当前位置:文档之家› 第二章 简单回归模型

第二章 简单回归模型

最新第二章(简单线性回归模型)2-3答案

2.3拟合优度的度量 一、判断题 1.当 ()∑-2i y y 确定时,()∑-2 i y y ?越小,表明模型的拟合优度越好。(F ) 2.可以证明,可决系数2R 高意味着每个回归系数都是可信任的。(F ) 3.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响。(F ) 4.任何两个计量经济模型的2R 都是可以比较的。(F ) 5.拟合优度2R 的值越大,说明样本回归模型对数据的拟合程度越高。( T ) 6.结构分析是2R 高就足够了,作预测分析时仅要求可决系数高还不够。( F ) 7.通过2R 的高低可以进行显著性判断。(F ) 8.2R 是非随机变量。(F ) 二、单项选择题 1.已知某一直线回归方程的可决系数为0.64,则解释变量与被解释变量间的线性相关系数为( B )。 A .±0.64 B .±0.8 C .±0.4 D .±0.32 2.可决系数2R 的取值范围是( C )。 A .2R ≤-1 B .2R ≥1 C .0≤2R ≤1 D .-1≤2R ≤1 3.下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好 B 如果模型的2R 较低,我们可以认为此模型的质量较差 C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量 D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 三、多项选择题 1.反映回归直线拟合优度的指标有( ACDE )。 A .相关系数 B .回归系数 C .样本可决系数 D .回归方程的标准差 E .剩余变差(或残差平方和) 2.对于样本回归直线i 01i ???Y X ββ+=,回归变差可以表示为( ABCDE )。 A .2 2i i i i ?Y Y -Y Y ∑ ∑  (-) (-) B .2 2 1 i i ?X X β∑ (-) C .2 2 i i R Y Y ∑ (-) D .2 i i ?Y Y ∑(-) E .1 i i i i ?X X Y Y β∑ (-()-) 3.对于样本回归直线i 01i ???Y X ββ+=,?σ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。 A .2i i 2 i i ?Y Y Y Y ∑∑(-)(-) B .2i i 2 i i ?Y Y 1Y Y ∑∑ (-)-(-)

简单线性回归模型

第二章 简单线性回归模型 一、单项选择题 1.影响预测误差的因素有( ) A .置信度 B .样本容量 C .新解释变量X 0偏离解释变量均值的程度 D .如果给定值X 0等于X 的均值时,置信区间越长越好。 2.OLS E 的统计性质( ) A .线性无偏性 B .独具最小方差性 C .线性有偏 D .β∧ 是β的一致估计 3.OLSE 的基本假定( ) A .解释变量非随机 B .零均值 C .同方差 D .不自相关 4.F 检验与拟合优度指标之间的关系( ) A . 21111n p p R --?? ?- ?-?? B . 21111n p p R --?? ?- ?-?? C . 2111n p p R -???- ?-?? D . 2111n p p R -???- ?-?? 5.相关分析和回归分析的共同点( ) A .都可表示程度和方向 B .必须确定解释(自)变量和被解释(因)变量 C .不用确定解释(自)变量和被解释(因)变量 D .都研究变量间的统计关系 6.OLS E 的基本假设有( ) A .解释变量是随机的 B .随机误差项的零均值假设

C .随机误差项同方差假设 D .随机误差项线性相关假设 7.与 2 ()() 1 ()1i i i n x x y y i n x x i - --==∑∑ 等价的式子是( ) A .2 2 1()1i i i n x y nx y i n x n x i -=-=∑∑ B .2()1()1i i i n x x y i n x x i --==∑∑ C .2()1()1i i i n x x x i n x x i -=-=∑∑ D .xy xx L L 8.下列等式正确的是( ) A .SSR=SST+SSE B .SST=SSR+SSE C .SSE=SSR+SST D .SST=SST ×SSE 9.无偏估计量i β的方差是( ) A . 2 1 () n j j X X σ=-∑ B . 2 2 1 ()n j j X X σ=-∑ C . 2 () n j j X X σ=-∑

