当前位置:文档之家› 多道瞬态面波勘察规范标准

多道瞬态面波勘察规范标准

多道瞬态面波勘察规范标准
多道瞬态面波勘察规范标准

多道瞬态面波勘察规范

4 总则

4.1 应用条件

1 勘察对象与周围介质应存在明显物性(速度)差异.

2 勘察目标体尺寸,相对于埋藏深度应具有一定的规模.

3 目标体的物性异常能从干扰背景中清晰分辨出.

4 场地条件满足开展面波勘察的要求.

5 面波勘察方法满足任务的目的要求.

4.2 应用领域

1探查覆盖层厚度,划分松散地层沉积层序;

2 探查基岩埋深和基岩面起伏形态,划分基岩的风化带;

3 探测构造破碎带;

4 探测地下隐埋物体、古墓遗址、洞穴和采空区;

5 探测地下非金属管道;

6 探测滑坡体的滑坡带和滑坡面起伏形态;

7 地基动力测试,地基加固效果检验、评价等。

4.3 应用能力

普遍采用5-K变换法提取瑞雷面波、多道加权平均或直接从5-K 域获取的频散曲线作为该排列的中心点处频散曲线,采用阻尼最小二乘法反演横波速度,从而降低了瑞雷波法探测的纵横向分辨率。无法探测小规模和局部异常,难以满足高精度探测的要求。

5 工作设计

5.1 工作任务

5.1.1 应根据主管部门或委托方下达的任务书或有关合同(协议)明确工作任务与技术要求,确定项目负责人,编写设计书。

5.1.2 工作任务书内容应包含以下内容:

1 工程名称、工程地点、工程编号及范围;

2 要求提交的成果资料和期限;

3 工作区的地形、地貌及地质概况;

4 与任务有关的已知地质资料及地形图。

5.2 资料收集与踏勘

5.2.1 现场探勘应包括以下内容:测区地形、地貌、交通及工作条件;核对已收集的地质、物化探及测绘资料;

5.2.2 设计书编写之前应由项目负责人组织收集和分析工区有关资料,包括以下内容:

1 场地的岩土工程勘察资料

2 场地建(构)筑物的平面图等;

3 场地及其临近的干扰震源;

4 有关的地质、钻探、物探及其他技术资料

5.3 方法有效性试验

5.3.1 野外施测之前,必须进行方法的有效性试验工作;

5.3.2 试验工作应根据测区具体的地质条件、地貌单元规定,每种条件下不少于1个试验面波点;

5.3.3 试验点应布置在有代表性的地段上,与生产测线重合,并通过已知地质资料的地段、试验成果作为生产成果的一部分;

5.3.4 试验工作遵循从简单到复杂、试验因素单一变化的原则。

5.4 测线与观测系统的选择

5.4.1 应结合探测目的和已知资料,通过试验确定观测系统布置方式、采集参数和激发方式。现场工作应符合下列规定:

1 应视探测对象布置成测线或测网;多道接收时,测线应呈直线布置;

2 应采用向前滚动观测方式,滚动点距应满足横向分辨率要求;

3 测点间距应根据探测任务和现场条件确定,每条测线上不得少于3个测点。

5.4.2 观测系统以激振点分类可分为单端激振法和双端激振法;以排列移动方式分类可分为全排列移动、半排列移动和根据勘探点间距移动排列的方法。根据勘察目的、要求、地形地质与地球物理条件应合理选用观测系统,并应符合下列要求:

1 所选用的观测系统,应保证主要目的层的连续追踪;

2 简单地质地形条件应采用单端激振法,复杂地质地形条件下应采用双端激振法。

5.5 设计书编写

5.6 设计书审批

6 仪器设备

6.1主要仪器设备

鉴于目前市场地震仪器类型较多,性能各异,多道瞬态面波勘探应使用多道数字地震仪器及垂直方向速度型检波器.

6.2 仪器设备性能要求

6.2.1 仪器放大器的通道数不应少于12 通道。采用的通道数应满足不同面波模态采集的要求;

6.2.2仪器放大器的通频带应满足采集面波频率范围的要求,通频带低频端不宜高于0.5 Hz ,高频端不宜低于4000 Hz;

6.2.3仪器放大器各通道的幅度和相位应一致:各频率点的幅度差在5 %以内,相位差应不大于所用采样时间间隔的一半;

6.2.4仪器采样时间间隔应满足不同面波周期的时间分辨,保证在最小周期内采样4至8 点;仪器采样时间长度应满足在距震源最远通道采集完面波最大周期的需要;

6.2.5 仪器动态范围不应低于120dB ,模数转换(A/D)的位数不宜小于16 位。

6.2.6 用于多道瞬态面波采集的检波器应符合下列要求:

1垂直方向的速度型检波器;

2 检波器的自然频率应满足采集最大面波周期(相应于勘察深度)的需要,岩土工程勘察宜用自然频率不大于4.0 Hz 的低频检波器;

3检波器之间的自然频率差不应大于0.1 Hz ,灵敏度和阻尼系数差别不应大于10 %;

4 检波器按竖直方向安插,应与地面(或被测介质表面)接触紧密。

6.2.7 用于多道瞬态面波的震源应符合下列要求:

1 根据任务目的的不同,选择符合要求的大锤、重锤或炸药震源激发;

2 震源的选择需满足勘探所需的频率及激发能量的要求,同时需满足多次激发的一致性;

6.3 地震仪的检查和检验

6.4 仪器设备的使用和保养

7 野外数据采集

7.1 生产性试验

7.1.1 现场正式工作前,应进行试验工作。在地质地形条件复杂的工区,试验工作应充分,试验工作量宜控制在预计工作量的5%。

7.1.2 试验工作应包括下列主要内容:

1 仪器设备系统的频响与幅度的一致性检查,应符合下列要求:

1)仪器各道的一致性检查:将仪器输入端各道并联后接人信号源,采集与工作记录参数相同的记录并存储,利用软件分析频响

与幅度的一致性;

2)检波器的一致性检查:选择介质均匀的地点,将检波器密集地安插牢固,在大于10m外激振,采集面波记录并存储,利用软件分析频响与幅度的一致性;

3)仪器通道和检波器的频响与幅度特性,在测深需要的频率范围内应符合一致性要求。

2 采集试验工作应符合下列要求:

1)干扰波调查,在工区选择有代表性的地段进行干扰波调查,干扰波调查应通过展开排列采集的方式进行。采集面波在时空域传播的特征,根据基阶面波发育的强势段确定偏移距离、排列长度和采集记录长度,一般展开排列长度应与勘察深度相当;

2)检波器频率的选择应根据勘察深度要求,利用f =V R/λR 和H ≈1/2λR 估算选用的检波器频率,式中:f -检波器的频率;υR —地层面波速度;λR—波长;H —探测地层的深度;

