缩小、制品设计灵活等特点,可制成薄壁或复杂形状的制品。但是其磁性不仅比烧结磁铁的差,也比稀土类磁性塑料的差。如果大量填充磁粉,制品的加工性和强度都会下降。所以铁氧体类高分子磁性材料主要用于家电和日用品。 (2)稀土类高分子磁性材料 填充稀土类磁粉制作的高分子磁性材料属于稀土高分子磁性材料。它与烧结型稀土类磁铁相比,虽然在磁性和耐热性方面较差,但

其成型性和力学性能优良,组装和使用方便,废品率低。稀土类高分子磁性材料的磁性虽不如稀土类烧结磁铁,但优于铁氧体类烧结磁铁,其力学强度、耐热性能和磁性能均优于铁氧体类高分子磁性材料。稀土类高分子磁性材料的加工性能较出色,可以满足电子工业对电子电气元件小型化、轻量化、高精密化和低成本的要求,可应用于小型精密电机、通讯设备传感器、继电器、仪器仪表、音响设备等多种领域,将成为今后高分子磁性材料发展的方向。 (3)复合型磁性高分子材料的粘结剂 目前磁性塑料的粘结剂主要是橡胶、热固性树脂和热塑性树脂。橡胶类粘结剂包括天然橡胶和合成橡胶,主要用于柔性复合磁体制造;热固性粘结剂一般用环氧树脂和酚醛树脂;热塑性粘结剂主要为聚酰胺(PA)、聚丙烯和聚乙烯等,其中PA类最常见,目前最常用的PA基体是尼龙6、尼龙66和尼龙12等。 (4)影响复合型磁性高分子材料性能的影响因素 影响复合型高分子材料磁性能的主要是磁粉的用量和粒径。磁性高分子材料的磁性能基本上不受高分子种类的影响,而主要取决于磁粉的性质和用量;磁粉的粒径对磁性高分子材料的磁性能有较大的影响,一般如果磁粉粒径较大,粒度分布不均匀,则其在复合材料中的分散不均匀,导致内退磁现象增强,还会造成应力集中,降低物理机械性能。磁粉粒径较小时,磁粉在高分子材料中分散均匀,且退磁能力也越小。当粒径足够小时,各颗粒成为单畴,这样当磁粉的粒径接近磁畴的临界晶粒直径时,磁性材料的矫顽力会大大增加。因此从理

高分子发光材料

高分子李银凤3110705029 江苏大学 稀土高分子发光 材料的研究进展 高分子1102 3110705029 李银凤

高分子李银凤3110705029 目录 1.引言 (3) 2.稀土高分子发光材料概述 (3) 2.1稀土高分子发光材料的分类 (3) 2.1.1稀土高分子材料光致发光 (3) 2.1.2稀土高分子材料电致发光 (4) 2.2稀土高分子发光材料的合成 (4) 2.2.1掺杂型稀土高分子材料的制备 (4) 2.2.2键合型稀土高分子材料的制备 (4) 2.2.3无机/高分子稀土杂化材料的制备 (5) 3.稀土高分子发光材料的应用 (5) 3.1农用发光材料 (5) 3.2在生物、医学上的应用 (5) 4.结语 (6) 5.参考文献 (6)

高分子李银凤3110705029 稀土高分子发光材料的研究进展 摘要:稀土高分子材料是高分子发光材料中最要的一部分。稀土高分子材料是通过稀土金属与高分子的复合而制备的一类兼具稀土光、电、磁等特性和高分子质轻、抗冲击和易加工等优良综合性能的功能材料。这类兼有稀土离子的光、电、磁特性和有机高分子优良的材料性能的功能材料,因可能作为荧光、激光和磁性材料等而引起人们极大的兴趣。 关键词:高分子发光;研究方法;分类及应用 1.引言 近年来荧光材料已在人们的生活、生产中得到广泛的应用,随着经济的发展和科技的进步,对荧光材料的各项指标也提出了新的要求【1】。在高分子材料科学发展过程中,人们更加关注具有特种性能如耐高低温、耐老化、高强超韧、优越的电性能及一些特殊功能如光、电、磁、声的特种材料的研究和开发, 这些特种材料可以称之为特种高分子复合材料。稀土元素因其电子结构的特殊性而具有光、电、磁等许多特性,已在国民经济和现代科学技术的各个领域得到重要应用。我国是稀土资源大国,对稀土资源进行深度加工制成高附加值的新型功能材料具有重大的意义。 2.稀土高分子发光材料概述 2.1稀土高分子发光材料的分类 物质发光现象大致分为两类:一类是物质受热,产生热辐射而发光;另一类是物体受激发吸收能量而跃迁至激发态(非稳定态)在返回到基态的过程中,以光的形式放出能量。以稀土化合物为基质和以稀土元素为激活剂的发光材料多属于后一类,即稀土荧光【4】。因为稀土元素原子的电子构型中存在4f 轨道,当 4f 电子从高的能级以辐射弛豫的方式跃迁至低能级时就发出不同波长的光。稀土元素原子具有丰富的电子能级,为多种能级跃迁创造了条件,从而获得多种发光性能. 2.1.1稀土高分子材料光致发光 因为稀土离子本身所具有的独特结构和性质,使得其在与有机配体配合后,具有能发出稀土离子发光强度高、颜色纯正的荧光和有机发光化合物所需能量低、荧光效率高、易溶于有机介质的优点。稀土有机配合物的荧光主要是受激发配体通过无辐射分子内能量传递,将受

相关主题
文本预览
相关文档 最新文档