(完整版)第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项和残差项是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B .() i i i i 12 2i i n X Y -X Y ? n X -X β∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01i ???Y X ββ+=满足( A )。 A .i i ?Y Y 0∑(-)= B .2 i i Y Y 0∑ (-)= C . 2 i i ?Y Y 0∑ (-)= D .2i i ?Y Y 0∑ (-)= 6.按经典假设,线性回归模型中的解释变量应是非随机变量,且( A )。 i u i e

第二章(简单线性回归模型)2-2答案教学文稿

第二章(简单线性回归模型)2-2答案

2.2 简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项i u 和残差项i e 是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A . ()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B . () i i i i 1 2 2i i n X Y -X Y ?n X -X β ∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12 x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-)=最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线

简单线性回归分析思考与练习参考答案

第10章 简单线性回归分析 思考与练习参考答案 一、最佳选择题 1.如果两样本的相关系数21r r =,样本量21n n =,那么( D )。 A. 回归系数21b b = B .回归系数12b b < C. 回归系数21b b > D .t 统计量11r b t t = E. 以上均错 2.如果相关系数r =1,则一定有( C )。 A .总SS =残差SS B .残差SS =回归 SS C .总SS =回归SS D .总SS >回归SS E. 回归MS =残差MS 3.记ρ为总体相关系数,r 为样本相关系数,b 为样本回归系数,下列( D )正确。 A .ρ=0时,r =0 B .|r |>0时,b >0 C .r >0时,b <0 D .r <0时,b <0 E. |r |=1时,b =1 4.如果相关系数r =0,则一定有( D )。 A .简单线性回归的截距等于0 B .简单线性回归的截距等于Y 或X C .简单线性回归的残差SS 等于0 D .简单线性回归的残差SS 等于SS 总 E .简单线性回归的总SS 等于0 5.用最小二乘法确定直线回归方程的含义是( B )。 A .各观测点距直线的纵向距离相等 B .各观测点距直线的纵向距离平方和最小 C .各观测点距直线的垂直距离相等 D .各观测点距直线的垂直距离平方和最小 E .各观测点距直线的纵向距离等于零 二、思考题 1.简述简单线性回归分析的基本步骤。 答:① 绘制散点图,考察是否有线性趋势及可疑的异常点;② 估计回归系数;③ 对总体回归系数或回归方程进行假设检验;④ 列出回归方程,绘制回归直线;⑤ 统计应用。 2.简述线性回归分析与线性相关的区别与联系。

(完整版)第二章(简单线性回归模型)2-2答案

2.2简单线性回归模型参数的估计 、判断题 1. 使用普通最小二乘法估计模型时, (F ) 2. 随机扰动项u i 和残差项e i 是一回事。 (F ) 3. 在 任何情况下OLS 估计量都是待估参数的最 优线性无偏估计。 (F ) 布。 5.如果观测值X i 近似相等,也不会影响回归系数的估计量 】、单项选择题 1.设样本回归模型为 Y i =" ? X i +e i D )。 A. ?= ■ 1 X i X X i X Y i -Y ? X i Y i -nXY c. - X i 2-nX 2 2 ?以 丫表示实际观测值 ,Y?表示回归估计值, 则普通最小二乘法确定的 ?的公式中, 错误的是 ?n X i Y i - X i Y i i n X i 2- X i 2 ?_ n X i Y i - X i Y i i 1 2 x 则普通最小二乘法估计参数的准则是使 (D ) A. (丫— Y i )=o c. (Y — £ )=最小 「? 一 Y A . (X, 丫 ) 5.以丫表示实际观测值, 丫?表示OLS 估计回归值,则用 OLS 得到的样本回归直线 丫 ?一 ?) 4?满足基本假设条件下,随机误差项 i 服从正态分布,但被解释变量 Y 不一定服从正态分 所选择的回归线使得所有观察值的残差和达到最 3. 丫表示实际观测值 丫?表示OLS 估计回归值,则下列哪项成立( D A. 4.用OLS 估计经典线性模型 Y i — 0 i X i + u i ,则样本回归直线通过点( .(X, Y?)

