当前位置:文档之家› 压电材料知识

压电材料知识

压电材料知识
压电材料知识

压电陶瓷主要性能及参数

自由介电常数εT33(free permittivity)

电介质在应变为零(或常数)时的介电常数,其单位为法拉/米。

相对介电常数εTr3(relative permittivity)

介电常数εT33与真空介电常数ε0之比值,εTr3=εT33/ε0,它是一个无因次的物理量。

介质损耗(dielectric loss)

电介质在电场作用下,由于电极化弛豫过程和漏导等原因在电介质内所损耗的能量。

损耗角正切tgδ(tangent of loss angle)

理想电介质在正弦交变电场作用下流过的电流比电压相位超前90 0,但是在压电陶瓷试样中因有能量损耗,电流超前的相位角ψ小于900,它的余角δ(δ+ψ=900)称为损耗角,它是一个无因次的物理量,人们通常用损耗角正切tgδ来表示介质损耗的大小,它表示了电介质的有功功率(损失功率)P与无功功率Q之比。即:电学品质因数Qe(electrical quality factor)

电学品质因数的值等于试样的损耗角正切值的倒数,用Qe表示,它是一个无因次的物理量。若用并联等效电路表示交变电场中的压电陶瓷的试样,则 Qe=1/ tgδ=ωCR

机械品质因数Qm(mechanical quanlity factor)

压电振子在谐振时储存的机械能与在一个周期内损耗的机械能之比称为机械品质因数。它与振子参数的关系式为:

泊松比(poissons ratio)

泊松比系指固体在应力作用下的横向相对收缩与纵向相对伸长之比,是一个无因次的物理量,用δ表示: δ= - S 12 /S11

串联谐振频率fs(series resonance frequency)

压电振子等效电路中串联支路的谐振频率称为串联谐振频率,用f s 表示,即

并联谐振频率fp(parallel resonance frequency)

压电振子等效电路中并联支路的谐振频率称为并联谐振频率,用f p 表示,即f p = 谐振频率fr(resonance frequency)

使压电振子的电纳为零的一对频率中较低的一个频率称为谐振频率,用f r 表示。

反谐振频率fa(antiresonance frequency)

使压电振子的电纳为零的一对频率中较高的一个频率称为反谐振频率,用f a 表示。

最大导纳频率fm(maximum admittance frequency)

压电振子导纳最大时的频率称为最大导纳频率,这时振子的阻抗最小,故又称为最小阻抗频率,用f m表示。

最小导纳频率fn(minimum admittance frequency)

压电振子导纳最小时的频率称为最小导纳频率,这时振子的阻抗最大,故又称为最大阻抗频率,用f n表示。

基频(fundamental frequency)

给定的一种振动模式中最低的谐振频率称为基音频率,通常成为基频。

泛音频率(fundamental frequency)

给定的一种振动模式中基频以外的谐振频率称为泛音频率。

温度稳定性(temperature stability)

温度稳定性系指压电陶瓷的性能随温度而变化的特性。

在某一温度下,温度变化1℃时,某频率的数值变化与该温度下频率的数值之比,称为频率的温度系数TKf。

另外,通常还用最大相对漂移来表征某一参数的温度稳定性。

正温最大相对频移=△f s (正温最大)/ f s(25℃)

负温最大相对频移=△f s (负温最大)/ f s(25℃)

机电耦合系数(ELECTRO MECHANICAL COUPLING COEFFICIENT)

机电耦合系数K是弹性一介电相互作用能量密度平方V122与贮存的弹性能密度V1与介电能密度V2乘积之比的平方根。

压电陶瓷常用以下五个基本耦合系数

A、平面机电耦合系数KP(反映薄圆片沿厚度方向极化和电激励,作径向伸缩振动时机电耦合效应的参数。)

B、横向机电耦合系数K31(反映细长条沿厚度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。)

C、纵向机电耦合系数K33(反映细棒沿长度方向极化和电激励,作长度伸缩振动的机电耦合效应的参数。)

D、厚度伸缩机电耦合系数KT(反映薄片沿厚度方向极化和电激励,作厚度方向伸缩振动的机电效应的参数。)

E、厚度切变机电耦合系数K15(反映矩形板沿长度方向极化,激励电场的方向垂直于极化方向,作厚度切变振动时机电耦合效应的参数。)压电应变常数D(PIEZOELECTRIC STRAIN CONSTANT)

压电应变常数是在应力T和电场分量EM(M≠I)都为常数的条件下,电场分量E变化所引起的应变分量SI的变化与EI变化之比。

压电电压常数G(PIEZOELECTRIC VOLTAGE CONSTANT)

该常数是在电位移D和应力分量TN(N≠I)都为常数的条件下,应力分量TI的变化所引起的电场强度分量EI的变化与TI的变化之比。

居里温度TC(CURIE TEMPERATURE)

压电陶瓷只在某一温度范围内具有压电效应,它有一临界温度TC,当温度高于TC时,压电陶瓷发生结构相转变,这个临界温度TC称为居里温度。

温度稳定性(TEMPERATURE STABILITY)

指压电陶瓷的性能随着温度变化的特性,一般描述温度稳定性有温度系数或最大相对漂移二种方法。

十倍时间老化率(AGEING RATE PER DECADE) Y表示某一参数

频率常数(FREQUENCY CONSTANT)

对于径向和横向长度伸缩振动模式,其频率常数为串联谐振频率与决定此频率的振子尺寸(直径或长度)的乘积。对于纵向长度厚度和伸缩切变振动模式,其频率常数为并联谐振频率与决定此频率的振子尺寸(长度或厚度)的乘积,其单位:HZ.M

硅胶模具材料概述

硅橡胶 目录 1、硅橡胶发展史 (2) 2、硅橡胶定义 (2) 3、硅橡胶分类………………………………………………………………… 2-3 4、硅橡胶的主要性能 (3) 5、硅橡胶的模具结构 (4) 6、硅橡胶加工流程…………………………………………………………… 4-5 7、硅橡胶的产品尺寸特性 (5) 8、硅橡胶在我司产品中的运用 (6)

