当前位置:文档之家› 过程控制系统的简介

过程控制系统的简介

过程控制系统的简介
过程控制系统的简介

过程控制系统

过程控制的主要控制对象:

温度(Temperature),压力(Pressure),液位(Liquid level),

成分(Component)和物性(Physical property)等参数

控制系统首要的要求:

系统稳定性,所有参数必须保证系统能够运行正常且具有一定的稳定裕度,通常可取衰减比作为稳定指标,随动系统,常取衰减比为10:1;定值系统常取衰减比为4:1;

过程控制的任务:

在了解,掌握生产工艺和系统综合指标的要求基础上,根据安全性、稳定性、经济性的要求,应用控制理论、最优控制、系统论的理论知识对系统进行分析与设计,提出合理的控制方案,设计报警和联锁保护系统,选择最优的控制器参数及生产过程现场调试方案等!

过程控制系统的基本要求:

○1安全性:一个控制系统的必要条件,无安全性保证不谈控制系统

○2稳定性:如何有效抑制或减小系统外部干扰,保持生产过程长期稳定运行的是设计控制系统的要求

○3经济性:随着市场竞争力以及资源匮乏的情况下,在满足安全性及稳定性的前提下,要求控制系统低成本,高效益

过程控制系统的组成:

○1被控对象(过程):指需要控制的生产过程、设备或装置。如锅炉锅筒、水槽

○2被控变量(被控量):被控对象中要控制的某个物理量或生产过程中的某个参数,如加热炉的温度、水槽的液位

○3检测和变送器:用于检测被控对象的被控量,并将检测信号转换为统一标准电信号输出

○4控制器(调节器):将检测信号与设定值信号进行比较,产生偏差信号,按一定的控制规律对偏差信号进行运算,产生控制信号输出到执行器

○5执行器:将控制信号进行放大,转换为控制操纵变量的执行信号,以驱动控制阀。气动调节阀,电动调节阀

○6控制阀:接受执行器的输出信号变换为控制进给量。有气开阀和气关阀○7干扰:凡是影响被控量的各种作用信号称为干扰或者扰动,内干扰,外干扰

○8偏差:被控量的给定量与实际量之差,但能够直接得到的信号是被控量的测量值,通常把给定值与测量值之差成为偏差

○9辅助装置:报警装置,连锁保护装置

过程控制系统的特点:

1.被控对象的多样性:过程控制设计各个工业领域(如石油,化工,冶金,

机械,电力,建材等领域)

2.对象特性的难辨性:过程控制被控对象的内在机理较为复杂,具有严重的

非线性,具有多变量过程,要想完全从机理上揭示其内在规律,几乎不可能,所以,根据过程输入、输出数据确定过程模型的结构和参数的系统辨识方法建模,构成白箱模型,黑箱模型和灰箱模型。

3.对象滞后与耦合:被控量具有较大的惯性,被控对象往往具有纯滞后性。滞后对于调节过程产生不利的影响,它将降低调节系统的稳定性,增大调节参数的偏差,延长调节时间。被控量与控制量之间呈现出交互影响的关系,每个控制量的变化引起几个被控量的变化,形成控制量的被控量的耦合。

4.特性往往具有非线性:客观世界本来就是非线性的,工业生产过程中,大多数是非线性的,非线性是控制系统中普遍存在的系统特性。

5.控制方案的多样性:控制对象的多样性决定了控制方案的多样性,出现了单回路控制、串级控制、前馈-反馈控制、比值控制、均匀控制、分程控制、选择性控制、智能控制(专家控制、模糊控制、神经网络控制等)、数字和计算机控制系统等

6.定制系统主要是控制形式:大多数生产过程中被控量的设定值为一定值,控制的目的是使系统尽快减小或消除干扰的影响,使被控量保持或接近设定值,即系统为定值控制

7.系统多属于慢变化过程:过程控制的被控对象往往具有很大的储蓄容积,导致被控量变化十分缓慢。

8.容错性:对复杂(如非线性、快时变、复杂多变量和环境扰动等)控制系统来说,能进行有效的全局控制,并具有较强的容错能力。 过程系统的性能指标:

1稳定性:稳定性是控制系统的首要要求,并且考虑到实际过程系统工作环境、参数、原料等的变化,对系统除要求稳定外,还要求其具有一定的稳定裕量。

2准确性:系统过渡过程结束后,控制系统被控量与设定值之间的偏差是衡量系统性能的重要指标,通常希望静态偏差尽可能小。

3快速性:控制系统受到干扰影响后,系统是否可迅速做出响应,根据偏差调节操纵变量是被控量与设定值之间的偏差尽快地减小,并且被控量在工艺要求范围内变化。 时域控制性能指标:

以二阶系统的单位阶跃响应输出为例

222

1(s)2n n n C s s s

ωζωω=?++ ;(t)h = 1

(C(s))L - ;(t)1n p t h e ζω-=+ n ω:为系统的无阻尼自然振荡角频率

ζ:阻尼比

1

n

T ω=

:系统的振荡周期

上升时间

r T =

峰值时间

:p d

k T π

ω==

(k 为第k 个峰值,峰值时间p T 为第一

个峰值时间)

最大超调量:p δ

=

(t )()100%=100%()

n p

t p h h e

e h ζω--∞=??∞

过渡过程时间(调节时间)

:11ln s n T ζω??

=+ ?? 若取=5%?

,并忽略ζ0<<0.9)

时,则得3

s n

T ζω≈

若取=2%?