满足(A)。 A.(Y i—丫i)一0 B . (Y i —Y)2 - 0 C.(Y—丫)2-0 D .(丫Y)-0 6.按经典假设,线性回归模型中的解释变量应是非随机变量,且(

计量经济学讲义第二讲(共十讲)

第二讲 普通最小二乘估计量 一、基本概念:估计量与估计值 对总体参数的一种估计法则就是估计量。例如,为了估计总体均值为u ,我们可以抽取一个容量为N 的样本,令Y i 为第i 次观测值,则u 的一个很自然的 估计量就是?i Y u Y N ==∑。A 、B 两同学都利用了这种 估计方法,但手中所掌握的样本分别是12(,,...,)A A A N y y y 与12(,,...,)B B B N y y y 。A 、B 两同学分别计算出估计值 ?A i A y u N =∑ 与?B i B y u N =∑ 。因此,在上例中,估计量?u 是随机的,而??,A B u u 是该随机变量可能的取值。估计量 所服从的分布称为抽样分布。 如果真实模型是:01y x ββε=++,其中01,ββ是待估计的参数,而相应的OLS 估计量就是: 1 01 2 ()???;() i i i x x y y x x x βββ-==--∑∑ 我们现在的任务就是,基于一些重要的假定,来考察上述OLS 估计量所具有的一些性质。 二、高斯-马尔科夫假定

●假定一:真实模型是:01y x ββε=++。有三种 情况属于对该假定的违背:(1)遗漏了相关的解释变量或者增加了无关的解释变量;(2)y 与x 间的关系是非线性的;(3)01,ββ并不是常数。 ●假定二:在重复抽样中,12(,,...,)N x x x 被预先固定 下来,即12(,,...,)N x x x 是非随机的(进一步的阐释见附录),显然,如果解释变量含有随机的测量误差,那么该假定被违背。还存其他的违背该假定的情况。 笔记: 12(,,...,)N x x x 是随机的情况更一般化,此时,高斯-马尔科夫假定二被更改为:对任意,i j ,i x 与j ε不相关,此即所谓的解释变量具有严格外生性。显然,当12(,,...,)N x x x 非随机时,i x 与j ε必定不相关,这是因为j ε是随机的。 ●假定三:误差项期望值为0,即 ()0,1,2i E i N ε==。 笔记: 1、当12(,,...,)N x x x 随机时,标准假定是: 12(,,...,)0,1,2,...,i N E x x x i N ε== 根据迭代期望定律有:12[(,,...,)]()i N i E E x x x E εε=,因 此,如果12(,,...,)0i N E x x x ε=成立,必定有:()0i E ε=。

简单线性回归模型练习题

第二章 简单线性回归模型练习题 一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空 1 在经济计量模型中引入反映( )因素影响的随机扰动项t ξ,目的在于使模型更符合( )活动。 2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的( )、社会环境与自然环境的( )决定了经济变量本身的( );(2)建立模型时其他被省略的经济因素的影响都归入了( )中;(3)在模型估计时,( )与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了( )与( )之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。 3 ( )是因变量离差平方和,它度量因变量的总变动。就因变量总变动的变异来源看,它由两部分因素所组成。一个是自变量,另一个是除自变量以外的其他因素。( )是拟合值的离散程度的度量。它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。( )是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。 4 回归方程中的回归系数是自变量对因变量的( )。某自变量回归系数β的意义,指的是该自变量变化一个单位引起因变量平均变化( )个单位。 5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。 6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。 三、简答题 1 在线性回归方程中,“线性”二字如何理解 2 用最小二乘法求线性回归方程系数的意义是什么 3 一元线性回归方程的基本假设条件是什么 4 方差分析方法把数据总的平方和分解成为两部分的意义是什么 5 试叙述t 检验法与相关系数检验法之间的联系。 6 应用线性回归方程控制和预测的思想。 7 线性回归方程无效的原因是什么 8 回归分析中的随机误差项i ε有什么作用它与残差项t e 有何区别

第二章(简单线性回归模型)2-5答案(可编辑修改word版)

