当前位置:文档之家› 分布式储能与分布式光伏.docx

分布式储能与分布式光伏.docx

分布式储能与分布式光伏.docx
分布式储能与分布式光伏.docx

德世特分布式储能系统全速推进分布式太阳能发电

东莞德世特电能科技有限公司邓齐政

近日,国家能源局发布了《太阳能发电发展"十二五"规划》(以下简称“规划”),明确了“十二五”时期我国太阳能发电的建设目标和2020年的展望目标。《规划》提出,要逐步扩大太阳能发电的应用规模,特别是分布式光伏发电系统应用,为太阳能发电的产业化发展提供市场空间。到2015年,全国计划建成分布式光伏发电总装机容量1000 万千瓦。到2020年,预计分布式光伏发电装机规模将达到2700万千瓦。可以预见,未来的10年之内,分布式太阳能发电将得到极大的发展。作为分布式太阳能发电系统的重要组成部分,分布式储能系统的发展前景十分广阔。

东莞德世特电能科技有限公司开发的基于锂电池技术的分布式储能系统,融合了当今世界多项高新科技,着力于提高分布式太阳能发电的效益。

第一,贯彻“储电于民,互补储电于网”的宗旨。德世特公司开发的分布式储能产品分为家用、商用和工业

用三个类别。其中家用和商用系列的是

5KW/10KW-4h与5KW/10KW-8h储能系统。工业

用的是3相30KW~100KW的储能系统。该储能系

统储电容量大,能满足一般用户的用电需求。以家

用型5KW-4h为例,整个储能柜包括5个电池箱,

单体电池箱储电达3780瓦小时。则整个储能系统

容量达20千瓦时,对于一般家庭来说非常实用。

德世特公司为普通家庭、商业和工业用户量身打造

的储能系统立足于削峰填谷、作为不间断电源和接

纳新兴能源发电,充分考虑了用户需求和互补大电

网等因素,是一款具有时代特色的新型储能产品。

第二,坚持“高效、安全、美观、环保”的设计理念。

储能技术的发展已经有几十年的时间,储能行业鲜

有“十全十美”的产品,这点也是业界所共知的。

但是不能因为有困难就停滞不前,而应该“知难而

进”。德世特公司在综合考量了各类储能技术之上,

选择锂电池(磷酸铁锂、锰酸锂)作为储能电池。

锂电池具有安全、无污染、比能量高等优势,在储

能电池行业应用前景广阔。

德世特家用和商用分布式储能系统整系统(包括电池箱、逆变器和控制器等)尺寸为600*800*1450mm,整系统重量315kg,真正体现了“小身材、大容量”的特征。作为产品设计,德世特从来都是从用户的角度来思考问题,想用户之所想,解用户之所急。德世特储能系统在进入市场前都要经过反复的测试和各种复杂环境下试用,确保把安全隐患消除在萌芽状态。

在多数人的印象中,储能设备一定是一个冷冰冰的大机器,谈不上“美观”。德世特储能系统以其独特创意改变了这点,设计出“家电式”的储能柜。从远处看去,该储能柜和一般冰箱无异,从视觉上给人

一种亲和感。按照德世特设计理念,既然是一种进入

千家万户的普通产品,就要使其很好地融入到一般用

户产品行列中,哪怕在外观上也是如此。

第三,整合多种功用于一体。德世特储能系统有三大功用:

一、充分接纳太阳能等新能源发电。新兴能源电力

一般具有间歇性,直接接入电网容易造成对用户和大

电网的冲击。储能系统可以平滑新能源电力的输出,

起到一个很好的桥梁作用。二、可以作为不间断电源

使用,保障用户用电安全。第三,可以削峰填谷,为

用户节省电费。在峰谷电价时代,运用储能系统在用

电低谷时储电,在高峰时用电,可以为用户大量节省

电费。

第四,追求完善的系统架构。分布式微网储能产品是高科技的结晶,需要配备完善的系统架构。除了锂电池系

统,还包括:电池管理系统(BMS),变流系统(PCS),

能耗监控系统(EMS),通讯系统(COM),云储

存控制系统等。

电池管理系统负责管理电池组的整合和充放电管理,相当于电池组的“大管家”。变流系统负责交

流和直流电的转换,这对接纳分布式太阳能发电是不

可缺少的。能耗监控系统可对能源消费进行分类、分

项计量,并对能源消耗状况实行监测,及时发现、纠

正用能浪费现象。通讯系统实时将能耗信息等通过先

进通讯设备远程传送,云储存控制系统可以对用户用

能资料进行云储存和处理。

控制箱是德世特储能系统很重要的一个组成部分,其功能是:1.设定峰时段谷时段充放电时间2.

电源输入输出数据采集3.充电器及锂电池BMS数

据采集监控4.逆变系统数据采集监控5.监控数据云

端传输储存6.7寸触控面板智能操作显示。

控制箱示意图

第五,努力推进技术进步,降低太阳能发电设备的成本。《太阳能发电发展"十二五"规划》强调,要不断降低太阳

能发电的成本,为大规模推行太阳能发电创造条件。

太阳能发电的成本直接决定了其竞争力和发展空间。

过高的发电系统成本会导致过高的电价。据统计,太

阳能发电的上网电价从2009 年以前的每千瓦时4 元

已经下降到2010 年的每千瓦时1元左右。只有上网

电价接近甚至低于大电网的电价,太阳能发电才有大

规模普及的可能。太阳能发电的电价下降和设备的技术进步密不可分。东莞德世特电能科技有限公司在澳大利亚及台湾技术的引领下,在不断的技术提升和产品开发过程中,十分注重降低设备的生产成本,以利于太阳能分布式发电的推广。