,并忽略ζ0<<0.9)

时,则得4

s n

T ζω≈

Overshoot:超调量; ss e :稳态值; Peak time:峰值时间;

Rise time: 上升时间 Setting time:调节时间 y(t):输出值 p M :峰值 1. 衰减比n (稳定性)

定义为两个相邻的同相波峰值之比1

2

B n B =

,衰减比越大,系统越稳定 1n <系统的响应为衰减振荡1n =系统的响应为等幅振荡 1n >系统的响应为发散振荡

一般随动系统,常取衰减比为10:1;定值系统常取衰减比为4:1;

2. 衰减率(快速性)

1221

1111B B B B B n

ψ-=

=-=-(一般当0.75~0.9ψ= 时,410n = ) 衰减率也用于快速控制系统稳定性的衡量。衰减率是指每经过一个周期,输出响应曲线波动幅值衰减的百分数。

3. 余差(静态偏差)C (准确性)

余差是指输出系统的过渡过程稳态值与设定值之差。余差是控制系统稳态准确性指标,对于定值或者随动系统,一般要求余差为零或小于工艺设计范围

4最大动态偏差(最大超调量Overshoot )(动态稳定性)

最大动态偏差是指系统输出量的最大值与输出的稳定值之差其与输出稳态值的相对百分数构成系统的最大超调量%σ

(t )y()%100%

y()

p y σ-∞=

?∞

5.调节时间(过渡过程时间)(快速性)

调节时间反映了控制系统的快速性,调节时间s t 越短,表明系统动态响应越快,系统克服扰动信号的能力越强

综合性能指标:

控制系统除上述单项控制性能指标外,也采用综合控制性能指标来衡量控制系统的优劣,常采用偏差积分性能指标 偏差积分(IE ) 0

(t)min

J e dt ∞

=→?

偏差绝对积分(IAE )

|e(t)|min

J dt ∞

=→?

该综合性能指适用于衰减和无静差系统 偏差绝对值与时间乘积的积分(ITEA)

|e(t)|min J t dt ∞

=→?

该综合性能指标既包含了控制系统初始大误差对性能指标影响,有同时强调了过渡过程后期的误差对系统性能指标的影响 偏差二次方差积分(ISE)

20

(t)dt min

J e ∞

=→?

该积分性能指标重点考虑抑制过渡过程中的大偏差

名词解释

复合控制系统(前馈-反

按输入或扰动直接构成的开环控制通道与包含偏差的闭环系统共同组成反馈-前馈控制系

统,成为符合控制系统

对于时滞较大的控制对象,其反馈作用不能及时影响系统的输出,以致引起较大的波动,直接影响控制品质。如果扰动量是可观可控的,则利用外来扰动信号直接控制输出,构成复合控制,这样既发挥了前馈控制校正及时的优点,又保持了反馈控制能克服多种扰动对被控量的影响

典型计算机控制系统简介

典型计算机控制系 统简介 第8章典型计算机控制系统简介 本章的教学目的与要求 掌握典型的计算机控制系统的结构、特点和设计方法。

●授课主要内容 ●基于PC总线的板卡与工控机组成的计算机控制系统 ●基于数字调节器的计算机控制系统 ●基于可编程控制器的计算机控制系统 ●基于嵌入式系统的计算机控制系统 ●分散控制系统(DCS) ●现场总线控制系统(FCS) ●计算机集成制造系统(CIMS) ●主要外语词汇 Micro-Controller Unit (MCU):微控器,Digital Signal Processor(DSP)数字信号处理器 ●重点、难点及对学生的要求 说明:带“***”表示要掌握的重点内容,带“**”表示要求理解的内容,带“*”表示要求了解的内容,带“☆”表示难点内容,无任何符号的表示要求自学的内容 ●基于PC总线的板卡与工控机组成的计算机控制系统*** ●基于数字调节器的计算机控制系统*** ●基于可编程控制器的计算机控制系统** ●基于嵌入式系统的计算机控制系统** ●分散控制系统(DCS)** ●现场总线控制系统(FCS)* ●计算机集成制造系统(CIMS)*

●辅助教学情况 多媒体教学课件(POWERPOINT) ●复习思考题 ●基于PC总线的板卡与工控机组成的计算机控制系统 ●基于数字调节器的计算机控制系统 ●基于可编程控制器的计算机控制系统 ●基于嵌入式系统的计算机控制系统 ●分散控制系统(DCS) ●现场总线控制系统(FCS) ●计算机集成制造系统(CIMS) ●参考资料 刘川来,胡乃平,计算机控制技术,青岛科技大学讲义

Win2000系统引导过程详解

Win 2000系统引导过程详解 引言 本文旨在以Windows 2000为例讨论其系统的引导过程,以期较为深入的揭示引导过程中各种相关故障的原因并提出快捷有效的解决途径。 一、基于PC的Windows 2000引导过程 个人电脑上Windows 2000的引导过程是分好几个阶段进行的,通过了解Windows 2000引导过程中的各个阶段以及每个阶段使用到的文件,有助于我们之后更有效的分析和处理各种问题。Windows 2000的引导过程分为预引导、引导、内核加载、内核初始化和系统登陆五个阶段,如图一所示, 图一 表一则列出了在系统引导的不同阶段所引用的文件。

表一 在这里,我们暂不讨论Windows 2000操作系统的内部工作机制,以下通过图文结合的方式,简要给大家说明在这五个阶段,操作系统都在干些什么,那些程序发挥了作用。 第一步,预引导阶段,过程如图二所示,首先包括了系统加电自检,这个过程完成硬件设备的枚举和配置。其次计算机BIOS确定引导设备的位置,加载并运行Master Boot Record(MBR)主引导区内容(如lilo等)。然后扫描分区表,定位活动分区,并将活动分区上的引导扇区内容加载到内存中执行。最后加载系统盘根目录中的Ntldr文件,这也就是Windows 2000操作系统的加载程序。 图二 第二步,引导阶段,过程如图三所示,首先是初始化引导加载程序,这时Ntldr完成处理器模式切换和文件系统(FAT或NTFS)驱动的加载,如果使用了SCSI设备,Ntldr将Ntbootdd.sys加载到内存中运行。其次Ntldr读取系统盘根目录下的Boot.ini文件,屏幕显示Boot Loader Operating System菜单,等待用户选择要加载的操作系统,关于Boot.ini 文件的设置我们后面还会详细讨论,如果此时Ntldr没有找到Boot.ini文件,就默认从第一个磁盘的第一个分区的\Winnt位置加载系统,如果在所限时间内用户没有做出选择,则启动默认的选项。开始加载Windows 2000操作系统之后,Ntldr读取并运行程序https://www.doczj.com/doc/bd4146456.html, 以完成硬件的检测,如果安装了多操作系统,而且用户选择启动了Windows98或WindowsMe那么Ntldr就会加载并运行Bootsect.dos启动所选的操作系统。最后在Ntldr 加载了Windows 2000并收集了硬件信息后,紧跟着就根据用户选择调用系统的硬件配置文件,如果只有单一的硬件配置文件则直接作为默认配置调用,强烈建议用户自己在系统安装好了之后备份一份原始硬件配置文件。

