当前位置:文档之家› 高中奥林匹克数学的技巧(C篇)

高中奥林匹克数学的技巧(C篇)

高中奥林匹克数学的技巧(C篇)
高中奥林匹克数学的技巧(C篇)

高中奥林匹克数学的技巧(C 篇)

2-7-18 优化假设

对已知条件中的多个量作有序化或最优化(最大、最小、最长、最短)的假定,叫做优化假设,常取“极端”、“限定”、“不妨设”的形式。由于假设本身给题目增加了一个已知条件,求解也就常能变得容易。求解104246296,,IMO IMO IMO ---都用到这一技巧。

例2-166 空间2(2)n n ≥个点,任4点不共面,连2

1n +条线段,证明其中至少有3条边组成一个三角形。

证明 设其中任意三条线段都不能组成三角形,并设从A 1点引出的线段最多(优化假设),且这些线段为A 1B 1,A 1B 2,…A 1B k ,除A 1,B 1,B 2,…,B k 之外,其他点设为A 2,A 3,…,A 2n-k 。显然{}12,,,k B B B …中任两点间无线段相连。于是,每一个i B 发出的线段至多(2n k -)条,而每个j A 发出的线段至多k 条(1,2,,1,2,,2i kj n k -=-……),故线段总数最多为(图2-65): 221(2)[(2)(2)](2)[]22

k n k l n k n k k k n k n +--+-=-≤= 这与已知条件连21n +条线段矛盾,故存在三条线段组成一个三角形。

例2-167 平面上的有限个圆盘盖住了面积为1的区域S ,求证可以从中选出一些互不相交的原盘来,使它们的面积之和不小于19

。 证明 将圆心为O ,半径为r 的原盘记为(,)C o r 。首先取全体圆盘中面积最大的一个记为

11(,)C o r ;然后在与11(,)C o r 不相交的圆盘中取面积最大的一个,记为22(,)C o r ,接着在与11(,)C o r ,

22(,)C o r 都不相交的圆盘中取面积最大的一个,记为33(,)C o r ,继续这一过程,直到无圆可取为止,设取得的圆盘依次为11(,)C o r ,22(,)C o r ,…,(,)n n C o r (1)

则(1)中的圆盘互不相交,且剩下的圆盘均与(1)中的某一圆盘相交。下面证明,(1)中各圆面积之和12n S S S +++…不小于19

。 任取x S ∈,必存在一个已知圆盘(,)C o r ,使(

,)c C o r ∈。这个(,)C o r 或在(1)中,或与(1)中的圆盘相交,反正必与(1)有重迭部分,现设(1)中与(,)C o r 有公共部分的最大圆盘为(,)(1)k k C o r k n ≤≤,因为(,)C o r ,(,)k k C o r 与11(,)C o r ,22(,)C o r ,…,11(,)k k C o r --均不相交,故由(,)k k C o r 的取法知k r r ≤,且由(,)

(,)k k C o r C o r ≠?知,(,)(,3)k k C o r C o r ?,

更有(,3)k k x C o r ∈。这表明1(,3)n i i i S U C o r =?

从而 222121(3)(3)(3)n

r r r πππ≤+++… 22212129()9()n n r r r S S S πππ=+++=+++……

得 121()9

n S S S +++≥… 2-7-19 计算两次

对同一数学对象,当用两种不同的方式将整体分为部分时,则按两种不同方式所求得的总和应是相等的,这叫计算两次原理成富比尼原理。计算两次可以建立左右两边关系不太明显的恒等式。在反证法中,计算两次又可用来构成矛盾。

例2-168 能否从1,2,...,15中选出10个数填入图2-66的圆圈中,使得每两个有线相连的圈中的数相减(大数减小数),所的的14个差恰好为1,2, (14)

解 考虑14个差的和S ,一方面S=1+2+…+14=105为奇数。

另一方面,每两个数,a b 的差与其和有相同的奇偶性 (mod2)a b a b -≡+

因此,14个差的和S 的奇偶性与14个相应数之和的和S ’的奇偶性相同,由于图中的每一个数a 与2个或4个圈中的数相加,对S ’的贡献为2a 或4a ,从而S ’为偶数,这与S 为奇数矛盾,所以不能按要求给图中的圆圈填数。

例2-169 设12,,,n a a a …为1,2,…,n 的一个排列,k f 是集合{},i i k a a a i k <>元素的个数,而k g 是集合{},i i k a a a i k ><元素的个数(1,2,,k n =…),证明11n n k

k k k f g ===∑∑

证明 考虑集合{}(,),i k i k S a a a a i k =<>的元素个数S 。一方面,固定k 先对i 求和,然后再对k 求和,得1n k k S f ==

∑;另一方面,固定i 先对k 求和,然后再对i 求和,又得到

11n n i k i k S g g ====∑∑,所以得11n n

k k k k f g ===∑∑。

2-7-20 辅助图表

解题中作一些辅助性的图形或表格,常克使问题的逻辑结构直观地显现出来,并提供程序性操作的机会,例3-2的处理曾获冬令营特别奖,同样的方法可用来求和

222(1)(21)126

n n n n S n ++=+++=… 例2-170 设{}1,2,,,2N n n =≥…。N 的子集(1,2,i A i =…,t)组成集合{}12,,,t F A A A =…

。如果对于每一对元素,x y N ∈,有一个集合i A F ∈使得{},i A x y 恰含一个元素,

则称F 是可分的。如果N 的每一个元素至少属于一个集i A F ∈,则称F 是覆盖的。问使得有一个{}12,,,t F A A A =…既是可分的又是覆盖的t 的最小值()f n 是多少?