在国家大力推进太阳能分布式发电的大背景下,德世特公司推出的分布式储能产品以其专业的设计和卓越的性能,迅速引起了市场的广泛关注,正在成为一颗耀眼的行业新星。

浅谈智能电网中的分布式储能

浅谈智能电网中的分布式储能 专业:电气工程及其自动化 班级:一班 姓名:杨鹏 学号:3013203194

浅谈智能电网中的分布式储能 摘要:优质、自愈、安全、清洁、经济和互动是当前各国建设智能电网的共同目标,储能环节是智能电网构建及实现不可或缺的关键环节,将分布式发电与储能技术的结合大大提高了系统的能源利用率,改善系统的稳定性、可靠性以及经济性。储能技术将成为未来电网的发展重点之一。本文介绍了分布式储能技术的概念,主要类型和发展现状,以及分布式储能在智能电网的应用。 关键词:分布式储能智能电网抽水储能飞轮储能电池储能 1.引言 目前,全球风力发电、光伏发电等可再生能源得到了指数式的增长,已经成为电力系统的重要组成部分,但由于其具有波动性、随机性、间歇性的特点,这些愈来愈成为制约新能源发展的障碍,且随着新能源发电规模的继续扩大,这个问题将显得更为迫切。而储能技术正是从根本上解决可再生能源发电接入问题的最有效手段,将富余的能量储存起来,用能高峰期再将这些间歇式能源转换成具有相对统一、稳定的输出,通过储能系统来弥补可再生能源发电的间歇性和不稳定性缺陷,从而实现可再生能源电力平滑并入电网。 储能技术的应用前景广阔,并得到国家大力支持,科技部发布了的《国家“十二五”科学和技术发展规划》把储能作为战略必争领域。储能技术将为改变现有的电网发展模式提供了可能,帮助可再生能源和智能电网的大规模应用,从而实现能源利用效率和性能的最大化,未来有望大范围应用。 1.1分布式储能技术概念 分布式储能技术是指电能通过某种装置转化成其他形式的能量并且高效存储起来,需要时所存储的能量可以方便地转化成需要的能量形式。包括以下两方面的内容,一是高效大容量存储能量,二是快速高效的能量转化技术

储能和分布式电源在售电中的应用和前景探讨

储能和分布式电源在售电中的应用和前景探讨 北京清能世福科技黄骏 售电市场现状 截止2017年1月,已有21个省(区、市)开展电力体制改革综合试点,9个省(区、市)和新疆生产建设兵团开展了售电侧改革试点。 2016年,全国包括直接交易在内的市场化交易电量突破1万亿千瓦时,约占全社会用电量19%。每度电平均降低电价约7.23分,为用户节约电费超过573亿元。 在2016年国家电网为用户节省的电费约等于国家电网的总利润。售电市场改革,使得大量企业进入市场分蛋糕,导致蛋糕看似变小了,市场容量降低。那么如何将“蛋糕”做大做强,是目前最值得考虑的。 那么如何做大蛋糕? “十三五”期间(即2015-2020年),国家规划的在新能源方面的投资是2万亿,其中光伏、太阳能方面的投资是1万亿。可以看出,国家一直支持分布式光伏的发展。随着新能源汽车的发展,锂电池储能市场也在不断扩大,储能也似乎处于爆发前期。 光伏、分布式发电以及储能市场不断被看好。通过售电市场的改革,不仅能够降低用户的用电费用,使大家能够共享售电市场利润,并改善气候环境。 分布式电源运营模式 “分布式光伏”在高渗透率情况下会产生弃光现象,向上级电网倒送电力,对电网的安全造成影响。 所以“分布式光伏”以“自发自用、余量上网、电网调节”的模式运作,在确保安全的前提下,积极发展融合先进储能技术、信息技术的微电网和智能电网技术,提高系统消纳能力和能源利用效率。 低渗透率运营模式 运营模式:“自发自用、电网调节” 关键:用户电价<电网售电价 实例:光伏分布式发电

分布式光伏发电电价 = 用户电价 + 0.42 + 地方补贴 其中,0.42元/kWh为国家补贴,连续补贴20年。 高渗透率运营模式 运营模式:“自发自用、余量上网、电网调节”,或“弃光”以防分布式电源向上一级电网倒送电力,分布式电源配电网要求典型光伏电站总容量原则上不宜超过上一级变压器供电区域内的最大负荷25%。可以增加储能,减少弃光,并防逆流,还可作为备用电源,在电网故障情况下孤网运行。 关键:分布式电源度电成本<余量上网部分电价,电网安全、电能质量 实例:光伏分布式发电 自发自用部分电价 = 用户电价+0.42(国家补贴) +地方补贴 余电上网部分电价 = 当地脱硫煤电价+0.42 (国家补贴)+地方补贴 目前国家每度电补贴0.42,加上部分地方补贴,可以看出分布式光伏的支持力度很大。 电池储能的构成和作用 储能可以说是一个非常大的市场,经过多年酝酿,储能处于爆发前期。 电池储能系统构成:由电池系统(含电池、BMS)、双向变流器(PCS,充电和放点功能)、变压器组成。 储能的作用是:在充电过程中把电网的电能转存储到电池中,在需要时,再将电池的能量转换到电网。电池储能的关键就在于转换效率和度电成本。 电池储能系统效率由各个转换环节组成(如下图)

关于光伏储能系统的四种类型

关于光伏储能系统的四 种类型 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

关于光伏储能系统的四种类型 自从能源局5月31号发布新的政策,分布式光伏只安排10G左右的补贴规模,而在6月1号之前,全国分布式光伏的安装规模已经突破了10GW,因此2018年6月后,分布式光伏可能已没有国家补贴,如果没有补贴,全额上网的项目,自用比例较少的项目,电价较低的地区,收益将大幅下降,没有投资价值。纯光伏项目投资收益下降,于是人们将目光投向光伏加储能,希望在这个领域有报突破,给公司增加新收益。 光伏储能,和并网发电不一样,要增加蓄电池,以及蓄电池充放电装置,虽然前期成本要增加20-40%,但是应用范围要宽广很多。根据不同的应用场合,太阳能光伏储能发电系统分为离网发电系统、并离网储能系统、并网储能系统和多种能源混合微网系统等四种。 一、光伏离网发电系统 光伏离网发电系统,不依赖电网而独立运行,应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统由光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。 图1、离网发电系统示意图 光伏离网发电系统是专门针对无电网地区或经常停电地区场所使用的,是刚性需求,离网系统不依赖于电网,靠的是“边储边用”或者“先储后用”的工作模式,干的是“雪中送炭”的事情。对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性,目前光伏离网度电成本约元,相比并网系统要高很多,但相比燃油发电机的度电成本元,还是更经济环保。 二、并离网储能系统 并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价贵很多、波峰电价比波谷电价贵很多等应用场所。 图2、并离网发电系统示意图 系统由太阳电池组件组成的光伏方阵、太阳能并离网一体机、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控