自动控制系统概要设计

目录 1引言 (3) 1.1编写目的 (3) 1.2背景 (3) 1.3技术简介 (4) https://www.doczj.com/doc/bd4146456.html,简介 (4) 1.3.2SQL Server2008简介 (5) 1.3.3Visual Studio2010简介 (5) 1.4参考资料 (6) 2总体设计 (8) 2.1需求规定 (8) 2.2运行环境 (8) 2.3数据库设计 (8) 2.3.1数据库的需求分析 (9) 2.3.2数据流图的设计 (9) 2.3.3数据库连接机制 (10) 2.4结构 (11) 2.5功能需求与程序的关系 (11) 3接口设计 (12) 3.1用户接口 (12) 3.2外部接口............................................................................................错误!未定义书签。 3.3内部接口............................................................................................错误!未定义书签。4运行设计.....................................错误!未定义书签。 4.1运行模块组合....................................................................................错误!未定义书签。 4.2运行控制............................................................................................错误!未定义书签。 4.3运行时间............................................................................................错误!未定义书签。5测试 (13)

电气控制系统简介

电厂电气专业简介 发电厂电气专业是发电厂的重要组成部分,也是电力系统的重要部分,它是发电厂联系系统的纽带,对整个发电厂和电力系统的稳定运行起着举足轻重的作用。我们厂电气专业在设计和生产运行方面都有特殊性,为了更好了解我厂电气专业的概况,特编写本专业简介。 一.电气一次部分 1. 主接线形式: ●一期工程安装两台600MW汽轮发电机组,采用发电机——主变压器——220KV线路组接入聊城北 郊变电站的220KV母线,厂区内不设电气升压站。220KV高压系统为中性点直接接地。 ●规划中的二期工程同样安装两台600MW汽轮发电机组,采用发电机——主变压器——500KV线路 组接入聊城北郊变电站的500KV母线,厂区内不设升压站。 2 . 厂用电接线形式: 2.1接地方式 高压厂用电6KV系统,高厂变及高备变中性点中阻接地,接地电流约600A,电阻值为6.06欧。 发电机中性点经接地变压器二次电阻接地,接地电阻0.59欧。 2.26KV厂用电接线: 2.2.1 高厂变由主变低压侧经封闭母线引接电源。高压厂用变压器低压侧采用分裂绕组,每台机组均设四段高压厂用工作母线,四段母线分别由两台高厂变的四个低压绕组供电。互为备用及成对出现的高压电动机及低压变压器,分别由不同变压器的相应绕组供电。一期两台机组输煤除灰的6KV负荷设两个母线段,在负荷中心附近设配电装置,分别从主厂房工作段引接,两段6KV母线之间配置有分段开关。 2.2.2 6KV厂用系统采用中电阻接地系统,接地电阻为6.06欧。开关采用XX开关厂生产的真空开关。 2.3 400V厂用电接线: 低压厂用电400V系统采用动力配电中心(PC)—电动机控制中心(MCC)的接线方式。容量为75KW以上,220KW以下的低压电动机及MCC由PC供电。容量为75KW以下的电动机由分散的电动机控制中心供电。 每台机组主厂房内设置动力配电中心,辅助车间根据负荷分布情况分区设置动力配电中心,具体情况如下: 2.3.1 汽机动力配电中心(2*1250KVA,低压厂变容量下同) 2.3.2 锅炉动力配电中心(2*2000KVA) 2.3.3 电除尘动力配电中心(2*2000KV A) 2.3.4 公用动力配电中心(2*2000KVA两台机组共用) 2.3.5 翻车机动力配电中心(2*1000KV A) 2.3.6 输煤动力配电中心(2*2000KVA) 2.3.7 除灰动力配电中心(2*800KV A) 2.3.8 化学水处理动力配电中心(2*1000KVA) 2.3.9 循环水处理动力配电中心(2*1000KVA) 2.3.10 动力配电中心(2*400KV A) 2.3.11工业水处理动力配电中心(2*400KV A) 2.3.12机组的检修及照明动力中心(按机炉分开) 每段400V动力配电中心均用分段开关分为AB两个半段,每个半段由一台6.3/0.4KV变压器供电。两台变压器为暗备用。正常运行动力中心分段开关断开,当一台变压器检修时,分段开关手动投入。 电动机控制中心根据负荷分布情况分散成对配置,互为备用及成对出现的负荷,分别由对应的两段电动机控制中心供电。电动机控制中心均采用单电源供电方式。对单台1、2类电动机设单独的MCC,由不同的动力配电中心双电源供电。 低压厂用电400V系统采用中性点直接接地方式。 二.主设备部分 1.发电机本体: ●发电机为XX电机厂生产的水-氢-氢600MW汽轮发电机。 型号:QFSN-600-2型

自相关仪原理简介

自相关仪原理简介 脉冲宽度是脉冲激光器的重要性能指标,利用扫描自相仪可以测量ps和fs的脉冲宽度。随着激光器的问世脉冲激光器由于峰值功率高而获得广泛的应用,目前在化学反应动力学、非线性光学、光语分析、激光加工、激光测距等科技领域都采用脉冲激光器作为光源。脉冲激光器的脉冲 宽度已从毫秒和纳秒提高到皮秒和飞秒。 关于脉冲激光器脉冲宽度的定义,对于单纵模输出,其脉冲宽度定义为脉冲高度50%的全脉冲宽度(FWHM);对于多模输出,其脉冲宽度为最佳拟合包络脉冲的FWHM。对于一般脉冲激光器,通 常可以利用一台带宽大于350MHz的示波器,和快速光电二极管(升降时间小于1ns)进行测量。对于ps和fs脉冲激光器,则只能使用条纹相机,或扫描自相关仪进行测量。扫描自相关仪是近十多年来发 展的专门用于测量脉冲宽度的新型仪器,具有高分辫率、高灵敏度和使用方便等优点。目前已出现多 种型号的自相关仪可用于探测超短光学脉冲的瞬时宽度,提供最佳的灵敏度和分辫率,适于测量锁 模染料或蓝宝石激光器的fs脉冲和脉冲半导体激光器或Nd-YAG/YLF激光器的ps脉冲。 利用测量激光的脉冲宽度,整套系统应包括光学系统和用于控制与显示的计算机系统。自 相关仪的光学系统类似于迈克尔逊干涉仪的结构,可以有两种形式共线的和非共线的,如图所示。图中入射光脉冲经分束片分为两束光,然后分别经两棱镜反射后再次共轴输出,即为共线型。 By guruntech 显然,调节棱镜的位置可以使两束光分别有不同的光程,连续改变棱镜的位置可以形成一个脉冲序列对另一脉冲序列的扫描,形成相关函数的波形。选择倍频晶体的方向使输入光E(t)和E(t-τ)一两束 光的波矢量都稍偏离相位匹配方向,因而在单独入射时不产生二次谐波,当两束光同时入射时因合成 矢量满足相位匹配条件则产生二次信频其信号与两束光强的乘积有关,由于倍频光信号仅与两束 光强度的乘积项有关: 因此所产生的二次谐波,由光电倍增管接收并予记录。图所示则是目前应用比较广泛的非共线相 关测法,其中两光束通过透镜聚焦于晶体上,其二次谐波通过滤光片和调节光阑为光电倍增管接收 并予记录。非共线相关测量法能消除背景光,可以达到较高的测量精度。