一、判断题 2.5 回归模型预测 1. Y ?f 是对个别值Y f 的点估计。(F ) 2.预测区间的宽窄只与样本容量 n 有关。(F ) 3. Y ?f 对个别值Y f 的预测只受随机扰动项的影响。(F ) 4.一般情况下,平均值的预测区间比个别值的预测区间宽。(F ) 5.用回归模型进行预测时,预测普通情况和极端情况的精度是一样的。(F ) 二、单项选择题 1. 某一特定的 X 水平上,总体 Y 分布的离散度越大,即 2 越大,则( A )。 A. 预测区间越宽,精度越低 B .预测区间越宽,预测误差越小 C 预测区间越窄,精度越高 D .预测区间越窄,预测误差越大 2. 在缩小参数估计量的置信区间时,我们通常不采用下面的那一项措施(D )。 A. 增大样本容量 n B. 预测普通情形而非极端情形 C.提高模型的拟合优度 D.提高样本观测值的分散度 三、多项选择题 1. 计量经济预测的条件是(ABC ) A. 模型设定的关系式不变 B .所估计的参数不变 C.解释变量在预测期的取值已作出预测 D .没有对解释变量在预测期的取值进行过预测 E .无条件 2. 对被解释变量的预测可以分为(ABC ) A. 被解释变量平均值的点预测 B.被解释变量平均值的区间预测 C.被解释变量的个别值预测 D.解释变量预测期取值的预测 四、简答题 1. 为什么要对被解释变量的平均值以及个别值进行区间预测? 答:由于抽样波动的存在,用样本估计出的被解释变量的平均值Y ?f 与总体真实平均值 E (Y f X f 之间存在误差,并不总是相等。而用Y ?f 对个别值Y f 进行预测时,除了上述 提到的误差,还受随机扰动项的影响,使得总体真实平均值 E (Y f X f 并不等于个别值 Y f 。 一般而言,个别值的预测区间比平均值的预测区间更宽。 2. 分别写出 E ( Y f X f 和Y f 的置信度为1 -的预测区间。 ? 1 (X - X )2 ? ? 1 (X - X )2 ? 答: E ( Y X : Y ? ± t ? + f ? ; Y : Y ? ± t ? 1 + + f ? 。 f f f n ? 2 x 2 ? i ? f f n ? 2 x 2 ? i ? ∑ ∑

第二讲 面板数据线性回归模型

第二讲 面板数据线性回归模型估计、检验和应用 第一节 单因素误差面板数据线性回归模型 对于面板数据y i 和X i ,称 it it it y αε′=++X βit i it u εξ=+ 1,,; 1,,i N t T =="" 为单因素误差面板数据线性回归模型,其中,i ξ表示不可观测的个体特殊效应,it u 表示剩余的随机扰动。 案例:Grunfeld(1958)建立了下面的投资方程: 12it it it it I F C αββε=+++ 这里,I it 表示对第i 个企业在t 年的实际总投资,F it 表示企业的实际价值(即公开出售的股份),C it 表示资本存量的实际价值。案例中的数据是来源于10个大型的美国制造业公司1935-1954共20年的面板数据。 在EViews6中设定面板数据(GRUNFELD.wf1) Eviews6 中建立面板数据 EViews 中建立单因素固定效应模型

1.1 混合回归模型 1 面板数据混合回归模型 假设1 ε ~ N (0, σ2I NT ) 对于面板数据y i 和X i ,无约束的线性回归模型是 y i = Z i δi + εi i =1, 2, … , N (4.1) 其中' i y = ( y i 1, … , y iT ),Z i = [ ιT , X i ]并且X i 是T×K 的,' i δ是1×(K +1)的,εi 是T×1的。 注意:各个体的回归系数δi 是不同的。 如果面板数据可混合,则得到有约束模型 y = Z δ + ε (4.2) 其中Z ′ = (' 1Z ,' 2Z , … ,'N Z ),u ′ = ('1ε,'2ε, … ,' N ε)。 2 混合回归模型的估计 当满足可混合回归假设时, ()1''?Z Z Z Y ?=δ 在假设1下,对于Grunfeld 数据,基于EViews6建立的混合回归模型 3 面板数据的可混合性检验 假设检验原理:基于OLS/ML 估计,对约束条件的检验。 (1) 面板数据可混合的检验 推断面板数据可混合的零假设是: 1 H :对于所有的i 都有δi = δ. 检验约束条件的统计量是Chow 检验的F 统计量