2019-2020年三年级上册数学奥林匹克竞赛难题试卷

2019-2020年三年级上册数学奥林匹克竞赛难题试卷 小朋友,经过小学里两年多的学习,你一定掌握了不少本领,相信你一定会有大的收获。 一、我会填(每题2分,共26分) 1、小华和姐姐踢毽子。姐姐三次一共踢81下,小华第一次和第二次都踢了25下,要想超过姐姐,小华第三次最少要踢()个。 2、学校有篮球和排球共80个,篮球比排球多4个,篮球有()个。 3、7只猴子一共吃了13个桃,每只大猴吃3个,每只小猴吃1个,请你算一算,大猴有()只。 4、某学生第一次与第二次数学测验的平均成绩是62分,第三次测验后,三次平均成绩是68分,他第三次得()分。 5、由0、2、5、8组成的最大四位数是(),最小四位数是()。 6、在()里填上合适的数 2时=()分 8米=()分米=()厘米 5000千克=()吨 60毫米=()厘米 7、下列算式中,□,○,△,☆各代表什么数? (1)□+5=13-6; (2)28-○=15+7;(3)3×△=54; (4) 56÷☆= 7 □=(),○=(),△=(),☆=()。 8、用4个边长是1厘米的正方形,拼成一个长方形,这个长方形的周长是()厘米,如果拼成一个正方形,这个正方形的周长是()厘米。 9、小惠今年6岁,爸爸今年年龄是她的5倍,()年后,爸爸年龄是小惠的3倍。 10、四月份有30天,这个月共( )个星期余( )天。 11、在○里填上“>”“<”或“=” 3时○300分60毫米○6分米6千米○5800米6+7+8+9+0○6×7×8×9×0 12、一节课40 分钟,如果10时40分上课,那么( )时( )分下课。 13、在□内填入适当的数字,使下列加法竖式成立:

初中数学奥林匹克竞赛题及答案

初中数学奥林匹克竞赛题及答案 奥数题一 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么 ( ) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数 D.a,b互为倒数 答案:C 解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。 2.下面的说法中正确的是 ( ) A.单项式与单项式的和是单项式 B.单项式与单项式的和是多项式 C.多项式与多项式的和是多项式 D.整式与整式的和是整式 答案:D 解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。 3.下面说法中不正确的是 ( ) A. 有最小的自然数 B.没有最小的正有理数 C.没有最大的负整数 D.没有最大的非负数 答案:C 解析:最大的负整数是-1,故C错误。 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( ) A.a,b同号 B.a,b异号 C.a>0 D.b>0 答案:D 5.大于-π并且不是自然数的整数有 ( ) A.2个 B.3个 C.4个 D.无数个 答案:C 解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,

-1,0共4个.选C。 6.有四种说法: 甲.正数的平方不一定大于它本身; 乙.正数的立方不一定大于它本身; 丙.负数的平方不一定大于它本身; 丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是 ( ) A.0个 B.1个 C.2个 D.3个 答案:B 解析:负数的平方是正数,所以一定大于它本身,故C错误。 7.a代表有理数,那么,a和-a的大小关系是 ( ) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 答案:D 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( ) A.乘以同一个数 B.乘以同一个整式 C.加上同一个代数式 D.都加上1 答案:D 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一 个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D. 9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( ) A.一样多 B.多了 C.少了 D.多少都可能 答案:C 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为a×(1-10%)=0.9a; 第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a; 第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

初中数学奥林匹克竞赛方法与测试试题大全

初中数学奥林匹克竞赛方法与试题大全

————————————————————————————————作者:————————————————————————————————日期:

初中数学奥林匹克竞赛教程

初中数学竞赛大纲(修订稿) 数学竞赛对于开发学生智力,开拓视野,促进教学改革,提高教学水平,发现和培养数学人才都有着积极的作用。目前我国中学生数学竞赛日趋规范化和正规化,为了使全国数学竞赛活动健康、持久地开展,应广大中学师生和各级数学奥林匹克教练员的要求,特制定《初中数学竞赛大纲(修订稿)》以适应当前形势的需要。 本大纲是在国家教委制定的九年义务教育制“初中数学教学大纲”精神的基础上制定的。《教学大纲》在教学目的一栏中指出:“要培养学生对数学的兴趣,激励学生为实现四个现代化学好数学的积极性。”具体作法是:“对学有余力的学生,要通过课外活动或开设选修课等多种方式,充分发展他们的数学才能”,“要重视能力的培养……,着重培养学生的运算能力、逻辑思维能力和空间想象能力,要使学生逐步学会分析、综合、归纳、演绎、概括、抽象、类比等重要的思想方法。同时,要重视培养学生的独立思考和自学的能力”。 《教学大纲》中所列出的内容,是教学的要求,也是竞赛的要求。除教学大纲所列内容外,本大纲补充列出以下内容。这些课外讲授的内容必须充分考虑学生的实际情况,分阶段、分层次让学生逐步地去掌握,并且要贯彻“少而精”的原则,处理好普及与提高的关系,这样才能加强基础,不断提高。 1、实数 十进制整数及表示方法。整除性,被2、3、4、5、8、9、11等数整除的判定。 素数和合数,最大公约数与最小公倍数。 奇数和偶数,奇偶性分析。 带余除法和利用余数分类。 完全平方数。 因数分解的表示法,约数个数的计算。 有理数的表示法,有理数四则运算的封闭性。 2、代数式 综合除法、余式定理。 拆项、添项、配方、待定系数法。 部分分式。 对称式和轮换对称式。 3、恒等式与恒等变形 恒等式,恒等变形。 整式、分式、根式的恒等变形。 恒等式的证明。 4、方程和不等式 含字母系数的一元一次、二次方程的解法。一元二次方程根的分布。 含绝对值的一元一次、二次方程的解法。