多系统引导程序示例

多系统引导程序XORLDR应用示例 无忧论坛的Pauly大侠出品的多系统引导程序Xorldr,功能强大,可以使用多种启动方式,最多可管理8个启动项。Pauly本人也写了一个用户手册,详细介绍Xorldr程序的功能及用法,但限于篇幅没有具体讲解启动实例。本人在实际应用该程序的过程中积攒了一些心得经验,不敢独享,写下来供大家参考,以起到抛砖引玉的效果。 1.工具准备 在进行安装XORLDR之前,我们需要准备好以下工具软件: ●XORLDR多系统管理程序,Pauly大侠作品,目前最新版本是0.3.5 ● BOOTICE引导程序安装工具,亦为Pauly作品,最新版本是0.76 ● WinHex,强大的16进制文件编辑与磁盘编辑软件。 ● grub4dos、syslinux最新版,以及其它可能用到的工具,如本文中使用的9IN1_PXE_SRS合盘,我们要多次利用其中的工具。 2.磁盘分区及结构介绍 首先,我们使用Winhex来看一下磁盘上的分区及结构。 打开Winhex,按F9打开磁盘,如图1所示: (图1) 选择物理磁盘HD0,点击OK后可观察到磁盘(hd0)的分区情况,如图2所示。

(图2) 由图2可以看出我们这块磁盘的一些情况:容量为73.9G,分为四个分区,启始扇区(Start sectors)占用第0~62扇区;第一主分区占用第63~20996954扇区,10G空间;第二主分区占用第20996955~31503464扇区,共5G空间;第三主分区占用第31503465~94446134扇区,共30G空间;存在一个分区间隙占用第94446135~94446197扇区,共31.5KB空间;第四分区(逻辑分区)占用第94446198~154577429扇区,共28.7G空间;最后是一个分区剩余空间,占用第154577430~154587127扇区,共4.7MB空间。 实际分区根据自己的需要进行,不必局限于单主分区或者四主分区。一个比较理想的情况是三主分区加扩展分区,再设置若干逻辑分区,这样对于现在海量容量的硬盘来讲是比较合适的。 3.XORLDR菜单编辑示例 我们假定您已经做好了分区。以我这台老机器上分区为例:四个分区,第一、二主分区各安装一个winXP,并实现系统之间相互隐藏;第三主分区放置游戏及其它私密数据;第四分区(逻辑分区)放置我的9IN1_PXE_SRS维护工具合盘及系统备份等。根据实际需要,设计菜单项如图3所示。

自相关过程

自相关过程控制

院系:管理科学与工程专业:质量与可靠性工程学号:110510335 姓名:张华威 自相关过程质量控制 引论:自相关过程质量控制概述 当质量过程呈现自相关现象时,常规控制图已经不能准确反映生产中质量的波动.常规控制图理论:质量管理的观点认为:质量具有变异性其特性值是波动的,具有规律性,但它不是通常的确定性现象的确定性规律,而是随机现象的统计规律,用数学语言来讲,就是服从某种分布。如果出现异常情况,就必然使波动偏离原来的分布,利用统计技术就可以发现这种波动。在现代质量管理学中,通常使用休哈特控制图进行质量控制,但休哈特控制图的原理要求数据必须复合独立正态性,即要求数据服从正态分布,所以说如果数据之间彼此具有相关性的话,休哈特控制图便不再使用。基于以上理论基础绘制的常规控制图虽然使用简便且易于理解,但对于受控状态下一般性原因的认知

过于简化。。因此为了提高控制图对特殊性原因的检测能力,当过程相关时设计控制图,必须考虑质量过程的自相关结构。为了解决过程自相关情况下的质量控制问题,统计学家们陆续提出了一些改进方法,其中主要方法之一就是引入时间序列分析法。以ARMA以及ARIMA 模型为基础,我们便可以对具有相关性的一组数据进行相关性分析,方差分析,以及残差分析等,通过一系列控制图,便可以达到对具有自相关性的数据进行质量控制和质量改进的目的。 一、收集或生成反应自相关生产过程的平稳时间序 列ARMA(p,q)数据: 0.5377 0.1183 -0.6593 -1.8273 -0.9306 2.3339 0.5832 -1.9769 -1.5564 -1.2791 -0.9306 -0.887 -1.0862 -1.3611 -0.5995 1.097 -1.3821 -1.6807 -1.9456 -0.3706 0.5881 -0.964 -0.8627 -0.3625 -1.2301 -0.6845 0.636 -1.5359 -0.8981 -0.7563 -0.5994 -0.7409 -0.5368 -1.2723 -0.912 -0.1624 0.1918 0.0102 0.4458 -0.0552 3.3173 -0.352 1.556 -0.3836 0.7921 4.3794 0.9989 0.5869 -0.6471 1.4887 1.835 -0.6952 -1.3781 -0.7324 -0.908 5.2662 -0.0154 -1.3526 -1.4082 -0.4246 3.909 0.3363 0.2649 -2.044 0.2376 3.4713 1.2641 -1.3455 1.0815 2.5769 3.6231 2.2772 0.3677 1.5831 0.6928 2.648 1.6038 -0.0958 1.4235 1.3068 2.2868 -0.0066 1.4991 -0.0704 0.7788 3.4275 -0.2645 -1.2401 -0.4736 -1.1516 3.8088 -1.1958 -0.368 -0.4345 -0.7811 4.3498 1.6732 -1.7639 0.4321 -2.5307 3.9891 -0.1377 1.9157 -1.2463 -0.344 2.092 1.1812 1.2539 -2.8234 -0.5909 2.96 0.3569 2.5806 - 3.2347 -2.1488