3 对现场实验记录进行频谱分析,在频带宽度满足勘探深度和分辨薄层的前提下确定最佳激振方式。

7.1.3 通过以上试验工作,确定满足勘察目的和精度要求的采集方案、采集参数和激振方式。

7.1.4在具有钻孔资料的场地宜在钻孔旁布置面波勘察点,取得对比资料。

7.2 测线(网)布置及工作量工作

7.2.1 在地形较平坦的工区,测线布置可根据任务书布置,面波排列宜与测线相重合布置。

7.2.2 在地形起伏较大的工区,面波排列可不与测线重合,宜结合地形等高线取平坦段布置。

7.2.3 在滑坡体、泥石流等勘察项目中,测线布置宜沿主滑方向平行布置,适当布置横向联络线。

7.2.4 在岩溶、土洞或采空区勘察项目中,测线间距应小于被调查对象的尺寸,发现异常,在异常点(带)布置垂直测线,重点勘察项目可采取布置网格线的方案。

7.2.5 构造破碎带勘察,测线布置应与构造走向相垂直;古河床调查,测线应垂直古河床方向。

7.2.6 地基加固效果检验,应在加固前后采取测点、测线位置不变的原则。

7.2.7 面波排列的中点为面波勘探点,面波勘探点间距的布置应根据勘察阶段、场地地质地形条件的复杂性以及勘察目的和精度综合考虑。

7.2.8 面波排列方式应遵循以下要求:

1 面波排列的长度不应小于勘探深度所需波长的二分之一;

2 在场地存在固定噪声源的环境中工作,应使面波排列线的方向指向噪声源,并布置激振点与固定噪声源在面波排列的同侧,干扰震源波不得构成对面波排列线的大角度传播;

3在地表存在沟坎及在建筑群中进行面波勘察时,面波排列线的布置应考虑规避非震源干扰波的影响。

7.3 陆域地震

7.3.3 多道瞬态面波勘探

7.3.3.1 多道瞬态面波的接收应遵循下列原则:

1 仪器应设置在全通状态,对定点仪器应设置各道增益一致;

2 每道采样点数不少于1024点;视采集记录的长度要求,应保证各道基阶面波的采集需要;

3 记录的近震源道不应出现削波,排列中不宜有坏道;

4 排列方向的设计应视地形条件和规避干扰波的需要确定;采用线性等道间距排列方式,震源在检波器排列以外延长线上激发,长

度应大于预期面波最大波长的一半(相应最大探测深度);排列上的道间距应小于最小勘探深度所需波长的二分之一;

5 检波器安置的位置应准确,根据场地条件采取放干扰或防漏电等必要措施;

6 检波器应与地面(或被检测物表面)安置牢固,并使埋置条件一致;

7 检波器与电缆连接应正确,防止漏电、短路或接触不良等故障。

7.3.3.2 面波的激发应符合本规程第6.2.7 条的规定,并符合下列要求:

1 面波的激发应根据勘察任务要求和工区条件合理选择震源;

2 使用锤击震源、落重震源应在激振点敷设专用垫板。专用垫板是硬材料,有利于激发高频波,专用垫板是软材料,有利于激发低频波;

3 使用炸药震源时:炸药量要通过试验确定;炸药坑深度宜大于60cm 并压实;炸药记时应采用回线记时和内触发记时。

7.3.3.3采集工作结束后,应及时从仪器外传数据做好备份,以防数据丢失,同时做好现场采集班报表记录。

7.3.3.4 每项工程应进行检查观测。检查工作量不得少于总工作量的5 %,检查记录与原记录波形应相似,频散曲线应一致。

7.3.3.5 采集记录的文件宜按下列要求存贮:

1 宜按工程名称或工程代号设置存贮文件的子目录;

2 文件名由字符和数字组成,以字符表示线号,以数字表示测点顺序。同测线上的文件名中的数字连续。文件名中的后缀常用“.dat”,表示为原始采集记录。

7.6 质量监控

7.7 原始资料验收和质量评价

7.7.1 采集记录中的削波和通常地震勘查中的坏道,在多道瞬态面波勘察中应视为坏道。

7.7.2 采集记录的长度满足最大源检距基阶波采集的记录,为合格记录,否则为不合格记录。

7.7.3 采集记录中基阶波应为强势波,否则为不合格记录。

7.7.4 采集记录中相邻两道为坏道应视为不合格记录。

7.7.5 采集记录中坏道数大于使用道数10%的记录应为不合格记录。

7.7.6 发现不合格记录,应进行补测。

8 数据处理

8.3 多道瞬态面波勘探

8.3.1 资料整理应包括:绘制测线(点)平面布置图和编制测线(点)的高程表,面波数据资料的处理与解释。

8.3.2 绘制测线(点)平面布置图应根据实测点坐标,按要求的比例尺绘制。

8.3.3 面波数据资料处理应使用经过验证的方法和软件进行。其主要功能应包括:面波数据资料预处理、生成面波频散曲线、频散曲线分层反演剪切波速度及确定层厚,利用面波频散曲线生成速度映像彩色剖面,并在此基础上绘制地质剖面图等。

8.3.4 处理时应剔出明显畸变点、干扰点,并将全部数据按频率顺序排列。

8.3.5 建立地形高程文件、绘制面波速度映像剖面图和地质解释剖面图。剖面图的比例尺应按勘察任务书的要求绘制。

8.3.6 面波数据资料预处理后,应准确区分面波和体波正确绘制频散曲线即波速-频率曲线。

8.3.7 面波频散曲线提取应符合下列要求:

1 软件应具有面波频散曲线的提取功能;

2 对基阶面波选用合理的时间-空间窗口,是频散曲线提取的关键;

3 面波频散曲线的提取宜在f -K 域中进行;

4 在f -K 域进行的二维滤波应突出基阶面波的能量;

5 在f -K 域中的等值线图上应确认频散曲线,并转换为速度-深度域(速度-波长域)的频散曲线;

6 频散曲线应遵循收敛的原则。在面波频散曲线上若频散点点距过大,不收敛,变化的起点处可解释为地质界线。不收敛的频散曲线段不能用于地层速度的计算;

7 频散曲线提取完毕后,应进行存储。

8.3.7 频散曲线的分层应根据曲线的曲率和频散点的疏密变化综合分析;分层完成后反演计算剪切波层速度和层厚。

1 剪切波层速度和层厚的反演计算可采用两种方式:固定层厚,反演层速度和固定层速度,反演层厚。一般宜选择固定层厚的方式反演剪切波层速度;

2 反演过程宜遵循由浅及深逐层调试,使正、反演结果逼近,完成剪切波层速度和层厚的处理;

3 确认层参数后,存储处理结果。

9 资料推断解释

9.3多道瞬态面波勘探

9.3.1 面波频散数据反演的结果应视为检波器排列下的地层综合信息,对于近水平层状地层,反演结果视为检波器排列中点位置竖直方向地层的波速分布;对于倾斜地层,反演结果视为检波器排列中点位置至地层界面法向深度的波速分布。

9.3.2 面波速度映像图的制作可分为以下几个步骤:

1 输入剖面线上超过3个测点的面波频散曲线文件;

2 输入测点的剖面坐标和高程;

3 设置合适的比例尺生成面波速度映像图;

4 需进行地形校正时应进行校正,生成地形校正后的面波速度映像图。

9.3.3 面波速度映像图的地质分析应结合面波频散曲线的分层结果或地层地质柱状资料进行。分析同点位、同深度映像的速度值与地层的关系,逐层确认划分,生成地层(物质)界线框图,选择地质图例,绘制地质剖面图。

9.3.4 地质剖面的绘制,在有条件的情况下应利用既有的点位地质资料,进行综合分析。

9.3.5 换算岩土层各动力参数时,应利用已知资料标定后进行。

10 成果报告编写

10.1 基本要求

10.2 报告主要内容

10.3 主要成果图件

多道瞬态面波勘察规范..