七年级数学奥林匹克竞赛题(一)解析

初中一年级奥赛训练题(一)及解析 一、选择题(每题1分,共10分) 1.如果a,b都代表有理数,并且a+b=0,那么( C) A.a,b都是0 B.a,b之一是0 C.a,b互为相反数D.a,b互为倒数 2.下面的说法中正确的是( D) A.单项式与单项式的和是单项式B.单项式与单项式的和是多项式C.多项式与多项式的和是多项式D.整式与整式的和是整式 3.下面说法中不正确的是( C) A. 有最小的自然数B.没有最小的正有理数 C.没有最大的负整数D.没有最大的非负数 4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么( D) A.a,b同号B.a,b异号C.a>0 D.b>0 5.大于-π并且不是自然数的整数有( B) A.2个B.3个C.4个D.无数个 6.有四种说法: 甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身。 这四种说法中,不正确的说法的个数是( B) A.0个B.1个C.2个D.3个 解析:负数的平方是正数,所以一定大于它本身,故丙错误。 7.a代表有理数,那么a和-a的大小关系是( D) A.a大于-a B.a小于-a C.a大于-a或a小于-a D.a不一定大于-a 解析:令a=0,马上可以排除A、B、C,应选D。 8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( D) A.乘以同一个数B.乘以同一个整式 C.加上同一个代数式D.都加上1 解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x -2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,D所加常数为1,因此选D.9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( C) A.一样多B.多了C.少了D.多少都可能 解析:设杯中原有水量为a,依题意可得, 第二天杯中水量为(1-10%)a=0.9a;第三天杯中水量为0.9a(1+10%)=0.9×1.1a;第三天杯中水量与第一天杯中水量之比为0.99∶1, 所以第三天杯中水量比第一天杯中水量少了,选C。

-奥林匹克数学竞赛内容与方法选讲

-奥林匹克数学竞赛内容与方法选讲

奥林匹克数学竞赛内容与方法选讲一、标题分析 (1)奥林匹克——一种精神 (2)数学——一种科学哲学 (3)竞赛——一种生存方式 (4)内容——一种意义生成过程 (5)方法——一种思维的简化形式 (6)选讲——一种最普遍的交流方式 二、主题确定 (1)身、心、思、题、方、践 (2)解读 ?人生就是一场竞赛,身体最终决定成败 ?三分养身七分修心,和谐身心美满一生 ?思维是生存的先锋,智慧是成功的法宝 ?问题是实践的使者,善问是智慧的源泉 ?方法是解题的利斧,策略会赐予你机遇 ?思而无为方略枉然,践行思想始见英雄 三、专题研究 (1)身心健康问题 ?如何监测身体健康状况? ?如何锻炼身体? ?如何保持修心养性?

? 如何防病、治病? (2) 学习思维问题 ? 如何认识学习的分类?从实践中学,从符号中学,从反思中学 ? 如何认识思维的分类?逻辑思维,发散思维,直觉思维 ? 如何学习? ? 如何思考? (3) 出题解题问题 ? 如何发现问题?——决定了一个人的发展潜能 ? 如何确定问题?——问题的科学化、数学化过程 ? 如何解决问题?——知识的系统化、理论化过程 ? 如何验证问题?——结果的正确性、有效性评价 (4) 方法策略问题 ? 如何认识思想、策略与方法的关系与作用? ? 数学主要有哪些思想? ? 数学有哪些主要方法? ? 解决数学问题的一般策略是什么? (5) 实践操作问题 ? 如何认识心、言、行的一致性? ? 如何增加计划的可行性? ? 数学解题过程的表述与规范? ? 如何认识社会实践、操作实践、科学实践的关系? 国际奥林匹克数学竞赛(IMO )的发展 奥林匹克数学的历史(必讲) 解决奥林匹克数学问题的主要思想(选讲)

奥林匹克数学的技巧(中篇)