城市轨道交通列车自动控制系统简介-精选文档

城市轨道交通列车自动控制系统简介 、前言 随着城市现代化的发展,城市规模的不断扩大,城市轨道交通的发展已成为解决现代城市交通拥挤的有效手段,其最大特点是运营密度大、列车行车间隔时间短、安全正点。城市轨道交通列车自动控制系统是保证列车运行安全,实现行车指挥和列车运行现代化,提高运输效率的关键系统设备。 二、列车自动控制系统的组成 列车自动控制(ATC系统由列车自动防护系统(ATP、列车自动驾驶系统(ATO和列车自动监控系统(ATS三个子系统组成。 一列车自动防护( ATP-Automatic Train Protection 系统 列车自动控制系统中的ATP的子系统通过列车检测、列车间 隔控制和联锁(联锁设备可以是独立的,有的生产厂商的系统也可以包含在ATP系统中)控制等实现对列车相撞、超速和其他危险行为的防护。 二列车自动驾驶系统 ( AT0?CAutomatic Train Operation 列车自动驾驶子系统(ATO与ATP系统相互配合,负责车 站之间的列车自动运行和自动停车,实现列车的自动牵引、制动 等功能。ATP轨旁设备负责列车间隔控制和报文生成;通过轨道

电路或者无线通信向列车传输速度控制信息。ATP与ATO车载系 统负责列车的安全运营、列车自动驾驶,且给信号系统和司机提供接口。 三)自动监控(ATS-Automatic Train Super -vision )系统 列车自动监控子系统负责监督列车、自动调整列车运行以保证时刻表的准确,提供调整服务的数据以尽可能减小列车未正点运行造成的不便。自动或由人工控制进路,进行行车调度指挥, 并向行车调度员和外部系统提供信息。ATS功能主要由位于OCC 控制中心)内的设备实现。 三、列车自动控制系统原理 一)列车自动防护(ATP) ATP是整个ATC系统的基础。列车自动防护系统(ATP亦 称列车超速防护系统,其功能为列车超过规定的运行速度时即自动制动,当车载设备接收地面限速信息,经信息处理后与实际速度比较,当列车实际速度超过限速后,由制动装置控制列车制动系统制动。 ATP通过轨道电路或者无线GPS系统检测列车实际运行位 置,自动确定列车最大安全运行速度,连续不间断地实行速度监督,实现超速防护,自动监测列车运行间隔,以保证实现规定地行车间隔。防止列车超速和越过禁止信号机等功能。 按工作原理不同,ATP子系统可分为“车上实时计算允许速

自动控制系统简介

自动控制系统简介 一、自动控制系统的组成 1、看以下框图 2、被控对象:需要实现控制的设备、机械或生产过程成为对象,如下塔、主冷、空冷塔、粗氩冷凝器。 3、被控变量:对象内要求保持一定数值(或按某一规律变化)的物理量称为被控变量。如下塔液空液位、空冷塔液位、粗氩冷凝器液位。 4、控制变量(操作变量):受执行器控制,用以使被控变量保持一定数值的物料或能量称为控制变量。如由下塔进入上塔经过液空节流阀(LV1)的液空。 5、干扰:除控制变量外作用于对象并能引起被控变量变化的一切因素。比如进下塔空气量改变,影响液空产量,对下塔液空液位有影响。 6、给定值:工艺规定被控变量要保持的数值。 7、偏差:设定值与测量值之差。 8、控制器:对来自变送器的测量信号与给定值相比较所产生的偏差,并根据一定的规律进行运算(PID运算),并输出控制信号给执行器。 9、检测与变送装置:它测量被控变量,并将被控变量转换为特定的信号送给控制器的比较环节。 10、执行器:它根据控制器送来的信号相应地改变控制变量,以达到控制被控变量的目的。如LV1根据控制器送来的信号,可以改变进入上塔的液空量(操作变

量),从而控制了被控变量下塔液空液位。 11、正作用环节:输出信号随输入信号增加而增加的环节称为正作用,输出信号随输入信号的增加而减小的环节称为反作用环节。 12、执行器、变送器、被控对象三个环节组成广义对象,当广义对象为正作用时,控制器为反作用特性。 13、选择控制器的正反作用: 13.1判断被控对象的正反作用方向。当控制变量增加时,被控对象的输出(被控变量)也增加,控制变量减小时,被控对象的输出(被控变量)也减小,则被控对象为正作用方向。如果被控变量与控制变量的变化方向相反,则被控对象为反作用方向。 13.2确定执行器的正、反作用方向。气开阀为正作用,气闭阀为反作用。执行器气开、气闭是根据工艺安全角度考虑。 13.3确定广义对象的正、反作用,一般变送器为正作用,只需根据被控对象和执行器的作用方向判断广义对象的作用方向,这两个环节同向,则广义对象为正作用,反之为反作用。 13.4确定控制器的正反作用。若广义对象为正作用方向,则控制器为反作用方向,若广义对象为反作用方向,则控制器为正作用方向。 14、自动控制系统运行的基本要求:要实现自动控制,系统必须闭环。闭环控制系统的稳定运行最基本的必要条件是负反馈。系统要构成负反馈,则广义对象为正作用特性时,控制器为反作用特性;当广义对象为反作用特性时,则控制器为正作用特性。被控对象与执行器的特性由实际的现场工艺条件确定,所以应通过控制器的正反作用特性来满足系统的负反馈要求。 二、过程参数的检测 1、一个检测系统主要由被测对象、传感器、变送器和显示装置等部分组成。对某一个具体的检测系统而言,被测对象、检测元件和显示装置部分总是必需的。 2、传感器又称为检测元件或敏感元件,它直接响应被测变量,经能量转换并转化成一个与被测变量成对应关系的便于传送的输出信号,如电压、电流、频率等。 3、变送器是把传感器的输出转换为4~20mA的标准统一的模拟量信号或者满足特定标准的数字信号的检测仪表。