多道瞬态面波勘察规范 4 总则 4.1 应用条件 1 勘察对象与周围介质应存在明显物性(速度)差异. 2 勘察目标体尺寸,相对于埋藏深度应具有一定的规模. 3 目标体的物性异常能从干扰背景中清晰分辨出. 4 场地条件满足开展面波勘察的要求. 5 面波勘察方法满足任务的目的要求. 4.2 应用领域 1探查覆盖层厚度,划分松散地层沉积层序; 2 探查基岩埋深和基岩面起伏形态,划分基岩的风化带; 3 探测构造破碎带; 4 探测地下隐埋物体、古墓遗址、洞穴和采空区; 5 探测地下非金属管道; 6 探测滑坡体的滑坡带和滑坡面起伏形态; 7 地基动力测试,地基加固效果检验、评价等。 4.3 应用能力 普遍采用5-K变换法提取瑞雷面波、多道加权平均或直接从5-K域获取的频散曲线作为该排列的中心点处频散曲线,采用阻尼最小二乘法反演横波速度,从而降低了瑞雷波法探测的纵横向分辨率。无法探测小规模和局部异常,难以满足高精度探测的要求。 5 工作设计 5.1 工作任务 5.1.1 应根据主管部门或委托方下达的任务书或有关合同(协议)明确工作任务与技术要求,确定项目负责人,编写设计书。 5.1.2 工作任务书内容应包含以下内容: 1 工程名称、工程地点、工程编号及范围;

2 要求提交的成果资料和期限; 3 工作区的地形、地貌及地质概况; 4 与任务有关的已知地质资料及地形图。 5.2 资料收集与踏勘 5.2.1 现场探勘应包括以下内容:测区地形、地貌、交通及工作条件;核对已收集的地质、物化探及测绘资料; 5.2.2 设计书编写之前应由项目负责人组织收集和分析工区有关资料,包括以下内容: 1 场地的岩土工程勘察资料 2 场地建(构)筑物的平面图等; 3 场地及其临近的干扰震源; 4 有关的地质、钻探、物探及其他技术资料 5.3 方法有效性试验 5.3.1 野外施测之前,必须进行方法的有效性试验工作; 5.3.2 试验工作应根据测区具体的地质条件、地貌单元规定,每种条件下不少于1个试验面波点; 5.3.3 试验点应布置在有代表性的地段上,与生产测线重合,并通过已知地质资料的地段、试验成果作为生产成果的一部分; 5.3.4 试验工作遵循从简单到复杂、试验因素单一变化的原则。5.4 测线与观测系统的选择 5.4.1 应结合探测目的和已知资料,通过试验确定观测系统布置方式、采集参数和激发方式。现场工作应符合下列规定: 1 应视探测对象布置成测线或测网;多道接收时,测线应呈直线布置; 2 应采用向前滚动观测方式,滚动点距应满足横向分辨率要求; 3 测点间距应根据探测任务和现场条件确定,每条测线上不得少于3个测点。

工程双源面波勘探及其应用

工程双源面波勘探及其应用 毛健伟聂碧波郭乃根孙秀容夏学礼 上海申丰地质新技术应用研究所有限公司 上海201106 内容提要:为了提高面波勘探的勘查深度,将多道瞬态面波勘探和微动勘查集成为一轻便的系统,使面波勘探的勘查深度加深至100∽300米,基本满足了工程上的需要。在多道瞬态面波勘探数据采集时应首先对面波波场进行分析,采用大偏移、大道距对提高频散曲线的提取精度十分重要。使用该系统在同一点两种方法采集数据得到的频散曲线有着十分好的重复性和唯一性,并能得到验证。工程双源面波勘探在浅部煤层采空区中的应用取得了很好的效果。在煤层埋藏较浅,得不到煤层反射波的煤层采空区调查中有着较好的应用前景。 关键词:面波微震双源采集系统频散 1引言 上世纪九十年代中期,北京水电物探研究所刘云祯先生首先提出了“多道瞬态面波法勘探【1】”,并研制出具有自主知识产权的多功能面波仪,开发出相应的资料处理软件。多道瞬态面波法勘探在工程界得到普遍应用。并于2004年国家颁布了“多道瞬态面波发勘察规程【2】”。通过多年的实践,多道瞬态面波法勘探在频散曲线提取中的稳定性问题【3】,频散曲线的“之”型问题【4】及勘探深度较浅等都使其应用受到限制。1998年原地质矿产部王振东先生针对多道瞬态面波勘探勘探较浅(20米左右)提出了双源面波勘探的设想【5】,拟将多道瞬态面波勘探和微动勘查在软、硬件上集成为一个系统,即同时可进行“多道瞬态面波法勘探”,又可进行“微动勘查”,取之所长,避之所短,提高面波勘探勘查深度,满足绝大部分工程的需要。 虽然“多道瞬态面波法勘探”和“微动勘查”都是应用面波在非均匀介质具有频散特性和半波长理论来研究地下地质结构,但他们在数据采集方法、使用的硬件及资料处理方法上有着较大的差别。上海申丰地质新技术应用研究所有限公司于2008年在加拿大骄佳技术公司赵冬先生的配合下,选择美国SI公司生产的S-Land数字化工程地震数据采集系统为硬件,赵东先生编制的天然原面波F-K、SPAC、ESPAC处理软件集成了工程双源面波勘探系统,并在野外进行了大量的试验,使面波勘探的勘探深度提高至100-300米。该系统之所以定名为工程双源面波勘探系统,它在两方面不同于“微动勘查”,一是它的采集硬件是多道(24或48道)而不是4或7个独立的采集单元,一个系统既可采集人工源面波,又可进行微动采集;二是它采用的传感器是2.5Hz和4.5Hz低频检波器,而不是低频摆,该系统更换检波器后还可进行地震反射和折射波法勘查,一个系统可以进行多种弹性波法数据采集,既适用又经济。

多道瞬态面波探测实验报告

同济大学四平路校区文远楼前防空洞多道瞬态面波探测实验报告 海洋与地球科学学院地球物理系 指导老师:吴健生赵永辉 小组成员:刘佳叶何文俊马驰 2011年6月

目录 1. 目的 2. 原理 3. 仪器介绍 4. 野外实施 5. 数据处理 6. 保证质量措施 7. 问题对策 8. 结论分析 9. 体会展望 10. 参考文献