奥林匹克数学的技巧(中篇) 2-7-8 配对 配对的形式是多样的,有数字的凑整配对或共轭配对,有解析式的对称配对对或整体配对,有子集与其补集的配对,也有集合间象与原象的配对。凡此种种,都体现了数学和谐美的追求与力量,小高斯求和(1+2+…+99+100)首创了配对,163IMO -也用到了配对。 例2-143 求 502 305[]503 n n =∑之值。 解 作配对处理 502 251251 011305(503)305305304503[]([][])30425176304503503503503n n n n n n ===-?=+==?=∑∑∑ 例2-144 求和 122k n n n n n n a C C kC nC =+++++…… 解一 由k n k n n C C -=把n a 倒排,有012012k n n n n n n n a C C C kC nC =++++++…… 1(1)()0n n n k n n n n n n a nC n C n k C C --=+-++-++…… 相加 012()2n n n n n n a n C C C n =+++?… 得 12n n a n -=? 解二 设集合{}1,2,,S n =… ,注意到 ,,1,2,,k n A S A k kC A k n ?===∑ … 有n A S a A ?= ∑ 为了求得A S A ?∑ 把每一A S ?,让它与补集A 配对,共有1 2n -对,且每对中均有A A n += 于是1 2 n n A S a A n n n n -?= =++=?∑… 这两种解法形式上虽有不同,但本质上是完全一样的,还有一个解法见例2-149。 例2-145 设12,,,n x x x …是给定的实数,证明存在实数x 使得 {}{}{}121 2 n n x x x x x x --+-++-≤ … 这里的{}y 表示y 的小数部分。 证明 有 {}{}1,0,y Z y y y Z ?∈?+-=? ∈?? 知{}{}1y y +-≤ 下面利用这一配对式的结论。设{}{}{}112i i i n f x x x x x x =-+-++-

2020年中国高中数学奥林匹克试题与解答 精品

O R Q N M F E D C B A P 2020年中国数学奥林匹克试题与解答 (2020年1月11日) 一、给定锐角三角形PBC ,PC PB ≠.设A ,D 分别是边PB ,PC 上的点,连接AC ,BD ,相交于点O. 过点O 分别作OE ⊥AB ,OF ⊥CD ,垂足分别为E ,F ,线段BC ,AD 的中点分别为M ,N . (1)若A ,B ,C ,D 四点共圆,求证:EM FN EN FM ?=?; (2)若 EM FN EN FM ?=?,是否一定有A ,B ,C ,D 四点共圆?证明你的结论. 解(1)设Q ,R 分别是OB ,OC 的中点,连接EQ ,MQ ,FR ,MR ,则 11 ,22 EQ OB RM MQ OC RF ====, 又OQMR 是平行四边形, 所以OQM ORM ∠=∠, 由题设A ,B ,C ,D 四点共圆, 所以ABD ACD ∠=∠, 于是22EQO ABD ACD FRO ∠=∠=∠=∠, 所以EQM EQO OQM FRO ORM FRM ∠=∠+∠=∠+∠=∠, 故 EQM MRF ???, 所以 EM =FM , 同理可得 EN =FN , 所以 EM FN EN FM ?=?. (2)答案是否定的. 当AD ∥BC 时,由于B C ∠≠∠,所以A ,B ,C ,D 四点不共圆,但此时仍然有 EM FN EN FM ?=?,证明如下: 如图2所示,设S ,Q 分别是OA ,OB 的中点,连接ES ,EQ ,MQ ,NS ,则 11 ,22 NS OD EQ OB ==, 所以 NS OD EQ OB =. ① 又11 ,22 ES OA MQ OC = =,

初中数学奥林匹克竞赛解题方法大全(配PDF版)-第06章-几何基础知识

第六章几何基础知识 第一节线段与角的推理计算 【知识点拨】 掌握七条等量公理: 1、同时等于第三个量的两个量相等。 2、等量加等量,和相等。 3、等量减等量,差相等。 4、等量乘等量,积相等。 5、等量除以等量(0除外),商相等。 6、全量等于它的各部分量的和。 7、在等式中,一个量可以用它的等量来代替(等量代换)。 【赛题精选】 例1、如图,∠AOB=∠COD,求证:∠AOC=∠BOD。 例2、C、D为线段AB上的两点,AD=CB,求证:AC=DB。 例3、AOB是一条直线,∠AOC=600,OD、OE分别是∠ AOC和∠BOC的平分线。问图中互为补角关系的角共有多少对? 例4、已知B、C是线段AD上的任意两点,M是AB的中 点,N是CD的中点,若MN=a,BC=b,求CD的长。

例5、已知OM是∠AOB的平分线,射线OC在∠BOM内部,ON是∠BOC的平分线,且∠AOC=800。求∠MON的度数。 例6、已知A、O、B是一条直线上的三个点,∠BOC比∠AOC 大240,求∠BOC、∠AOC的度数。 例7、如图,AE=8.9CM,BD=3CM。求以A、B、C、D、 E这5个点为端点的所有线段长度的和是多少? 例8、线段AB上的P、Q两点,已知AB=26CM,AP=14CM, PQ=11CM。求线段BQ的长。 例9、已知∠AOC=∠BOD=1500,∠AOD=3∠BOC。

求∠BOC的度数。 例10、已知C是AB上的一点,D是CB的中点。若图中线段的长度之和为23CM,线段AC的长度与线段CB 的长度都是正整数。求线段AC的长度是多少厘米?