深入Linux,Unix系统引导过程

最近一直在专注的学习一样技术,主要就是Linux/Unix系统的引导过程,从最基本的机器加电一直到最终系统能够正确的使用为止,这个过程中涉及到了相当多的技术,以及各种技术的推陈出新,都在这个重要的过程中得以体现。我之所以对这部分进行了分析,主要是工作上面需要这方面的知识,同时觉得很有意思,所以广泛的深入研究了一下。 好了,废话不多说了,开始来点干货吧,本文并非全部原创,参考了一些文章,具体请查看“参考”部分。 深入Linux/Unix系统引导过程 Linux/Unix系统的引导过程包含了很多阶段,但是对于一个标准的系统的引导,大致的阶段是类似的,不同的平台会有一些不同之处(x86平台下主要使用LILO、SYSLINUX或是grub,SPARC平台下主要使用OBP作为loader)。在接下来的章节中,我将从系统加电开始直至Linux/Unix内核被正式加载运行。 1 概述 首先从高层的架构分析一下Linux/Unix引导流程,下面的图作为一种更加形象的说明,这样你可以从上次梗概的了解整个流程,为下面深入的分析打下基础。 从这张图中,总结一下大概的流程,分别是:系统启动、阶段1引导、阶段2引导、内核加载和用户态的初始化。在系统启动阶段主要用的技术包括BIOS(最新的发展为EFI),阶段1引导主要用的技术包括Master Boot Record(最近的发展为GPT),阶段2引导主要用的技术包括LILO、GRUB、SYSLINUX、GRUB2(x86平台下)和OBP(SPARC平台下)。这张图属于比较古老的一种介绍,在目前的技术发展下,每个阶段都有了一些变化。 这里。

2.2 EFI启动 与传统MBR相比,GPT采用了不同的分区方式。 对于传统MBR,其结构主要如下: 上图即对上文中所述的很形象的说明,在图中看到MBR被分成三个部分,分别是:Bootloader、分别表以及Magic Number。其中Bootloader部分为stage1中被执行的起始部分,程序在这里被作为GRUB程序执行,详细的关于GRUB的内容将再下面章节中进行详细阐述。 相反,对于EFI系统中所采用的GPT分区方式,则采用了不同于MBR分区方式的形式,从下图中可以发现:

污水处理厂自控完整系统工艺介绍

污水处理厂自控系统工艺介绍 污水处理厂位于市区或市郊,出水排入河流,水质达到国家一级排放标准。 工程采用水解-AICS处理工艺。其具体流程为:污水首先分别经过粗格栅去除粗大杂物,接着污水进入泵房及集水井,经泵提升后流经细格栅和沉砂池,然后进入水解池,。水解池出水自流入AICS进行好氧处理,出水达标提升排入河流。AICS反应器为改进SBR的一种。其工艺流程如下图1所示:矚慫润厲钐瘗睞枥庑赖。 污水处理厂自控系统设计的原则 从污水处理厂的工艺流程可以看出,主要工艺AICS反应器是改进SBR的一种,需要周期运行,AICS反应器的进水方向调整、厌氧好氧状态交替、沉淀反应状态轮换都有电动设备支持,大量的电动设备的开关都需要自控系统来完成,因此自控系统对整个周期的正确运行操作至关重要。而且好氧系统作为整个污水处理工艺能量消耗的大户,它的自控系统优化程度越高,整个污水处理工艺的运行费用也会越低,这也说明了自控系统在整个处理工艺中的重要性。聞創沟燴鐺險爱氇谴净。 为了保证污水厂生产的稳定和高效,减轻劳动强度,改善操作环境,同时提高污水厂的现代化生产管理水平,在充分考虑本污水处理工艺特性的基础上,将建设现代化污水处理厂的理念融入到自控系统设计当中,本自控系统设计遵循以下原则:先进合理、安全可靠、经济实惠、开放灵活。残骛楼諍锩瀨濟溆塹籟。

自控系统的构建 污水处理厂的自控系统是由现场仪表和执行机构、信号采集控制和人机界面(监控)设备三部分组成。自控系统的构建主要是指三部分系统形式和设备的选择。本执行机构主要是根据工艺的要求由工艺专业确定,预留自控系统的接口,仪表的选择将在后面的部分进行描述。信号采集控制部分主要包括基本控制系统的选择以及系统确定后控制设备和必须通讯网络的选择。人机界面主要是指中控室和现场值班室监视设备的选择。酽锕极額閉镇桧猪訣锥。 1、基本系统的选择 目前用于污水处理厂自控系统的基本形式主要有三种DCS系统、现场总线系统和基于PC控制的系统。从规模来看三种系统所适用的规模是不同。DCS系统和现场总线系统一般适用于控制点比较多而且厂区规模比较大的系统,基于PC的控制则用于小型而且控制点比较集中的控制系统。彈贸摄尔霁毙攬砖卤庑。 基于PC的控制系统属于高度集成的控制系统,其人机界面和信号采集控制可能都处于同一个机器内,受机器性能和容量的限制,本工程厂区比较大,控制点较多,因此采用基于PC的控制系统是不太合适的。謀荞抟箧飆鐸怼类蒋薔。