摘要:利用多道瞬态面波探测方法,测定不同频率的面波速度VR,达到了解同济大学四平路校区黑松林斜坡地下的情况。 关键词:面波探测黑松林斜坡 1.实验目的 通过人工地震资料的采集、处理的方法对同济大学四平路校区黑松林斜坡进行勘察。要求勘探出黑松林斜坡地下的情况。 2. 实验原理 面波分为拉夫波和瑞利波。本实验主要应用的是瑞利波。同一频率的面波的相速度在水平方向上的变化反映出地质条件的横向不均匀性;不同频率的面波的相速度的变化则反映了地下介质在深度方向上的不均匀性。 通过测定不同频率的面波速度VR ,即可达到了解地下地质构造的目的。 3. 仪器介绍 4. 野外实施 4.1 实验区概况 试验区域位于同济大学四平路校区文远楼前,入口朝北,由于无法进入内部,初步估测

该防空洞在平面上呈长方形。实验区上部覆盖种有草皮的土壤层,堪探时土壤较湿润。 4.2 野外布线 此次实验本小组总布线条数为 2条,布线方向为南北向。我们根据实验场地具体情况,在防空洞入口边缘布下了第一条线,在第一条线西侧距离为3米处布下第二条线。在实验过程中,炮点距为1米,检波器间距为1米,检波器每次向北移动距离也为1米。进行人工激发时,我们在每点处各激发两次并采集数据,总共得到数据14组。 4.3 野外操作 1. 排线,布检波器 第一道测线 第二道测线

面波探测技术方案

深圳地铁7号线福赤区间面波勘探技术方案 深圳市工勘岩土集团有限公司 二O一四年十二月

目录 1、前言 (1) 2、主要勘探目的 (1) 3、执行规范 (1) 4、方法原理 (2) 5、测线布置 (3) 6、瑞利波法现场测试方法 (5) 7、资料处理与解释 (6) 8、提交成果 (8) 9、工期 (8) 10、投入人员及仪器设备 (9)

1、前言 受中国水电四局的委托,我公司拟对深圳地铁7号线福赤盾构区间进行面波(瑞利波)法勘探。本区间自福田河南岸的福临站北端开始,至滨河大道的赤尾站西端结束,里程桩号大致范围为: 左线ZDK20+360.117~ZDK20+845.492; 右线YDK20+347.717~YDK20+844.001。 线路下穿福田河、福临小区、滨河大道等,线路经过区地面环境复杂多变,将会给面波勘探带来诸多不便和影响,有的区段可能难以展开勘探,即使是积极创造条件勉强开展慨叹的区段,也需要投入更多的时间、人力、物力等,并且在诸多不利因素背景下所解算的成果资料的可信度会大打折扣。为了尽可能全面地完成地质任务,编制此方案。2、主要勘探目的 通过面波(瑞利波)勘探,揭示盾构区间隧道穿越区岩土强度的分布,提请盾构施工时提前采取相应措施。 3、执行规范 本次探测执行如下技术规范: 1)《多道瞬态面波勘察技术规程》(JGJ/T143—2004); 2)《物化探工程测量规范》(DZ/T0153-95); 3)《城市工程地球物理探测规范》(中华人民共和国行业标准JJ7-2007); 4)《水利水电工程物探规程》(中华人民共和国水利水电行业标准

SL326-2005); 5)《工程测量规范》(GB/50026-2007)。 4、方法原理 瑞利波是面波的一种。瑞利波法是利用瑞利波的运动学特征和动力学特征来进行工程质量检测及工程地质勘察的地球物理方法。 在自由界面(如地面)上进行竖向激振时,均会在其表面附近产生各种波长的瑞利波,其二维和三维波动及传播示意图见图1和图2。瑞利波有三个与工程质量检测和地质勘察有关的主要特征: (1)、在分层介质中,瑞利波具有频散特性; 图1 瑞利波的椭圆极化示意图(二维) (2)、瑞利波的波长不同,穿透深度也不同; (3)、瑞利波的传播速度与介质的物理力学性质密切相关。

常用剪切波波速

常用剪切波 剪切波波速成果图 4 相关公式编辑 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T ——压缩波或剪切波从振源到达测点经斜距校正后的时间( s)(相应于波从孔口到达测点的时间); TL ————压缩波或剪切波从振源到达测点的实测时间(s); K ——斜距校正系数; H ——测点的深度( m ); H0 ——振源与孔口的高差(m ), 当振源低于孔口时,H0 为负值; L ——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H 为纵坐标,时间T 为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算:

式中V ——波速层的压缩波波速或剪切波波速(m/s ); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中 VP ——压缩波波速( m/s ); VS ——剪切波波速( m/s ); TP1 ——压缩波到达第 1 个接收孔测点的时间(s); TP2 ——压缩波到达第 2 个接收孔测点的时间(s); TS1 ——剪切波到达第 1 个接收孔测点的时间(s); TS2 ——剪切波到达第 2 个接收孔测点的时间(s); S1 ——由振源到第 1 个接收孔测点的距离(m) S2 ——由振源到第 2 个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1] 卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72 - 2004 》条文说明 [2]

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的应用 摘要 在近地表勘探工作中,常用的方法有地质钻探、地震折射和反射 等方法。地质钻探方法比较可靠,但是成本高,且具有破损性;地震 折射方法和反射方法对于波阻抗差异较小的地质体界面反映较弱,不 容易分辨,特别折射波法要求下层介质的速度一定要大于上层介质的 速度,如果地层存在低速夹层和速度倒转,则折射法将无能为力。瑞 雷面波勘探法是一种新型的地震勘探方法,能够弥补传统方法的不 足。本文就是研究如何利用瑞雷面波的频散特性进行浅层地质勘探检 测。 引言 (1) 第一章地震面波简介 (2) 第二章瑞利波勘察原理及现场工作方法 (3) 2.1瑞利波勘察原理 (3) 2.2多道瞬态面波数据采集方法 (4) 第三章瑞利波资料整理与解释 (6) 3.1面波频散曲线的深度解释 (6) 3.2层厚度的计算方法 (6) 3.3层速度的计算方法 (7) 第四章工程实例 (9) 4.1工程概述 (9) 4.2数据采集和处理 (9) 4.3底层划分及滑动面确定 (11)

第五章结论 (15) 致谢 (16) 参考文献 (17)

引言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,集中于自由表面,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。上个世纪九十年代中期,日本科学家在研究常时微动的过程中发现,常时微动是一种震源(包含面波在内)并初步完成了地基勘察。这是一项具有很大潜力的面波勘探方法。