【针对训练】

奥林匹克数学竞赛答题技巧方法.doc

奥林匹克数学竞赛答题技巧方法 奥林匹克数学竞赛答题技巧(一) 1、对照法 如何正确地理解和运用数学概念?小学数学常用的方法就是对照法。根据数学题意,对照概念、性质、定律、法则、公式、名词、术语的含义和实质,依靠对数学知识的理解、记忆、辨识、再现、迁移来解题的方法叫做对照法。 这个方法的思维意义就在于,训练学生对数学知识的正确理解、牢固记忆、准确辨识。 例1:三个连续自然数的和是18,则这三个自然数从小到大分别是多少? 对照自然数的概念和连续自然数的性质可以知道:三个连续自然数和的平均数就是这三个连续自然数的中间那个数。 例2:判断题:能被2除尽的数一定是偶数。 这里要对照除尽和偶数这两个数学概念。只有这两个概念全理解了,才能做出正确判断。 2、公式法 运用定律、公式、规则、法则来解决问题的方法。它体现的是由一般到特殊的演绎思维。公式法简便、有效,也是小学生学习数学必须学会和掌握的一种方法。但一定要让学生对公式、定律、规则、法则有一个正确而深刻的理解,并能准确运用。 例3:计算59 37+12 59+59 59 37+12 59+59 =59 (37+12+1) 运用乘法分配律 =59 50 运用加法计算法则 =(60-1) 50 运用数的组成规则 =60 50-1 50 运用乘法分配律 =3000-50 运用乘法计算法则

=2950 运用减法计算法则 3、比较法 通过对比数学条件及问题的异同点,研究产生异同点的原因,从而发现解决问题的方法,叫比较法。 比较法要注意: (1)找相同点必找相异点,找相异点必找相同点,不可或缺,也就是说,比较要完整。 (2)找联系与区别,这是比较的实质。 (3)必须在同一种关系下(同一种标准)进行比较,这是比较的基本条件。 (4)要抓住主要内容进行比较,尽量少用穷举法进行比较,那样会使重点不突出。 (5)因为数学的严密性,决定了比较必须要精细,往往一个字,一个符号就决定了比较结论的对或错。 例4:填空:0.75的最高位是( ),这个数小数部分的最高位是( );十分位的数4与十位上的数4相比,它们的( )相同,( )不同,前者比后者小了( )。 这道题的意图就是要对一个数的最高位和小数部分的最高位的区别,还有数位和数值的区别等。 例5:六年级同学种一批树,如果每人种5棵,则剩下75棵树没有种;如果每人种7棵,则缺少15棵树苗。六年级有多少学生? 这是两种方案的比较。相同点是:六年级人数不变;相异点是:两种方案中的条件不一样。 找联系:每人种树棵数变化了,种树的总棵数也发生了变化。 找解决思路(方法):每人多种7-5=2(棵),那么,全班就多种了75+15=90(棵),全班人数为90 2=45(人)。 4、分类法 根据事物的共同点和差异点将事物区分为不同种类的方法,叫做分类法。分类是以比较为基础的。依据事物之间的共同点将它们合为较大的类,又依据差异点将较大的类再分为较小的类。 分类即要注意大类与小类之间的不同层次,又要做到大类之中的各小类不

奥林匹克数学的技巧(下篇)

奥林匹克数学的技巧(下篇) 2-7-18 优化假设 对已知条件中的多个量作有序化或最优化(最大、最小、最长、最短)的假定,叫做优化假设,常取“极端”、“限定”、“不妨设”的形式。由于假设本身给题目增加了一个已知条件,求解也就常能变得容易。求解104246296,,IMO IMO IMO ---都用到这一技巧。 例2-166 空间2(2)n n ≥个点,任4点不共面,连2 1n +条线段,证明其中至少有3条边组成一个三角形。 证明 设其中任意三条线段都不能组成三角形,并设从A 1点引出的线段最多(优化假设),且这些线段为A 1B 1,A 1B 2,…A 1B k ,除A 1,B 1,B 2,…,B k 之外,其他点设为A 2,A 3,…,A 2n-k 。显然{}12,,,k B B B …中任两点间无线段相连。于是,每一个i B 发出的线段至多(2n k -)条,而每个j A 发出的线段至多k 条(1,2,,1,2,,2i kj n k -=-……),故线段总数最多为(图2-65): 221(2)[(2)(2)](2)[]22 k n k l n k n k k k n k n +--+-=-≤= 这与已知条件连21n +条线段矛盾,故存在三条线段组成一个三角形。 例2-167 平面上的有限个圆盘盖住了面积为1的区域S ,求证可以从中选出一些互不相交的原盘来,使它们的面积之和不小于19 。 证明 将圆心为O ,半径为r 的原盘记为(,)C o r 。首先取全体圆盘中面积最大的一个记为 11(,)C o r ;然后在与11(,)C o r 不相交的圆盘中取面积最大的一个,记为22(,)C o r ,接着在与11(,)C o r ,22(,)C o r 都不相交的圆盘中取面积最大的一个,记为33(,)C o r ,继续这一过程,直到无圆可取为止,设取得的圆盘依次为11(,)C o r ,22(,)C o r ,…,(,)n n C o r (1) 则(1)中的圆盘互不相交,且剩下的圆盘均与(1)中的某一圆盘相交。下面证明,(1)中各圆面积之和12n S S S +++…不小于19 。 任取x S ∈,必存在一个已知圆盘(,)C o r ,使( ,)c C o r ∈。这个(,)C o r 或在(1)中,或与(1)中的圆盘相交,反正必与(1)有重迭部分,现设(1)中与(,)C o r 有公共部分的最大圆盘为(,)(1)k k C o r k n ≤≤,因为(,)C o r ,(,)k k C o r 与11(,)C o r ,22(,)C o r ,…,11(,)k k C o r --均不相交,故由(,)k k C o r 的取法知k r r ≤,且由(,) (,)k k C o r C o r ≠?知,(,)(,3)k k C o r C o r ?, 更有(,3)k k x C o r ∈。这表明1(,3)n i i i S U C o r =?