一、硅橡胶发展史 硅橡胶最先是由美国以三氯化铁为催化剂合成的。1945年硅橡胶产品问世,中国硅橡胶的工业化研究始于1957年,到2003年底中国硅橡胶生产能力为135千吨,其中高温胶100千吨。 二、硅橡胶定义 硅橡胶是指主链由硅和氧原子交替构成,硅原子上通常连有两个有机基团的橡胶。普通的硅橡胶主要由含甲基和少量乙烯基的硅氧链节组成。 三、硅橡胶分类(这里只体现与我司产品有关联的) 硅橡胶分热硫化型(高温硫化硅胶HTV)、室温硫化型(RTV)。高温硅橡胶主要用于制造各种硅橡胶制品,而室温硅橡胶则主要是作为粘接剂、灌封材料或模具使用。我司使用到的硅胶产品主要是热硫化型,也有用到室温硫化型硅胶做粘结剂。 备注解说: 室温硫化硅橡胶与高温硫化硅橡胶的差别主要在于它是以分子量较小的聚硅氧烷为基础胶,在交联剂和催化剂的作用下与室温或稍许加热即可硫化成弹性体。室温硫化硅橡胶由基础胶、交联剂、催化剂、填料等组成。从包装形式上可分为单组份和双组分两种。室温硫化硅橡胶主要应用在以下行业: 1、建筑行业。用于玻璃和金属幕墙的粘结,屋顶嵌封,门窗密封,各种水池、瓷砖的粘接密封。 2、电子行业。用于电子电气部件的包封和灌注材料,可防潮、抗震和耐冲击、耐温度骤变和化学品的腐蚀。 3、模具。硅橡胶优异的仿真性和良好的脱模性能使其在软模具行业得到广泛应用。

压电陶瓷电特性测试与分析

摘要:通过对压电陶瓷器件进行阻抗测试可得到压电振子等效电路模型参数与谐振频率。通过对压电陶瓷器件电容值、温度稳定性、绝缘电阻、介质耐电压等电性能参数进行测量与分析后可知:压电陶瓷器件电特性符合一般电容器特点,所用连接线材在较低频率下寄生电容不明显,在常温下工作较稳定,厚度较厚的产品绝缘性和可靠性指标较好。 关键词:压电陶瓷;等效电路模型;电特性;可靠性 0 引言 压电陶瓷(Piezoelectric Ceramics,PZT)受到微小外力作用时,能把机械能变成电能,当加上电压时,又会把电能变成机械能。它通常由几种氧化物或碳酸盐在烧结过程中发生固相反应而形成,其制造工艺与普通的电子陶瓷相似。与其他压电材料相比,具有化学性质稳定,易于掺杂、方便塑形的特点[1],已被广泛应用到与人们生活息息相关的许多领域,遍及工业、军事、医疗卫生、日常生活等。利用铁电陶瓷的高介电常数可制作大容量的陶瓷电容器;利用其压电性可制作各种压电器件;利用其热释电性可制作人体红外探测器;通过适当工艺制成的透明铁电陶瓷具有电控光特性,利用它可制作存贮,显示或开关用的电控光特性器件。通过物理或化学方法制备的PZT、PLZT等铁电薄膜,在电光器件、非挥发性铁电存储器件等有重要用途[2-5]。 为了保护生态环境,欧盟成员国已规定自2006年7月1日起,所有在欧盟市场上出售的电子电气产品设备全部禁止使用铅、水银、镉、六价铬等物质。我国对生态环境的保护也是相当重视的。因此,近年来对无铅压电陶瓷进行了重点发展和开发。但无铅压电陶瓷性能相对于PZT陶瓷来说,总体性能还是不足以与PZT陶瓷相比。因此,当前乃至今后一段时间内压电陶瓷首选仍将是以PZT为基的陶瓷。 本文将应用逆压电效应以压电陶瓷蜂鸣片为例进行阻抗测试、电容值、绝缘电阻、介质耐电压等电性能参数进行测量与分析。 1 测量参数和实验方法依据 目前我国现有的关于压电陶瓷材料的测试标准主要有以下: GB/T 3389-2008 压电陶瓷材料性能测试方法 GB/T 6427-1999 压电陶瓷振子频率温度稳定性的测试方法 GB/T 16304-1996 压电陶瓷电场应变特性测试方法 GB 11387-89 压电陶瓷材料静态弯曲强度试验方法 GB 11320-89 压电陶瓷材料性能方法(低机械品质因数压电陶瓷材料性能的测试)

常用的模具材料的介绍

常用的模具材料的介绍: 铸件类: HT250 灰铁250 适用于模座压料芯等大型结构件本体不能热处理 (我们公司基本不用,因为它比HT300差,在小模具和低产量模具上使用较多) HT300 灰铁300 适用于模座压了芯等大型结构件本体据说火焰淬火能提高硬度到40但具体根据(但通常没人这样用) 我们公司最常用的材料之一 MoCr 钼铬铸铁使用于需要一定硬度的机构件,如拉延模面也可用于薄料翻边镶块经过淬火后硬度能达到HRC55-60,比较耐磨. GGG70 (GGG70L) 进口材料,目前国内可能天津有铸造厂能造了(如有人知道的请指正),与M oCr 类似, 硬度HRC60左右,耐磨性更高, GGG70L类似于GGG70升级版本. CH-1(7CrSiMnMoV) 空(风)冷钢用于薄料(通常是1.2以下,根据客户要求)的修边镶块,翻边整型镶块, 锻造类 T10(T10A) 修边刀块/翻边刀块等需要较高硬度的零件,硬度HRC58-62 ,但由于此种材料的耐磨性能很差,在零件超过3mm时不管是翻边还是修边,基本都不用它而选择Cr12MoV,我们公司基本不用这种材料,与之差不多的还有种叫T8A的材料曾经使用过,主要用于制作冲头的垫板. Cr12MoV 修边刀块/翻边刀块等需要较高硬度的零件,HRC58-62,耐磨,常用材料 SKD11 比Cr12MoV 优秀更耐磨,日标,通用的零件,中山伟福,APAC的模具,一般都有厂家直接指定了使用此种材料,(另在产量非常高的情况下,在其表面做TD处理,一种表面硬化涂层,可在MISUMI标准件书上的技术资料上查阅到相关信息. 锻造空冷钢与铸造空冷钢相比,差不多,但锻造的更好,由于一个是铸造出来,一个是锻造出来,用法是还是有很多不同的. 扎钢类/其他类: 20# 用于导柱导套(由于现在都是买标准件,一般都是铸铁的), 45# 最常用的了 Q235(A3) 用于铸入式起重棒等零件,这个比较重要了,很多人可能不是太了解的,由于起重棒这样的零件需要具有以下属性:不需要太高硬度,但需要一定韧性,因为当模具被吊起来以后,即使起重棒要出问题,宁可让它变弯也不能直接断掉,让人更容易观察到可能出的问题,增加安全性. Cr12MoV T10 等材料也有扎钢,由于扎钢和锻造的加工工艺性决定,扎钢必定不能和锻造钢比...