多道瞬态面波技术在岩土工程勘察中的应用

多道瞬态面波技术在岩土工程勘察中的应用 发表时间:2018-10-30T17:20:08.923Z 来源:《建筑学研究前沿》2018年第18期作者:赵幸焕 [导读] 首先对于多道瞬态面波技术进行原理分析,该项技术的应用特点是借助激振的效果。 广东和协建设工程检测有限公司广东东莞 523416 摘要:随着关于多道瞬态面波技术研究的更加深入,在岩土工程勘察的工作当中应用更为普遍的就是瑞雷面波。该项技术能够更加全面的做好岩土工程施工前的准备工作,特别是在地质勘测以及掩埋物探测等方面其作用更加的突出。以下内容则是重点关于多道瞬态面波技术的应用原理进行了详细的阐述,并且有效分析了该项技术的应用过程,结合着相关的工作方法与勘探数据处理,在实际应用案例的基础之上进行讨论。 关键词:多道瞬态面波技术岩土工程勘察工作数据讨论 一、多道瞬态面波技术应用原理 首先对于多道瞬态面波技术进行原理分析,该项技术的应用特点是借助激振的效果,使得固定范围内会有小频率的瑞雷波面,通过多重激振的作用,会形成越来越多的瑞雷波面形成叠加,随后在面波传播的过程中,通过利用多项分析技术对瑞雷面波进行分析,比如频谱和相位谱分析法,从而能够有效的得到准确的频散曲线图,最终形成VR-λR 曲线。 二、多道瞬态面波技术应用过程分析 在具体的岩土工程勘测的过程中应用的多道瞬态面波技术可以准确的分为三个方面:现场测试、室内数据处理及频散曲线的计算和反演及工程解译。首先就是现场测试环节,该项工作直接取决了今后开展工作任务的成与败,也就是说现场的测试阶段能够保障今后工作的有效开展,所以对于勘测设备的选择以及勘测计划的制定和勘测方法的规划都至关重要,通过相关人员准确精密的计算来进行空间采样和时间采样,根据特定的参数和点数进行相应时间间隔内的波形记录工作,除此之外还需要进一步提高室内数据的处理工作效率,根据实际工作情况以及数据处理量,制定出频散曲线,从而能够准确有效的去评定有关力学等性质。 三、关于瑞雷面波的勘探原理分析 在进行瑞雷面波的产生原因分析时,利用弹性动力学知识来进行解释,由于振动源的发生在地表,那么在地基中就会产生弹性波并且一直传播下去,该种弹性波一般情况下可以分为三种体波:面波和压缩波以及剪切波等等。那么对于瑞雷波的勘测主要是依靠着勘探特性来进行勘察,主要是根据地层表面附近如果出现有形状类似于Sv的剪切波和压缩波,并且能能够出现重叠的情况,那么就会伴随着这种现象出现瑞雷面波,该种情况下,形成的瑞雷面波具有的特性为频率低、速度传播较慢、衰减性低,同时具备着大量的能量。以下内容是两种实验情况下的结果,第一就是如果将瑞雷面波在均匀性较差的介质中进行传播时,这时瑞雷面波自身具有的频散特性会发生变化,与波速之间存在在一定的线速关系;如果在均匀性较强的介质中进行传播时,这时瑞雷面波自身具有的频散特性就不会表现出现,所以根据这一实践结果,在岩土工程中的勘察工作起到了更加深远的影响。 瑞雷面波的相波速计算,计算频率∫不同的瑞雷面波的相波速,并绘制出面波勘探点的频散曲线Vr—∫。瑞雷面波的频率不同,则其波长也不相同,若一个波长为其所穿透的深度,则瑞雷面波在同一波长具有相同的传播特征;这在一定程度上把介质性质在水平方向上的变化情况进行了较全面的反映,至于波长不同,则可把深度不同的地下状况反映出来,一般情况下,由下式就可把瑞雷波波长计算出来: λx=Vr/∫。 若用H表示瑞雷面波勘探深度,λr表示瑞雷面波波长,则把二者之间的关系可表示为:H=βλr。 四、多道瞬态面波技术的野外工作方法与勘探数据处理 4.1工作方法 在野外进行多道瞬态面波的共炮点的排列应按照等道路的原理进行设计,除此之外还要对勘测深度进行评估,保证实际的勘测深度要大于预期的勘测深度,侧重点主要包括两个方面,一是对于深度的把控,确保将共炮点的排列实现最大限度的容纳;二是检波的道数是应该控制在不能少于六道。在对地震仪进行设计时,选取的参照标准应为全通滤波,并且有效的把控出面波的频率周期,其预期面波的半个周期要超过采样时间的间隔,其作用是减少假频的干扰,同时将低频面波的最大波长在记录的时间当中,从而可以有效的选择出符合地震信号勘测的低频检波器。以瞬态冲击式地面震源作为激发震源,进行激振不仅要有力,而且时间要短促,这样就不会出现回振,对于激振能量,一定要包含有这些频段——偏重于低频的宽频。至于产生于震源的地震波,其主频∫o由下式计算得到:∫o=1/2π*√4ro/M(1-σ)。 4.2进行数据处理 4.2.1面波群的加窗提取 在进行数据处理的过程中,主要面的探测对象时频散曲线。与此同时也要进行瞬态面波需要进行记录的信息和数据,包括在频散曲线上包括了多种形式下的导波和面波之间的合成,随后利用X-V的时间域对有效面波进行识别,从而能够面波进行加窗提取。 4.2.2面波特征峰值曲线的拾取 有关面波特征峰值曲线的拾取,是根据频谱图形将高阶和低阶之间的不同面波进行区分,以此作为前提工作,随后利用F—K法,把微动信号中面波频散信息提取出来,最终实现了峰值曲线的拾取工作。 五、实例探析多道瞬态面波技术在岩土工程勘察中的应用 5.1工程概况 关于多道瞬态面波技术在岩土工程勘察中的应用实例,主要是依照着娄底市创业服务平台的勘察工作为阐述的对象,该工程作为案例能够更加充分的介绍出多道瞬态面波技术的应用技术以及效果。该工程地点选择的是创业服务大楼,其周围环境的特性主要是厂房旧址,据了解该地区周围层作为垃圾填埋场,所以在进行各项工作之前要对该地区进行勘察工作,对垃圾的填埋区域进行划分和对深度进行明确的掌握,为后续的工作提供更为准确的数据。 再以庄河电厂新建工程作为工程实例来说明多道瞬态面波技术在岩土工程勘察中的应用。庄河电厂这个新建工程,其地质基岩由粉质

剪切波声波测井文字

1、目的任务 本次物探项目受四川川建勘察设计院(委托,重庆川东南地质矿产检测中心于2015年10月26日对重庆卓西彭项目西海岸(C37-1/01地块)进行剪切波测井与声波测井,测试参数主要是土层剪切波SX、S Y、纵波P以及岩体、岩样波速测试。通过波速计算土层及岩体工程力学参数(包括动弹性模量Ed、动剪切模量Gd、动泊松比 d、完整性指数Kv),为综合评价提供物探依据。 工作依据规范如下: GB50021-2001《岩土工程勘察规范》 GB50011-2010《建筑抗震设计规范》 GB/T50266-99《工程岩体试验方法标准》 2、仪器设备 RSM—24FD浮点工程仪(配井中三分量传感器) RSM-SY5智能工程仪(配40kHz单发双收换能器) 仪器生产单位:武汉岩土力学研究所 仪器标定单位:重庆市计量质量检测研究院 标定证书号:2015030900579 标定有效期:2016年03月09日 3、完成实物工作量 检测单位:重庆川东南地质矿产检测中心