三年级上册数学奥林匹克竞赛难题试卷

中心小学三上年级数学竞赛试题 小朋友,经过小学里两年多的学习,你一定掌握了不少本领,相信你一定会有大的收获。 一、我会填(每题2分,共26分) 1、小华和姐姐踢毽子。姐姐三次一共踢81下,小华第一次和第二次都踢了25下,要想超过姐姐,小华第三次最少要踢()个。 2、学校有篮球和排球共80个,篮球比排球多4个,篮球有()个。 3、7只猴子一共吃了13个桃,每只大猴吃3个,每只小猴吃1个,请你算一算,大猴有()只。 4、某学生第一次与第二次数学测验的平均成绩是62分,第三次测验后,三次平均成绩是68分,他第三次得()分。 5、由0、2、5、8组成的最大四位数是(),最小四位数是()。 6、在()里填上合适的数 2时=()分 8米=()分米=()厘米 5000千克=()吨 60毫米=()厘米 7、下列算式中,□,○,△,☆各代表什么数? (1)□+5=13-6; (2)28-○=15+7;(3)3×△=54; (4) 56÷☆= 7 □=(),○=(),△=(),☆=()。 8、用4个边长是1厘米的正方形,拼成一个长方形,这个长方形的周长是()厘米,如果拼成一个正方形,这个正方形的周长是()厘米。 9、小惠今年6岁,爸爸今年年龄是她的5倍,()年后,爸爸年龄是小惠的3倍。 10、四月份有30天,这个月共( )个星期余( )天。 11、在○里填上“>”“<”或“=” 3时○300分60毫米○6分米6千米○5800米6+7+8+9+0○6×7×8×9×0 12、一节课40 分钟,如果10时40分上课,那么( )时( )分下课。 13、在□内填入适当的数字,使下列加法竖式成立:

高中数学奥林匹克竞赛的解题技巧(上中下三篇)

奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,? 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?== 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

奥林匹克数学竞赛内容与方法选讲

奥林匹克数学竞赛内容与方法选讲一、标题分析 (1)奥林匹克——一种精神 (2)数学——一种科学哲学 (3)竞赛——一种生存方式 (4)内容——一种意义生成过程 (5)方法——一种思维的简化形式 (6)选讲——一种最普遍的交流方式 二、主题确定 (1)身、心、思、题、方、践 (2)解读 ?人生就是一场竞赛,身体最终决定成败 ?三分养身七分修心,和谐身心美满一生 ?思维是生存的先锋,智慧是成功的法宝 ?问题是实践的使者,善问是智慧的源泉 ?方法是解题的利斧,策略会赐予你机遇 ?思而无为方略枉然,践行思想始见英雄 三、专题研究 (1)身心健康问题 ?如何监测身体健康状况? ?如何锻炼身体? ?如何保持修心养性?

?如何防病、治病? (2)学习思维问题 ?如何认识学习的分类?从实践中学,从符号中学,从反思中学?如何认识思维的分类?逻辑思维,发散思维,直觉思维 ?如何学习? ?如何思考? (4)方法策略问题 (5)实践操作问题 ?如何认识心、言、行的一致性? ?如何增加计划的可行性? ?数学解题过程的表述与规范? ?如何认识社会实践、操作实践、科学实践的关系? 国际奥林匹克数学竞赛(IMO)的发展

一、国际奥林匹克数学竞赛源于数学家的交流活动,属于一种有意识的比赛,无意识的竞争 在世界上,以数为内容的竞赛有着悠久的历史: 古希腊时就有解几何难题的比赛; 我国战国时期齐威王与大将田忌的赛马,实是一种对策论思想的比赛; 16世纪在意大利有过关于口吃者塔塔利亚求解三次方程的激烈竞争; 17世纪,不少数学家喜欢提出一些问题向其他数学家挑战,法国的费尔马就是其中的佼佼者,他所提出的费尔马大定理(在整数n≥3时,方程X n+Y n=Z n没有正整数解;……)向人类的智慧挑战了300年; 18世纪,法国曾经进行过独立的数学比赛; 19世纪,法国科学院以悬赏的方法征求对数学难题的解答,常常获得一些重要的数学发现。数学王子高斯就是比赛的优胜者,……但是,所有这些事实,都只有局部的性质并且限于在成人之间进行,而专门以中学生为对象的数学竞赛却是现代的时尚。 二、现代意义下的中学生数学竞赛(以下称中学数学竞赛)源于匈牙利。 1894年,为纪念数理学会主席埃沃斯荣任教育大臣,数理学会通过一项决议:举行以埃沃斯命名的,由高中学生参加的数学竞赛,