电子工程师必备知识

电子工程师的设计经验笔记(经典) 关键字:电子工程师设计经验 电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 更多阅读:电容性负载的稳定性—具有双通道反馈的RISO(1) 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。

压电陶瓷及其应用

压电陶瓷及其应用 一. 概述 压电陶瓷是一种具有压电效应的多晶体,由于它的生产工艺与陶瓷的生产工艺相似(原料粉碎、成型、高温烧结)因而得名。 某些各向异性的晶体,在机械力作用下,产生形变,使带电粒子发生相对位移,从而在晶体表面出现正负束缚电荷,这种现象称为压电效应。晶体的这种性质称为压电性。压电性是J·居里和P·居里兄弟于1880年发现的。几个月后他们又用实验验证了逆压电效应、即给晶体施加电压时,晶体会产生几何形变。 1940年以前,只知道有两类铁电体(在某温度范围内不仅具有自发极化,而且自发极化强度的发向能因外场强作用而重新取向的晶体):一类是罗息盐和某些关系密切的酒石酸盐;一类是磷酸二氢钾盐和它的同品型物。前者在常温下有压电性,技术上有使用价值,但有易溶解的缺点;后者要在低温(低于—14 C)下才有压电性,工程使用价值不大。 1942-1945年间发现钛酸钡(BaTiO)具有异常高的介电常数,不久又发现它具有压电性,BaTi O压电陶瓷的发现是压电材料的一个飞跃。这以前只有压电单晶材料,此后出现了压电多晶材料——压电陶瓷,并获得广泛应用。1947年美国用BaTiO陶瓷制造留声机用拾音器,日本比美国晚用两年。BaTiO存在压电性比罗息盐弱和压电性随温度变化比石英晶体大的缺点。 1954年美国B·贾菲等人发现了压电PbZrO-PbTiO(PZT)固溶体系统,这是一个划时代大事,使在BaTiO时代不能制作的器件成为可能。此后又研制出PLZT透明压电陶瓷,使压电陶瓷的应用扩展到光学领域。

迄今,压电陶瓷的应用,上至宇宙开发,下至家庭生活极其广泛。 我国对压电陶瓷的研究始于五十年代末期,比国外晚10年左右,目前在压电陶瓷的试制、工业生产等方面都已有相当雄厚力量,有不少材料已达到或接近国际水平。 二. 压电陶瓷压电性的物理机制 压电陶瓷是一种多晶体,它的压电性可由晶体的压电性来解释,晶体在机械力作用下,总的电偶极矩(极化)发生变化,从而呈现压电现象、因此压电性与极化,形变等有密切关系。 1. 极化的微观机理 极化状态是电场对电介质的荷电质点产生相对位移的作用力与电荷间互相吸引力的暂时平衡统一的状态。极化机理主要有三种。 (1)电子位移极化——电介质的原子或离子在电场力作用下,带正电原子核与壳层电子的负电荷中心出现不重合。 (2)离子位移极化——电介质正、负离子在电场力作用下发生相对位移,从而产生电偶极矩。 (3)取向极化——组成电介质的有极分子,有一定的本征(固有)电矩,由于热运动,取向无序,总电矩为零,当外加电场时,电偶极矩沿电场方向排列,出现宏观电偶极矩。 对于各向异性晶体,极化强度与电场存在有如下关系 m,n=1,2,3 式中为极化率,或用电位移写成:

压电陶瓷测量原理..

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,C I 为同相分量,R I 为异相分量,C I 与总电流 I 的夹角为δ,其正切值为 CR I I C R ωδ1 tan == 其中ω 为交变电场的角频率,R 为损耗电阻,C 为介质电容。

图 1 交流电路中电压-电流矢量图(有损耗时) 2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时,材料内部能量消耗程度的一个参数,它也是衡量压电陶瓷材料性能的一个重要参数。机械品质因数越大,能量的损耗越小。产生能量损耗的原因在于材料的内部摩擦。机械品质因数m Q 的定义为: π2 的机械能 谐振时振子每周所损失能谐振时振子储存的机械?=m Q 机械品质因数可根据等效电路计算而得 11 1 11 R L C R Q s s m ωω= = 式中1R 为等效电阻(Ω),s ω 为串联谐振角频率(Hz ),1C 为振子谐振时的等效电容(F ),1L 为振子谐振时的等效电感。m Q 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的m Q 值的要求不同,在大多数的场合下(包括声波测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的m Q 值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外的电荷。其产生的电荷与施加的应力成比例,对于压力和张力来说,其符号是相反的,电位移 D (单位面积的电荷)和应力σ 的关系表达式为:dr A Q D == 式中 Q 为产生的电荷(C ),A 为电极的面积(m 2),d 为压电应变常数(C/N )。 在逆压电效应中,施加电场 E 时将成比例地产生应变 S ,所产生的应变 S 是膨胀还是收缩,取决于样品的极化方向。

压电陶瓷测量基本知识

压电陶瓷及其测量原理 近年来,压电陶瓷的研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济和尖端技术的各个方面中,成为不可或缺的现代化工业材料之一。由于压电材料的各向异性,每一项性能参数在不同的方向所表现出的数值不同,这就使得压电陶瓷材料的性能参数比一般各向同性的介质材料多得多。同时,压电陶瓷的众多的性能参数也是它广泛应用的重要基础。 (一)压电陶瓷的主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心的晶体上施加压力、张力或切向力时,则发生与应力成比例的介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例的变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体是否出现压电效应由构成晶体的原子和离子的排列方式,即晶体的对称性所决定。在声波测井仪器中,发射探头利用的是正压电效应,接收探头利用的是逆压电效应。 (2)压电陶瓷的主要参数 1 、介质损耗 介质损耗是包括压电陶瓷在内的任何电介质的重要品质指标之一。在交变电场下,电介质所积蓄的电荷有两种分量:一种是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗是异相分量与同相分量的比值,如图 1 所示,I C为同相分量,I R为异相分量,I C与总电流I的夹角为,其正切值为