大规模储能系统的智能电网兼容性研究分析

基于大规模储能系统地智能电网兼容性研究 基于大规模储能系统地智能电网兼容性研究 廖怀庆 1 , 刘东 1 ,2 , 黄玉辉 1 , 陈羽 1 , 柳劲松 1 (1. 上海交通大学电气工程系 , 上海市 200240 ; 2. 国家能源智能电网 (上海) 研发中心 , 上海市 200240) 摘要 : 有效协调小容量分布式发电 ( dist ributed generation ,DG) 和集中式可再生能源发电 (collected renewable generation ,CRG) 是中国未来智能电网发展地重要特征 .分散储能系统 (dist ributed energy storage sy stem ,DESS) 和集中储能系统(mass energy storage system ,MESS) 将在大容量 CRG 和小容量 DG 地安全、稳定接入大电网中发挥重大作用 . 文中在对智能电网兼容性问题进行深入分析地基础上 ,探讨了考虑电网供蓄特性地协同调度 ,提出了涵盖输配电网 CRG2MESS 供蓄配置以及微网 DG2DESS 供蓄配置地智能电网兼容性解决方案 . 关键词: 智能电网; 兼容性; 可再生能源发电 ; 分布式发电; 储能系统; 统一控制 收稿日期 : 2009209203 ; 修回日期 : 2009211209 . 0 引言 在能源短缺、环境保护和气候变化等问题日益突出地背景下 ,开发清洁能源 ,发展低碳经济 ,实现能源优化配置 ,成为了世界各国地共同选择 .水力、风力、太阳能、生物质能等可再生能源发电将被大规模开发利用 ,根据其接入电网地方式可分为分布式发电 ( dist ributed generation ,DG) 和集中式可再生能源发电(collected renewable generation ,CRG) . 为顺应新能源时代 ,中国正在建设以特高压电网为骨干网架 ,各级电网协调发展 ,以数字化、自动化、互动化为特征地自主创新、国际领先地坚强智能电网[ 122 ] . 智能电网将以现代信息、通信、电力电子、储能、控制、管理和计量等先进技术形成覆盖电力生产、传输、消费全过程、全业务地信息网络 ,实现电力流、资金流、信息流高度整合与协同运作 , 构建具有“自愈、兼容、优化、互动、集成”五大特性地柔性电力网络系统 .特别是通过新型储能系统 ( energystorage system , ESS) 地优化配置及控制 [324 ] , 支持 大规模可再生能源地接入 ,有效兼容间歇性地集中与分散式发电 ,成为智能电网适应未来经济社会发展和新能源革命地一个先决条件 [526 ] . 目前 ,为了保证电网地安全 , IEEE 1547 标准针对分布式能源地并网规定 :当电力系统发生故障时 ,DG 必须马上退出运行 .这大大限制了分布式能源效能地充分

分布式发电与微电网

分布式发电与微电网 一、分布式发电 分布式发电技术就是充分开发与利用可再生能源的理想发生,它具有投资小、清洁环保、供电可靠与发电方式灵活等优点,可以对未来大电网提供有力补充与有效支撑,就是未来电力 系统的重要发展趋势之一。 (一)分布式发电的基本概念 分布式发电目前尚未有统一定义,一般认为,分布式发电(Distributed Generation, DG)指为满 足终端用户的特殊要求、接在用户侧附近大的小型发电系统。分布式电源(Distributed Resource, DG)指分布式发电与储能装置(Energy Storage,ES)的联合系统(DR=DG+ES)。它们规模一般不大,通常为几十千瓦至几十兆瓦,所用的能源包括天然气(含煤气层、沼气)、太阳能、生物质能、氢能、风能、小水电等洁净能源或可再生能源;而储能装置主要为蓄电池,还可能采用超级电容、飞轮储能等。此外,为了提高能源的利用效率,同时降低成本往往采用冷、热、电联供(Combined Cooling、Heat and Power, CCHP)的方式或热电联产(Combined Heat and Power, CHP 或Co-generation)的方式。因此,国内外也常常将冷、热、电等各种能源一起供应的系统称为分布式能源(Distributed Energy Resource, DER)系统,而将包含分布式能源在内就是电力系统称为分布式能源电力系统。由于能够大幅提高能源利用效率、节能、多样化地利用各种清洁与可再生能源。未来分布式能源系统就是应用将会越来越广泛。 分布式发电直接接入配电系统(380V或10kV配电系统,一般低于66kV电压等级)并网运行较 为多见,但也有直接向负荷供电而不与电力系统相联,形成独立供电系统(Stand-alone System),或形成所谓的孤岛运行方式(Islanding Operation Mode)。采用并网方式运行,一般不需要储能系统,但采取独立(无电网孤岛)运行方式时,为保持小型供电系统的频率与电压稳定,储能系统往往就是必不可少的。 由于这种发电技术正处于发展过程,因此在概念与名称术语就是叙述与采用上尚未完全统一。CIGRE欧洲工作组WG37-33将分布式电源定义为:不受供电调度部门的控制、与77kV以下电压等级电网联网、容量在100MW以下的发电系统。英国则采用“嵌入式发电”(Embedded Generation)的术语,但文献中较少使用。此外,有的国外文献与教科书将容量更小、分布更为分散的(如小型用户屋顶光伏发电及小型户用燃料电池发电等)称为分散发电(Dispersed Generation)。本节所采用的DG与DR的术语,与