(完整版)第二章(简单线性回归模型)2-4答案

2.4 回归系数的区间估计和假设检验 一、判断题 1.如果零假设H 0:B 2=0,在显著性水平5%下不被拒绝,则认为B 2一定是0。 (F ) 2.k β的置信度为()α-1的置信区间指真实参数落入该区间的概率是()α-1。(F) 3.假设检验为单侧检验还是双侧检验本质上取决于备择假设的形式。(F ) 4.回归系数的显著性检验是用来检验解释变量对被解释变量有无显著解释能力的检验。(T ) 二、单项选择题 1.对回归模型i i 10i u X Y ++=ββ进行检验时,通常假定i u 服从( C )。 A .() 2 i 0N σ, B .()2n t - C .( )2 0N σ , D .()n t 2.用一组有30个观测值的样本估计模型i i 10i u X Y ++=ββ,在0.05的显著性水平下对1β的显著性作检验,则1β显著地不等于零的条件是其统计量大于( D )。 A .()30t 050. B .()30t 0250.) C .()28t 050. D .()28t 0250. 3.回归模型i i i u X Y ++=10ββ中,关于检验010=β:H 所用的统计量)?(?1 11βββVar -,下 列说法正确的是( D )。 A .服从)(22-n χ B .服从)(1-n t C .服从) (12-n χ D .服从)(2-n t 4.用一组有30个观测值的样本估计模型后,在0.05的显著性水平上对的显著性作检验,则显著地不等于零的条件是其统计量大于等于( C ) A. B. C. D. 三、简答题 1.当α给定后,回归系数2β的置信区间是什么样的? 答:总体方差2 σ已知时,置信区间为??? ? ??? ? +-∑∑2i 2 2i 2x z x z σ βσ β?,?;总体方差2σ未知则使用2 n e 2 i 2 -=∑σ ?估计2 σ:①样本容量充分大时,统计量仍服从正态,则置信区间为 t t 01122t t t t y b b x b x u =+++1b t 1b t )30(05.0t )28(025.0t )27(025.0t )28,1(025.0F

第二章(简单线性回归模型)2-3答案

拟合优度的度量 一、判断题 1.当 ()∑-2i y y 确定时,()∑-2 i y y ?越小,表明模型的拟合优度越好。(F ) 2.可以证明,可决系数2R 高意味着每个回归系数都是可信任的。(F ) 3.可决系数2R 的大小不受到回归模型中所包含的解释变量个数的影响。(F ) 4.任何两个计量经济模型的2R 都是可以比较的。(F ) 5.拟合优度2R 的值越大,说明样本回归模型对数据的拟合程度越高。( T ) 6.结构分析是2R 高就足够了,作预测分析时仅要求可决系数高还不够。( F ) 7.通过2R 的高低可以进行显著性判断。(F ) 8.2R 是非随机变量。(F ) ] 二、单项选择题 1.已知某一直线回归方程的可决系数为,则解释变量与被解释变量间的线性相关系数为( B )。 A .± B .± C .± D .± 2.可决系数2R 的取值范围是( C )。 A .2R ≤-1 B .2R ≥1 C .0≤2R ≤1 D .-1≤2R ≤1 3.下列说法中正确的是:( D ) A 如果模型的2R 很高,我们可以认为此模型的质量较好 B 如果模型的2R 较低,我们可以认为此模型的质量较差 C 如果某一参数不能通过显著性检验,我们应该剔除该解释变量 D 如果某一参数不能通过显著性检验,我们不应该随便剔除该解释变量 : 三、多项选择题 1.反映回归直线拟合优度的指标有( ACDE )。 A .相关系数 B .回归系数 C .样本可决系数 D .回归方程的标准差 E .剩余变差(或残差平方和) 2.对于样本回归直线i 01i ???Y X ββ+=,回归变差可以表示为( ABCDE )。 A .2 2i i i i ?Y Y -Y Y ∑ ∑  (-) (-) B .2 2 1 i i ?X X β∑ (-) C .2 2 i i R Y Y ∑ (-) D .2 i i ?Y Y ∑(-) E .1 i i i i ?X X Y Y β∑ (-()-) 3.对于样本回归直线i 01i ???Y X ββ+=,?σ为估计标准差,下列可决系数的算式中,正确的有( ABCDE )。