2、机械品质因数 机械品质因数是描述压电陶瓷在机械振动时, 材料内部能量消耗程度的一个参数, 它也是衡 量压电陶瓷材料性能的一个重要参数。 机械品质因数越大, 能量的损耗越小。产生能量损耗 的原因在于材料的内部摩擦。机械品质因数 Q m 的定义为: 谐振时振子储存的机械能 c Qm 谐振时振子每周所 损失的机械能 2 兀 机械品质因数可根据等效电路计算而得 式中 R 1为等效电阻 (Q ) , s 为串联谐振角频率(Hz ), C 1为振子谐振时的等效电容 (F ),L 1为振子谐振时的等效电感。 Q m 与其它参数之间的关系将在后续详细推导。 不同的压电器件对压电陶瓷材料的 Q m 值的要求不同,在大多数的场合下(包括声波 测井的压电陶瓷探头),压电陶瓷器件要求压电陶瓷的 Q m 值要高。 3、压电常数 压电陶瓷具有压电性, 即在其外部施加应力时能产生额外的电荷。 其产生的电荷与施加 tan 1 CR 其中3为交变电场的角频率, R 为损耗电阻,C 为介质电容。 s R 1C 1 s L 1 图1交流电路中电压-电流矢量图(有损耗时)

压电效应及应用

压电效应应用及现状 [编辑本段] 一、原理: 压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、应用: 压电材料的应用领域可以粗略分为两大类:即振动能和超声振动能-电能换能器应用,包括电声换能器,水声换能器和超声换能器等,以及其它传感器和驱动器应用。 1、换能器 换能器是将机械振动转变为电信号或在电场驱动下产生机械振动的器件 压电聚合物电声器件利用了聚合物的横向压电效应,而换能器设计则利用了聚合物压电双晶片或压电单晶片在外电场驱动下的弯曲振动,利用上述原理可生产电声器件如麦克风、立体声耳机和高频扬声器。目前对压电聚合物电声器件的研究主要集中在利用压电聚合物的特点,研制运用其它现行技术难以实现的、而且具有特殊电声功能的器件,如抗噪声电话、宽带超声信号发射系统等。 压电聚合物水声换能器研究初期均瞄准军事应用,如用于水下探测的大面积传感器阵列和监视系统等,随后应用领域逐渐拓展到地球物理探测、声波测试设备等方面。为满足特定要求而开发的各种原型水声器件,采用了不同类型和形状的压电聚合物材料,如薄片、薄板、叠片、圆筒和同轴线等,以充分发挥压电聚合物高弹性、低密度、易于制备为大和小不同截面的元件、而且声阻抗与水数量级相同等特点,最后一个特点使得由压电聚合物制备的水听器可以放置在被测声场中,感知声场内的声压,且不致由于其自身存在使被测声场受到扰动。而聚合物的高弹性则可减小水听器件内的瞬态振荡,从而进一步增强压电聚合物水听器的性能。 压电聚合物换能器在生物医学传感器领域,尤其是超声成像中,获得了最为成功的应用、PVDF薄膜优异的柔韧性和成型性,使其易于应用到许多传感器产品中。 2、压电驱动器 压电驱动器利用逆压电效应,将电能转变为机械能或机械运动,聚合物驱动器主要以聚合物双晶片作为基础,包括利用横向效应和纵向效应两种方式,基于聚合物双晶片开展的驱动器应用研究包括显示器件控制、微位移产生系统等。要使这些创造性设想获得实际应用,还需要进行大量研究。电子束辐照P (VDF-TrFE)共聚合物使该材料具备了产生大伸缩应变的能力,从而为研制新型聚合物驱动器创造了有利条件。在潜在国防应用前景的推动下,利用辐照改性共聚物制备全高分子材料水声发射装置的研究,在美国军方的大力支持下正在系统地进行之中。除此之外,利用辐照改性共聚物的优异特性,研究开发其在医学超声、减振降噪等领域应用,还需要进行大量的探索。

压电陶瓷性能参数解析

压电陶瓷性能参数解析 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

在机械自由条件下,测得的介电常数称为自由介电常数,在εT表示,上角标T表示机械自由条件。在机械夹持条件下,测得的介电常数称为夹持介电常数,以εS表示,上角标S表示机械夹持条件。由于在机械自由条件下存在由形变而产生的附加电场,而在机械受夹条件下则没有这种效应,因而在两种条件下测得的介电常数数值是不同的。 根据上面所述,沿3方向极化的压电陶瓷具有四个介电常数,即ε11T,ε33T,ε11S,ε11S。 (2)介质损耗 介质损耗是包括压电陶瓷在内的任何介质材料所 具有的重要品质指标之一。在交变电场下,介质 所积蓄的电荷有两部分:一种为有功部分(同 相),由电导过程所引起的;一种为无功部分 (异相),是由介质弛豫过程所引起的。介质损 耗的异相分量与同相分量的比值如图1-1所示, Ic为同相分量,IR为异相分量,Ic与总电流I 的夹角为δ,其正切值为 (1-4) 式中,ω为交变电场的角频率,R为损耗电阻,C为介质电容。由式(1-4)可以看出,I R大时,tanδ也大;I R小时tanδ也小。通常用 tanδ来表示的介质损耗,称为介质损耗正切值或损耗因子,或者就叫做介质损耗。 处于静电场中的介质损耗来源于介质中的电导过程。处于交变电场中的介质损耗,来源于电导过程和极化驰豫所引起的介质损耗。此外,具有铁电性的压电陶瓷的介质损耗,还与畴壁的运动过程有关,但情况比较复杂,因此,在此不予详述。 (3)弹性常数 压电陶瓷是一种弹性体,它服从胡克定律:“在弹性限度范围内,应力与应变成正比”。设应力为T,加于截面积A的压电陶瓷片上,其所产生的