各种储能系统优缺点对比

史上最全储能系统优缺点梳理 谈到储能,人们很容易想到电池,但现有的电池技术很难满足电网级储能的要求。实际上,储能的市场潜力非常巨大,根据市场调研公司Pike Research 的预测,从2011年到2021年的10年间,将有1220亿美元投入到全球储能项目中来。而在大规模储能系统中,最为广泛应用的抽水蓄能和压缩空气储能等传统的储能方式也在经历不断改进和创新。今天,无所不能(caixinenergy)为大家推荐一篇文章,该文章分析了目前全球的储能技术以及其对电网的影响和作用。 现有的储能系统主要分为五类:机械储能、电气储能、电化学储能、热储能和化学储能。目前世界占比最高的是抽水蓄能,其总装机容量规模达到了127GW,占总储能容量的99%,其次是压缩空气储能,总装机容量为440MW,排名第三的是钠硫电池,总容量规模为316MW。 全球现有的储能系统 1、机械储能 机械储能主要包括抽水蓄能、压缩空气储能和飞轮储能等。 (1)抽水蓄能:将电网低谷时利用过剩电力作为液态能量媒体的水从地势低的水库抽到地势高的水库,电网峰荷时高地势水库中的水回流到下水库推动水轮机发电机发电,效率一般为75%左右,俗称进4出3,具有日调节能力,用于调峰和备用。 不足之处:选址困难,及其依赖地势;投资周期较大,损耗较高,包括抽蓄损耗+线路损耗;现阶段也受中国电价政策的制约,去年中国80%以上的抽蓄都晒太阳,去年八月发改委出了个关于抽蓄电价的政策,以后可能会好些,但肯定不是储能的发展趋势。 (2)压缩空气储能(CAES):压缩空气蓄能是利用电力系统负荷低谷时的剩余电量,由电动机带动空气压缩机,将空气压入作为储气室的密闭大容量地下洞

储能在分布式发电及微网中的应用及收益分析

第三章储能在分布式发电及微网中的应用及收益分析分布式发电及微网日益成为能源领域的应用热点之一,按照国家能源规划,到2020年,分布式发电的装机容量将达到2.1亿千瓦,占全国总装机的11%。储能作为分布式发电及微网的关键支撑技术,在该领域具有巨大的应用潜力。 一、储能在分布式发电及微网中的应用现状 1. 储能在分布式发电及微网中的应用现状 分布式发电是指位于用户所在地附近,不以大规模远距离输送电力为目的,所生产的电力除由用户自用和就近利用外,多余电力送入当地配电网的发电设施、发电系统或有电力输出的能源综合梯级利用多联供系统。 微网可分为并网型微电网和离网型微电网两大类,其中并网型微电网既可并入大电网运行,也可以在外部电网故障情况下,转为独立运行模式继续为微网内重要负荷供电;离网型微电网不和常规电网相连,利用自身的分布式电源满足微网内负荷的需求。 CNESA的项目库数据显示,截止到2013年底,分布式发电及微网已经成为储能最热点的应用领域之一,美国、中国及欧洲是发展最快的地区,其中美国在项目数量及装机容量方面都占据世界领先,中国位列第二。 就目前已开展的项目来看,包含储能系统的分布式发电及微网项目主要应用于社区、工业、商业、户用、偏远地区,军方等领域。其中,社区类的项目数量是最多的,占所有项目数量的50%,主要分布在美国和日本。其次是海岛和偏远地区类储能项目,分别占总项目数量的12%和9%,主要在中国和美国。由此可见,储能在解决居民用电安全以及解决无电人口用电问题方面的巨大市场潜力。在应用技术方面,锂离子电池、铅酸电池是在这一领域应用最多的技术。其中,锂离子电池装机容量占总容量的50%,是近年来被认为应用领域最广且非常有发展前景的技术;铅酸电池,由于其便宜的价格,相对成熟的技术,在预算不高或早期建设的微网系统中成为最佳选择,现有市场份额占总容量的27%。钠硫电池、液流电池在这一领域也有一定的应用,装机容量分别占总容量的8%。 2. 储能在分布式发电及微网中的主要应用 储能是分布式发电及微网的关键支撑技术,尤其是在包含可再生能源技术的分布式发电及微网系统中发挥着重要作用。其作用可概括为3个方面。

光伏储能系统的四种类型

关于光伏储能系统的四种类型 自从能源局5月31号发布新的政策,分布式光伏只安排10G左右的补贴规模,而在6月1号之前,全国分布式光伏的安装规模已经突破了10GW,因此2018年6月后,分布式光伏可能已没有国家补贴,如果没有补贴,全额上网的项目,自用比例较少的项目,电价较低的地区,收益将大幅下降,没有投资价值。纯光伏项目投资收益下降,于是人们将目光投向光伏加储能,希望在这个领域有报突破,给公司增加新收益。 光伏储能,和并网发电不一样,要增加蓄电池,以及蓄电池充放电装置,虽然前期成本要增加20-40%,但是应用范围要宽广很多。根据不同的应用场合,太阳能光伏储能发电系统分为离网发电系统、并离网储能系统、并网储能系统和多种能源混合微网系统等四种。 一、光伏离网发电系统 光伏离网发电系统,不依赖电网而独立运行,应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统由光伏方阵、太阳能控制器,逆变器、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池通过逆变器给交流负载供电。

图1、离网发电系统示意图 光伏离网发电系统是专门针对无电网地区或经常停电地区场所使用的,是刚性需求,离网系统不依赖于电网,靠的是“边储边用”或者“先储后用”的工作模式,干的是“雪中送炭”的事情。对于无电网地区或经常停电地区家庭来说,离网系统具有很强的实用性,目前光伏离网度电成本约元,相比并网系统要高很多,但相比燃油发电机的度电成本元,还是更经济环保。 二、并离网储能系统 并离网型光伏发电系统广泛应用于经常停电,或者光伏自发自用不能余量上网、自用电价比上网电价贵很多、波峰电价比波谷电价贵很多等应用场所。

电力储能产业完整版

电力储能产业标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]

电力储能产业上市公司 1.阳光电源 是一家专注于太阳能、风能、储能等新能源电源设备的研发、生产、销售和服务的国家重点高新技术企业。主要产品有光伏逆变器、风能变流器、储能系统、电动车电机控制器,并致力于提供全球一流的光伏电站解决方案、储能及微电网解决方案。其中光伏电站解决方案包括:荒漠电站、屋顶电站、山丘电站。能及微电网解决方案主要有储能并网系统、光储微电网系统、燃料节约系统,主要应用与厂矿、企业、村落、通讯基站、光伏、风能发电站、地铁、港口医院等。 太阳能光伏逆变器产品继续稳居国内市场占有率第一,光伏电站系统集成业务也快速发展。 公司布局储能电源领域公司与三星SDI株式会社与2014年11月在韩国釜山签订了正式的合资合约,双方将在合肥建立合资公司,携手开展电力用储能系统相关产品的研制、生产和销售。依据计划,双方将在合肥高新区新设立储能电池和储能电源两个合资公司,分别从事电力用锂离子储能电池包的开发、生产、销售和分销,及电力设施用变流设备和一体化储能系统的开发、生产、销售和分销。双方约定,将充分利用各自优势,强强联合,共同开拓电力储能市场,并致力于成为全球领先的储能产品及系统解决方案供应商。 2.南都能源 公司主营业务为通信后备电源、动力电源、储能电源、系统集成及相关产品的研发、制造、销售和服务;主导产品为阀控密封蓄电池、锂离子电池、燃料电池及相关材料。产