最新第二章(简单线性回归模型)2-1答案

2.1回归分析与回归函数 一、判断题 1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。(T ) 2. 线性回归是指解释变量和被解释变量之间呈现线性关系。( F ) 3. 随机变量的条件期望与非条件期望是一回事。(F ) 4、总体回归函数给出了对应于每一个自变量的因变量的值。(F ) 二、单项选择题 1.变量之间的关系可以分为两大类,它们是( A )。 A .函数关系与相关关系 B .线性相关关系和非线性相关关系 C .正相关关系和负相关关系 D .简单相关关系和复杂相关关系 2.相关关系是指( D )。 A .变量间的非独立关系 B .变量间的因果关系 C .变量间的函数关系 D .变量间不确定性的依存关系 3.进行相关分析时的两个变量( A )。 A .都是随机变量 B .都不是随机变量 C .一个是随机变量,一个不是随机变量 D .随机的或非随机都可以 4.回归分析中定义的( B )。 A.解释变量和被解释变量都是随机变量 B.解释变量为非随机变量,被解释变量为随机变量 C.解释变量和被解释变量都为非随机变量 D.解释变量为随机变量,被解释变量为非随机变量 5.表示x 和y 之间真实线性关系的总体回归模型是( C )。 A .01???t t Y X ββ=+ B .01()t t E Y X ββ=+ C .01t t t Y X u ββ=++ D .01t t Y X ββ=+ 6.一元线性样本回归直线可以表示为( C ) A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+= C. i i e X Y ++=∧ ∧ i 10ββ D. i 10X i Y ββ+=∧ 7.对于i 01i i ??Y =X +e ββ+,以?σ表示估计标准误差,r 表示相关系数,则有( D )。 A .?0r=1σ=时, B .?0r=-1σ=时, C .?0r=0σ=时, D .?0r=1r=-1σ=时,或 8.相关系数r 的取值范围是( D )。 A .r ≤-1 B .r ≥1 C .0≤r ≤1 D .-1≤r ≤1

第二章(简单线性回归模型)2-2答案

简单线性回归模型参数的估计 一、判断题 1.使用普通最小二乘法估计模型时,所选择的回归线使得所有观察值的残差和达到最小。(F) 2.随机扰动项i u 和残差项i e 是一回事。(F ) 3.在任何情况下OLS 估计量都是待估参数的最优线性无偏估计。(F ) 4.满足基本假设条件下,随机误差项i μ服从正态分布,但被解释变量Y 不一定服从正态分 布。 ( F ) 5.如果观测值i X 近似相等,也不会影响回归系数的估计量。 ( F ) 二、单项选择题 1.设样本回归模型为i 01i i ??Y =X +e ββ+,则普通最小二乘法确定的i ?β的公式中,错误的是( D )。 A .()() () i i 1 2 i X X Y -Y ?X X β--∑∑= B .() i i i i 12 2 i i n X Y -X Y ? n X -X β∑∑∑∑∑= C .i i 122i X Y -nXY ?X -nX β∑∑= D .i i i i 12x n X Y -X Y ?βσ∑∑∑= 2.以Y 表示实际观测值,?Y 表示回归估计值,则普通最小二乘法估计参数的准则是使( D )。 A .i i ?Y Y 0∑(-)= B .2 i i ?Y Y 0∑ (-)= C .i i ?Y Y ∑(-)=最小 D .2 i i ?Y Y ∑ (-) =最小 3.设Y 表示实际观测值,?Y 表示OLS 估计回归值,则下列哪项成立( D )。 A .?Y Y = B .?Y Y = C .?Y Y = D .?Y Y = 4.用OLS 估计经典线性模型i 01i i Y X u ββ+=+,则样本回归直线通过点( D )。 A .X Y (,) B . ?X Y (,) C .?X Y (,) D .X Y (,) 5.以Y 表示实际观测值,?Y 表示OLS 估计回归值,则用OLS 得到的样本回归直线i 01i ???Y X ββ+=满足( A )。 A .i i ?Y Y 0∑(-)= B .2 i i Y Y 0∑ (-)= C . 2 i i ?Y Y 0∑ (-)= D .2i i ?Y Y 0∑ (-)=