压电效应及其应用

压电效应及其应用叶传忠 接触了这么多的实验,我始终对压电效应这个实验最感兴趣。因为我认为这个世界压力资源太丰富了,由于重力的存在,水平运动的物体都会产生压力。压力是一种能源,但是目前无法对压力直接进行利用,只有通过压电的转换对压力进行利用。但是压电转换的效率太低,这是一个问题。我对压力资源感兴趣,应先对压电效应进行思考! 压电材料会有压电效应是因晶格内原子间特殊排列方式,使得材料有应力场与电场耦合的效应。根据材料的种类,压电材料可以分成压电单晶体、压电多晶体(压电陶瓷)、压电聚合物和压电复合材料四种。根据具体的材料形态,则可以分为压电体材料和压电薄膜两大类。 压电效应可分为正压电效应和逆压电效应。 正压电 是指:当晶体受到某固定方向外力的作用时,内部就产生电极化现象,同时在某两个表面上产生符号相反的电荷;当外力撤去后,晶体又恢复到不带电的状态;当外力作用方向改变时,电荷的极性也随之改变;晶体受力所产生的电荷量与外力的大小成正比。 逆压电 是指对晶体施加交变电场引起晶体机械变形的现象。 这里再介绍一下电致伸缩效应。电致伸缩效应,即电介质在电场的作用下,由于感应极化作用而产生应变,应变大小与电场平方成正比,与电场方向无关。压电效应仅存在于无对称中心的晶体中。而电致伸缩效应对所有的电介质均存在,不论是非晶体物质,还是晶体物质,不论是中心对称性的晶体,还是极性晶体。依据电介质压电效应研制的一类传感器称为为压电传感器。 打火机 目前流行的一次性塑料打火机,有相当一部分是采用压电陶瓷器件来打火的。取出其中的压电打火元件,

压电晶体 有一类十分有趣的晶体,当你对它挤压或拉伸时,它的两端就会产生不同的电荷。这种效应被称为压电效应。能产生压电效应的晶体就叫压电晶体。水晶(α-石英)是一种有名的压电晶体。 压电高分子 压电现象是由于应力作用于材料,在材料表面诱导产生电荷的过程,一般这一过程是可逆的,即当材料受到电参数作用,材料也会产生形变能。木材纤维素、腱胶原和各种聚氨基酸都是常见的高分子压电性材料,但是其压电率太低,而没有使用价值。在有机高分子材料中聚偏氟乙烯等类化合物具有较强的压电性质。压电率的大小取决于分子中含有的偶极子的排列方向是否一致。除了含有具有较大偶极矩的C-F键的聚偏氟乙烯化合物外,许多含有其他强极性键的聚合物也表现出压电特性。如亚乙烯基二氰与乙酸乙烯酯、异丁烯、甲基丙烯酸甲酯、苯甲酸乙烯酯等的共聚物,均表现出较强的压电特性。而且高温稳定性较好。主要作为换能材料使用,如音响元件和控制位移元件的制备。前者比较常见的例子是超声波诊断仪的探头、声纳、耳机、麦克风、电话、血压计等装置中的换能部件。将两枚压电薄膜贴合在一起,分别施加相反的电压,薄膜将发生弯曲而构成位移控制元件。利用这一原理可以制成光学纤维对准器件、自动开闭的帘幕、唱机和录像机的对准件。 压电陶瓷 压电陶瓷实际上是一种经过极化处理的、具有压电效应的铁电陶瓷。 在航天领域,压电陶瓷制作的压电陀螺,是在太空中飞行的航天器、人造卫星的“舵”。依靠“舵”,航天器和人造卫星,才能保证其既定的方位和航线。传统的机械陀螺,寿命短,精度差,灵敏度也低,不能很好满足航天器和卫星系统的要求。而小巧玲珑的压电陀螺灵敏度高,可靠性好。 在潜入深海的潜艇上,都装有人称水下侦察兵的声纳系统。它是水下导航、通讯、侦察敌舰、清扫敌布水雷的不可缺少的设备,也是开发海洋资源的有力工具,它可以探测鱼群、勘查海底地形地貌等。在这种声纳系统中,有一双明亮的“眼睛”——压电陶瓷水声换能器。

压电陶瓷测量原理

压电陶瓷及其测量原理 近年来,压电陶瓷得研究发展迅速,取得一系列重大成果,应用范围不断扩大,已深入到国民经济与尖端技术得各个方面中,成为不可或缺得现代化工业材料之一。由于压电材料得各向异性,每一项性能参数在不同得方向所表现出得数值不同,这就使得压电陶瓷材料得性能参数比一般各向同性得介质材料多得多。同时,压电陶瓷得众多得性能参数也就是它广泛应用得重要基础。 (一)压电陶瓷得主要性能及参数 (1)压电效应与压电陶瓷 在没有对称中心得晶体上施加压力、张力或切向力时,则发生与应力成比例得介质极化,同时在晶体两端将出现正负电荷,这一现象称为正压电效应;反之,在晶体上施加电场时,则将产生与电场强度成比例得变形或机械应力,这一现象称为逆压电效应。这两种正、逆压电效应统称为压电效应。晶体就是否出现压电效应由构成晶体得原子与离子得排列方式,即晶体得对称性所决定。在声波测井仪器中,发射探头利用得就是正压电效应,接收探头利用得就是逆压电效应。 (2)压电陶瓷得主要参数 1、介质损耗 介质损耗就是包括压电陶瓷在内得任何电介质得重要品质指标之一。在交变电场下,电介质所积蓄得电荷有两种分量:一种就是有功部分(同相),由电导过程所引起;另一种为无功部分(异相),由介质弛豫过程所引起。介质损耗就是异相分量与同相分量得比值,如图1 所示,为同相分量,为异相分量,与总电流I 得夹角为,其正切值为其中ω为交变电场得角频率,R 为损耗电阻,C 为介质电容。