品广泛应用于通信、电力、铁路等基础性产业;太阳能、风能、智能电网、电动汽车、储能电站等战略性新兴产业;电动自行车电池、通讯终端应用电池等民生产业。 公司战略目标:致力于成为全球的通信后备电源、储能应用电源、动力电源和新能源应用领域系统解决方案的领导者。在储能应用领域,拥有大型储能、离网储能、分布式储能的系统设计及集成技术;在动力应用领域,拥有电动汽车、电动叉车、电动自行车等车用超级电池、锂离子电池技术;在通信应用领域,拥有IDC等交换机房用、基站用、UPS用等阀控电池、锂电池、燃料电池技术,其中适用于高温环境下的环保节能电池为国际首创,具有巨大的经济及生态效益;在新型材料方面,拥有锂离子电池正负极材料、阀控电池正负极材料、电解质材料等多项核心技术。 公司主营业务: 储能领域: 2014年,公司储能业务实现销售收入15,969.52万元,同比增长14.69%。公司继续保持行业领先地位,在大规模储能、分布式储能、户用储能等领域齐头并进,各类系统解决方案及产品日趋成熟。在大规模储能及分布式微网储能领域,公司以锂电和铅炭电池核心技术为基础,提供全面系统解决方案,完成了国家风光储输示范工程项目(国家电网主导、国内影响力最大的新能源综合示范项目)、广东电科院广成铝业 1.5MW蓄能项目(科技部863项目)、浙江鹿西岛4MWh新能源微网储能项目(科技部863项目)等项目的装机运行,并在一系列新的示范项目中中标。 3.科陆电子 科陆电子是智能电网、新能源、节能减排产品设备研发、生产及销售方面的龙头企

浅析智能电网中的储能技术

浅析智能电网中的储能技术 发表时间:2018-06-13T15:08:53.540Z 来源:《电力设备》2018年第3期作者:张雷1 刘佰龙2 [导读] 摘要:随着各种新技术在电网运行中的不断普及,世界电网进入智能电网发展阶段。 (1 鄂尔多斯电业局变电管理一处乌兰木伦运维站内蒙古鄂尔多斯市 017000;2 国电电力大同发电有限责任公司山西省大同市037004) 摘要:随着各种新技术在电网运行中的不断普及,世界电网进入智能电网发展阶段。储能技术是智能化使用能源,解决能源危机的重要技术发展方向,也是发展智能电网的重要基础工作。本文主要就智能电网中智能电网中的储能技术展开初步的分析和探讨,仅供相关人士参考。 关键词:智能电网;储能技术;能源 从本世纪初开始,基于各种高新科技技术的发展,世界电网进入智能电网发展阶段。智能电网具有坚强可靠、自愈能力强、经济高效、透明开放、友好互动、清洁环保等特性。这样的特性十分符合社会经济发展与环保并进的要求。而发展智能电网,储能技术十分重要。储能技术在电力系统中发挥着重要作用,是实现灵活用电,互动用电的基础。 储能技术在包括电力系统在内的多个领域中具有广泛的用途,近年来世界范围内的电力工业重组给各种各样的储能技术带来了新的发展机遇,采用这些技术可以更好地实现电力系统的能量管理,尤其是在可再生能源和分布式发电领域,这种作用尤为明显,在传统的发电和输配电网络中,这些新技术同样可以得到应用。以下简要介绍各种储能技术的基本原理及其发展现状。 1 抽水储能 抽水蓄能电站在应用时必须配备上、下游两个水库。在负荷低谷时段,抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存。在负荷高峰时,抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。一些高坝水电站具有储水容量,可以将其用作抽水蓄能电站进行电力调度。利用矿井或者其他洞穴实现地下抽水储能在技术上也是可行的,海洋有时也可以当作下游水库用,1999年日本建成了第一座利用海水的抽水蓄能电站。 抽水储能是在电力系统中得到最为广泛应用的一种储能技术,其主要应用领域包括能量管理、频率控制以及提供系统的备用容量。目前,全世界共有超过90GW的抽水储能机组投入运行,约占全球总装机容量的3%。限制抽水蓄能电站更广泛应用的一个重要制约因素是建设工期长,工程投资较大。 2 先进蓄电池储能 据估计,全球每年对蓄电池的市场需求大约为150亿美元,在工业用蓄电池方面,如:用于UPS、电能质量调节、备用电池等,其市场总量可达50亿美元。在美国、欧洲以及亚洲,正在组建生产电力系统储能用的高性能蓄电池企业。在过去的12至18个月里,已有生产能力达每年300MW的蓄电池生产线投入运行。 铅酸电池是最古老、也是最成熟的蓄电池技术。它是一种低成本的通用储能技术,可用于电能质量调节和UPS等。然而,由于这种蓄电池寿命较短,因此限制了其在能量管理领域中的应用。近年来,各种新型的蓄电池被相继开发成功,并在电力系统中得到应用。 与其他蓄电池相比,锂离子电池的主要优点是储能密度高(300~400kW?h/m3,130kW?h/t),储能效率高(接近100%)和使用寿命长(每次放电不超过储能的80%时可充3000次)。由于具有上述优点,锂离子电池得到快速发展。但是,尽管在几年之内锂电池已经占有小型移动设备电源市场份额的50%,生产大容量锂离子电池仍然有一些挑战性的工作要做,主要的障碍在于其居高不下的成本,这主要是由于它需要特殊的包装和配备必要的内部过充电保护电路。 在所有的蓄电池中,Metal-air电池结构最为紧凑,并且可望成为成本最低的蓄电池,这是一种对于环境无害的蓄电池。其主要的缺点是这种电池的充电非常困难而且效率很低。 3 飞轮储能 大多数现代飞轮储能系统都是由一个圆柱形旋转质量块和通过磁悬浮轴承组成的支撑机构组成。采用磁悬浮轴承的目的是消除摩擦损耗,提高系统的寿命。为了保证足够高的储能效率,飞轮系统应该运行于真空度较高的环境中,以减少风阻损耗。飞轮与电动机或者发电机相连,通过某种形式的电力电子装置,可进行飞轮转速的调节,实现储能装置与电网之间的功率交换。 飞轮储能的一个突出优点就是几乎不需要运行维护、设备寿命长(20年或者数万次深度充放能量过程)且对环境没有不良的影响。飞轮具有优秀的循环使用以及负荷跟踪性能,它可以用于那些在时间和容量方面介于短时储能应用和长时间储能应用之间的应用场合。 在实现飞轮储能装置时,可采用固体钢结构飞轮,也可采用复合材料飞轮,具体采用何种飞轮需要进行经济技术比较,在系统成本、重量、尺寸以及材料性能等指标之间进行折衷。采用高密度钢材料,其边缘线速度可达200~375m/s,而采用重量更轻、强度更高的复合材料,其边缘线速度可达600~1000m/s。飞轮实际可输出的能量取决于其速度变化范围,它不可能在很低的转速下输出额定功率。 目前已有2kW/6kW?h的飞轮储能系统用于通信设备供电,采用飞轮组(Flywheel Farm Approach)可以实现输出功率为兆瓦级、持续时间为数分钟或者数小时的储能装置。 4 超导磁储能 尽管早在1911年人们就发现了超导现象,但直到20世纪70年代,才有人首次提出将超导磁储能作为一种储能技术应用于电力系统。超导磁储能由于具有快速电磁响应特性和很高的储能效率(充/放电效率超过95%),很快吸引了电力工业和军方的注意。SMES在电力系统中的应用包括:负荷均衡、动态稳定、暂态稳定、电压稳定、频率调整、输电能力提高以及电能质量改善等方面。 SMES单元由一个置于低温环境的超导线圈组成,低温是由包含液氮或者液氦容器的深冷设备提供的。功率变换/调节系统将SMES单元与交流电力系统相连接,并且可以根据电力系统的需要对储能线圈进行充放电。通常使用两种功率变换系统将储能线圈与交流电力系统相连:一种是电流源型变流器;另一种是电压源型变流器。 和其他的储能技术相比,目前SMES仍很昂贵,除了超导体本身的费用外,维持低温所需要的费用也相当可观。然而,如果将SMES线圈与现有的柔性交流输电装置(FACTS)相结合可以降低变流单元的费用,这部分费用一般在整个SMES成本中占最大份额。已有的研究结果表明,对输配电应用而言,微型(<0.1MW?h)和中型(0.1~100MW?h)SMES系统可能更为经济。使用高温超导体可以降储能系统对于低温和制冷条件要求,从而使SMES的成本进一步降低。目前,在世界范围内有许多SMES工程正在进行或者处于研制阶段。