(完整版)第二章(简单线性回归模型)2-2答案

2.2简单线性回归模型参数的估计 、判断题 1. 使用普通最小二乘法估计模型时, 所选择的回归线使得所有观察值的残差和达到最小。 (F ) 2. 随机扰动项u i 和残差项e i 是一回事。(F ) 3. 在任何情况下 OLS 估计量都是待估参数的最优线性无偏估计。 (F ) 4. 满足基本假设条件下,随机误差项 i 服从正态分布,但被解释变量 Y 不一定服从正态分 布。 5. 如果观测值X i 近似相等,也不会影响回归系数的估计量。 二、单项选择题 D )。 丫? 一 Y 5.以Y 表示实际观测值,丫?表示OLS 估计回归值,则用 OLS 得到的样本回归直线 丫?一 ?) 满足(A )。 A. (Y i — 丫i ) 一 0 B . (Y i — Y )2 - 0 C. (Y i — 丫)2-0 D . (丫— Y ) - 0 6. 按经典假设,线性回归模型中的解释变量应是非随机变量,且( 1. 设样本回归模型为 Y i =^0 ? X i +e i , 则普通最小二乘法确定的 ?的公式中, 错误的是 A. ?= 1— X i X Y i -Y X i X c. ?一 X i Y i -nXY X i 2-nX 2 ?_ 1 一 n X i Y i - X i Y i i n X i 2- X i 2 n X i Y i - X i Y i i 2 ?以Y 表示实际观测值, Y?表示回归估计值, 则普通最小二乘法估计参数的准则是使 (D )。 A. (Y i — Y i )=o c. (Y — £)=最小 3. Y 表示实际观测值, 丫?表示OLS 估计回归值,则下列哪项成立( D A. 4. 用OLS 估计经典线性模型 Y i 一 0 i X i + u i ,则样本回归直线通过点( D )。 A . (X, 丫) .(X , Y?) 2 x ?一

第二章 简单线性回归模型(西财教材)

第二章简单线性回归模型 第一节回归分析与回归方程 一、回归与相关 1、变量之间的关系 ①函数关系:) y=,其中y为应变量,x为自变量。 f (x ②相关关系或统计关系(双向因果关系):当一个或若干个变量x变化时,y发生相应的变化(可能是不确定的),反之亦然。 ③单向因果关系:) x y=,其中u为随机变量。单一线性函数要求 f (u , 变量具有单向因果关系。 2、函数关系与相关关系的互相转化 3、相关关系的类型 ①简单相关; ②复相关或多重相关; ③线性相关; ④非线性相关; ⑤正相关; ⑥负相关; ⑦不相关。 上述相关类型可直观地用(EViews软件)画图形来判断。例如,美国个人可支配收入与个人消费支出之间的相关关系可由下列图形看出,它们为正相关关系。

1500 2000 2500 3000 3500 1500 20002500300035004000 PDI P C E 其中,PDI 为(美)个人可支配收入,PCE 为个人消费支出。 PROFIT 对STOCK 的折线图为 050 100 150 200 250 50 100 150 STOCK P R O F I T 其中,STOCK 为(美)公司股票利息,PROFIT 为公司税后利润。 以下是利润与股息分别对时间的序列图(或称趋势图) 050 100 150 200 250 70 72 74 76 78 80 82 84 86 88 90 2040 60 80 100 12014070 72747678808284868890

GDP 对M2的折线图为 020000 40000 6000080000 100000 50000 100000 150000 M2 G D P 其中M2为(中国)广义货币供应量,GDP 为国内生产总值。 LM2对LPP 的曲线图为 10.5 11.0 11.512.0 4.9 5.0 5.1 5.2 5.3 LPP L M 2 其中,LPP 为(中国)季度物价指数,LM2为季度广义货币供应量,变量前L 表示对变量取了对数。 4、相关关系的度量(相关程度) ① 总体相关系数 ρ= ② 样本相关系数: ()()XY X X Y Y r --+表达式) ③ 计算相关系数应注意的问题: ●XY YX r r =。