多系统启动引导原理简介

多系统启动引导原理简介 多系统启动引导原理简介 大部分同学对多重系统引导原理的一知半解,我把我知道的简单介绍一下。 我先来介绍分区,从启动引导的角度讲,磁盘分区可以分为系统分区和引导分区。系统分区主要用于启动Windows系统,通常,系统分区总是C:\。而引导分区则是装有Windows操作系统的分区,即%SystemRoot%所在分区。 我们知道,主盘系统分区的第一个扇区中储存着系统的主引导记录,就是通常说的MBR区。它负责搜索磁盘上可启动的分区,然后把引导代码装入内存。对于DOS来说,MBR由Fdisk生成。主引导记录所在分区是系统分区,除此之外装有操作系统并能引导启动的分区是引导分区,引导分区的第一扇区储存着引导代码,用来引导本分区相应的操作系统。 下面我们来看下启动文件,Win98一般为: io.sys、msdos.sys、https://www.doczj.com/doc/bd4146456.html,、config.sys、autoexec.bat。五个。其中最重要的是头三个,是启动必需要的。 Win2000/XP的启动文件:ntldr、https://www.doczj.com/doc/bd4146456.html,、boot.ini、bootfont.bin、bootsect.dos、https://www.doczj.com/doc/bd4146456.html,、ntbootdd.sys等。其中ntldr和https://www.doczj.com/doc/bd4146456.html, 对于2000与XP共存的系统引导至关重要。 我简单介绍下各个文件的作用 ntldr,操作系统载入程序,位于系统分区根目录下。 boot.ini, 用于指定Windows的安装位置和磁盘属性。位于系统分区根目录下。bootfont.bin, 对非英文操作系统的启动菜单标题提供文字支持。不是必需的。bootsect.dos, 用于启动旧版操作系统所需要的引导扇区。 https://www.doczj.com/doc/bd4146456.html,, 用于检测计算机的硬件配置信息,并将这些信息返回给ntldr。ntbootdd.sys, 当ATA技术被禁用或磁盘控制器是SCSI类型或磁盘控制器不支持扩展INT 13调用时,提供驱动支持。而不用通过BIOS来直接访问。不是必需的。 在含有98或更旧版的多重启动上,问题就复杂点,要由OS Loaer来引导启动。先来认识下OS Loaer,它是Windows自带的多操作系统引导管理工具。注意OS Loaer存在于引导分区第一扇区而非MBR,就是在98或更旧版本系统所在分区。而常见的几种引导工具软件如BootMagic和System Commander则位于MBR区。现在我们假设硬盘里装有98、2000、XP三个系统,那么系统启动时首先由BIOS 把MBR装入内存,并把控制权交给MBR引导启动,计算机搜索MBR中的分区表,找出活动分区,如果在引导分区中有OS Loaer时,主引导记录加载OS Loaer,由OS Loaer读取boot.ini文件,并出现启动选择菜单,如果用户选择启动Win98,那么就装载Bootsect.dos这个文件。Bootsect.dos文件是Win98引导扇区的镜像,位于系统分区根目录下。如果多个操作系统中没有9X或更旧版本的话,则该文件不会存在。如果选Win2000/WinXP,那么就装载Ntldr和https://www.doczj.com/doc/bd4146456.html,,由Ntldr和Ntdetect引导启动Win2000/WinXP。(有必要说明一下,2000系统里的Ntldr和Ntdetect与XP里的Ntldr和Ntdetect是不同的,2000可由XP 的Ntldr和Ntdetect引导启动,反过来,2000里的Ntldr和Ntdetect却不能引导XP,这就是为什么在2000与XP共存的机里,重装了2000后不能引导XP 的原因。因为2000会用它的Ntldr和Ntdetect覆盖掉XP的) 呵呵我可能讲得有点啰嗦,不过大家看到这里也许明白我们在多系统环境下重装

状态反馈控制.

本科毕业论文(设计)题目状态反馈控制 学院计算机与信息科学学院专业自动化(控制方向)年级2009级 学号222009321042049 姓名王昌洪 指导老师何强 成绩

2013 年4 月18 日 状态反馈控制 王昌洪 西南大学计算机与信息科学学院,重庆400715 摘要:现代控制理论的特色为状态反馈控制,状态反馈控制经过近几十年的发展演变,在 现实控制系统中应用越来越是广泛,由于系统的内部特性可以由状态变量全面的反应出来,因而相对于输出反馈控制,状态反馈更加的有利于改善系统的控制性能。但是,在实际的系统中,状态变量由于其难于直接测量,所以进行状态反馈总是很难实现。本论文将论述状态反馈基本原理,并通过举例说明状态反馈控制的优越性,同时将对状态反馈控制进行Matlab仿真,使系统满足提出的设计要求。 关键词:状态反馈;极点配置;Matlab仿真;时域指标 State Feedback Control Wang changhong Southwest university school of computer and information science, chongqing, 400715 Abstract:Modern control theory, the characteristics for the state feedback control, state feedback control through decades of development and evolution, in the real control system is applied more and more widely, because the internal characteristics of the system can be fully reflected by the state variables,So relative to the output feedback control, state feedback are more favorable to improve the control performance. However, in practical systems, the state variable because of its difficult to measure directly, so the state feedback is always difficult to achieve.This paper will describe the state feedback principle, and illustrates the superiority of the state feedback control, at the same time, the state feedback control for Matlab simulation, the system meets the requirements of the design. Key words:State feedback;Pole assignment;Matlab simulation;Time domain index

自相关过程质量控制图研究方法综述

自相关过程质量控制图研究方法综述 摘要:传统的统计过程控制方法一般是以监测数据服从独立同分布的假设为前提,不适用于存在的大量具有自相关特性的数据过程。梳理了自相关过程质量控制图的研究框架和方法分类,指出了各种方法基本思路、适用范围、优缺点,并展望了未来的研究方向。abstract: conventional control charts are based on the assumptions that the data generated by the process are normally and independently distributed, which do not work well for the autocorrelated processes. in this paper, the research framework and methodology for monitoring autocorrelation process quality control are classified. based on the analysis of basic ideas, scope, advantages and disadvantages for each kind of control charts, future research works are pointed out. 关键词:自相关过程;质量控制图;残差控制图;非模型方法key words: autocorrelated processes;control chart;residual-based chart;model-free approach 中图分类号:f204 文献标识码:a 文章编号:1006-4311(2013)18-0040-02 0 引言 经典质量控制图都是基于质量过程服从独立、同(正态)分布的假定(iid),不适用于存在的大量具有自相关特性的数据过程。当

控制系统简单介绍

“ACE”控制系统简单介绍 我厂#1、#2机组自投入“ACE”控制以来,一直受到“双细则”的考核,现将“ACE”的基本定义及如何考核进行说明。 1、AGC简介 AGC(Automatic Generation Control):现代电网控制的一项基本和重要任务,指以控制发电机输出功率来适应负荷波动的闭环反馈控制。AGC的四个基本目标:a) 发电出力与负荷平衡。b) 保持系统频率为额定值。c) 区域联络线潮流与计划相等。d) 区域内发电厂之间的负荷经济分配。通常AGC指4个目标中的前3个,特别是第2、3个,包含第4个的AGC称为AGC/EDC。 2、分区控制误差(Area Control Error),即ACE: ACE = K i ?f + ?P tie. i ACE 理解上等同于频差,不同是还要考虑调节联络线交换功率偏差?P tie.i=?P tie.i.a- ?P tie.i.s,即实际值减计划值。(方向为流出为正)。 控制方式包括: ①定频率控制(自动调频):ACE = K i?f ②定交换功率控制:ACE = ?P tie.i ③联络线控制偏差模式:ACE = K i?f + ?P tie.i ④自动修正时差控制模式:ACE = K i?f + ?P tie.i+ K t?t,?t指与频率密切相关的电钟与标准的天文时间的偏差。 ⑤自动修正交换电能差控制模式:ACE = K i?f + ?P tie.i+ K w?w,?w