图1 交流电路中电压电流矢量图(有损耗时) 2、机械品质因数 机械品质因数就是描述压电陶瓷在机械振动时,材料内部能量消耗程度得一个参数,它也就是衡量压电陶瓷材料性能得一个重要参数。机械品质因数越大,能量得损耗越小。产生能量损耗得原因在于材料得内部摩擦。机械品质因数得定义为: 机械品质因数可根据等效电路计算而得 式中为等效电阻(Ω), 为串联谐振角频率(Hz), 为振子谐振时得等效电容(F),为振子谐振时得等效电感。与其它参数之间得关系将在后续详细推导。 不同得压电器件对压电陶瓷材料得值得要求不同,在大多数得场合下(包括声波测井得压电陶瓷探头),压电陶瓷器件要求压电陶瓷得值要高。 3、压电常数 压电陶瓷具有压电性,即在其外部施加应力时能产生额外得电荷。其产生得电荷与施加得应力成比例,对于压力与张力来说,其符号就是相反得,电位移D(单位面积得电荷)与应力得关系表达式为: 式中Q 为产生得电荷(C),A 为电极得面积(m2),d 为压电应变常数(C/N)。在逆压电效应中,施加电场 E 时将成比例地产生应变S,所产生得应变S 就是膨胀还就是收缩,取决于样品得极化方向。 S=dE 两式中得压电应变常数d 在数值上就是相同得,即 另一个常用得压电常数就是压电电压常数g,它表示应力与所产生得电场得关系,或应变与所引起得电位移得关系。常数g 与 d 之间有如下关系: 式中为介电系数。在声波测井仪器中,压电换能器希望具有较高得压电应变常数与压电电压常数,以便能发射较大能量得声波并且具有较高得接受灵敏度。 4、机电耦合系数 当用机械能加压或者充电得方法把能量加到压电材料上时,由于压电效应与逆压电效应,机械能(或电能)中得一部分要转换成电能(或机械能)。这种转换得强弱用机电耦合系数k 来表示,它就是一个量纲为一得量。机电耦合系数就是综合反映压电材料性能得参数,它表示压

压电陶瓷的特性及应用举例

压电陶瓷的特性及应用举例 芯明天压电陶瓷以PZT锆钛酸铅材料为主,主要利用压电陶瓷的逆压电效应,即通过对压电陶瓷施加电场,压电陶瓷产生纳米级精度的致动位移。 芯明天压电陶瓷 Δ压电效应 压电效应可分为正压电效应和逆压电效应。正压电效应是指压电陶瓷受到特定方向外力的作用时,在压电陶瓷的正负极上产生相反的电荷,当外力撤去后,又缓慢恢复到不带电的状态;逆压电效应是指在对压电陶瓷的极化方向上施加电压,压电陶瓷会随之发生形变位移,电场撤去后,形变会随之消失。

Δ纳米级分辨率 压电陶瓷的形变量非常小,一般都小于1%,虽然形变量非常小,但可通过改变电场强度非常精确地控制形变量。 压电陶瓷是高精度致动器,它的分辨率可达原子尺度。在实际使用中,压电陶瓷的分辨率通常受到产生电场的驱动控制器的噪声和稳定性的限制。 Δ大出力 压电陶瓷产生的最大出力大小取决于压电陶瓷的截面积,对于小尺寸的压电陶瓷,出力通常达到数百牛顿的范围,而对于大尺寸的压电陶瓷,出力可达几万牛顿。

Δ响应时间快

常用模具材料介绍

ABS 丙烯腈-丁二烯-苯乙烯共聚物 ==典型应用范围: 汽车(仪表板,工具舱门,车轮盖,反光镜盒等),电冰箱,大强度工具(头发烘干机,搅拌器,食品加工机,割草机等),电话机壳体,打字机键盘,娱乐用车辆如高尔夫球手推车以及喷气式雪撬车等. ==注塑模工艺条件: 干燥处理:ABS材料具有吸湿性,要求在加工之前进行干燥处理。建议干燥条件为80~90℃下最少干燥2小时。材料温度应保证小于0.1%。 熔化温度:210~280℃;建议温度:245℃。 模具温度:25~70℃。(模具温度将影响塑件光洁度,温度较低则导致光洁度较低)。 g u注射压力:500~1000bar。 注射速度:中高速度。 ==化学和物理特性: ABS是由丙烯腈、丁二烯和苯乙烯三种化学单体合成。每种单体都具有不同特性:丙烯腈有高强度、热稳定性及化学稳定性;丁二烯具有坚韧性、抗冲击特性;苯乙烯具有易加工、高光洁度及高强度。从形态上看,ABS是非结晶性材料。三中单体的聚合产生了具有两相的三元共聚物,一个是苯乙烯-丙烯腈的连续相,另一个是聚丁二烯橡胶分散相。ABS的特性主要取决于三种单体的比率以及两相中的分子结构。这就可以在产品设计上具有很大的灵活性,并且由此产生了市场上百种不同品质的ABS材料。这些不同品质的材料提供了不同的特性,例如从中等到高等的抗冲击性,从低到高的光洁度和高温扭曲特性等。ABS材料具有超强的易加工性,外观特性,低蠕变性和优异的尺寸稳定性以及很高的抗冲击强度。 ##################################################### PP 聚丙烯 ==典型应用范围: 汽车工业(主要使用含金属添加剂的PP:挡泥板、通风管、风扇等),器械(洗碗机门衬垫、干燥机通风管、洗衣机框架及机盖、冰箱门衬垫等),日用消费品(草坪和园艺设备如 剪草机和喷水器等)。

压电式压力传感器原理

压电式压力传感器原理、特点及应用 压电式压力传感器的原理 压电式压力传感器的原理主要是压电效应,它是利用电气元件和其他机械把待测的压力转换成为电量,再进行相关测量工作的测量精密仪器,比如很多压力变送器和压力传感器。压电传感器不可以应用在静态的测量当中,原因是受到外力作用后的电荷,当回路有无限大 的输入抗阻的时候,才可以得以保存下来。但是实际上并不是这样的。因此压电传感器只可以应用在动态的测量当中。它主要的压电材料是:磷酸二氢胺、酒石酸钾钠和石英。而石英呢,其实是一种天然的晶体,而压电效应就是在此晶体的基础上发现的。在规定的范围里, 压电性质是不会消失,而是一直存在的。但是如果温度在这个规定的范围之外,压电性质就会彻底地消失不见。当应力发生变化的时候,电场的变化很小很小,其他的一些压电晶体就会替代石英。酒石酸钾钠,它是具有很大的压电系数和压电灵敏度的,但是,它只可以使用在室内的湿度 和温度都比较低的地方。磷酸二氢胺是一种人造晶体,它可以在很高的湿度和很高的温度的环境中使用,所以,它的应用是非常广泛的。随着技术的发展,压电效应也已经在多晶体上得到应用了。例如:压电陶瓷,铌镁酸压电陶瓷、铌酸盐系压电陶瓷和钛酸钡压电陶瓷等等都包括在内。