波速测井工作量统计表 4、方法技术 剪切波测试:由震源产生压缩波(又称P波)和剪切波(又称S波),经过土层,由在孔中的三分量检波器接收,根据波传播的距离和走时计算出场地土的波速,进而评价场地土的工程性质。测量间距一般为1.0米。 小应变工程力学参数由下列公式求得: Gd=ρ·Vs2 Ed = ρ·Vs2(3Vp2-4Vs2) 检测单位:重庆川东南地质矿产检测中心

Vp2-Vs2 μ d = Vp2-2Vs2 2(Vp2-Vs2) V s c r=k c(d s-0.01d s2)0.5砂土液化剪切波速临界值计算式V s c r=k c(d s-0.0133d s2)0.5粉土液化剪切波速临界值计算式Vse=d0/t 式中: Vs—剪切波波速(横波) Vp—压缩波波速(纵波) Vse—等效剪切波速 d0—计算深度(m),取覆盖层厚度和20m二者的较小值 t—剪切波在地面至计算深度 Gd—动剪切模量 Ed—动弹性模量 μd—动泊松比 ρ—质量密度 V s c r—饱和砂土和粉土液化剪切波速临界值(m/s) k c—经验系数,抗震设防烈度为7度、8度、和9度时,对于饱和砂土分别可取92、130和184;对于饱和粉土分别可取42、60和84; 检测单位:重庆川东南地质矿产检测中心

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的应用 摘要 在近地表勘探工作中,常用的方法有地质钻探、地震折射和反射 等方法。地质钻探方法比较可靠,但是成本高,且具有破损性;地震 折射方法和反射方法对于波阻抗差异较小的地质体界面反映较弱,不 容易分辨,特别折射波法要求下层介质的速度一定要大于上层介质的 速度,如果地层存在低速夹层和速度倒转,则折射法将无能为力。瑞 雷面波勘探法是一种新型的地震勘探方法,能够弥补传统方法的不 足。本文就是研究如何利用瑞雷面波的频散特性进行浅层地质勘探检 测。 引言 (1) 第一章地震面波简介 (2) 第二章瑞利波勘察原理及现场工作方法 (3) 2.1瑞利波勘察原理 (3) 2.2多道瞬态面波数据采集方法 (4) 第三章瑞利波资料整理与解释 (6) 3.1面波频散曲线的深度解释 (6) 3.2层厚度的计算方法 (6) 3.3层速度的计算方法 (7) 第四章工程实例 (9) 4.1工程概述 (9) 4.2数据采集和处理 (9) 4.3底层划分及滑动面确定 (11)

第五章结论 (15) 致谢 (16) 参考文献 (17)

引言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,集中于自由表面,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。上个世纪九十年代中期,日本科学家在研究常时微动的过程中发现,常时微动是一种震源(包含面波在内)并初步完成了地基勘察。这是一项具有很大潜力的面波勘探方法。

常用剪切波波速

常用剪切波波速 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

相关公式 剪切波速测试单孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用竖向传感器记录的波形; (2)确定剪切波的时间,应采用水平传感器记录的波形。 压缩波或剪切波从振源到达测点的时间,应按下列公式进行斜距校正: 式中T——压缩波或剪切波从振源到达测点经斜距校正后的时间(s)(相应于波从孔口到达测点的时间); TL————压缩波或剪切波从振源到达测点的实测时间(s); K——斜距校正系数; H——测点的深度(m); H0——振源与孔口的高差(m),当振源低于孔口时,H0为负值; L——从板中心到测试孔的水平距离(m)。 时距曲线图的绘制,应以深度H为纵坐标,时间T为横坐标。 波速层的划分,应结合地质情况,按时距曲线上具有不同斜率的折线段确定。 每一波速层的压缩波波速或剪切波波速,应按下式计算: 式中V——波速层的压缩波波速或剪切波波速(m/s); △H——波速层的厚度(m); △T——压缩波或剪切波传到波速层顶面和底面的时间差(s)。

剪切波速测试跨孔法 压缩波或剪切波从振源到达测点时间的确定,应符合下列规定: (1)确定压缩波的时间,应采用水平传感器记录的波形; (2)确定剪切波的时间,应采用竖向传感器记录的波形。 由振源到达每个测点的距离,应按测斜数据进行计算。 每个测试深度的压缩波波速及剪切波波速,应按下列公式计算: 式中VP——压缩波波速(m/s); VS——剪切波波速(m/s); TP1——压缩波到达第1个接收孔测点的时间(s); TP2——压缩波到达第2个接收孔测点的时间(s); TS1——剪切波到达第1个接收孔测点的时间(s); TS2——剪切波到达第2个接收孔测点的时间(s); S1——由振源到第1个接收孔测点的距离(m) S2——由振源到第2个接收孔测点的距离(m) △S——由振源到两个接收孔测点距离之差(m)。[1]卓越周期的计算 《高层建筑岩土工程勘察规程JGJ72-2004》条文说明 [2] 规范重点摘录 剪切波速土的类型划分和剪切波速范围

多道瞬态面波勘察规范

多道瞬态面波勘察规范 4总则 4.1应用条件 1勘察对象与周围介质应存在明显物性(速度)差异. 2勘察目标体尺寸,相对于埋藏深度应具有一定的规模. 3目标体的物性异常能从干扰背景中清晰分辨出. 4场地条件满足开展面波勘察的要求. 5面波勘察方法满足任务的目的要求. 4.2应用领域 1探查覆盖层厚度,划分松散地层沉积层序; 2探查基岩埋深和基岩面起伏形态,划分基岩的风化带; 3探测构造破碎带; 4探测地下隐埋物体、古墓遗址、洞穴和采空区; 5探测地下非金属管道; 6探测滑坡体的滑坡带和滑坡面起伏形态; 7地基动力测试,地基加固效果检验、评价等。 4.3应用能力 普遍采用5-K 变换法提取瑞雷面波、多道加权平均或直接从5-K 域获取的频散曲线作为该排列的中心点处频散曲线,采用阻尼最小二乘法反演横波速度,从而降低了瑞雷波法探测的纵横向分辨率。无法探测小规模和局部异常,难以满足高精度探测的要求。 5工作设计 5.1工作任务 5.1.1应根据主管部门或委托方下达的任务书或有关合同(协议)明确工作任务与技术要求,确定项目负责人,编写设计书。 5.1.2工作任务书内容应包含以下内容:

1工程名称、工程地点、工程编号及范围; 2要求提交的成果资料和期限; 3工作区的地形、地貌及地质概况; 4与任务有关的已知地质资料及地形图。 5.2资料收集与踏勘 5.2.1现场探勘应包括以下内容:测区地形、地貌、交通及工作条 件;核对已收集的地质、物化探及测绘资料; 5.2.2设计书编写之前应由项目负责人组织收集和分析工区有关资料,包括以下内容: 1场地的岩土工程勘察资料 2场地建(构)筑物的平面图等; 3场地及其临近的干扰震源; 4有关的地质、钻探、物探及其他技术资料 5.3方法有效性试验 5.3.1野外施测之前,必须进行方法的有效性试验工作; 5.3.2试验工作应根据测区具体的地质条件、地貌单元规定,每种条件下不少于1 个试验面波点; 5.3.3试验点应布置在有代表性的地段上,与生产测线重合,并通 过已知地质资料的地段、试验成果作为生产成果的一部分; 5.3.4试验工作遵循从简单到复杂、试验因素单一变化的原则。 5.4测线与观测系统的选择 5.4.1应结合探测目的和已知资料,通过试验确定观测系统布置方 式、采集参数和激发方式。现场工作应符合下列规定: 1应视探测对象布置成测线或测网;多道接收时,测线应呈直线布置;