智能电网中储能技术的作用

智能电网中储能技术的作用 在电网中,储能技术所发挥的作用主要体现在以下几方面: 1)削峰填谷。电力需求在白天和黑夜、不同季节间存在巨大的峰谷差。储能可以有效地实现需求侧管理,发挥削峰填谷的作用,消除昼夜峰谷差,改善电力系统的日负荷率,大大提高发电设备的利用率,从而提高电网整体的运行效率,降低供电成本。 2)改善电能质量、提高可靠性。借助于电力电子变流技术,储能技术可以实现高效的有功功率调节和无功控制,快速平衡系统中由于各种原因产生的不平衡功率,调整频率,补偿负荷波动,减少扰动对电网的冲击,提高系统运行稳定性,改善用户电能质量。 3)改善电网特性、满足可再生能源需要。储能装置具有转换效率高且动作快速的特点,能够与系统独立进行有功、无功的交换。将储能设备与先进的电能转换和控制技术相结合,可以实现对电网的快速控制,改善电网的静态和动态特性,满足可再生能源系统的需要。 除了智能电网、储能还是可再生能源接入、分布式发电、微电网以及电动汽车发展中必不可少的支撑技术。目前其应

用主要涉及:1)配置在电源侧,平滑短时出力波动,跟踪调度计划出力,实现套利运行,提高可再生能源发电的确定性、可预测性和经济性;2)配置在系统侧,实现削峰填谷、负荷踪、调频调压、热备用、电能质量治理等功能,提高系统自身的调节能力;3)配置在负荷侧,主要利用电动汽车的储能形成虚拟电厂参与可再生能源发电调控。储能技术正朝着转换高效化、能量高密度化和应用低成本化方向发展,通过试验示范和实际运行日趋成熟,确保了系统安全、稳定、可靠的运行。 根据能量存储方式的不同,储能方式分为机械、电磁、电化学和相变储能四大类型。其中机械储能包括抽水蓄能、压缩空气储能和飞轮储能;电磁储能包括超导、超级电容和高能密度电容储能;电化学储能包括铅酸、镍氢、镍镉、锂离子、钠硫和液流等电池储能;相变储能包括熔融盐和冰蓄冷储能等。 各种储能技术在能量和功率密度等方面有着明显区别,能量型储能装置因其能量密度高、充放电时间较长,主要用于平滑低频输出分量;功率型储能装置因功率密度大、响应快,主要用于平滑高频输出分量。在各种储能技术中,抽水蓄能和压缩空气储能比较适用于电网调峰;电池储能比较适用于中小规模储能和新能源发电;超导电磁储能和飞轮储能比较适用于电网调频和电能质量保障;超级电容器储能比较