第二章(简单线性回归模型)2-1答案

回归分析与回归函数 一、判断题 1. 总体回归直线是解释变量取各给定值时被解释变量条件期望的轨迹。(T ) 2. 线性回归是指解释变量和被解释变量之间呈现线性关系。( F ) 3. 随机变量的条件期望与非条件期望是一回事。(F ) 4、总体回归函数给出了对应于每一个自变量的因变量的值。(F ) 二、单项选择题 1.变量之间的关系可以分为两大类,它们是( A )。 A .函数关系与相关关系 B .线性相关关系和非线性相关关系 C .正相关关系和负相关关系 D .简单相关关系和复杂相关关系 2.相关关系是指( D )。 A .变量间的非独立关系 B .变量间的因果关系 C .变量间的函数关系 D .变量间不确定性的依存关系 3.进行相关分析时的两个变量( A )。 A .都是随机变量 B .都不是随机变量 C .一个是随机变量,一个不是随机变量 D .随机的或非随机都可以 4.回归分析中定义的( B )。 A.解释变量和被解释变量都是随机变量 B.解释变量为非随机变量,被解释变量为随机变量 C.解释变量和被解释变量都为非随机变量 D.解释变量为随机变量,被解释变量为非随机变量 5.表示x 和y 之间真实线性关系的总体回归模型是( C )。 A .01???t t Y X ββ=+ B .01()t t E Y X ββ=+ C .01t t t Y X u ββ=++ D .01t t Y X ββ=+ 6.一元线性样本回归直线可以表示为( C ) A .i i X Y u i 10++=ββ B. i 10X )(Y E i ββ+= C. i i e X Y ++=∧∧i 10ββ D. i 10X i Y ββ+=∧ 7.对于i 01i i ??Y =X +e ββ+,以?σ表示估计标准误差,r 表示相关系数,则有( D )。 A .?0r=1σ=时, B .?0r=-1σ=时, C .?0r=0σ=时, D .?0r=1r=-1σ=时,或 8.相关系数r 的取值范围是( D )。 A .r ≤-1 B .r ≥1 C .0≤r ≤1 D .-1≤r ≤1

《计量经济学》 第二章 简单线性回归模型(新教材)20120219总结

第二章 简单线性回归模型 第一节 回归分析与回归方程 一、回归与相关 1、变量之间的关系 (1)函数关系:()Y f X =,其中Y 为应变量,X 为自变量。 (2)相关关系或统计关系:当一个变量X 或若干个变量12,, ,k X X X 变化时, Y 发生相应的变化(一种依赖或依存的关系),反之亦然(相互依赖或依存的关系)。 在相关关系中,变量X 与变量Y 均为不确定的,并且它们之间的影响是双向的(双向因果关系)。 (3)单向因果关系:(,)Y f X u =,其中u 为随机变量。在计量经济模型中,单一线性函数要求变量必须是单向因果关系。 在单向因果关系中,变量Y 是不确定的,变量X 是确定的(或可控制的)。 要注意的是,对因果关系的解释不是靠相关关系或统计关系来确定的,并且,相关关系与统计关系也给不出变量之间的具体数学形式,而是要通过其它相关理论来解释,如经济学理论。例如,我们说消费支出依赖于实际收入是引用了消费理论的观点。 比如,数据挖掘关系可以看成是没有经济学关系的一种统计关系。 2、相关关系的类型 (1) 简单相关 (2) 复相关或多重相关 (3) 线性相关 (4) 非线性相关 (5) 正相关 (6) 负相关 (7) 不相关

3、相关关系的表示 (1)图形法 上述相关类型可直观地用(EViews 软件)画图形来判断。例如,美国个人可支配收入与个人消费支出之间的相关关系可由下列图形看出,它们为正相关关系。 1500 2000 2500 3000 3500 15002000250030003500400 P D I P C E 其中,PDI 为(美)个人可支配收入,PCE 为个人消费支出。PDI 和 PCE 分别对时间的折线图如下 PROFIT 对STOCK 的散点图为 050 100 150 200 250 50 100 150 STOCK P R O F I T

相关主题
文本预览
相关文档 最新文档