土层剪切波速度测试报告

**民生产业基地 土层剪切波速度测试报告 深圳市**有限公司 二0一七年十月二十七日

**民生产业基地 土层剪切波速度测试报告 测试: 报告编写: 审核: 批准: 深圳市**有限公司 二0一七年十月二十七日 测试单位地址:深圳市**号邮编: 联系电话:联系人:

目录 1.前言 (1) 2.测试目的及执行标准 (1) 2.1测试目的 (1) 2.2执行标准 (1) 3.测试方法及仪器设备 (1) 3.1测试方法 (1) 3.2仪器设备 (2) 4.测试结果 (2) 5.地面脉动的卓越周期 (5)

1.前言 受深圳市**有限公司委托,我公司于2017年09月21日至017年09月29日对**民生产业基地场地进行了3个钻孔的土层剪切波速度测试工作。 波速测试孔附近场地内自上而下主要有如下岩土层:素填土、粉质黏土、全风化混合岩、强风化混合岩、中风化混合岩、微风化混合岩。 2.测试目的及执行标准 2.1测试目的 本次试验目的是提供地层剪切波波速,判定土的类型及建筑场地类别;提供场地卓越周期。 2.2执行标准 《岩土工程勘察规范》(GB 50021-2001)(2009年版) 《建筑抗震设计规范》(GB 50011-2010)(2016年版) 3.测试方法及仪器设备 3.1测试方法 本项目剪切波速度测试采用单孔检层法,将起振板置于距井口约1.0~1.5米处,并使其中点与井口的连线垂直于起振板,同时在其上面加压整体性较好的重物。然后,锤击起振板产生纵波和剪切波(记录时通过调节仪器采样率对纵波和剪切波分开采集),并通过置于井内的三分向拾振器将土的振动历程输入电脑分析,获得各测点纵波和剪切波的到时,并利用下式计算相应剪切波速: Vi =(h i -h i-1)/(t i sin αi -t i-1sin αi-1) (1) 22sin i i i i D h h +=α (2) i=1......N 其中h i ,t i 分别为第i 测点的深度和剪切波的走时,D 为起振板中点至孔口的垂直距离。 现场测试时,一般每一岩土层都有一个测点,每1~2米左右一测点。

瑞雷面波勘探

瑞雷面波勘探及软件应用 摘要 本文主要介绍SWS型多波列数字图象工程勘察与工程检测仪和其配套的SWS瞬态面波数据处理软件的使用方法,通过对其工作原理和瑞雷面波理论的介绍,说明多道面波采集系统在发展瞬态面波法方面的关键作用。并且通过一个实例具体说明如何使用该仪器进行野外数据的采集及数据处理软件的使用。 关键词 SWS瞬态面波数据处理软件;多道面波采集系统;瞬态面波法 Abstract This text introduce SWS type many wave arrange digital vision project reconnoitre wave operation method ,data processing of software the related to project detector and its SWS transient state mainly,Pass to its operation principle and theoretical introduction of auspicious Ray a wave,Prove many dishes of surface wave gather system wave key effect ,law of developing transient state。And concrete to prove how about to use this software to go on datum gathering ,graph processing and analysing through one instance。 Keywords Wave data processing software SWS; Many dishes of surface wave gather the system; Wave law the transient state

瞬态面波法数据采集处理及应用实例

第20卷第1期物探与化探V ol.20.No.1 1996年2月GEOPHYSICAL&GEOCHEMICAL EXPLORATION Feb., 1996 瞬态面波法的数据采集处理系统及其应用实例 刘云祯王振东 (北京市水电物探研究所,北京100024) (地矿部工勘办,北京100812) 摘要本文介绍我国研制开发的SWS瞬态面波数据采集处理系统的主要技术指标、软件特点与运行环境及工程应用实例,指出多道面波采集系统在发展瞬态面波法方面的关键作用。 关键词瞬态面波法,多道面波采集处理系统。 前言 传统的地震勘探一直利用的是体波,利用天然地震中的面波推断地球内部构造的尝试约始于五十年代,利用人工激发的面波进行地质调查则是近二十几年的事。 面波有天然面波与人工面波之分,由于激振方式不同,致使面波法目前又进一步分为稳态面波法和瞬态面波法。 六十年代,美国人提出面波的半波长解释方法,并将稳态面波法首先用于地基勘察。据报道有四个测点的探测深度曾超过10m,揭开了面波勘探的序幕。在七十年代,我国工程界亦开展了稳态面波测试试验,主要是在基础块上进行,由于当时的技术条件尚不太成熟,还满足不了地基土分层的需要,因此,此类试验研究沉寂了一段时间。较早将稳态面波法形成探测系统用于工程实践的是日本VIC公司,他们经过八年努力,于八十年代初推出GR810佐藤式全自动地下勘查机,并数次来中国表演,由于设备昂贵,我国迄今仅购置二台。八十年代后期,稳态面波法试验研究在我国悄然兴起,地矿部、水利水电部、冶金部、中科院、浙江大学等均先后开展了应用开发研究。进入九十年代,稳态面波法,特别是瞬态面波法,在硬件研制和软件开发两个方面,都相继取得引人注目的进展。本文着重介绍我国自行开发研制的瞬态面波法的一种数据采集处理系统以及这一系统在机场、高速公路和浅层煤田上进行工程地质勘察的实例。 1瞬态面波法概要 试验表明,瑞雷波某一波长的波速,主要与深度小于该波长一半的地层物性有关,这就是用一定波长的瑞雷波速度来表征一定深度地层物性的实验基础。 稳态面波法是通过改变震源的激振频率来得到不同波长的瑞雷波在地层表层的传播速度,其形式与电法的频率测深有某些类似,故初期,在《浅层地震勘探应用技术》一书中,稳态面波法曾被称之为弹性波频率测深。 瞬态面波法不同的是通过锤击、落重乃至炸药震源,产生一定频率范围的瑞雷波,再通过振幅谱分析和相位谱分析,把记录中不同频率的瑞雷波分离出来,从而得到一条Vr-f曲线或Vr-λr曲线。 解释方法多采用半波长法,但进一步研究发现,半波长解释方法有时不够精确,实际应用中需作修正或改进。现已研究出若干种解释方法。推断层厚度的方法目前有一次导数极值点法和拐点法;