综合能源系统与智能电网

综合能源系统与智能电网随着人类进入工业化时代,一直发展到今天,化石燃料一直占据着我们生活中的主要地位。但社会在发展,现如今,环境问题,能源问题日益突出,人类对能源的数量和质量要求不断提升,所以,新型能源在不断发展,与此同时,智能电网规模也在逐渐扩大。 智能电网是以包括各种发电设备、输配电网络、用电设备和储能设备的物理电网为基础,将现代先进的传感测量技术、网络技术、通讯技术、计算技术、自动化与智能控制技术等与物理电网高度集成而形成的新型电网,它能够实现可观测(能够监测电网所有设备的状态)、可控制(能够控制电网所有设备的状态)、完全自动化(可自适应并实现自愈)和系统综合优化平衡(发电、输配电和用电之间的优化平衡),从而使电力系统更加清洁、高效、安全、可靠。 智能电网在世界的发展还属于起步阶段,智能电网的简历是一个巨大的历史性工程,目前有很多复杂的智能电网项目正在进行中,但是缺口仍然是巨大的。智能电网的简历,尚有许多技术难题需要攻克。例如:配电网络系统升级、配电站自动化和电力运输、智能电网网络和智能仪表等。 智能电网对世界经济社会发展的促进作用,智能电网建设对于应对全球气候变化,促进世界经济社会可持续发展具有重要作用。主要表现在:(1)促进清洁能源的开发利用,减少温室气体排放,推动低碳经济发展。 (2)优化能源结构,实现多种能源形式的互补,确保能源供应的安全稳定。 (3)有效提高能源输送和使用效率,增强电网运行的安全性、可靠性和灵活性。 (4)推动相关领域的技术创新,促进装备制造和信息通信等行业的技术升级,扩大就业,促进社会经济可持续发展。 (5)实现电网与用户的双向互动,革新电力服务的传统模式,为用户提供更加优质、便捷的服务,提高人民生活质量。 综合能源系统将各种新型的清洁能源以及分布式能源并入电网,但是在技术上还有很多难题有待解决。 以V2G为例,传统汽车碳排放是人类碳排放的主要来源之一,据科学家的测算,全球汽车每年向大气层排放的CO2约为40多亿吨,占人类碳排放总量

详解智能电网中的6种储能技术

详解智能电网中的6种储能技术 储能技术在包括电力系统在内的多个领域中具有广泛的用途,近年来世界范围内的电力工业重组给各种各样的储能技术带来了新的发展机遇,采用这些技术可以更好地实现电力系统的能量管理,尤其是在可再生能源和分布式发电领域,这种作用尤为明显,在传统的发电和输配电网络中,这些新技术同样可以得到应用。以下简要介绍各种储能技术的基本原理及其发展现状。 1 抽水储能 抽水蓄能电站在应用时必须配备上、下游两个水库。在负荷低谷时段,抽水储能设备工作在电动机状态,将下游水库的水抽到上游水库保存。在负荷高峰时,抽水储能设备工作于发电机的状态,利用储存在上游水库中的水发电。一些高坝水电站具有储水容量,可以将其用作抽水蓄能电站进行电力调度。利用矿井或者其他洞穴实现地下抽水储能在技术上也是可行的,海洋有时也可以当作下游水库用,1999年日本建成了第一座利用海水的抽水蓄能电站。 抽水储能最早于19世纪90年代在意大利和瑞士得到应用,1933年出现了可逆机组(包括泵水轮机和电动与发电机),现在出现了转速可调机组以提高能量的效率。抽水蓄能电站可以按照任意容量建造,储存能量的释放时间可以从几小时到几天,其效率在70%至85%之间。 抽水储能是在电力系统中得到最为广泛应用的一种储能技术,其主要应用领域包括能量管理、频率控制以及提供系统的备用容量。目前,全世界共有超过90GW的抽水储能机组投入运行,约占全球总装机容量的3%。限制抽水蓄能电站更广泛应用的一个重要制约因素是建设工期长,工程投资较大。 2 先进蓄电池储能 据估计,全球每年对蓄电池的市场需求大约为150亿美元,在工业用蓄电池方面,如:用于UPS、电能质量调节、备用电池等,其市场总量可达50亿美元。在美国、欧洲以及亚洲,

“光伏+储能”-—分布式光伏未来的发展趋势

“光伏+储能”—分布式光伏未来的发展趋势 近日,古瑞瓦特与泰国EA及泰国电网公司签署了关于部署分布式储能充电网络的合作备忘录,古瑞瓦特作为中国最大的户用储能系统解决方案供应商,将为这一次合作提供非常可靠的产品和技术支撑,此次在储能领域具有国际影响力的三强合作,充分说明了古瑞瓦特在储能领域的技术实力。 中国储能市场的现状 储能技术是构建能源互联网,促进能源新业态发展的核心基础,未来三大新兴产业——新能源并网、智能电网、电动汽车的发展瓶颈都指向储能技术,市场潜力巨大。 储能目前正在走向商业应用的初期过渡阶段。储能产业将直接改善能源供给在时间与空间上的布均,亦能改善能源结构,与政府的电力体制改革脚步密不可分,作为国家鼓励发展的产业,今年三月,中国国家能源局下发了《关于促进储能技术与产业发展的指导意见(征求意见稿)》公文,给储能行业的发展指明了方向;同年四月,在苏州举行的第七届中国国际储能大会上获悉,储能扶持政策细则将陆续出台,产业发展有望进入快车道。 “光伏+储能” 光伏平价时代必将到来,光伏储能势不可挡 一直以来,国家高度鼓励并支持分布式光伏的发展,分布式光伏按照2013年发布的《国家发展改革委关于发挥价格杠杆作用促进光伏产业健康发展的通知》,电价补贴标准为每千瓦时0.42元(含税)执行。分布式光伏补贴标准维持近4年不变,且不纳入配额制范围,企业及个人能及时获得补贴。 这期间,一至三类资源区新建光伏电站的标杆上网电价分别由2013年政策规定的每千瓦时0.90元、0.95元、0.90元,调整至2016年执行的每千瓦0.80元、0.88元、0.98元,最终下调至现在的每千瓦时0.65元、0.75元、0.85元。 随着标杆上网电价的连续下调,分布式却连续4年保持补贴电价不变,可以预料,分布式光伏并网的补贴下调,是一种趋势和必然,最终目的是实现光伏的平价上网,而补贴的下调最直接影响的就是度电成本加大,收益下降,光伏储能的出现就是要最大化光伏系统的收益。 “光伏+储能”的优势在哪里呢?