指在规定的合同时间内联络线传输电能与合同数额的偏差。 ⑥自动修正时差和交换电能差控制模式: ACE= K i? f+ ? P t i.e i+ K t ? t+ K w? w 3、AGC分区调频 实际的分区调频方程式:“ACE 积差”调节法: ? ACE dt + ? P i= 0 由于是积差调节,当ACE=0 时,分区调频过程结束, 各个区的出力?P i不再变化。ACE=0 表示?f=0、?P tie .i=0,实现了AGC 的2、3 个目标。 分区电网的调频特点:区内负荷的非计划变化,主要由该区域内的调频厂自己负责,其它区的调频厂只是支援性质。因此应维持联络线的交换功率。 对于A、B 区域电网,B 区负荷增加 a) 最初,调速器来不及动作,由发电机组的转动惯性 提供能量,系统频率下降,?f < 0 。 b) 负荷调节效应起作用,同时A、B 区域电厂的调速器都动作,增加出力,参加频率的一次调整,满足功率平衡,系统达到新的平衡状态,频率恢复到某个水平(低于额定值)。 c) 一次调整结束后,联络线上出现了功率增量?P AB> 0,同时?f < 0,A区电网据此(异号)可判断负荷变动发生在非本区,而B区电网发现

过程控制内容总结

过程控制内容总结 一.现场仪表: 仪表的发展:DDZ, QDZ,DCS, FCS p6+p11 检测变送的功能:转化为标准信号:24V DC电源供电,4~20 mA 电流信号1~5V DC 电压信号. 气动执行器 20~100 Kpa p13 仪表的指标(防爆系统的概念,误差,精度,特性曲线,零点,量程,测量范围)p14+p19~p23 1. 检测变送仪表。 温度:热电偶(原理条件,补偿导线,冷端补偿的概念),热电阻(类型,测温范围,测量方法) p27~p31 压力:压力的定义(各种表述之间的关系),差压测液位(测压点位置不同引起的迁移)p43 流量:各种流量计测量特点、分类;差压流量计,转子流量计,涡街流量计的测量原理p54~p57 液位: p59~p60 2.执行器:结构(执行机构+调节机构),执行器的气开气关构成, p92+p96~p97调节阀气开气关选择原则 p96 +p157 调节阀的流量特性:影响因素;分类:固有+工作 p97~p99 串联管道工作时,分压比s的变化,对流量特性的影响。 p100 流量特性的选择:依据过程特性+配管情况+负荷情况 p100 二:对象+控制 1.对象: 1)模型:机理法:(单容,双容),掌握:推导过程,传递函数结果表达式 p117+p120试验法:飞升曲线+脉冲响应曲线,掌握相互转化。 p129 2)参数辨识:特征参数的确定,(K,T,τ), 重点:一阶惯性+纯滞后 p124 3)对象的类型:水槽,热交换器,锅炉汽包,加热炉,奶粉干燥过程 p170+p174 4)对象的选取(被控参数,控制参数的选择原则)p146~p149 2.控制(调节,调节器): 控制原理+控制参数 1)控制原理:负反馈+稳定运行 负反馈的判断:A. 回路内各模块增益之积为正(此时e=r-y), 即 c v o m K K K K> p157~p158 or 奇数个负作用环节 (注:所谓环节是指:控制器环节(包括比较环节),执行器环节,对象环节,检测变送环节,掌握每个环节的正负作用判断) 稳定运行:各环节增益之积保持不变, (稳定的过渡过程判断,过渡过程的指标:静差,超调,周期,衰减比等) p9~p10 + p159

闭环控制系统(精选.)

闭环控制系统 许多实时嵌入式系统使作出控制决策。这些决策通常是由软件和基于硬件反馈的基础上由它控制(被称为机械)。这些反馈通常采用的是模拟传感器,可以通过一个A / D转换器读取他形式。例如:传感器可能代表位置,电压,温度或其他任何适当的参数。每样提供软件和附加信息基础控制决策。 闭环控制的基本知识 基于反馈原理建立的自动控制系统。所谓反馈原理,就是根据系统输出变化的信息来进行控制,即通过比较系统行为(输出)与期望行为之间的偏差,并消除偏差以获得预期的系统性能。在反馈控制系统中,既存在由输入到输出的信号前向通路,也包含从输出端到输入端的信号反馈通路,两者组成一个闭合的回路。因此,反馈控制系统又称为闭环控制系统。反馈控制是自动控制的主要形式。自动控制系统多数是反馈控制系统。在工程上常把在运行中使输出量和期望值保持一致的反馈控制系统称为自动调节系统,而把用来精确地跟随或复现某种过程的反馈控制系统称为伺服系统或随动系统。 反馈控制系统由控制器、受控对象和反馈通路组成。比较环节,用来将输入与输出相减,给出偏差信号。这一环节在具体系统中可能与控制器一起统称为调节器。以炉温控制为例,受控对象为炉子;输出变量为实际的炉子温度;输入变量为给定常值温度,一般用电压表示。炉温用热电偶测量,代表炉温的热电动势与给定电压相比较,两者的差值电压经过功率放大后用来驱动相应的执行机构进行控制。 同开环控制系统相比,闭环控制具有一系列优点。在反馈控制系统中,不管出于什么原因(外部扰动或系统内部变化),只要被控制量偏离规定值,就会产生相应的控制作用去消除偏差。因此,它具有抑制干扰的能力,对元件特性变化不敏感,并能改善系统的响应特性。但反馈回路的引入增加了系统的复杂性,而且增益选择不当时会引起系统的不稳定。为提高控制精度,在扰动变量可以测量时,也常同时采用按扰动的控制(即前馈控制)作为反馈控制的补充而构成复合控制系统。 一个闭环系统采用反馈来衡量实际的系统运行参数,如温度,压力,流量,液位,转速控制。这种反馈信号发送回的地方是较理想的系统设定点控制器。该控制器发一个误差信号,即启动纠正措施和驱动器输出设备所需的值。在直流电动机驱动上很容

相关主题
文本预览
相关文档 最新文档