剪切波报告汇总

道真自治县道真中学第二食堂单孔法Ps波速度检层测试报告 工程名称:道真自治县道真中学第二食堂 测试地点:工地现场 测试日期:2016年9月 勘察单位:贵州鼎盛岩土工程有限公司 证书等级:工程勘察专业类甲级 证书编号:B152004778-6/4 提交日期: 2016年9月

道真自治县道真中学第二食堂单孔法Ps波速度检层测试报告 项目负责:陈简 报告编写:罗仿超 审核:姚本焱 审定:曾昭涤 总工程师:秦启明 总经理:袁万骅 勘察单位:贵州鼎盛岩土工程有限公司 证书等级:工程勘察专业类甲级 证书编号:B152004778-6/4 提交日期: 2016年9月

目录 一、工程概况 二、场地工程地质简况及测试条件 1、场地工程地质简况 2、场地岩土体的微振动、Vs波特征及测试条件 三、仪器选用及测试方法 (一)仪器选用 (二)测试方法 四、测试分析结果 1、动弹性参数的计算 2、土层等效剪切波(Vse)的计算 3、场地类别划分 4、测试分析结果 五、结论 附件 1、单孔波速测试测点原始数据表 2、单孔波速测试测点计算数据表 3、单孔波速测试分层结果数据表 一、工程概况

拟建道真自治县道真中学第二食堂位于道真县城,交通便利,地理位置优越。受打钻自治县道真中学的委托,我公司测试人员于2016年8月对该场地具有代表性的2个勘探钻孔进行了Ps波测试(测试位置见钻孔平面布置图),其主要目的为: 1、测试纵、横波在钻孔土体的传播速度; 2、利用Vs、Vp值计算场地土体的小应变条件下的动弹参数,以供设计参考; 3、利用场地剪切波(Vs波)的等效波速值(Vse),对场地土的类型进行划分,进而对场地类别进行划分: 测试过程及资料处理的技术依据为: 《岩土工程勘察规范》(GB50021-2001)2009年版; 《工程岩体试验方法标准》(GB/T50266-99); 《建筑抗震设计规范》(GB50011—2010); 《地基动力特性测试规范》(GB/T50269-97); 《水电水利工程物探规程》(DL/T5010-2005); 《水利水电工程物探规程》(SL/326-2005)等。 二、场地工程地质简况及测试条件 1、场地工程地质简况 根据地质调查和钻探揭露,场地覆盖土层有素填土(Q4ml)红粘土(Q4el),下伏基岩为三叠系下统茅草铺组(T1m)石灰岩,岩层倾向100°,倾角8°。 2、场地岩土体的微振动、Vs波特征及测试条件 按《建筑抗震设计规范》(GB50011—2010),一般情况下,应按地面至剪切波速大于500 m/s,且其下卧各岩土的剪切波速均不小于500 m/s的土层顶面距离确定。 场地局部地段回填土结构较松散,对激发的应力波有较强的衰减和吸收作用,附近的车辆和施工作业也对测试数据带来一定的干扰,在资料分析过程中,通过调整信号增益和对信号进行滤波分析处理。 三、仪器选用及测试方法

面波法勘探在工程勘察中的应用

面波法勘探在工程勘察中的 应用 本页仅作为文档页封面,使用时可以删除 This document is for reference only-rar21year.March

面波法勘探在工程勘察中的应用 摘要 在近地表勘探工作中,常用的方法有地质钻探、地震折射和反射 等方法。地质钻探方法比较可靠,但是成本高,且具有破损性;地 震折射方法和反射方法对于波阻抗差异较小的地质体界面反映较 弱,不容易分辨,特别折射波法要求下层介质的速度一定要大于上 层介质的速度,如果地层存在低速夹层和速度倒转,则折射法将无 能为力。瑞雷面波勘探法是一种新型的地震勘探方法,能够弥补传 统方法的不足。本文就是研究如何利用瑞雷面波的频散特性进行浅 层地质勘探检测。 引言 (1) 第一章地震面波简介 (2) 第二章瑞利波勘察原理及现场工作方法 (3) 瑞利波勘察原理 (3) 多道瞬态面波数据采集方法 (4) 第三章瑞利波资料整理与解释 (6) 面波频散曲线的深度解释 (6) 层厚度的计算方法 (6) 层速度的计算方法 (7) 第四章工程实例 (9) 工程概述 (9) 数据采集和处理 (9)

底层划分及滑动面确定 (11) 第五章结论 (15) 致谢 (16) 参考文献 (17)

引言 面波勘探,也称弹性波频率测深,是国内外近几年发展起来的一种新的浅层地震勘探方法。面波分为瑞利波(R波)和拉夫波(L波),而R波在振动波组中能量最强、振幅最大、频率最低,集中于自由表面,容易识别也易于测量,所以面波勘探一般是指瑞利面波勘探。 人们根据激振震源的不同,又把面波勘探分为①稳态法、②瞬态法、③无源法。它们的测试原理是相同的,只是产生面波的震源不同罢了。 1938年德国土力学协会首次尝试用稳态振动来检测岩土的各种弹性力学参数。1960年美国密西西比陆军工程队水陆试验所开始开发类似的技术方法,但由于当时技术条件的限制,均未获得成功。70年代初美国利用瞬态激振产生的瑞利波来研究浅部地质问题,并于1973年在第42届国际地球物理勘探年会上发表了“Rayleigh Wave Dispersion Technique for Rapid Subsurface Exploration”(瞬态面波在浅层勘探中的应用)论文,报道了有关的研究成果。在稳态方面,直到80年代初,日本的VIC株式会社经过多年的研究试制,推出了GR-810佐藤式全自动地下勘探机,才使该项物探技术在浅层工程勘察工作中得以应用。上个世纪九十年代中期,日本科学家在研究常时微动的过程中发现,常时微动是一种震源(包含面波在内)并初步完成了地基勘察。这是一项具有很大潜力的面波勘探方法。

多道瞬态面波技术在宁东能源重化工基地景观大道市政工程勘察中应用

多道瞬态面波技术在宁东能源重化工基地景观大道市政工 程勘察中的应用 摘要:多道瞬态面波技术在岩土工程勘察中是一种有效的方法。它对于土层波速测试、场地类别划分、土层划分、不良地质体的探查等具有快速、灵活、准确的优点。采用面波资料与勘探资料结合进行地质分层,连接地质剖面,效果良好,满足地质勘察要求,同时解决了在碎石层、粉砂岩中进钻艰难、地层不好划分的难题。缩短勘察周期、提高工程质量和投资效益。多道瞬态面波技术必将在诸多工程勘察领域发挥越来越大的作用。 关健词:面波勘探;弹性波;频散曲线 the application of multi-channel transient surface wave landscape avenue municipal engineering survey of the energy and heavy chemical industry base in ningdong gao haining (yin chuan architecture design & research institute ltd.) abstract: the multi-channel transient surface wave technology is an effective method in geotechnical engineering investigation. it divided for the soil velocity test, site classification, soil divided, adverse geological exploration with fast, flexible, accurate advantages. the use of surface wave data and exploration data combined with geological stratification connection geological section, to good effect,

相关主题
文本预览
相关文档 最新文档