电力储能产业

电力储能产业 Revised as of 23 November 2020

电力储能产业上市公司 1.阳光电源 是一家专注于太阳能、风能、储能等新能源电源设备的研发、生产、销售和服务的国家重点高新技术企业。主要产品有光伏逆变器、风能变流器、储能系统、电动车电机控制器,并致力于提供全球一流的光伏电站解决方案、储能及微电网解决方案。其中光伏电站解决方案包括:荒漠电站、屋顶电站、山丘电站。能及微电网解决方案主要有储能并网系统、光储微电网系统、燃料节约系统,主要应用与厂矿、企业、村落、通讯基站、光伏、风能发电站、地铁、港口医院等。 太阳能光伏逆变器产品继续稳居国内市场占有率第一,光伏电站系统集成业务也快速发展。 公司布局储能电源领域公司与三星SDI株式会社与2014年11月在韩国釜山签订了正式的合资合约,双方将在合肥建立合资公司,携手开展电力用储能系统相关产品的研制、生产和销售。依据计划,双方将在合肥高新区新设立储能电池和储能电源两个合资公司,分别从事电力用锂离子储能电池包的开发、生产、销售和分销,及电力设施用变流设备和一体化储能系统的开发、生产、销售和分销。双方约定,将充分利用各自优势,强强联合,共同开拓电力储能市场,并致力于成为全球领先的储能产品及系统解决方案供应商。 2.南都能源 公司主营业务为通信后备电源、动力电源、储能电源、系统集成及相关产品的研发、制造、销售和服务;主导产品为阀控密封蓄电池、锂离子电池、燃料电池及相关材料。产品广泛应用于通信、电力、铁路等基础性产业;太阳能、风能、智能电网、电动汽车、储能电站等战略性新兴产业;电动自行车电池、通讯终端应用电池等民生产业。 公司战略目标:致力于成为全球的通信后备电源、储能应用电源、动力电源和新能源应用领域系统解决方案的领导者。在储能应用领域,拥有大型储能、离网储能、分布式储能的系统设计及集成技术;在动力应用领域,拥有电动汽车、电动叉车、电动自行车等车用超级电池、锂离子电池技术;在通信应用领域,拥有IDC等交

大规模储能系统的智能电网兼容性分析研究

基于大规模储能系统的智能电网兼容性研究 基于大规模储能系统的智能电网兼容性研究 廖怀庆1 , 刘东1 ,2 , 黄玉辉1 , 陈羽1 , 柳劲松1 (1. 上海交通大学电气工程系, 上海市200240 。 2. 国家能源智能电网(上海> 研发中心, 上海市200240> 摘要: 有效协调小容量分布式发电( dist ributed generation ,DG> 和集中式可再生能源发电(collected renewable generation ,CRG> 是中国未来智能电网发展的重要特征。分散储能系统(dist ributed energy storage system , DESS> 和集中储能系统(mass energy storage system ,MESS>将在大容量CRG和小容量DG的安全、稳定接入大电网中发挥重大作用。文中在对智能电网兼容性问题进行深入分析的基础上,探讨了考虑电网供蓄特性的协同调度,提出了涵盖输配电网CRG2MESS 供蓄配置以及微网DG2D ESS 供蓄配置的智能电网兼容性解决方案。 关键词: 智能电网。兼容性。可再生能源发电。分布式发电。储能系统。统一控制 收稿日期: 2009209203 。修回日期: 2009211209 。 0 引言 在能源短缺、环境保护和气候变化等问题日益突出的背景下,开发清洁能源,发展低碳经济,实现能源优化配置,成为了世界各国的共同选择。水力、风力、太阳能、生物质能等可再生能源发电将被大规模开发利用,根据其接入电网的方式可分为分布式发电( dist ributed generation ,DG> 和集中式可再生能源发电(collected renewable generation ,CRG> 。 为顺应新能源时代,中国正在建设以特高压电网为骨干网架,各级电网协调发展,以数字化、自动化、互动化为特征的自主创新、国际领先的坚强智能电网[ 122 ] 。智能电网将以现代信息、通信、电力电子、储能、控制、管理和计量等先进技术形成覆盖电力生产、传输、消费全过程、全业务的信息网络,实现电力流、资金流、信息流高度整合与协同运作,构建具有“自愈、兼容、优化、互动、集成”五大特性的柔性电力网络系统。特别是通过新型储能系统( energystorage system , ESS> 的优化配置及控 制[324 ] ,支持 大规模可再生能源的接入,有效兼容间歇性的集中与分散式发电,成为智能电网适应未来经济社会发展和新能源革命的一个先决条件[526 ] 。

智能电网之储能控制系统项目可行性研究报告

智能电网之微电网控制系统 智能电网之储能控制系统 特大型垂直轴风力发电系统 可行性研究报告

目录 第一章总论 (1) 1.1项目名称及承办单位 (1) 1.2研究工作的依据和范围 (1) 1.3研究工作的重点 (2) 1.4推荐方案与研究结论 (3) 第二章项目背景与发展概况 (6) 2.1项目的提出 (6) 2.2项目的发展概况 (8) 第三章市场需求预测与建设规模 (9) 3.1产品现状及国际、国内市场概况 (9) 3.2建设规模 (37) 第四章建设条件与厂址................................................... 错误!未定义书签。 4.1原材料................................................................................................................................... 错误!未定义书签。 4.2供水 ...................................................................................................................................... 错误!未定义书签。 4.3供电 ...................................................................................................................................... 错误!未定义书签。 4.4供热....................................................................................................................................... 错误!未定义书签。 4.5厂址 ...................................................................................................................................... 错误!未定义书签。第五章工程技术方案 (38) 5.1项目组成 (38) 5.2主要产品生产技术方案 (39) 5.3总平面布置及运输 (58) 5.4土建工程 (61) 5.5给水工程 (62) 5.6排水工程 (64) 5.7供电 (64) 5.8采暖和通风 (67) 第六章环境保护 (68) 6.1建设地点环境现状 (68) 6.2主要污染物和防治措施 (68) 6.3绿化 (68) 第七章节约能源 (69) 7.1设计依据 (69) 7.2节能措施 (69) 第八章职业安全卫生及消防 (70) 8.1设计依据 (70)

相关主题
文本预览
相关文档 最新文档