中国数学奥林匹克竞赛试题【CMO】[1987-2003]

CMO 中国数学奥林匹克竞赛试题 1987第二届年中国数学奥林匹克 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2可被6整 除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边的直线,将 这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 3.放置最大数的点积放置最小数的点之间的最短距离。 4.所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负,通过比赛确 定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形内,一定可 以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的球,它们 两两相切。如果存在一点O,以这点为球心可作一个半径为r的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所有这样的m 与n,问3m+4的最大值是多少?请证明你的结论。

中国数学奥林匹克试题及解答

一、 实数12,,,n a a a L 满足120n a a a +++=L ,求证: () 1 2 2 111 max ()3 n k i i k n i n a a a -+≤≤=≤-∑. 证明 只需对任意1k n ≤≤,证明不等式成立即可. 记1,1,2,,1k k k d a a k n +=-=-L ,则 k k a a =, 1k k k a a d +=-,2111,,k k k k n k k k n a a d d a a d d d +++-=--=----L L , 112121121,,,k k k k k k k k k k a a d a a d d a a d d d -------=+=++=++++L L , 把上面这n 个等式相加,并利用120n a a a +++=L 可得 11121()(1)(1)(2)0k k k n k k na n k d n k d d k d k d d +----------+-+-++=L L . 由Cauchy 不等式可得 ()2 211121()()(1)(1)(2)k k k n k k na n k d n k d d k d k d d +---=-+--++------L L 11222111k n k n i i i i i i d ---===???? ≤+ ??????? ∑∑∑ 111222111(1)(21)6n n n i i i i i n n n i d d ---===--?????? ≤= ??? ???????∑∑∑ 31213n i i n d -=??≤ ??? ∑, 所以 ()1 2 211 3 n k i i i n a a a -+=≤-∑. 二、正整数122006,,,a a a L (可以有相同的)使得20051223 2006 ,,,a a a a a a L 两

第50届国际数学奥林匹克竞赛试题(中文版)与参考答案

2009年第50届IMO 解答 2009年7月15日 1、是一个正整数,是n 12,,...,(2)k a a a k ≥{}1,2,...,n 中的不同整数,并且1(1i i n a a +?)?)对于所有都成立,证明:1,2,...,1i k =1(1k a a ?不能被n 整除。 证明1:由于12(1n a a ?),令1(,)n a p =,n q p = 也是整数,则n pq =,并且1p a ,21q a ?。因此,由于2(,)1q a =23(1n pq a a )=?,故31q a ?;同理可得41q a ?,。。。, 因此对于任意都有2i ≥1i q a ?,特别的有1k q a ?,由于1p a ,故1(1k n pq a a )=?(*)。 若结论不成立,则1(1k n pq a a =)?,与(*)相减可得1(k n a a ?),矛盾。 综上所述,结论成立。 此题平均得分:4.804分

2、外接圆的圆心为O ,分别在线段上,ABC ?,P Q ,CA AB ,,K L M 分别是,,BP CQ PQ 的中点,圆过Γ,,K L M 并且与相切。证明:OP PQ OQ =。 证明:由已知MLK KMQ AQP ∠=∠=∠,MKL PML APQ ∠=∠=∠,因此 APQ MKL ??~。所以 AP MK BQ AQ ML CP == ,故AP CP AQ BQ ?=?(*)。 设圆O 的半径为R ,则由(*)有2 2 2 2 R OP R OQ ?=?,因此OP OQ =。 不难发现OP 也是圆Γ与相切的充分条件。 OQ =PQ 此题平均得分:3.710分

数学竞赛辅导资料:奥林匹克数学的技巧

数学竞赛辅导资料 奥林匹克数学的技巧(上篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…,?, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?=== 另方面2()()2sin x y y z ab C ?++==≥

第二届中国数学奥林匹克 (1987年)

第二届中国数学奥林匹克(1987年) 1.设n为自然数,求方程z n+1-z n-1=0有模为1的复根的充份必要条件是n+2 可被6整除。 2.把边长为1的正三角形ABC的各边都n等分,过各分点平行于其它两边 的直线,将这三角形分成小三角形,和小三角形的顶点都称为结点,在第一结点上放置了一个实数。已知 i.A、B、C三点上放置的数分别为a、b、c。 ii.在每个由有公共边的两个最负三角形组成的菱形之中,两组相对顶点上放置的数之和相等。 试求 (1)放置最大数的点积放置最小数的点之间的最短距离。 (2)所有结点上数的总和S。 3.某次体育比赛,每两名选手都进行一场比赛,每场比赛一定决出胜负, 通过比赛确定优秀选手,选手A被确定为优秀选手的条件是:对任何其它选手B,或者A胜B,或者存在选手C,C胜B,A胜C。 结果按上述规则确定的优秀选手只有一名,求证这名选手胜所有其它选手。 4.在一个面积为1的正三角形内部,任意放五个点,试证:在此正三角形 内,一定可以作三个正三角形盖住这五个点,这三个正三角形的各边分别平行于原三角形的边,并且它们的面积之和不超过0.64。 5.设A1A2A3A4是一个四面体,S1, S2, S3, S4分别是以A1, A2, A3, A4为球心的 球,它们两两相切。如果存在一点O,以这点为球心可作一个半径为r