压电式压力传感器的特点 以压电效应为工作原理的传感器,是机电转换式和自发电式传感器。它的敏感元件是压电的材料制作而成的,而当压电材料受到外力作用的时候,它的表面会形成电荷,电荷会通过电荷放大器、测量电路的放大以及变换阻抗以后,就会被转换成为与所受到的外力成正比关系的电量输出。 它是用来测量力以及可以转换成为力的非电物理量,例如:加速度和压力。它有很多优点:重量较轻、工作可靠、结构很简单、信噪比很高、灵敏度很高以及信频宽等等。但是它也存在着某些缺点:有部分电压材料忌潮湿,因此需要采取一系列的防潮措施,而输出电流的响应又比较差, 那就要使用电荷放大器或者高输入阻抗电路来弥补这个缺点,让仪器更好地工作。 压电式压力传感器的应用 压电式压力传感器的应用领域很广泛:电声学、生物医学和工程力学等等。它能够测量发动机里面的燃烧压力,也能够应用在军事方面。它可以测量在膛中的枪炮子弹在击发的那一刻,膛压的改变量以及炮口所受到的冲击波压力。它能够测量很小的压力,也能够测量大 的压力。由于它的使用寿命很长、重量较轻、体积较小、结构较简单,因此它所涉及的领域远远不止这些。在对建筑物、桥、汽车和飞机等的冲击和震动的测量,也是非常广泛的。特别是在宇航和航空的领域

压电材料及其应用

压电材料及其应用 学院:材料学院 专业:材料科学与工程系班级:1019001 姓名:李耘飞 学号:1101900118

压电材料及其应用 李耘飞 材料科学与工程 1101900118 一、压电材料的定义 压电材料是指可以将压强、振动等应力应变迅速转变为电信号,或将电信号转变为形变、振动等信号的机电耦合的功能材料。 当你在点燃煤气灶或热水器时,就有一种压电陶瓷已悄悄地为你服务了一次。生产厂家在这类压电点火装置内,藏着一块压电陶瓷,当用户按下点火装置的弹簧时,传动装置就把压力施加在压电陶瓷上,使它产生很高的电压,进而将电能引向燃气的出口放电。于是,燃气就被电火花点燃了。压电陶瓷的这种功能就叫做压电效应。压电效应的原理是,如果对压电材料施加压力,它便会产生电位差(称之为正压电效应),反之施加电压,则产生机械应力(称为逆压电效应)。如果压力是一种高频震动,则产生的就是高频电流。而高频电信号加在压电陶瓷上时,则产生高频声信号(机械震动),这就是我们平常所说的超声波信号。也就是说,压电陶瓷具有机械能与电能之间的转换和逆转换的功能,这种相互对应的关系确实非常有意思。 压电材料可以因机械变形产生电场,也可以因电场作用产生机械变形,这种固有的机-电耦合效应使得压电材料在工程中得到了广泛的应用。例如,压电材料已被用来制作智能结构,此类结构除具有自承载能力外,还具有自诊断性、自适应性和自修复性等功能,在未来的飞行器设计中占有重要的地位。 二、压电材料的主要特性包括: (1)机电转换性能:应具有较大的压电系数; (2)机械性能:压电元件作为受力元件,希望它的机械强度高、机械刚度大,以期获得宽的线性范围和高的固有频率; (3)电性能:应具有高的电阻率和大的介电常数,以减小电荷泄漏并获得良好的低频特性(4)温度和湿度的稳定性要好。具有较高的居里点,以得到宽的工作温度范围 (5)时间稳定性:其电压特性应不随时间而蜕变。 压电材料的主要特性参数有:(1) 压电常数、(2) 弹性常数、 (3) 介电常数、(4) 机电耦合系数、(5) 电阻、 (6) 居里点。 三、压电材料的分类 压电材料可分为三类:压电晶体(单晶)、压电陶瓷(多晶)和新型压电材料。其中压电单晶中的石英晶体和压电多晶中的钛酸钡与锆钛酸铅系列压电陶瓷应用较普遍。 (1)压电晶体 1)石英晶体 石英晶体是典型的压电晶体,分为天然石英晶体和人工石英晶体,其化学成份是二氧化硅(SiO2),其压电常数d11=2.1×10-12C/N,压电常数虽小,但时间和温度稳定性极好,在20℃~200℃范围内,其压电系数几乎不变;达到573℃时,石英晶体就失去压电特性,该温度称为居里点,并无热释电性(了解更多)。另外,石英晶体的机械性能稳定,机械强度和机械品质因素高,且刚度大,固有频率高,动态特性好;且绝缘性、重复性均好。 下面以石英晶体为例来说明压电晶体内部发生极化产生压电效应的物理过程。在一个晶体单元体中,有3个硅离子和6个氧离子,后者是成对的,构成六边的形状。在没有外力的作

压电陶瓷参数整理

压电材料的主要性能参数 (1) 介电常数ε 介电常数是反映材料的介电性质,或极化性质的,通常用ε来表示。不同用途的压电陶瓷元器件对压电陶瓷的介电常数要求不同。例如,压电陶瓷扬声器等音频元件要求陶瓷的介电常数要大,而高频压电陶瓷元器件则要求材料的介电常数要小。 介电常数ε与元件的电容C ,电极面积A 和电极间距离t 之间的关系为 ε=C ·t/A 式中C ——电容器电容;A ——电容器极板面积;t ——电容器电极间距 当电容器极板距离和面积一定时,介电常数ε越大,电容C 也就越大,即电容器所存储电量就越多。由于所需的检测频率较低,所以ε应大一些。因为ε大,C 就相应大,电容器充放电时间长,频率就相应低。 (2)压电应变常数 压电应变常数表示在压电晶体上施加单位电压时所产生的应变大小: 31(/)t d m V U = 式中 U ——施加在压电晶片两面的压电; △t ——晶片在厚度方向的变形。 压电应变常数33d 是衡量压电晶体材料发射性能的重要参数。其值大,发射性能好,发射灵敏度越高。 (3)压电电压常数33g 压电电压常数表示作用在压电晶体上单位应力所产生的压电梯度大小: 31(m/N)P U g V P =? 式中 P ——施加在压电晶片两面的应力; P U —— 晶片表面产生的电压梯度,即电压U 与晶片厚度t 之比,P U =U/t 。 压电电压常数33g 是衡量压电晶体材料接收性能的重要参数。其值大,接收性能好,接收灵敏度高。 (4)机械品质因数 机械品质因数也是衡量压电陶瓷的一个重要参数。它表示在振动转换时材料内部能量消耗的程度。产生损耗的原因在于内摩擦。