的球与S1, S2, S3, S4都相切,还可以作一个半径为R的球积四面体的各棱都相切,求证这个四面体是正四面体。 6.m个互不相同的正偶数与n个互不相同的正奇数的总和为1987,对于所 有这样的m与n,问3m+4的最大值是多少?请证明你的结论。

中国数学奥林匹克介绍

中国数学奥林匹克 ◇考试介绍 中国数学奥林匹克又称全国中学生数学冬令营,是在全国高中数学联赛的基础上进行的一次较高层次的数学竞赛。1985年,由大学、南开大学、复旦大学和中国科技大学四所大学倡议,中国数学会决定,自1986年起每年一月份举行全国中学生数学冬令营,后又名中国数学奥林匹克(Chinese Mathematical Olympiad,简称CMO)。冬令营邀请各省、市、自治区在全国高中数学联赛中的优胜者参加,人数100多人,分配原则是每省市区至少一人,然后设立分数线择优选取。冬令营为期5天,第一天为开幕式,第二、第三天考试,第四天学术报告或参观游览,第五天闭幕式,宣布考试成绩和颁奖。 中国数学奥林匹克考试完全模拟国际数学奥林匹克进行,每天3道题,限四个半小时完成。每题21分(为IMO试题的3倍),6个题满分为126分。题目难度接近IMO,颁奖也与IMO类似,设立一、二、三等奖,分数最高的前20至30名选手将组成参加当年国际数学奥林匹克(International Mathematical Olympiad,简称IMO)的中国国家集训队。 从1990年开始,全国中学生数学冬令营设立了省身杯团体赛。从1991年起,全国中学生数学冬令营被正式命名为中国数学奥林匹克,它成为中国中学生最高级别、最具规模、最有影响的数学竞赛。 附:中国数学奥林匹克相关制度条例 1.《全国中学生数学竞赛条例(试行)》 2.《中国数学奥林匹克实施细则(试行)》 ◇报名条件 根据《中国数学奥林匹克实施细则(试行)》规定,参加中国数学奥林匹克的选手必须是本年度全国高中数学联赛一等奖获得者或上一年度国家集训队未高中毕业的队员。 ◇报名时间 中国数学会奥林匹克委员会确定参赛选手总人数;中国数学会普及工作委员会根据当年全国高中数学联赛成绩确定各省、自治区、直辖市代表队队员;各省、自治区、直辖市数学会确定各代表队领队(壹人);以上两于11月15日前报数学奥林匹克委员会。 ◇考试费用

高中奥林匹克数学的技巧(A篇)

1 高中奥林匹克数学的技巧(A 篇) 有固定求解模式的问题不属于奥林匹克数学,通常的情况是,在一般思维规律的指导下,灵活运用数学基础知识去进行探索与尝试、选择与组合。这当中,经常使用一些方法和原理(如探索法,构造法,反证法,数学归纳法,以及抽屉原理,极端原理,容斥原理……),同时,也积累了一批生气勃勃、饶有趣味的奥林匹克技巧。在2-1曾经说过:“竞赛的技巧不是低层次的一招一式或妙手偶得的雕虫小技,它既是使用数学技巧的技巧,又是创造数学技巧的技巧,更确切点说,这是一种数学创造力,一种高思维层次,高智力水平的艺术,一种独立于史诗、音乐、绘画的数学美。” 奥林匹克技巧是竞赛数学中一个生动而又活跃的组成部分。 2-7-1 构造 它的基本形式是:以已知条件为原料、以所求结论为方向,构造出一种新的数学形式,使得问题在这种形式下简捷解决。常见的有构造图形,构造方程,构造恒等式,构造函数,构造反例,构造抽屉,构造算法等。 例2-127 一位棋手参加11周(77天)的集训,每天至少下一盘棋,每周至多下12盘棋,证明这棋手必在连续几天内恰好下了21盘棋。 证明:用n a 表示这位棋手在第1天至第n 天(包括第n 天在内)所下的总盘数(1,2,77n =…),依题意 127711211132a a a ≤<<≤?=… 考虑154个数: 12771277,,,21,21,21a a a a a a +++…, 又由772113221153154a +≤+=<,即154个数中,每一个取值是从1到153的自然数,因而必有两个数取值相等,由于i j ≠时,i i a a ≠ 2121i j a a +≠+ 故只能是,21(771)i j a a i j +≥>≥满足 21i j a a =+ 这表明,从1i +天到j 天共下了21盘棋。 这个题目构造了一个抽屉原理的解题程序,并具体构造了154个“苹果”与153个“抽屉”,其困难、同时也是精妙之处就在于想到用抽屉原理。 例 2-128 已知,,x y z 为正数且()1xyz x y z ++=求表达式()()x y y z ++的最最小值。 解:构造一个△ABC ,其中三边长分别为a x y b y z c z x =+??=+??=+? ,则其面积为 1?=== 另方面2()()2sin x y y z ab C ?++==≥ 故知,当且仅当∠C=90°时,取值得最小值2,亦即222()()()x y y z x z +++=+

相关主题
文本预览
相关文档 最新文档