m E E θ=储损 m θ值对分辨力有较大的影响。机械品质因数越大,能量的损耗越小,晶片持 续振动时间长,脉冲宽度大,分辨率低。 (5)频率常数 由驻波理论可知,压电晶片在高频电脉冲激励下产生共振的条件是: 0 22L L C t f λ== 式中 t ——晶片厚度;L λ——晶片中纵波波长;L C ——晶片中纵波的波速; 0f ——晶片固有频率。 则: 02 L t C N tf == 这说明压电片的厚度与固有频率的乘积是一个常数,这个常数叫做频率常数。因此,同样的材料,制作高频探头时,晶片厚度较小;制作低频探头时,晶片厚度较大。 (6)机电耦合系数K 机电耦合系数K 是综合反映压电材料性能的参数,它表示压电材料的机械能与电能之间的耦合效应。机电耦合系数可定义为 K =转换的能量输入的能力 探头晶片振动时,同时产生厚度方向和径向两个方向的伸缩变形,因此机电耦合系数分为厚度方向t K 和和径向p K 。t K 大,检测灵敏度高;p K 大,低频谐振波增多,发射脉冲变宽,导致分辨率降低,盲区增大。 (7)居里温度C T 压电材料与磁性材料一样,其压电效应与温度有关。它只能在一定的温度范围内产生,超过一定温度,压电效应就会消失。使压电材料的压电效应消失的温度称为压电材料的居里温度,用C T 表示。 探头对晶片的一般要求: (1) 机电耦合系数K 较大,以便获得较高的转换效率。

电子工程师必备基础知识

电子工程师必备基础知识(一) 运算放大器通过简单的外围元件,在模拟电路和数字电路中得到非常广泛的应用。运算放大器有好些个型号,在详细的性能参数上有几个差别,但原理和应用方法一样。 运算放大器通常有两个输入端,即正向输入端和反向输入端,有且只有一个输出端。部分运算放大器除了两个输入和一个输出外,还有几个改善性能的补偿引脚。 光敏电阻的阻值随着光线强弱的变化而明显的变化。所以,能够用来制作智能窗帘、路灯自动开关、照相机快门时间自动调节器等。 干簧管是能够通过磁场来控制电路通断的电子元件。干簧管内部由软磁金属簧片组成,在有磁场的情况,金属簧片能够聚集磁力线并使受到力的作用,从而达到接通或断开的作用。 电子工程师必备基础知识(二) 电容的作用用三个字来说:“充放电。”不要小看这三个字,就因为这三个字,电容能够通过交流电,隔断直流电;通高频交流电,阻碍低频交流电。 电容的作用如果用八个字来说那就:“隔直通交,通高阻低。”这八个字是根据“充放电”三个字得出来的,不理解没关系,先死记硬背住。 能够根据直流电源输出电流的大小和后级(电路或产品)对电源的要求来先择滤波电容,通常情况下,每1安培电流对应 1000UF-4700UF是比较合适的。 电子工程师必备基础知识(三) 电感的作用用四个字来说:“电磁转换。”不要小看这四个字,就因为这四个字,电感能够隔断交流电,通过直流电;通低频交流电,阻碍高频交流电。电感的作用再用八个字来说那就:“隔交通直,通低阻高。”这八个字是根据“电磁转换”三个字得出来的。 电感是电容的死对头。另外,电感还有这样一个特点:电流和磁场必需同时存在。电流要消失,磁场会消失;磁场要消失,电流会消失;磁场南北极变化,电流正负极也会变化。 电感内部的电流和磁场一直在“打内战”,电流想变化,磁场偏不让变化;磁场想变化,电流偏不让变化。但,由于外界原因,电流和磁场都可能一定要发生变化。给电感线圈加上电压,电流想从零变大,可是磁场会反对,因此电流只好慢慢的变大;给电感去掉电压,电流想从大变成零,可是磁场又要反对,可是电流回路都没啦,电流已经被强迫为零,磁场就会发怒,立即在电感两端产生很高的电压,企图产生电流并维持电流不变。这个电压很高很高,甚至会损坏电子元件,这就是线圈的自感现象。

磁性材料基础知识

概述:磁性是物质的基本属性之一.磁性现象是与各种形式的电荷运动相关联的,由于物质内部的电子运动和自旋会产生一定大小的磁场,因而产生磁性.一切物质都具有磁性.自然界的按磁性的不同可以分为顺磁性物质,抗磁性物质,铁磁性物质,反铁磁性物质,以及亚铁磁性物质,其中铁磁性物质和亚铁磁性物质属于强磁性物质,通常将这两类物质统称为磁性材料. 磁性材料的分类,性能特点和用途: 1铁氧体磁性材料,一般是指氧化铁和其他金属氧化物的符合氧化物.他们大多具有亚铁磁性. 特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用.饱和磁化强度低,不适合高磁密度场合使用.居里温度比较低. 2 铁磁性材料:指具有铁磁性的材料.例如铁镍钴及其合金, 某些稀土元素的合金.在居里温度以下,加外磁时材料具有较大的磁化强度. 3 亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度. 4 永磁材料:磁体被磁化厚去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大.可分为三类,金属永磁,例,铝镍钴,稀土钴,铷铁硼等. 铁氧体永磁,例,钡铁氧体,锶铁氧体,其他永磁,如塑料等. 5软磁材料:容易磁化和退磁的材料.锰锌铁氧体软磁材料,其工作频率在1K-10M之间.镍锌铁氧体软磁材料,工作频率一般在1-300MHZ 金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁, 铁铝合金, 铁钴合金,铁镍合金等,常用于变压器等. 术语: 1 饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度.在实际应用中, 饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度. 2 剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度. 3 磁通密度矫顽力, 他是从磁性体的饱和磁化状态,沿饱和磁滞回线单调改变磁场强度, 使磁感应强度B减小到0时的磁感应强度. 4内禀矫顽力:从磁性体的饱和磁化状态使磁化强度M减小到0的磁场强度. 5磁能积:在永磁体的退磁曲线上的任意点的磁感应强度和磁场强度的乘积. 6 起始磁导率:磁性体在磁中性状态下磁导率的极限值. 7 损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交

相关主题
文本预览
相关文档 最新文档